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ABSTRACT 
In this two dimensional numerical study, miniature cooling 

channel lay-outs were obtained using topology optimization 
techniques.  Laminar steady state flow was considered for 
different inlet and outlet configurations. A pressure 
minimization objective was considered in this paper.  The 
physics of the primary system was controlled via a discreet 
design variable set and implemented in the model using the 
finite volume method. To improve convection effects, design 
level cells were sub-divided into up to three by three 
computational sub cells. It was found that improved material 
distributions with discrete solid-to-liquid interfaces were 
obtained when a global (domain wise) objective function was 
used and the placement of solid and liquid cells were done 
according to the gradient-based sensitivities of the objective 
functions.  It was found that flow-rate-specific topology 
optimization was needed to reduce over-all pressure drop.  

 
INTRODUCTION 

As technology advances, increased demands are made on 
the output of modern electronics. Higher output requirements 
leads to increased power consumption for these devices, 
resulting either in increased operating temperatures or higher 
demands on the heat removal systems to sustain desired 
efficiency levels.   When considering the cooling of these 
devices the amount of heat transferred is critical to the 
operating temperature. Heat transfer using pure conduction 
alone is insufficient for cooling higher heat generating density 
cases.   By introducing flow channels into a heat producing 
domain the heat transfer can be significantly increased through 
convection heat transfer but at the increased cost of pumping 
the fluid. Heat flux levels sustained with convection are orders 
larger than the heat flux levels that can be supported by 
conduction only. For this reason combined fluid-solid systems 
require further investigation. In this paper only the 
minimization of pressure across the flow channels will be 
considered and forms the first part of understanding the 
contradicting objective of high heat transfer and low pressure  

NOMENCLATURE 
C, Cs, Cf [Pa] Pressure coefficients 
F m2/s.  Body force 
j  Objective function 
J  Integrated objective function 
L  Lagrangian function  
m [-] Design variable 
N [-] Number of design cells 
p [m2/s2] Kinematic pressure of the fluid  
P [Pa] Pressure of fluid 
Q  Residual stat variable 
ra [-] Number of cells added 
rr [-] Number of cells removed 
R  Residual stat variable 
Ra [-] Addition rate 
Rr [-] Removal rate 
Re [-] Reynolds Number 
t [-] Iteration step number 
u, U [m/s] Velocity of the fluid 
Vf [-] Volume fraction 
x [m] Cartesian axis direction  
y [m] Cartesian axis direction  
z [m] Cartesian axis direction  
Special characters 
 [m²/s] Thermal diffusivity 
Γ [-] Domain boundary 
 [-] Adjoint velocity 
ø [-] Adjoint pressure  
 [m] Permeability 
γ [-] Ratio between thermal diffusivities of cooling fluid and 

the heat-generating solid 
Ω [ -] Domain 
Subscripts 
i  Design cell index 
I  Inlet 
j  In terms of j 
l  Liquid phase 
O  Outlet  
p  In terms of p 
s  Solid phase 
W  Wall 
Superscripts 
n  Normal component 
t  Tangential component 
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drops. In general, the aim would be to find the best layout for 
the flow channels that meet the requirements in the limited 
sized domain. The necessity to increase the performance of 
such systems warrants the use of optimization techniques such 
as topology optimization which sole goal is to obtain 
advantageous internal layouts. 

Topology optimization is a wide field with applications in 
among others, structural systems [1] and fluid systems [2-4]. 
Early pioneering work in topology optimization was presented 
by Bendsoøe in his paper on homogenization [5]. His work was 
further extended to other methods [6, 7] in the structural 
optimization and thermal conduction [8]. Application on 
combined thermal-flow systems was also investigated by [9].  

In topology optimization there are two types of methods 
that are generally used for the optimization: gradient based and 
gradient free method. Gradient based methods require a 
sensitivity analysis to determine the gradients of the objective 
function. Such sensitivities are used in optimization algorithms 
to control the adjustment of the topology. Gradient free 
methods only require the availability of the objective. Both 
genetic and evolutionary type methods all fall under gradient 
free methods and rely on logic to control the topology. A 
gradient based method was used in this paper to increase the 
convergence rate of the optimization. 

Computation of gradients can be done using direct or 
indirect methods using analytical or numerical methods. Finite 
difference is a good example of a common direct, numerical 
method and is widely used to determine gradients. Direct 
methods are used for systems with many objective functions 
and a few parameters, and indirect methods are used for 
systems with large number of parameters and a few objective 
functions. The adjoint method is considered an indirect method 
and is of particular interest for topology optimization due to the 
large number of parameters present. Computational costs play a 
significant role in the selection of the methods used and the 
computational costs for adjoint methods are independent of the 
number of parameters. The computational costs for direct 
methods scale non-linearly with the number of parameters. This 
is the primary reason why adjoint methods are well suited to 
topology optimization problems. 

Two formulations for adjoint methods exist, continuous and 
discrete.  In continuous adjoint method the governing partial 
derivative equations (PDE’s) are differentiated in terms of the 
parameters, to derive the adjoint equations and boundary 
conditions, and are then discretised.  In discrete adjoint 
methods the governing PDE’s are first discretised and then 
differentiated in terms of the parameters to obtain the adjoint 
equations. The accuracy of adjoint sensitivities will later be 
compared to finite difference gradients. A good review on the 
accuracies of the different approaches is discussed in [10, 11]. 
In this paper the continuous adjoint method was used to 
compute the gradients. 

MODEL FORMULATION 
The square two-dimensional computational domain used in 

this study is shown in Figure 1. In this configuration there is an 
inlet on the left hand boundary and two outlets on the right 
band boundary, each with a parabolic velocity profile as shown.   

All other boundaries are taken as being adiabatic. The 
domain is divided into design cells. In this paper a design cell 
density of 50 by 50 was used, resulting in N = 2500 design 
cells. For clarity, a reduced number of design cells are shown in 
Figure 1. Each design cell can be toggled between a solid-state 
and liquid-state by changing its design variable ݉௜ where i 
refers to the design cell number. 

A discrete algorithm was used for the topology optimization 
to produce a discreet solution.  Each design variable (mi also 
called the fluid fraction in this application) assumed a value of 
either mi = 0 for fluids or mi = 1 for solids.   

Each design cell was further divided into smaller sub cells, 
as shown in Figure 2, which were used to refine design cells 
and increase the accuracy of the sensitivities and the numerical 
flow solution, especially the convection effect. The finer 
resolution from the sub-cells allows better representation of the 
physics and the gradients in a cell.  In this paper 1x1, 2x2 and 
3x3 sub-divisions were used resulting in 2 500, 10 000 and 
22 500 computational cells.  

 

 
Figure 1 Design domain for a single inlet outlet system 
 

 
 

Figure 2 Division of design cell into smaller sub cells 
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Flow model 
The flow in the domain, Ω, was modelled using the steady 

state, incompressible Navier-Stoke equations and the continuity 
equations: 

 

 0i

i

u
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
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  (1) 

 ( ) Fji i
j j

j i i j i

uu up
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x x x x x
 

  
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  (2) 

 
where ui is fluid velocity, p is the fluid pressure,   is fluid 
kinematic viscosity and F is the body force exerted on the fluid. 

The governing equations were required to model both solid 
and liquids by changing the design variable, mi. The continuity 
equation holds for both solid and liquids and only the Navier-
Stokes equation needs modification depending on whether the 
material is solid or liquid. To model zero velocity in solid cells a 
porous friction term was introduced [9,10] as the body force term. 
The friction is dependent on the impermeability, , of the medium 
as well as the fluid velocity: 

 
 i iF u    (3) 

 
A dependence of the impermeability on the local fluid 

fraction, mi, is used to control the velocity in each cell.  For this 
purpose a linear material interpolation was used: 

 
 (m ) ( )i l i l sm        (4) 

 
where l and s are the liquid and solid impermeability 
respectively. A simple material interpolation model suffices since 
a discrete optimization approach was used and did not influence 
the physics. For approaches that use continuous design variable 
values, other interpolation schemes should be used. Since mi = 0 
presents a liquid cell l was chosen as 0 to cancel out the friction 
term. For solids when mi = 1, a large value was chosen for the 
permeability to approximate the solid. A solid permeability of 
s = 300 produce negligible velocity in solid cells (u~10-12). The 
final form of the flow governing equations is: 
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Commonly used boundary conditions for incompressible, 

steady flow are of the Dirichlet and Neumann types. The velocity 
boundary conditions on the edge of the domain, Γ, were selected 
as follows (refer to Figure 1):  

 
 i i Iu U on    (7) 

 
 0i Wu on    (8) 

 

 0i
j O

j

u
n on

x


 


  (9) 

where Ui is the specified inlet velocity and nj the outward unit 
normal on . While the following pressure boundary conditions 
were used: 

 

 0j I
j

p
n on
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
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
  (10) 

 

 0j W
j

p
n on

x


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
  (11) 

 
 0 Op on    (12) 

 
A non-slip boundary type was used for all domain edges 

associated with walls.  Zero normal pressure and velocity 
gradients were used at the outlet.  

Model Validation 
The numerical model was validated using flow over a flat 

plate, amongst others, by using analytical results from the 
Blasius similarity solution.  In Figure 3 the velocity profiles u 
are compared and are in good agreement with the analytical 
solution along the length scale η.  

 

OPTIMIZATION 

Optimization Statement 
The topology optimization problem was implemented using 

a hybrid-based iterative method. The method was discrete and 
required the gradient of the objective function in order to 
determine the sensitivity of each cell in the domain. The 
discrete topology optimization for a general objective function, 
j, can be stated as: 

 
 

 
Figure 3 Validation using Blasuis flat plate solution  
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Figure 4 Flowchart of optimization algorithm 
 

 
minimize ( , , )

such that {0,1}

i

f

j u p m

m d V m


  
  (13) 

 
An overview of the optimization algorithm is given in 

Figure 4. Initially the layout was chosen to be all liquid cells 
and solid cells were gradually added and removed from the 
layout. The rate at which solid was added ra and removed rr 
determined the convergence rate of the optimization algorithm.  

Sensitivity analysis 
The adjoint method [12] was used to determine the 

sensitivities of the objective function. For this purpose the 
optimization problem need to be transformed into an 
unconstrained problem using the Lagrangian method. The 
extended objective function is: 

 

 ( R Q)i iL J d 


      (14) 

 
The adjoint velocity, I and adjoint pressure, , are the 

Lagrange multipliers. Given that the governing equations are 
satisfied, ܴ௜ ൌ ܳ ൌ 0, they will act as equality constraints for 
the optimization. The first variation of the extended objective 
function in Eqn. (14) is: 

 

 R Qi iL J d d    
 

       (15) 

The variation of the objective function can be separated into 
the contribution from the boundary and the contribution from 
the domain: 

 

 J j d j d          (16) 
 

The variation of the extended objective function is: 
 

 
im u pL L L L        (17) 

 

The above variation includes contribution from the state 
variables (u, p) and the local design variable (mi). Computing 
the sensitivities from Eqn. (17) directly would require the 
solution of the governing equation for each design variable 
which would be problematic due to computational restrictions. 
To address this problem, the adjoint variables can be chosen in 
such a way that their variation is zero with regard to the state 
variables: 

 

 0
iu pL L     (18) 

 

Variations of the governing equations can be written to be: 
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Combining the variation yields: 
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The basic method of adjoint sensitivity analysis is to choose 
the adjoint variables in such a way that their contribution to 
sensitivity is eliminated. In order to eliminate gradients of 
variation they are integrated and grouped.  

 

( ( ) )

( ( ) ( ))

( ) ( )

j ji i i
j i j i i i i

i j j j i i

j ji i
j i j i j j i i j j j i i j

j i j i

i i i
i

u u u u u u p d
x x x x x x

uu
nu u u n u n p n u n d

x x x x

u d n u d
x

   
      

  
       

  





 

   
      

     

  
       

   


   







 
  (22) 

Solve Primary Equations 

Solve Adjoint Equations 

Compute Sensitivity 

Update Design Variables 

Update Model Properties 

Converged? 

Case Setup

Initialize Solution 

End 

1832



  

The adjoint equations are derived from the volume integrals 
and must be satisfied on the entire domain. By combining terms 
and rearranging, the adjoint equations become: 
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Boundary conditions arise from the extra boundary integral 

terms, and are chosen to vanish such that these have no 
influence on the sensitivity calculations.  
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In this study the adjoint boundary conditions were chosen as 

follows: 
For the adjoint velocity: 
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For the adjoint pressure: 
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The objective function sensitivity is only dependent on the 
design variable mi: 
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It can thus be computed directly from: 
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Figure 5 Finite Difference vs Adjoint sensitivities  
 
 
The only dependence on the design variable is the 

impermeability for the flow model resulting in:  
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Adjoint Sensitivity Validation 

The sensitivities obtained by the adjoint method were 
compared with the sensitivities computed using the direct finite 
difference method for a pressure objective function. Figure 5 
gives the adjoint sensitivities on the top and the sensitivities 
according to the direct method on the bottom for the 2 500 
design cells. It can be seen that there is a good agreement 
between the methods. The differences that do exist are due to 
the use of first order schemes and boundary approximations 
that were implemented. Based on the good agreement, the 
adjoint sensitivities were used in this study.  

RESULTS 
 In this section several applications of the model and 

optimization will be demonstrated. The optimal layout of flow 
channels for the pressure drop objective will be demonstrated. 
The effect of the design cells on the optimization is also 
presented, specifically the cell refinement and the addition and 
removal rate of solid material.  

The topology optimization was applied to the two 
dimensional layout as depicted in Figure 6. The layout is a 
simple double inlet - single outlet system where flow enters 
from the left and bottom and exits at the right. Both inlets had 
the same width. The domain was divided into 50 by 50 design 
cells with a 3 by 3 cell refinement for a total of 22 500 
elements. To indicate the influence of the sub-cell refinement, 
the domain size was fixed for each case and the cell refinement 
was varied. 
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Figure 6 Simplified computational domain for demonstration 
purposes 

  
The initial configuration for all cases was that the entire 

domain was liquid, m = 0.  Cells with high sensitivity were 
toggled to solids until the volume constraint was met. 

Figure 7 shows the progression of the optimization process 
for an inlet Reynolds number of Re = 400, an addition rate of 
Ra = 0.0032 (8 cells) and a removal rate of Rr = 0.0016 (4 cells) 
for the two inlet one outlet, layout as shown in Figure 4.  The 
normalized addition, Ra, and removal rates, Rr, are defined as: 

 

 

a
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r
r

r
R

N
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
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  (36) 

 

Where ra, rr, and N are the addition rate, removal rate and 
the total number of design cells respectively. 

The characteristic length used in the Reynolds number was 
the width of the two inlets. Iteration steps t = 100, t = 200, 
t = 300 and t = 400 are given which represent solid volume 
proportion of Vf = 0.2, 0.4, 0.6 and 0.8.  The pressure and 
velocity contours are shown side by side for comparison. The 
solid domain is filled black and the contours of velocity and 
pressured displayed in the fluid region. From the solutions it 
can be seen that the most inefficient material is removed first, 
specifically the material in corners and near stagnation zones. 
By the 100th time step feint traces of the topology were already 
becoming visible. As the optimization iterations progressed 
more of the cells that contained slow flowing liquid were 
toggled to solids, until a well-defined topology was visible at a 
global solid volume ratio of 0.8 at t = 400.  
    The other flow branches sizes were then reduced until they 
are removed to produce a continuous branchless topology.  
Recirculation zones are responsible for the existence of the 
branches and increases with the flow velocity.  

 
a) Velocity U, t = 100 b) Pressure P, t = 100 

 
c) Velocity U, t = 200 d) Pressure P, t = 200 

 
e) Velocity U, t = 300 f) Pressure P, t = 300 

 
g) Velocity U, t = 400 h) Pressure P, t = 400 

 
Figure 7 Optimization process at different steps 

Design Cell Refinement 
Cell level refinement was used to increase the accuracy of 

the convection physics in single cell channels. This also has the 
added effect of increasing the stability of the convergence. The 
effect of the design cell refinement on the optimization was  
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Figure 8 Pressure drop comparison for cell refinement 
 

 
a) 1x1, Vf = 0.8 b) 1x1, Vf = 0.6 

 
c) 2x2, Vf = 0.8 d) 2x2, Vf = 0.6 

 
e) 3x3, Vf = 0.8 f) 3x3, Vf = 0.6 

Figure 9 Cell refinement results 
 

once again investigated for a configuration with two inlets and 
one outlet. Flow enters through the inlet on the left and bottom 
of the domain and exits at the right as shown in Figure 
6.Varying refinement levels of 1x1, 2x2 and 3x3 were 
considered. An inlet Reynolds number of Re = 400 was used. 

The pressure drops for the three cell refinement levels are given 
in Figure 8 after t = 400.  It can be obtain that the largest 
variation in the objective function for this example was only 
2.5% when the sub cells were refined from 2x2 to 3x3. Figure 9 
shows the optimization results for the flow channel using 
different cell refinements (1x1, 2x2 and 3x3) at two different 
global solid volume proportions (Vf = 0.6 after t = 300 and 
Vf = 0.8 after t = 400). Small differences in the solution can be 
seen for the final results of three different refinement levels. 

 The largest difference occurs where the two flows combine. 
For the pressure based objective function a sub cell refinement 
above 3x3 does not produce significant improvement in 
accuracy. This is because converged solutions of this type 
generally have wide flow channels allowing for relatively 
sufficient computation cells for the velocity field to be 
represented.  Further refinement becomes too computationally 
expensive to perform without a suitable return on accuracy 
improvement. Higher design cell refinement is best suited for 
cases where the resulting flow channels in the topology are 
narrow such as when a flow channel is only one or two design 
cells wide, such as when a temperature based objective function 
is used (not covered in this paper).  

Addition and removal rate 
The addition and removal rate is an indication of the 

convergence rate of the optimization process. High addition 
rates may steer the solution away from the optimal or may even 
not converge altogether. It is important to study the effect of the 
addition and removal rate on the final solution.  

For the addition and removal rate study the design domain 
depicted in Figure 6 was used again, but only for a 2x2 cell 
refinement. The inlet Reynolds number was again fixed at 
Re = 400 and a volume fraction of Vf = 0.6 was considered. 
Four addition rate and removal rate combinations are presented 
here: Ra = 0.0032 with Rr = 0.0016 which resulted in a net solid 
cell increase of 4 cells per iteration, Ra = 0.0064 with 
Rr = 0.0032 resulting in a net increase of 8 cells per iteration, 
Ra = 0.0128 with Rr = 0.0032 resulting in a net increase of 24 
cells and Ra = 0.0128 with Rr = 0.0064 resulting in a net 
increase of 16 cells per iteration.  

The results of the additional-removal study are shown in 
Figure 10. It can be seen that for this example the addition and 
removal rates had a small effect on the final topology. In 
general lower rates allow for finer resolution of the final rate 
but at the cost of making the optimization process slower. 

Application - Pressure 
The topology optimization will now be applied to the two 

dimensional layout as depicted in Figure 1. The layout is a 
simple single inlet and double outlet system where flow enters 
from the left and exits on the right and can be viewed as a 
simplified manifold. As before, the domain was divided into 
50x50 design cells with a 3x3 cell refinement. The objective 
function can be represented as: 

 

minimize j( , , ) ( )
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a) Ra = 0.0032, Rr = 0.0016 b) Ra = 0.0064, Rr = 0.0032 

 
c) Ra = 0.0128, Rr = 0.0032 d) Ra = 0.0128, Rr = 0.0064 

Figure 10 Influence of the addition and removal rate 
 

The problem was analysed for different inlet Reynolds 
numbers, Re = 50, Re = 100, Re = 400 and Re = 700, at 
different volume fractions, Vf = 0.6 and Vf = 0.8. 

A collection of optimized flow channel distributions for the 
pressure-based objective  is shown in Figure 11.At first glance 
the  increase in Reynolds number from Re = 50 to Re = 100 
does not have a large impact on the final solution when 
compared to the Re = 400 and Re = 700 results. The increase in 
Reynolds number changes the lay-out from a Y-type shape 
towards a T-type shape, effectively decreasing the lengths of 
the channel branches to the outlets. By comparing the Vf = 0.6 
cases with the Vf = 0.8 cases it could be seen that the higher 
velocities (red in colour) present when the channels were wider, 
formed clearly defined jet-like streams indicative of the 
possible lay-outs of the final narrower channels. It may also be 
noted that the solutions obtained were symmetric.  

In Figure 12 the pressure drop (PI – PO) for the optimised 
layouts obtained with a single inlet, double outlet arrangement 
at different Reynolds numbers are shown for Vf = 0.8. To show 
the importance of the Reynolds-number-specific topology 
optimization, where each Reynolds number case had a different 
optimized topology, the pressured drop of a fixed topology 
(obtained with Re = 10) is also plotted on the figure.  For  
frictional and dynamic pressure drop, the pressure difference 
across a fixed flow system or channel can be expressed as: 

222 ReReRe CCCPP fsOI 
          

 (38) 

 
a) Re = 50, Vf = 0.6 b) Re = 50, Vf = 0.8 

 
c) Re = 100, Vf = 0.6 d) Re = 100, Vf = 0.8 

 
e) Re = 400, Vf = 0.6 f) Re = 400, Vf = 0.8 

 
g) Re = 700, Vf = 0.6 h) Re = 700, Vf = 0.8 

 
Figure 11 Velocity contours for the one inlet two outlet layout 

 
where Cs is the pressure loss coefficient relating to the change 
in form or shape, Cf is the pressure loss coefficient to due 
friction and C is the combined or effective pressure loss 
coefficient. 
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Figure 12 Pressure drop for optimal layout at Vf = 0.8 

  

This follows from the base relationship between the pressure 
drop and velocity squared for a constant friction factor with 
dynamically similar configurations. The effective pressure loss 
coefficient is inversely proportional to the Reynolds number 
squared and remaining approximately constant for high 
Reynolds numbers (Re > 400). 

 
2

1

Re
C  (39) 

 
 The influence of varying friction factor, which scales linearly 
in the laminar flow regime was not incorporated when 
calculating the C values presented in Figure 12.  As can also be 
seen from Figure 12, the topologies that were specifically 
produced for a particular Reynolds number case outperformed 
the fixed topological case by approximately 10%. For the 
Vf = 0.6 configurations, the optimized topological cases still 
outperformed the fixed topological case but the results were 
less significant. This results in an operating pumping power 
saving, but requires that the topology be specifically designed 
for the applicable flow rate requirements.  

CONCLUSION 
Topology optimization was successfully applied to steady 

incompressible flow system with the application in for instance 
flow distribution systems in laminar flow.  A square domain 
divided into 50 by 50 design cells with a further computational 
sub-cell refinement of 1 by 1, 2 by 2 and 3 by 3 was 
considered. It was found that when flow channels were wide, 
the sub-cell refinement strategy did not influence the converged 
topology or final pressure drop performance of the systems 
significantly. However, when narrower channels are present 
such a refinement may be critical. It was also found that the 
inlet flow rate, expressed in terms of the inlet Reynolds 
number, had an influence on the obtained topologies, and that 

the flow-rate-specific topology was important to reduced 
pumping power requirements. Based on the examples 
considered in this paper, topology optimization is a useful tool 
for designing efficient flow systems. 

FURTHER WORK 
Temperature based objective functions and weighted multi 

objective function that include both thermal and flow 
dissipation principles are to be considered, especially for 
cooling applications 
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