
  

  

HEFAT2014 

10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 

14 – 16 July 2014 

Orlando, Florida 

 

ON HEAT CONDUCTION IN A PERIODICALLY STRATIFIED MEDIUM WITH 

SLANT LAMINATION  
 

 
Matysiak S. J.(1) * and Perkowski D. M.(2) 

 (1) Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Al. Żwirki i 

Wigury 93, 02-089 Warsaw, Poland 

(2) Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45 C, 15-351 Białystok, 

Poland 

*Author for correspondence 

E-mail: s.j.matysiak@uw.edu.pl  

 

 

 
ABSTRACT 

The paper deals with the two-dimensional stationary 

temperature distribution problem for a composite medium. The 

nonhomogenous medium is assumed to be a composite with 

micro-periodically stratified structure. The elementary unit of 

composite is a two-layered laminae. The ideal thermal condition 

on interfaces is assumed. The layering is inclined with an 

arbitrary angle to the boundary planes. In this paper the two cases 

of considered medium are shown: 

 Layer with periodically structure with given constant 

temperature on upper and lower boundary surface; 

 Half-space with periodically structure with given 

constant temperature in boundary surface. 

The considered problem are solved within the framework of 

the homogenized model with microlocal parameters given by 

Woźniak (1987), Matysiak and Woźniak (1986). The plane 

problems of periodically stratified medium with slant layering 

heated by given boundary temperature are solved analytically. 

The influence of thermal and geometrical properties on 

temperature distribution in analysed medium was investigated.  

 

INTRODUCTION 
The heat conduction problem for micro-periodical layered 

composites is very important from the engineering point view. 

The knowledge the distribution of temperature and heat flux in 

this kind of composites is necessary for thermoelastic problems. 

Many monographs and papers have been devoted to the 

modelling of heat conduction problems in periodically stratified 

bodies, for example [1-7, 12-13, 17, 21, 23]. The large number 

of elementary unit repeated periodically causes the complication 

of calculation by use analytical and numerical methods. It seems 

to be intentional to use some approximated model. One of them 

is the homogenized model with microlocal parameters given by 

Woźniak [22], Matysiak and Woźniak [17-18]. This model, 

derived by using the nonstandard analysis combined with some 

a priori postulated assumptions, is described by unknowns: 

macro-temperature and thermal microlocal parameters. The 

main merit of the model is that the thermal continuity conditions 

on interfaces are satisfied. 

The application of homogenized model with microlocal 

parameters for layered composites with parallel or vertical 

boundary surface have been analysed in the papers [8, 14, 19, 24, 

20]. The accuracy and applicability of the homogenized model 

can be found in the papers [9-11, 16]. 

 This paper deals with the heat conduction problem in 

layered composites with periodically repeated laminae. The 

inclined layering with the under arbitrary angle to the boundary 

planes is considered. The boundary surface are assumed to be 

kept at given temperatures. 

 The homogenized model with microlocal parameters 

given by Woźniak [22], Matysiak and Woźniak [17-18] is 

applied to describe distribution of temperature and heat flux. For 

solving the considered stationary and plane boundary value 

problem two coordinate systems are introduced: the first one is 

connected with the layering and the second one is connected with 

the boundaries. Some special cases of temperature distributions 

in the periodically stratified layer and half-space will be 

discussed and it will be presented in the form of figures. A wider 

analysis of the results for formulated problem can be found in 

the papers [26], [27]. 

 

NOMENCLATURE 
 

a [m] the half of length of heated range; 
(x,y) [m] Cartesian coordinates connected with the 

layering; 

( , )x y  [m] Cartesian coordinates connected with the 
boundary 

1 2,K K  [Wm−1K−1] coefficients of thermal conductivity of the 

subsequent component of the body 
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,K K 
 

[Wm−1K−1] effective thermal modulus on the homogenized 
model with microlocal parameters 

  
[rad] angle of inclination of layering to axis x  

1 2,   [m] thickness of the layers being the constituents of 

composite 

1 2     [m] thickness of fundamental unit 

1 /    [-] saturation coefficient of fundamental unit by the 
first kind of material 

  
[K] macro-temperature in homogenized model with 

microlocal parameters 

1, 2i   [-] kind of sublayer;  1i   the first kind or 2i   

the second kind of the subsequent layers 

 

FORMULATION OF THE PROBLEM 
Consider medium is a composite with periodic structure 

repeated periodically. Nonhomogeneous layer is composed by 

two-layered conductors with assumption that the ideal thermal 

connection between the component of elementary unit. The 

layering is inclined to boundary surface with arbitrary angle  , 

(see Fig. 1). Considered body will be described in two Cartesians 

coordinate systems: the first one  , ,x y z  is such that y – axis is 

parallel to the layering (see Fig. 1), and the second one  , ,x y z  

such that the axis 0x  is directed according to the boundary.  

 

 
Figure 1 Scheme of cross section of considered composite 

layer 

 

Let 1 2,   be the thicknesses of the layers being the 

constituents of composite, and 1 2     be the thickness of 

repeated lamina, see Fig. 1. Let 1 2,K K  be the thermal 

conductivity of the subsequent component of the composite, and 

h the thickness of the layer. Let the upper boundary plane y h  

be kept at given temperature  0 , ,x x R   and the lower 

boundary 0y   be kept at zero temperature. Thus, the 

considered problem is two-dimensional and stationary. 

Formulated problem can be the basis to obtain the solution for 

case of half-space problem with heating on the boundary surface

0y   and assumed that the thickness of layer tends to infinity.  

 

 

HOMOGENIZED MODEL WITH MICROLOCAL 
PARAMETERS 

The heat conduction for composite material with 

microperiodic layered structure can be described in framework 

of classical heat conduction equation with strong oscillating 

coefficients. In this case the solution of formulated problem need 

to satisfy the boundary condition and ideal thermal connections 

on the interfaces (it is assumed that the conditions on the 

interface are perfect). This approaches is rater very complicated. 

The natural way is apply the some approximation methods. One 

of them is homogenized model with microlocal parameters given 

by Woźniak [23] and applied to multilayered composites by 

Matysiak and Woźniak [19]. 

The governing relations of the model are described in the 

coordinates  ,x y  connected with the layering, see Fig. 1 and 

see: [8-11, 14-20, 24]. Let  ,T x y  denote the temperature.  

The temperature and its gradient within the homogenized 

model is predicted in the form: 

         

   
   

   

, , , , ,

, ,
, ,

, ,
,

T x y x y h x q x y x y

T x y x y
h x q x y

x x

T x y x y

y y

 





  

 
 

 

 


 

  (1) 

where  ,x y  is the macro-temperature,  ,q x y  is unknown 

microlocal parameter, and  h x  is the shape function for two-

layered composites which allow to fulfill the ideal thermal 

condition on the interfaces is given in the form 

 

   

1 1

1

1 1

0.5 for 0

0.5 for ,
1 1

,

x x

h x x
x

h x h x

 


  

 



  


 
     

 

 (2) 

where 

1 .





        (3) 

General equations of the homogenized model for stationary 

two-dimensional problem take the form, see [9-10]: 

   
2 2

2 2
ˆ0 , .

q
K K K q K

x xx y

      
     

   
 (4) 

where 

 

   

1 2

1 2

2

1 2

1 ,

,

ˆ ,
1

K K K

K K K

K K K

 








  

 

 


     (5) 

Eliminating the microlocal parameter q from (4)1 we obtain 
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2 2
1

2 2
0,K K

x y

    
 

 
     (6) 

where 

 
1 2

1 2

.
1

K K
K

K K 

 
 

     (7) 

The heat flux vector in a layer of the i - th, i = 1,2, kind 

expressed in the coordinates  ,x y  has the form 

      , ,0 , , 0 .
i i i

x y iq q K K
x y

   
    

  
q   (8) 

The considered boundary value problem it will be solved in 

the coordinates  ,x y , see Fig. 1. The following relations 

between coordinates  ,x y  and  ,x y  hold 

cos sin ,

sin cos .

x x y

y x y

 

 

 

  
     (9) 

The equation (6) expressed in coordinates  ,x y  takes the 

form  

 
 

 
 

 
 

2

1 2 2

2

2

1

2

1 2 2

2

,
cos sin

,
1 sin 2

,
sin cos 0.

x y
K K

x

x y
K K

x y

x y
K K

y


 





 

 

 

 


 




  

 


 



  (10) 

 

SOLUTION OF THE PROBLEM 
Boundary conditions for considered problem of layer can by 

write in the form: 

 

   

,0 0,

, , ,

x

x h x x R



 



 
    (11) 

where  x  satisfies 

 lim 0
x

x


 .      (12) 

and it is taken into account that  

    , .x x x R        (13) 

Solution of formulated problem will by obtained by integral 

Fourier transform methods  

   
1

, , d , -1,
2π

i xy x y e x i  






    (14)  

The temperature in Fourier integrals form with satisfy the 

boundary conditions (11) of the composite layer has the 

following form 

   
 

 

 
 

 

0

1

1 2 2

sinh2
,

π sinh

sin 2 1
cos d .

2 sin cos

y
x y

h

K K
y h x

K K


  




 

 



 

 



   
   
    


 (15) 

where 

1

1 2 2
.

sin cos

K K

K K


 

 

 



    (16) 

The heat fluxes in the directions x and y given by (8) can be 

rewritten by using variables ,x y  in the form 

     

     

, ,
cos sin ,

, ,
sin cos .

j

x

j

y i

x y x y
q K

x y

x y x y
q K

x y

 
 

 
 


  

      

  
       

 (17)

From (3.8) it follows that  

 
 

 

 

  

 
 

 

 

     

 

 

0

0

, sinh2

π sinh

sin d ,

, cosh2

π sinh

cos sin

sinh
d .

sinh

x y y

x h

y h x

x y y

y h

y h x y h x

y

h

 
 



   

 
  

 

    


  

 






 



    

 
 

 

            


 





  (18) 

where 

 
 

1

1 2 2

sin 2 1
.

2 sin cos

K K

K K




 

 

 





   (19) 

REMARKS 
Special case for half-space with slant lamination can be taken 

from Eq. (15) the macro-temperature  ,x y  can be written in 

the form 

   

 

1

1 2 2

0

1

1 2 2

2
, exp

π sin cos

sin 2 1
cos d ,

2( sin cos )

K K y
x y

K K

K K
y x

K K


  

 


 

 

  

 

 

 

 
  

  

  
  
  
  


 (22) 

where  
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     
0

2
cos dx.

π
x x   



      (23) 

 

NUMERICAL RESULTS AND DISCUSSION 
Consider the following boundary temperature distribution  

   0 ,x H x a        (24) 

where 
0θ  and a are constants,  H   is the Heaviside`s step 

function. For the numerical analysis of temperature and heat flux 

distributions the following dimensionless variables are 

introduced: 

/ , / ,x x a y y a         (25) 

and let /δ δ a  be dimensionless thickness of the fundamental 

lamina. The inverse Fourier transform is calculated numerically 

and the obtained results are presented in the forms of figures. 

Figure 2 shows the isothermal lines for first problem connected 

with the layer. The distribution of dimensionless temperature on 

first figures shows the results for homogeneous layer. The next 

three figures shows the distributions for three cases of arbitrary 

angle 0;π / 4;π/2α   and 
1 2/ 8K K  . 

 

 
Figure 2 The dimensionless isothermal lines in the 

periodically layer 

 

It is seen that the highest values of temperature at this point are 

achieved for 0α   (the layering is perpendicular to the 

boundary). Next figures 3 shows the dimensionless isothermal 

lines for solution connected with half-space. The first figure 

shows the result for homogeneous half-space. The next figures 

present the dimensionless distributions of temperature for three 

cases of angle 0;π / 4;π/2α   and 
1 2/ 8K K  . We can observe 

the same situation for the highest values of temperature for the 

case when the layering is perpendicular to the boundary surface.  

 

 
Figure 3 The dimensionless isothermal lines in the 

periodically half-space 

 

 

CONCLUSIONS  
The paper presents the applications of the homogenized 

model with micro-local parameters to the boundary value 
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problems for periodically layered composites with slant layering 

to boundaries. General equation of this model combined with the 

coordinate transformation permit to solve problems of heat 

conduction in the composites with slant lamination. The obtained 

results for temperature possess the same characteristics as 

adequate solutions within the framework of the classical 

equation of heat conduction. 
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