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ABSTRACT 

Unsteady flow of a conducting Jeffrey fluid in a 

horizontal composite porous medium channel is investigated. A 

uniform transverse magnetic field of strength 0
B is applied 

perpendicular to the composite channel.  The flow in the 

channel is divided into two regions, namely porous and non-

porous regions.  The flow in the porous region is modeled using 

Darcy-Brinkman equation.  The viscous and Darcian 

dissipation terms are also included in the energy equations 

governing the flow.  The nonlinear governing equations are 

solved analytically using two-term harmonic and non-harmonic 

functions.  The effects of the porous medium parameter, ratio 

of viscosities, oscillation amplitude, conductivity ratio, Prandtl 

number and Eckert number on the velocity and the temperature 

fields are studied in detail. It is found that the velocity 

decreases with the increase in the non-Newtonian Jeffrey 

parameter whereas the temperature shows same trend with the 

Jeffrey parameter.   For a given ratio of viscosity m, the 

interface velocity decreases with increasing magnetic parameter 

M and porous medium parameter  . 

 

INTRODUCTION 
Viscous flow through or past porous media is of 

fundamental importance in petroleum technology, powder 

metallurgy, industrial filtration, ceramic engineering, ground 

water hydrology and such other fields.  In springs of the 

geothermal region, water is known to be an electrically 

conducting fluid.  The abundant geofluids in the Earth’s crust in 

the geothermal regions has to be brought up to augment fuel 

output.  Earth’s surface can be modeled as a natural permeable 

bed and hence the study on the flow through porous medium is 

necessitated.  

 The study of viscous conducting fluids plays a 

significant role, owing to its practical interest and abundant 

applications in astro-physical and geo-physical phenomena. 

The main impetus to the engineering approach to the 

electromagnetic fluid interaction studies has come from the 

concept of the hydrodynamics. The flow and heat transfer of 

electrically conducting fluids in channels and circular pipes 

under the effect of a transverse magnetic field occurs in MHD 

generators, pumps, accelerators and flow meters and have 

applications in nuclear reactors, filtration, geothermal systems 

and others.   

During the last few decades, interest in mathematical 

modelling and analysis of flows involving non-Newtonian 

fluids in various geometries has been increased.  However,  

there  is  no  model  which  can  lonely  predict  the  behaviour  

of  all  the  non-Newtonian fluids. Among several non-

Newtonian models proposed for physiological fluids, Jeffery 

model is one of the simplest nonlinear non-Newtonian models 

governing the complex fluid behavior.  It is significant because 

Newtonian fluid model can be deduced from this as a special 

case by taking the Jeffrey parameter 1
 =0. It has immense 

importance for their wide applications in engineering 

industries, for example in metal extrusion process, wire and 

blade coating, dying of papers and textiles etc. It is also 

recognized that many fluids commonly used in industry differ 

greatly from the Newtonian behaviour in their rheology.  

Brinkman [1] proposed a non-Darcy law for the flow 

through highly permeable bed of spherical particles. Using the 

slip conditions Rudraiah and Wilfred [2] and Vajravelu et al. 

[3] analyzed the natural convection in an inclined layer 

bounded by porous material. Chamkha [4] presented analytical 

solutions for the flow of two-immiscible fluids in porous and 

non-porous parallel plates. Khan et al. [5] investigated for exact 

solutions for MHD flow of a generalized Oldroyd fluid with 

modified Darcy’s law.  Hayat and Ali [6] investigated the 

peristaltic motion of a Jeffrey fluid under the effect of a 

magnetic field.  Kothandapani and Srinivas [7] Peristaltic 

transport of a Jeffrey fluid under the effect of magnetic field in 

an asymmetric channel.   

Umavathi et al. [8] studied unsteady oscillatory flow 

and heat transfer in a horizontal composite porous medium 

channel, and they have investigated effects of porous medium 

and amplitude on the velocity and the temperature. Vajravelu et 

al. [9] examined the influence of heat transfer on peristaltic 
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transport of Jeffrey fluid in a vertical porous stratum. Vasudev 

[10] has examined MHD peristaltic flow of   Newtonian fluid 

through a porous medium in an asymmetric vertical channel 

with heat transfer. Krishna Kumari et al [11] studied the effect 

of magnetic field on the peristaltic pumping in an inclined 

channel by considering Jeffrey fluid. Mahmoud et al. [12] 

studied the effect of porous medium and magnetic field on 

peristaltic transport of a Jeffrey fluid in an asymmetric channel. 

Motivated by these studies, oscillatory flow of a 

conducting Jeffrey fluid in a composite porous medium channel 

is investigated. The velocity field, the temperature distribution 

and the volume flux are obtained in the porous and non-porous 

regions. The effects of various physical parameters on the 

velocity and temperature distributions are discussed. 

MATHEMATICAL FORMULATION 
 

Consider the flow of two electrically conducting, 

immiscible viscous fluids through an infinitely long composite 

channel, under the influence of uniform transverse magnetic 

field (Fig.1). The flow region between the plates is divided into 

two regions.  The flow region between the lower plate y h 

and the interface y = 0 is termed as Region 1 (porous matrix 

region) where as the flow region between the interface y = 0 

and the upper plate y h is designated as Region 2(clear 

viscous fluid region). The flow in Region 1 is governed by non-

Darcy law and the flow in Region 2 is described by Navier- 

Stokes equations.  The fluid velocities in the regions1 and 2 are 

1
u and 2

u .  The fluid dynamic viscosities in the Regions 1 

and 2 are  
1

  and 
2

  respectively. The magnetic field B0 is 

applied perpendicular to the plates and the induced magnetic 

field is assumed to be negligible.  The following assumptions 

are made in the analysis of the problem.  

   (a)  The flow in both regions of the channel is assumed to be 

driven by a common Pressure gradient p

x

 
 
 

 and the 

temperature gradient 
1 2

T T T    . 

   (b)  The flow is unsteady and fully developed. 

   (c)  The lower and upper plates are maintained at constant 

different temperature  
1w

T  and
2w

T  where  
1 2

T T  . 

   (d)  The thermo-physical properties of the fluid and the 

effective properties of the   porous medium are assumed to be 

constant.  
With the assumptions mentioned above, the equations of 

motion and the equations of energy are 
2

2

0 02

1 1
1 k(1 )

i i i

i i e i

u u u p
v u B u

t y y x

  
  

 

    
     

      

  

                                                 (i=1,2)         (1) 
22

2

0 2

1
(1 )

i i i i

p i k i

T T T u
c v u

t y y x k






   



     
            

                         

       (i=1, 2)                              (2) 

 wherei=1,2 gives equations for Regions 1 and 2 

respectively, u is the x-component of fluid velocity, 
i

v  is the y-

component of fluid velocity and T is temperature of the fluid.  

0
, ,

i
  Cp and 

e
  are the fluid density, dynamic viscosity and 

specific heat at constant pressure and electrical conductivity 

respectively.  The parameter k is the permeability of the porous 

matrix.  The other coefficients appearing in equations (1) and 

(2) are such that 

for porous matrix regionfor porous matrix region for porous matrix region

0
for clear fluid region for clear fluid regionfor clear fluid region     

   0  
, ,

1

k effeff
K

K


  



   
  

   

 

where
eff

K and 
0

K are the thermal conductivities in porous and 

clear fluid regions respectively. 

 The boundary and interface conditions on velocity for 

the two fluids can then be written as 

1 2

1 2 1 2

1 1

( ) 0 , ( ) 0 , (0) (0), 0
1 1

eff u u
u h u h u u at y

y y

 

 

 
     

   

                           (3) 

 

The thermal boundary and interface conditions are given by 

1 2

1 2

1 2 1 2 0
( ) , ( ) , (0) (0) , 0

eff

T T
T h T T h T T T K K at y

y y
 

 
     

 

      

        (4) 

 The continuity equations of both fluids (1) imply that 

1 2
v and v are independent of y.  They can be utmost a function 

of time alone, we can write [assuming
1 2

v v v  ] 

 0
1

it
v v Ae

        (5) 

where A is real positive constant,  is frequency parameter and 

 is small such that 1A  .  Here it is assumed that the 

transverse velocity varies periodically with time about a non-

zero constant mean 
0

v .   

Now, we introduce the following non-dimensional quantities. 

*

1i i
u u u ,       ,    

 

 
      

 

 
   

  

 
   

1 2w w
T T T  

,
  

  

   ̅ 
(
  

  
)   0

1
i t

v v Ae
  

2

1 2

i
T T

T T



 







2

0

p

U
Ec

c T




(Eckertnumber), 0Pr
Cp

K

 
 (Prandtl 

number) ,   
 

  
,  and   0 1 2

v v v                            (6) 

In view of the above non-dimensional quantities, the 

basic equations (1) and (2) and the boundary conditions (3) and 

(4) can be expressed in non-dimensional form, dropping 

asterisks, as    
2 2

2

2

1 1
1 1

i i i i

i i

u u A u
v M u P

t y y




 

   
      

     

  

             (i=1,2)               (7) 

 
22

22

2

1
1

i i i i

i i i

u Ec
v B A Ec u

t y y y

  




    
    

     

     

                                            (i=1,2)                        (8) 

wherei =1, 2   gives equations for Regions 1 and 2  
2 2

2 20 0

1 2 1 2

0

1
, 1, , , Pr , , ,

Pr Pr

e
Cp B hn h

A m A B B M
K
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eff
m




 (ratio of viscosity)  and  

0

eff
K

n
K

 ( ratio of thermal 

conductivity). 

Region    1 

 
2 2

21 1 1

1 12

1 1
1 1

u u um
v M u P

t y y



 

   
      

     

               (9) 

 
2

2
221 1 1 1

12
Pr

un
v m Ec Ec u

t y y y

  


    
    

    

                (10) 

Region  2 

 
2

22 2 2

1 22

1

1

1

u u u
v M u P

t y y

  
   

   
                           (11) 

2
2

2 2 2 2

2

1

Pr

u
v Ec

t y y y

       
    

    

                 (12) 

 The non-dimensional form of the hydrodynamic and 

thermal boundary and interface conditions reduce to 

1 2

1 2 1 2

1 1

( 1) 0 , (1) 0 , (0) (0), 0
1 1

eff u u
u u u u at y

y y

 

 

 
     

                  

       

(13) 

1 2

1 2

1 2 1 2 0
( 1) , (1) , (0) (0) , 0

eff

T T
T T T T T T K K at y

y y
 

 
     

 

                     

(14) 

 

SOLUTION OF THE PROBLEM 
 

The governing momentum and energy equations (9) to 

(14) are coupled partial differential equations that cannot be 

solved in closed form.  However, they can be reduced to set of 

ordinary differential equations that can be solved analytically.  

This can be done by representing the velocity and temperature 

as        2

0 1
, 0

i t

i i i
u y t u y e u y

            

     i =1, 2              (15) 

       2

0 1
, 0

i t

i i i
y t y e y

               

     i=1, 2                (16) 

This is a valid assumption because of the choice of v 

as defined in equation (5) that the amplitude εA    and   is 

the frequency parameter. 

 By substituting equations (15) and (16) into (9) to (12) 

and equating the harmonic and non-harmonic terms and 

neglecting the higher order terms of  2
0  ,one obtains the 

following pairs of equation for  0 0
,

i i
u  and  1 1

,
i i

u  where 

i= 1,2. 

 

Region  1 

 

2 2
210 10

102

1 1
1 1

d u dum
M u P

dy dy



 

 
    

  

                       (17)    

 
22

2210 10 10

1 1 102

d d du
B A Ec Ec u

dy dy dy

 


 
   

 

                        (18) 

2 2
2 1011 11

112

1 1
1 1

dud u dum
M i u A

dy dy dy




 

   
        

    

            (19)            

   
2

210 1011 11 11

1 11 1 1 10 112
2 2

d dud d du
B i A A Ec Ec u u

dy dy dy dy dy

 
     

             

(20) 

 

Region  2 

 
2

220 20

202

1

1

1

d u du
M u P

dy dy
  



                          (21) 

2

20 20 20

2 22 2

d u d du
B A Ec

dy dy dy

  
   

 

              (22) 

 
2

2 2021 21

212

1

1

1

dud u du
M i u A

dy dy dy




 
      

  

                (23) 

2

20 2021 21 21

2 21 22
2

d dud d du
B i A A Ec

dy dy dy dy dy

 
                

                      (24) 

Using (15) and (16), the boundary and interface conditions may 

be written as 

 

10 20

10 20 10 20
( 1) 0 , (1) 0 , (0) (0), 0

u u
u u u u m at y

y y

 
     

 

                                (25)  

11 21

11 21 11 21
( 1) 0 , (1) 0 , (0) (0), 0

u u
u u u u m at y

y y

 
     

 

                                (26) 

10 20

10 20 10 20
( 1) 1, (1) 0 , (0) (0) , 0n at y

y y

 
   

 
     

 

                                   (27)   

11 21

11 21 11 21
( 1) 1, (1) 0 , (0) (0) , 0n at y

y y

 
   

 
     

 

   

                                                                                               (28)  

                               

 

The solution of the equations (17) to (24) using the 

boundary and interface conditions (25) to (28) can be written 

as: 

1 2

10 1 2

11

a y a y P
u c e c e

M
                                (29)

3 4

20 3 4 2

a y a y P
u c e c e

M
                    (30)

1 1 2 1 1 22 2

10 11 12 7 8 9 10 11 12

t y a y a y m y a y a y
c c e t y t e t e t e t e t e          

             (31) 

13 3 4

20 13 14 14 15

t y a y a y
c c e t e t e                             (32)                     
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1 1 2

1 1 2

11 1 1 5 1 2 4

2 1 6 1 3 5

cos sin

cos sin

e y a y a y

e y a y a y

u e R f y R f y e e e e

i e R f y R f y e e e e

   

   

                   (33) 

 

  

6 3 4

6 3 4

21 3 2 7 2 7 9

4 2 8 2 8 10

cos sin

cos sin

e y a y a y

e y a y a y

u e R f y R f y e e e e

i e R f y R f y e e e e

   

   

 

        (34) 

     

     

     

 

4 21

23 1

1 2 1

2 1

11 21 5 25 5 16 36 1 17 37 1

26 46 1 27 47 1 56 57 1

2

5 16 6 17 2 14 11 8

3 9 12 15 1 4 7 10

cos sin cos sin

cos sin cos sin

f y a y

a y e y

a y a y a y

a y t y

e R f y R f y e r r f y r r f y

e r r f y r r f y e r fy r f y

e g g e g g e g g g g

e g g g g g e g g g

        

       

       

        

     

       

     

22

21 1

23 1 2

01 2

1

13

18 38 1 19 39 1 58 1 59 1

18 38 1 19 39 1 5 16 6 17

2 2

2 14 11 8 3 15 12 9 4 7 10 13

7

1

cos sin cos sin

cos sin

a y

a y e y

a y a y a y

a ya y a y

t y

g e

e r r f y r r f y e r f y r f y

e r r f y r r f y e h h e h h

i
e h h h h e h h h h e h h h h

At
h e
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22 5 26 5

(35)

cos sin
f y

e R f y R f y

 
 
 
 
 
 
 

 
 

 

     

   

 

6 8 9

13 3 3 104 4

6 8

9

21 23 7 27 7 7 2 8 2 17 2 18 2

2 2

20 21 22 23 24 25

24 7 28 7 9 2 10 2

19 2 20 2 2

cos sin cos sin cos sin

cos sin cos sin

cos sin

f y f y f y

t y a y a y f ya y a y

f y f y

f y

e R f y R f y e l f y l f y e l f y l f y

g e g e g e g e g e g e

e R f y R f y e l f y l f y
i

e l f y l f y h

      

     

  


   13 3 3 104 42 2

0 21 22 23 24 25

t y a y a y f ya y a y
e h e h e h e h e h e

  
 

      

 

         

                    (36) 

 

The velocities and temperature distributions in the two regions 

are  

1 10 11

i t
u u e u

        (37)  

2 20 21

i t
u u e u

        (38)  

1 10 11

i t
e

                               (39) 

2 20 21

i t
e

    
                          (40) 

 

RATE OF HEAT TRANSFER  

 

The rate of heat transfer (Nusselt number) through the 

channel wall to the fluid is given by  d
Nu

dy

 
  
 

 (41) 

Based on the analytical solutions reported above the 

rate of heat transfer at the bottom wall is given by  

1

1

1y

d
Nu

dy



 

 
  
 

                                       (42)                

   

       

1 1 1 1 2

4 4

21 21

23

2

1 1 12 7 8 1 9 2 10 11 1 12 2
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23

2 2

cos sin sin cos

cos sin sin cos

cos
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f f
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a

Nu t c e t t a e t a t e t a e t a e

f e f f f e f f

a e r r f r r f f e r r f r r f

t a e r
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1 1 1 2

1 2
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2 2
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cos sin sin cos
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1 22
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23 23

22 4 7 10 13

2 18 38 1 19 39 1 1 18 38 1 19 39 1

23 28 48 1 29 49 1 1 28 48 1 29 49 1

[ ]
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cos sin sin cos
sin

t a

a a

a a
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a e r r f r r f f e r r f r r co f
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1 2 1 22
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2 2
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(

4

3

)

 

At the top wall, it is given by 
2

2

1y

d
Nu

dy





 
  
 

            (44)  

13 3 4

6 6 8

8 9 9

13

13 14 3 14 4 15

6 13 7 14 7 7 13 7 14 7 8 7 2 8 2

7 7 2 8 2 9 17 2 18 2 2 17 2 18 2

20 13 21 3
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f f f

f f f

t

t C e a t e a t e

f e f f f e f f f e l f l f

t f e l f l f f e l f l f f e l f l f
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  3 3 104 4
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2 2
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24 4 25 10
2

fa
h a e h f e

  
 

   

                                                                                               (45) 

3.2. Mass flux 

The dimensionless mass flow rate per unit with of the channel 

is  
1 2

Q F F                               (46) 

Where   
0

1 1

1

( , )F u y t dy


 
                                        (47) 

   

1 2

1

1

1 2

1 2 2

1 2 1

2 31 1

1 2 6 52 2 2 2

11 1 1 1

4 5

1 1 1 1 1 22 2

2 1 1

1 1 1 12 2

1 1
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cos sin
cos sin sin cos

cos sin
( cos sin )( cos sin )

( sin cos )(

a a

e

e

C C P
F e e

a a M

e t e te f
R t R t R t R t

ae f e f

e t e t e
e f f f R t R t

a e f

e
e f f f R

e f



 
   

 
  

 





    



   

 


    



 


5 6
cos sin )t R t 

 
 
 
  
 
 
 
 
  

                                (48) 

And  
1

2 2

0

( , )F u y t dy 
                                                    (49) 

3 4

3 4

3 4

2 2

3 4

6

6 2 3 4 6 2 2 2 7 82 2

6 2

6 3 2 7 7 9

7 8 9 10 2 2 2 2

3 4 3 46 2 6 2

( 1) ( 1)

[( cos sin )( cos sin )] [( sin cos )( cos sin )]

[ cos sin ] [ cos sin ] cos

a a

a a

C C
F e e d
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e
e t f t R t R t e f f f R t R t

e f

e R f R e ee e
e t e t e t e t t

a a a ae f e f

     

     

    

    



        

 

6 4 2 8 8 10

2 2 2 2

3 46 2 6 2

sin
e R f R e e

t
a ae f e f
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 Interface velocity  

 Taking   y = 0 in the equation (37) or in equation (38) 

we get the interface velocity as     

 0 1 2 1 2 4 2 3 52 2

1

cos [ ] sin [ ]
P

u C C t R e e t R e e
M

  


        


                                        (51) 

    (or)  

 0 3 4 2 3 7 9 4 8 10
cos [ ] sin [ ]u C C d t R e e t R e e          

                                                                                  (52) 

 

 

GRAPHICAL RESULTS AND DISCUSSION  

 

 The effect of pressure gradient on the velocity profiles is 

discussed through Fig.2. It is observed that for a given pressure 

gradient the velocity profiles are parabolic. The velocity in the 

porous matrix region increases with the increasing y value and 

attains the maximum at the interface ( i.e y = 0). After that the 

velocity decreases for increasing y in the clear viscous fluid 

region. And also it is noticed that the velocity increases with 

decreasing pressure gradient for any given y.  

From Fig.3 it is noticed that for a given y, the velocity 

increases with decreasing magnetic parameter M. The velocity 

profiles are parabolic, in which it attains the maximum at the 

interface. Fig.4 is drawn to study the effect of Jeffrey parameter 

on the flow pattern.It is observed that the velocity increases 

with increasing Jeffery parameter( 1
 ) .  And also for any given 

1
  ,the velocity profiles are parabolic. The velocity increases in 

the region 1 and decreases in the region 2.  Similarly,  from Fig 

5.it is observed that the velocity decreases with increasing 

values of the ration of viscosity. The effect of porous medium 

on the velocity is discussed through Fig.6.For a given  ,the 

velocity profiles are parabolic. And also the velocity decreases 

with increasing  . 

 

 The effect of various parameters on temperature is 

shown in Figs 7 – 13. Fig.7. is drawn to study the effect of 

magnetic parameter on the temperature. For a given magnetic 

parameter, the temperature decreases with increasing y in both 

the regions. And also it is noticed that temperature increases 

with decreasing values of Magnetic parameter. From Fig.8 the 

effect of Jeffrey parameter on temperature can be observed.The 

temperature decreases with increasing Jeffrey parameter. 

It is observed from Fig 9,that the temperature 

increases with an increase in the ratio of viscosity. From Fig.10, 

it is noticed that the temperature decreases with decreasing ratio 

of thermal conductivity. The effect of Prandtl number on 

temperature is observed from Fig.11.it is noticed that 

temperature decreases with increasing Prandtl number. From 

Fig.12, it is observed that the temperature decreases with 

decreasing Eckert number. The variation of temperature in both 

the regions can be observed from Fig.12. The effect of porous 

medium parameter is observed from Fig 13. It can be seen that 

the temperature increases with increasing porous medium 

parameter  . 

  The variation of interface velocity is calculated from 

equation (51 or 52) for different values of the ratio of Jeffrey 

parameter 1
  with effect of viscosity ratio m, magnetic field 

parameter M, and porous medium parameter  and is shown 

in the Table. 1.  It is found that the interface velocity increases 

with the increment in Jeffrey parameter 1
 , with the effect of 

the ratio of viscosity m, magnetic field parameter M, and porous 

medium parameter . For a given Jeffrey parameter 1
 , the 

interface velocity decreases with increasing of ratio of viscosity 

m, magnetic field M and porous medium parameter   

CONCLUSION  
 

In this paper, oscillatory flow of conducting Jeffrey fluid in 

a horizontal composite porous channel is investigated. The 

closed form solutions are reported for small   such that 

oscillation amlitude 1A  . It following conclusions are 

drawn from this 

1. Velocity increases with the decreasing of pressure 

gradient, Magnetic parameter, viscosity ratio, and 

porous medium parameter. 

2. The velocity increases with the increasing of Jeffrey 

parameter. 

3. Temperature increases with decreasing Magnetic 

parameter, Jeffrey parameter, Prandtl number. 

4. Temperature increases with increasing viscosity ratio, 

Eckert number and porous medium parameter. 

 

 

 

 
Fig. 1 Physical Model 
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              Fig. 2: Velocity profile for different values of Pressure gradient  

 
 

 

 
 

Fig. 4: Velocity profile for different values of Jeffrey parameter 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

               

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
                       

 

 
 

Fig. 3: Velocity profile for different values of Magnetic field parameter M. 

 
 

 

 
 

 

 
               

          Fig.5: Velocity profile for different values of ratio of viscosity 

 
 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Y 

U
1
 o

r 
U

2

 

 
P = - 0.1

P = - 0.2

P = - 0.3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Y 

U
1
 o

r 
U

2

 

 


1
 = 0.1


1
 = 0.3


1
 = 0.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Y 

U
1
 o

r 
U

2

 

 
m= 1

m= 2

m= 3

-1 -0.5 0 0.5 1
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Y 

U
1
 o

r 
U

2

 

 
M = 1

M = 1.5

M = 2

2355



    

 
 

Fig.6: Velocity profile for different values of porous medium    parameter   

 

 

 

 

 

 
 
Fig. 7: Temperature profile for different values of Magnetic  Field parameter  

 

 

 
 

Fig. 8: Temperature profile for different values of Jeffrey   parameter    
 

 

 

 

 
        Fig.9: Temperature profile for different values of ratio of   viscousity m. 
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Fig.10: Temperature profile for different values of ratio of thermal               

conductivity n 
 
 
 

 

 

 

 

 

 

 

 

 
         Fig.11: Temperature profile for different values of Prandtl   number Pr. 
 

 

 

 
 
Fig.12: Temperature profile for different values of Eckert number  Ec. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
      Fig.13: Temperature profile for different values of porous  medium  

                  parameter    
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1
  m = 1 m = 2 m = 3 M = 1 M = 1.5 M = 2 0.2   0.5   0.8   

0 0.0323 0.02541 0.0206 0.0323 0.0240 0.0175 0.033 0.0323 0.0308 

0.2 0.0364 0.0291 0.0239 0.0364 0.0268 0.0196 0.0374 0.0364 0.0348 

0.4 0.0395 0.0324 0.0269 0.0395 0.0282 0.02 0.0403 0.0395 0.0379 

0.6 0.0421 0.0354 0.0297 0.0421 0.0294 0.0206 0.0428 0.0421 0.0405 

0.8 0.0443 0.0380 0.0323 0.0443 0.0304 0.0210 0.0450 0.0443 0.0428 

1 0.0462 0.0405 0.0347 0.0462 0.0313 0.0214 0.0468 0.0462 0.0448 

                  Table 1: Interface velocity for different values of 1
  varies as m, M, and σ . 
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