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ABSTRACT 

      In this paper, we take two important steps to analyse hydro-

pneumatic systems and their components. In this regard, we 

first extend a new all-speed approach to solve the full one-

dimensional Navier-Stokes equations. The extended approach 

can be equally used to simulate both gas and liquid flows, 

considering an equivalent gas constant for the latter case. We 

further apply the extended approach to analyse both liquid 

water and air flows through two separate hydro-pneumatic 

circuits. To verify the accuracy of our solution, we compare our 

solutions with those of Lax-Wendroff  method. The comparison 

shows that the current proposed all-speed algorithm provides 

solutions with excellent accuracy. One important advantage of 

this new extended algorithm is in treating the two-phase fluid 

flow problems, where there are mixed liquid water and vapour 

behaviours, e.g., diaphragm pumps. Therefore, as a second 

contribution, we simulate a multi-component diaphragm pump, 

whose parts consist of check valves, signal subsystems, 

conveys, and air distribution system. As a final step, we obtain 

the limit of cavitation temperature at the suction side of the 

check valve for a sample diaphragm pump. 

 
INTRODUCTION 

      High pressure hydro-pneumatic systems need to be 

constructed with high quality materials. These systems carry 

different flow rates and tolerate high pressures during their 

operations. To carry out careful simulations for such important 

systems, it is required to consider a multi-element framework 

with sufficient accuracies and capable of modeling the transient 

flow through very complex components at various gas/liquid 

flow conditions. Evidently, an efficient all-speed algorithm can 

predict the transient behavior of a hydro-pneumatic system 

without the need to apply for two individual or separate 

compressible and incompressible solvers and without the need 

to switch between them. It should be mentioned that the 

meaning of low-Mach number flow solution is totally different 

from the current all-speed algorithm, which solves pure 

incompressible flow in addition to different compressible flow 

cases using one unique algorithm. 
 

    Indeed, simulation of high pressure hydro-pneumatic systems 

is typically a difficult job because of the structural and 

functional complexities associated with such systems [1]. As an 

example, a diaphragm pump is a multi-component hydro-

pneumatic system consisting of several simpler hydraulic and 

pneumatic parts, exhibiting unsteady behaviour due to its 

moving diaphragms. This system can be also subject to the risk 

for cavitation and a serious reduction in its life performance 

and endurance. As is known, the cavitation phenomenon can 

normally occur when the vapour pressure of the process fluid 

reaches the working chamber pressure. If this happens, the 

subsequent cavitation (e.g., wear, pressure shocks) would 

heavily reduce the pump’s performance and lifetime. Since the 

numerical analysis of cavitation is often faced with crucial 

instabilities; due to using different numerical methods to 

achieve the interaction between two compressible and 

incompressible phases, the use of an all-speed method for both 

liquid and gas parts can greatly improve the multi-phase flow 

solution stability in treating complex hydro-pneumatic systems. 

     Simulating a diaphragm pump as a black box and without 

imposing the details of unsteady behaviour of its moving 

components would result in some disadvantages, e.g., ignoring 

some important mechanical behaviours like pressure pulsations, 

which can dramatically affect the correct modeling of a real 

diaphragm pump. Since we simulate a complete diaphragm 

pump, we can find the cavitation temperature limit for it and 

can consequently extend suitable instructions to avoid it. 

Additionally, by modeling a complete diaphragm pump, we 

would be readily able to take into consideration the unsteady 

behaviour of any hydro-pneumatic sub-components, which 

should be taken in modeling. 
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     In this paper, we extend the simulation capabilities of an 

existing multi-element numerical framework and apply it to 

analyse a high pressure hydro-pneumatic circuit. In this regard, 

we first extend an all-speed flow solver capable of solving both 

liquid water and air flows through different hydro-pneumatic 

assemblies. Next, we compare the achieved solutions with 

those of Lax-Wendroff method. It should be noted that since 

the hydro-pneumatic systems deal with both gas and liquid 

phases simultaneously, the classical numerical methods can 

only be effective in solving certain flow regimes. However, an 

all-speed method, which can simultaneously solve both gas 

(compressible or incompressible) and liquid (incompressible) 

phases without any extra considerations, would help to achieve 

a more stable convergence procedure and reduce the solution 

time for the entire system. It is because we avoid switching 

between two compressible and incompressible solvers during 

the solution procedure. Eventually, we use our extended all-

speed algorithm and simulate the flow behaviour through a real 

super-component diaphragm pump. Then, we show how we can 

avoid cavitation by specifying a working temperature limit for 

the suction side of the pump’s check valve. 

NOMENCLATURE 

 
A  [��] Pipe cross-sectional area 

e
A  [��] Effective area 

C
 

[-] Courant number 

D  [m] Pipe diameter 

dx [m] Displacement of diaphragm middle point 

dV [��] Volume change 

e  [��/��] Specific energy 

w
F  [kg/(����)] Wall friction 

1
k  [-] Linearization constant 

2
k  [-] Linearization constant 

p  [kg/(���)] Pressure 

wP  [m] Pipe perimeter 

Pr [-] Prandtl number 

wQ  [kg/(���)] Heat transfer from wall 

Re [-] Reynolds number 

 t [s] Time 

w
T  [K] Wall temperature 

 u [m/s] Velocity 

 x  [m] Position in pipe 

t∆  [s] Time step 

x∆  [m] Cell size 

ε  [m] Pipe roughness 

λ  [	/�
] Heat conductivity 

T
λ  [-] Turbulent friction factor 
ρ  [kg/��] Density 

 

SUBSCRIPTS-SUPERSCRIPTS-ACCENTS 

e [-] east 

o [-] old 

w [-] Wall or west 

overbar [-] Lagged from previous iteration 

 

 

 

 

 

 

 

COMPUTATIONAL MODELING 

      The one-dimensional flow governing equations are given by 
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     We choose the finite volume method to treat these 

equations. Darbandi and Schneider [2,3] developed an all-speed 

algorithm in which the discretized governing equations were 

simultaneously solved for pressure, temperature, and 

momentum component ( )uρ≡  
variables. Comparing with the 

works of other investigators, who normally used the velocity 

component as the primary dependent variables in their 

algorithms, they showed that the use of momentum component 

( )uρ≡  would result in several important advantages including 

a strong flow analogy creation between compressible and 

incompressible formulations. This enabled them to use any 

incompressible flow procedure to solve compressible flows [4]. 

Additionally, the momentum component would provide more 

simplification in linearization procedure [5], and a more 

effective suppression of oscillations for flows passing through 

discontinuities [2]. 

The finite volume treatment of flow equations would lead to 

 
0( )

( ) ( ) 0
p p

e w

x
u u

t

ρ ρ
ρ ρ

∆ −
+ − =

∆
 

0( ) ( )
( ) ( ) 0

P P

e e w w e w

x u u
u u u u p p

t

ρ ρ
ρ ρ

 ∆ −  + − + − =
∆

         (2) 

0( ) ( )
( ) ( ) ( ) ( ) 0

P P

e w e w

x E E
ue ue pu pu

t

ρ ρ
ρ ρ

 ∆ −  + − + − =
∆

 

 

in which the flow cross section area is taken unity. 

     Since the density variable is considered as a secondary 

unknown in our pressure-based algorithm, the transient term in 

the discretized continuity equation needs suitable linearization 

with respect to our chosen unknown variables. We employ a 

Taylor series expansion to consider active roles for both 

pressure and temperature terms as follows [3]: 

 

( ) ( )P P T T
P T

ρ ρ
ρ ρ

∂ ∂
≈ + − + −

∂ ∂
                                         (3) 

where 

 

2

1 P

P RT T RT

ρ ρ∂ ∂
= = −

∂ ∂
                                                     (4) 

 

where the variables with an over bar indicate that they are 

approximated from the previous iteration. 
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    In current method, the nonlinear convection terms are 

linearized with respect to the momentum component ( )uρ≡ , 

which is a primary dependent variable in our algorithm. One 

sophisticated linearization scheme suggests [6]: 

 
2

1 22 ( )uu k u u k uρ ρ ρ≈ −                                                         (5) 

 

where
1

k  and 
2

k  are two arbitrary constants. If 
1 2

1k k= = , it 

results in the Newton-Raphson linearization scheme as follows: 

 

( ) ( ) ( )u u u u u u uuρ ρ ρ ρ≈ + −                                                 (6) 

 

 If 
1

1k = and 
2

0k = , it would yield a simple linearization as 

follows: 

 

( )uu u uρ ρ≈                                                                           (7) 

 
      The flow variables are interpolated at the cell faces using 

the physical influence scheme (PIS), which utilizes the flow 

governing equations to derive the integration point expression. 

Using the PIS, the momentum component and temperature are 

derived at cell faces as follows: 
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ρ ρ ρ
≈ + − +

+ + +        

(9) 

 

where the Courant number is defined as /C u t x= ∆ ∆ in this 

formulations. Also, the pressure term is linearly interpolated at 

the control volume cell faces. 

      Regarding the spatial accuracy, the current formulations 

perform second-order accurate in low Reynolds number flows. 

However, at very high Reynolds numbers, it reduces to a first-

order scheme. Also, the current method is first-order accurate in 

time. It is worth to emphasize that the accuracy of the present 

numerical solution is excellent in spite of using a first-order 

scheme to treat high Reynolds number flows even on coarse 

grid distributions. It is because the use of inclusive cell-face 

expressions provides strong couplings between the pressure and 

velocity fields and minimizes the false diffusion in the domain 

[7]. 

     Using the above described method of discretization, liquid 

incompressible flows can be simulated without adding any 

artificial compressibility. The detail algorithm for 

incompressible flow treatment has been shown in Figure 1. As 

is seen, the Jeffery and Austin [8] equation of state for liquid 

water is solved numerically in this process using the Newton-

Raphson interpolation scheme. This provides the density as a 

function of pressure and temperature. This equation of state 

would be much more accurate than an equivalent simple cubic 

equations of state over wide ranges of pressure (0.1-3000 bar) 
and temperature (-34-1200 °C) fields, which are typically 

encountered in hydro-pneumatic systems. The derived value of 

density is inserted in the ideal gas equation (see Figure 1) to 

find equivalent gas constant for liquid water condition. 

Although this constant is not realistic, it is considered in our 

formulations to simulate liquid water flow in the same way as 

for gases. Indeed, the computation time for solving the liquid 

water EOS to obtain an equivalent gas constant is small 

comparing with the total time required to solve the linear 

algebraic system of equations.  

 

 
Figure 1 The procedure to solve liquid water flow using the 

current all-speed algorithm 

 

     The friction losses are considered in the current formulations 

using the Zigrang-Sylvester friction factor estimation. It is 

given by 

 
2 /(2 )w TF V dλ ρ=                                                                   (10)  

 

where
 

 

10 10 0.9

1 / 2.51 21.25
2log [1.14 2log ( )]

3.7 Re Re
T

D

D

ε ε

λ

 
= − + − − 

 

                 (11) 

 

     We also use some specific relations to compute the 

convection heat transfer coefficient and the corresponding heat 

transfer from the walls using [9]: 

 
0.8 0.33=0.023 Re Pr /dh λ

                                                          (12) 

 

( ) /
w w

Q hP T T A= −
                                                               

(13) 
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       A double diaphragm pump as a super-component system is 

modeled in this paper. It is consisted of four parts of 

diaphragm, signal system, conveys, and check valves. Figure 2 

presents a schematic representation of the current chosen 

double diaphragm pump. To model the mechanical aspects of 

this pump, it is assumed that no net mechanical force is exerted 

on the diaphragms and that the diaphragm motion is described 

through an effective area following specific relations between 

the volume change and the diaphragm middle point 

displacement. This relation is given by 

 

e
dV = A (x) dx                                                                         (14) 

 

 
Figure 2 Schematic of the investigated double diaphragm 

pump and its equivalent hydro-pneumatic circuit 

 

The effective area can be estimated either using 

experimental observation or the finite element modeling of the 

flow through the diaphragm pump considering the diaphragm 

structure interaction. The effective diameter corresponding to 

the effective area is assumed to be constant (11 cm) in this 

work. It is also obvious from the pump performance maps (e.g., 

see Figure 3) that the pump outlet pressure would be a function 

of air distribution system flow variables. In order to simulate 

this behaviour, variable loss orifices are added to the double 

diaphragm pump model to simulate pressure drop in a way that 

it is consistent with its real behaviour.  

 

 
Figure 3 Performance map for the simulated double diaphragm 

pump [10] 

 

     To model the unsteady characteristics of the simulated 

pump, the frequency of diaphragm motion is computed 

assuming that the swept volume per stroke does not change 

during the pump operation. So, the pump frequency is a linear 

function of its flow rate in our modeling. 

 

RESULTS AND DISCUSSION 

Two test cases are considered to evaluate the current method 

in treating both gas and liquid flows.  A schematic of the 

investigated air (pneumatic) system is shown in Figure 4. 

Source 1, S1, charges a 34m  chamber, i.e., C1, to a pressure of 

200 Bars. The velocity and pressure magnitudes are computed 

along pipe P1 using the described all-speed finite-volume 

algorithm. The velocity and pressures have been plotted along 

pipe length P1 in Figures 5 and 6, respectively. We have also 

used the second-order Lax-Wendroff method to verify the 

current solutions [11,12]. The comparisons show that the 

current method has been accurate enough to present reliable 

solution in this test case. This is where we have not applied any 

artificial numerical damping into our algorithm. This is where 

the second-order Lax-Wendroff method needed such side 

considerations. Our experience showed that using different 

friction calculations and different discretization types would 

lead to some discrepancies in our results. 
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Figure 4 Schematic of the investigated pneumatic system 

 

 
Figure 5 Velocity distribution in a gas line and comparison 

with that of the Lax-Wendroff method at two different time 

levels 

 

 
Figure 6 Pressure distributions in a gas line and comparison 

with that of the Lax-Wendroff method at two different time 

levels 
 

      Figure 7 verifies that the current algorithm fully conserves 

the mass flow through circuit P1. We can achieve a more 

accurate mass conservation results by increasing the number of 

grid nodes from 21 to 41; however, the finite difference Lax-

Wendroff method does not show any change in its mass flow 

distribution with more grid refinements. 

 
Figure 7 Evaluating the mass conservation through pneumatic 

line using the current method and that of a commercial software 

 

     The second test case is to simulate the liquid water flow 

through a pipe with an inflow pressure of 87.1 Bars, a 

temperature of 280 K, and imposing different outlet pressure 

magnitudes. Figure 8 shows the velocity distribution along this 

pipe considering different pressure outlet conditions. The 

current results are compared with the solutions derived from the 

LMS Amesim software. The agreement between them is 

excellent. 

 

 
Figure 8 Velocity distributions in a liquid line and 

comparison with that of the Lax-Wendroff method 

 

      Figures 9 and 10 present the results for a simulated double 

diaphragm pump including its outlet pressure and the volume 

flow rate with time, respectively. The results presented in these 

figures were obtained for air pressure of 6.9 bars and an air 

flow rate of 40 l/sec. As is seen in this figure, there are some 

oscillations near the mean value found in the pump 

manufacturer performance map (see Figure 3) for the specified 

air flow rate and pressure. 
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Figure 9 Variation of the simulated diaphragm pump outlet 

pressure with respect to time and comparison with the pump 

performance map data 

 
Figure 10 Variation of the simulated diaphragm pump volume 

flow rate with respect to time and comparison with the pump 

performance map data 

 

      As is known, the check valves of diaphragm pumps are 

subject to different pressure magnitudes during their pumping 

cycles. This can lead to a cavitation appearance inside the 

pump. The phase change from liquid to gas can harm the pump 

[13]. In this work, we predict the fluid thermodynamic 

properties, which can be used to specify the cavitation point at 

downstream of the suction valve. Figure 11 illustrates the time 

history of pressure variation behind the pump suction check 

valve. Inspecting this figure, it is obvious that the pump would 

experience the cavitation condition, if the inflow temperature 

exceeds 80 
o
C. That is because the valve local pressure would 

reduce under the saturation vapour pressure at the achieved 

temperature. 

Figure 11 Calculating the cavitation temperature limit at the 

suction check valve of the simulated diaphragm pump 

CONCLUSION   

      We developed an all-speed algorithm to treat two-phase 

flows through mixed hydraulic-pneumatic systems.  The 

formulation was extended for solving the one-dimensional full 

Navier-Stokes equations. As was expected, the extended 

method and formulation would be able to treat both liquid and 

gas flows as well as mixed two-phase flows. To prove this, we 

used this method and solved a number of test cases including a 

diaphragm pump. This method helped us to take into 

consideration all moving parts in the diaphragm pump 

assembly in our simulation. Therefore, we could model the 

diaphragm pump and its subcomponents at different diaphragm 

pump operating conditions. Our numerical results showed that 

it was possible to model both air and water phases in the same 

way. Indeed, the current numerical method can help to analyse 

the hydro-pneumatic systems without the need to apply for two 

different compressible and incompressible solvers. The use of 

two different solvers can lead to inappropriate convergences 

during the fluid flow solutions. The current results showed that 

the extended finite-volume method would perform better mass 

conservation in comparison with the Lax-Wendroff finite-

difference method. We used our extended solver and simulated 

a diaphragm pump. We were able to predict the cavitation 

condition limit for this pump using thermodynamic variables. 

In future, we will be able to predict the cavitation behaviour by 

covering gas-liquid interactions, using the current extended 

finite-volume method. 
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