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ABSTRACT
Unsteady flow of a conducting Jeffrey fluid in a
horizontal composite porous medium channel is investigated. A

uniform transverse magnetic field of strength B is applied

perpendicular to the composite channel. The flow in the
channel is divided into two regions, namely porous and non-
porous regions. The flow in the porous region is modeled using
Darcy-Brinkman equation. The wviscous and Darcian
dissipation terms are also included in the energy equations
governing the flow. The nonlinear governing equations are
solved analytically using two-term harmonic and non-harmonic
functions. The effects of the porous medium parameter, ratio
of viscosities, oscillation amplitude, conductivity ratio, Prandtl
number and Eckert number on the velocity and the temperature
fields are studied in detail. It is found that the velocity
decreases with the increase in the non-Newtonian Jeffrey
parameter whereas the temperature shows same trend with the
Jeffrey parameter.  For a given ratio of viscosity m, the
interface velocity decreases with increasing magnetic parameter
M and porous medium parameter O .

INTRODUCTION

Viscous flow through or past porous media is of
fundamental importance in petroleum technology, powder
metallurgy, industrial filtration, ceramic engineering, ground
water hydrology and such other fields. In springs of the
geothermal region, water is known to be an electrically
conducting fluid. The abundant geofluids in the Earth’s crust in
the geothermal regions has to be brought up to augment fuel
output. Earth’s surface can be modeled as a natural permeable
bed and hence the study on the flow through porous medium is
necessitated.

The study of viscous conducting fluids plays a
significant role, owing to its practical interest and abundant
applications in astro-physical and geo-physical phenomena.
The main impetus to the engineering approach to the
electromagnetic fluid interaction studies has come from the
concept of the hydrodynamics. The flow and heat transfer of
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electrically conducting fluids in channels and circular pipes
under the effect of a transverse magnetic field occurs in MHD
generators, pumps, accelerators and flow meters and have
applications in nuclear reactors, filtration, geothermal systems
and others.

During the last few decades, interest in mathematical
modelling and analysis of flows involving non-Newtonian
fluids in various geometries has been increased. However,
there is no model which can lonely predict the behaviour
of all the non-Newtonian fluids. Among several non-
Newtonian models proposed for physiological fluids, Jeffery
model is one of the simplest nonlinear non-Newtonian models
governing the complex fluid behavior. It is significant because
Newtonian fluid model can be deduced from this as a special

case by taking the Jeffrey parameter /11:0. It has immense

importance for their wide applications in engineering
industries, for example in metal extrusion process, wire and
blade coating, dying of papers and textiles etc. It is also
recognized that many fluids commonly used in industry differ
greatly from the Newtonian behaviour in their rheology.

Brinkman [1] proposed a non-Darcy law for the flow
through highly permeable bed of spherical particles. Using the
slip conditions Rudraiah and Wilfred [2] and Vajravelu et al.
[3] analyzed the natural convection in an inclined layer
bounded by porous material. Chamkha [4] presented analytical
solutions for the flow of two-immiscible fluids in porous and
non-porous parallel plates. Khan et al. [5] investigated for exact
solutions for MHD flow of a generalized Oldroyd fluid with
modified Darcy’s law. Hayat and Ali [6] investigated the
peristaltic motion of a Jeffrey fluid under the effect of a
magnetic field. Kothandapani and Srinivas [7] Peristaltic
transport of a Jeffrey fluid under the effect of magnetic field in
an asymmetric channel.

Umavathi et al. [8] studied unsteady oscillatory flow
and heat transfer in a horizontal composite porous medium
channel, and they have investigated effects of porous medium
and amplitude on the velocity and the temperature. Vajravelu et
al. [9] examined the influence of heat transfer on peristaltic



transport of Jeffrey fluid in a vertical porous stratum. Vasudev
[10] has examined MHD peristaltic flow of Newtonian fluid
through a porous medium in an asymmetric vertical channel
with heat transfer. Krishna Kumari et al [11] studied the effect
of magnetic field on the peristaltic pumping in an inclined
channel by considering Jeffrey fluid. Mahmoud et al. [12]
studied the effect of porous medium and magnetic field on
peristaltic transport of a Jeffrey fluid in an asymmetric channel.

Motivated by these studies, oscillatory flow of a
conducting Jeffrey fluid in a composite porous medium channel
is investigated. The velocity field, the temperature distribution
and the volume flux are obtained in the porous and non-porous
regions. The effects of various physical parameters on the
velocity and temperature distributions are discussed.

MATHEMATICAL FORMULATION

Consider the flow of two electrically conducting,
immiscible viscous fluids through an infinitely long composite
channel, under the influence of uniform transverse magnetic
field (Fig.1). The flow region between the plates is divided into
two regions. The flow region between the lower plate y =—h

and the interface y = 0 is termed as Region 1 (porous matrix
region) where as the flow region between the interface y = 0
and the upper plate y=his designated as Region 2(clear

viscous fluid region). The flow in Region 1 is governed by non-
Darcy law and the flow in Region 2 is described by Navier-
Stokes equations. The fluid velocities in the regionsl and 2 are

u]_ and u2 .
and 2 are y and g, respectively. The magnetic field By is

applied perpendicular to the plates and the induced magnetic

field is assumed to be negligible. The following assumptions

are  made in the analysis of the problem.

(@) The flow in both regions of the channel is assumed to be

driven by a common Pressure gradient (a_pj and the
OX

The fluid dynamic viscosities in the Regions 1

temperature gradient AT =T, T,

(b) The flow is unsteady and fully developed.
(c) The lower and upper plates are maintained at constant

different temperature T , andT,, where(T, <T, ).

(d) The thermo-physical properties of the fluid and the
effective properties of the porous medium are assumed to be
constant.

With the assumptions mentioned above, the equations of
motion and the equations of energy are

u  ou | x, du  dp Xu 2
Pol = tVi—|= 2 Ay U —o, Byu,
ot oy | 1+4 0y° ox k(1+4,)
(i=1,2) @
c an Vv M| ﬂ - [BU'T + Au 2
pO p at i ay )(k ayz Z,u 8)( Z k(1+ﬂl) i
(i=1, 2) 2

wherei=1,2 gives equations for Regions 1 and 2
respectively, u is the x-component of fluid velocity, v; is the y-
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component of fluid velocity and T is temperature of the fluid.
Po» 1, Cp and o are the fluid density, dynamic viscosity and

specific heat at constant pressure and electrical conductivity
respectively. The parameter Kk is the permeability of the porous
matrix. The other coefficients appearing in equations (1) and
(2) are such that

}(ﬂ = :ueff for porous matrix region
where K . and K are the thermal conductivities in porous and

Zk = Keff for porous matrix region

=K,

X = 0 for porous matrix region

}

= L for clear fluid region =1 forclear fluid region for clear fluid region

clear fluid regions respectively.
The boundary and interface conditions on velocity for
the two fluids can then be written as

Uy OU  p 0U,

-h)=0, h)=0, 0) =u,(0), —=———>at y=0
u(=h) u,(h) u;(0) =u,(0) Aoy 1+4 3y y
@)
The thermal boundary and interface conditions are given by
T(-h)=T,, T,(h)=T,, T,(0)=T,(0), Keﬂﬂﬂ%@ at y=0
" " oy oy

4
The continuity equations of both fluids (1) imply that
v, and v, are independent of y. They can be utmost a function

of time alone, we can write [assumingv, =V, =V ]
V=V, (1+cAe") (5)

where A is real positive constant, @ is frequency parameter and
g is small such thate A <1. Here it is assumed that the
transverse velocity varies periodically with time about a non-

zero constant mean V.
Now, we introduce the following non-dimensional quantities.

qu” . R AL e
u, =au; , y =hy", V="V"Vy=—t=—t"
= — = ﬁ a_p ot
AT =T, =Ty P=F (6x)' V=V, (1+Ae"™)
0= Ti=To, o __U: (Eckertnumber), p, — 22CP (Prandtl
T,-T, c, AT K

_ K
number) , v = X and (Vo =v, :Vz)

(6)

In view of the above non-dimensional quantities, the
basic equations (1) and (2) and the boundary conditions (3) and
(4) can be expressed in non-dimensional form, dropping
asterisks, as

2 2
O T P
ot oy 1+ 4, oy 1+ 4
(i=1,2) ()
2 2
96, vﬁzBia—gzi—AiEc ) +02—EC (ui)2
ot oy oy oy 1+
(i=1,2) ®)

wherei =1, 2 gives equations for Regions 1 and 2

A=m, A =18 - B -t profUCR 2 OB
1 1 D1 Prv ) KO 1 P 1

Pr'



m = Hert (ratio of viscosity) and K ( ratio of thermal
u Ko
conductivity).
Region 1
2
ou, V%:LLU;K o +Mlzju1p )
ot oy 1+ 4, oy 1+ 4
2 2
%Jrv%:la%—mEc Ny +GZEC(U1)2 (10)
ot oy Proy oy
Region 2
2
My (WMo L Oy 2y p (11)
ot oy 1+4 oy
2 2
00 00 _ 100 g U (12)
ot oy Proy oy

The non-dimensional form of the hydrodynamic and
thermal boundary and interface conditions reduce to
Mg OU  u OU,

u(-)=0, u,@)=0 u,(0) =u,(0), l+2.15 EE t y=0
(13)

TED=T,, TLO-T,, TO-=T,0), K, ?y K% at y=0

(14)

SOLUTION OF THE PROBLEM

The governing momentum and energy equations (9) to
(14) are coupled partial differential equations that cannot be
solved in closed form. However, they can be reduced to set of
ordinary differential equations that can be solved analytically.
This can be done by representing the velocity and temperature
asu, (y,t)=uy, (y)+eeu, (y)+0(&%)+

i=12 (15)
6,(y.t)=06,(y)+ee0,(y)+0(e)+—————~
i=1, 2 (16)

This is a valid assumption because of the choice of v
as defined in equation (5) that the amplitude eA< 1 and w is
the frequency parameter.

By substituting equations (15) and (16) into (9) to (12)
and equating the harmonic and non-harmonic terms and

neglecting the higher order terms of 0(82) ,one obtains the

following pairs of equation for (u,,,6,,)and (uy,,@, )where
i=1,2.

Region 1
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2 2
m_ 4%, u;udu_m_(_a M]p )
1+4, dy dy 1+ 4
2 2
y Yy y
2 2
_m d uz“ duy ——+M*+iw |u, =-A duy (19)
1+2, dy dy \1+4 dy
d’6, 46, _ _p 96 duy, duy, e
5 dy? + dy w6, = A dy +2A Ec dy dy 20°Ec uy, uy,
(20)
Region 2
1 d?u, +d M7, - (21)
1+ 4, dy? dy
, dd;zo do, 20 -AE (duzo] (22)
2
1d Uy ( ) du20 (23)
1+4, dy?
2
B2 d 0221 d921 i(()921 2A2 E 20 du21
dy dy dy
(24)

Using (15) and (16), the boundary and interface conditions may
be written as

Um(—l):O, uzo(l):Ol U10(0)=U20(0), m%:au_zo at y=0
o oy
(25)
ou, Ouy
uu(_l):Ol U21(l):0, UM(O):Uﬂ(O), m_:E at y:O
(26)
o6, oo,
O,(-D)=1 6,,1)=0, 6,(0)=0,(0), na—;":a—;" at y=0
(27)
Ou(D=1 0,0-0, 0,0-0.0, ni-Taar y-o
y
(28)

The solution of the equations (17) to (24) using the
boundary and interface conditions (25) to (28) can be written
as:

u, =ce* +c,e* — (29)
11
— agy ay
U,, =c,e™ +c,e* VE (30)
O =Cpy +C Y +1 Y +1,e°% +1.6%% +t, 6™ +t,e" +1,e™
(31)
— tizy agy a,y
0, =cC,+c,e” +t,e” +t.e™ (32)



u, =e*[R,cos f,y + R;sin fy]+e,e® +e,e™’
+i{e®’ [R,cos f,y +Rysin fy]+ee®’ +ee™’}
(33)
u, =e*’[R,cos f,y+R,sin f,y]+e,e®’ +e,e™
+i{e*'[R, cos f,y +Rysin f,y]+ee™ +ee™’}

(34)

0, =e" [Ry, cos f,y + Ry sin fy]+e™ [ (1, + 1) cos fy +(r, +1,; )sin f,y]
+e% I:(r25 +1,5)c0s f,y +(r,; +1,)sin fly] +e% [ cos fy + 1 sin fy]
+e%[gg + Oy |+ [Gg + 07 |+ €2 [0, + 0y + 01y + G ]
+e% [0+ gy + 0y, + Gy |+ 9% +[0, + 0, + Gy + Gy €™

—e% ‘:(r18 +14)COS f,y +(1g + Iy )SiN fly:'—ee‘y [fss COS Ty + I sin f,y]
—e" [ (s + 155 ) €OS T,y + (g + ) sin iy |+ [hg +hy ]+ [hy +hy, ]

+e[h,+hy, +h, +h]+e® [hy+hg+h, +h]+e[h,+h +hy+h,]

+ (35)

A .
+he" + Al et [Ry, €0s fyy + Rygsin fyy]
[

6y, =€ [RyyC0S T,y + Ry, sin f,y]+e™ [, cos £,y +1ysin f,y]+e™ [l cos £,y +1,sin f,y]
+ 008 + 08 + 0™ + 0" + 08" + gy
(e [Ryyc0s f,y+Rygsin f,y]+e"™ Iy cos f,y +1,sin f,y] }

+69 1,5 €08 T,y + Ly Sin £,y]+ h,e™” +h,e™ +h,e™ +hye®™ +h,e™ +hye'

(36)

The velocities and temperature distributions in the two regions
are

u, =u,, +ee''u, 37)
U, =U,, +£€'“'uy (38)
0,=0,+ €6, (39)
0, =0, + £€'0, @0)

RATE OF HEAT TRANSFER

The rate of heat transfer (Nusselt number) through the
channel wall to the fluid is given by NU — [d_@} (41)
dy
Based on the analytical solutions reported above the
rate of heat transfer at the bottom wall is given by

u < |98
1 dy o

N (42)
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Nu, =tC,e ™" +1, +t,2a87% +1,2a, +te ™ +t,7 +1,8,6 ™ +

67" [o, 008 fs — ety sin £ ]+ fie™" [y sin f + aty, c0s £

+a,87 [ (15 15 ) €08 = (5 + 15, )sin f, [+ fie7 (g +15,)sin £+ (1, +1, )cos , ]
8,8 [ (I + 1, ) 008 fy = (1 + 1,y )sin £, ]+ fig7 [ (15 + 1 )sin £+ (1 1,7 )cos 1, ]
+e *[r; cos f, 1 sin f,]+ &7 [ sin f, + 1 cos f,]+ae [ + ]+ @, [0+ 9]

+22,875 0, + Gp + Oy + U]+ 23,7 [Q+ Gy + U + s ]+, 017 + 2 2[9, + G, + Gy + U]

£cos ot

=2,8 2 [(5 + 1) €08 f, = (g + 1) sin £, fi67 (5 + 1) 8N f, +(1,g + 1 )OS f,]

8, [ (g +1,5) €08 £, = (1 +1,)5in ] = 17 [ (1 +1,5)sin f, + (v +1,5)cOS T, ]
-ee " [r,cos f, —rgsin f,]-e*f[r;sin f, +r,cos f]+ae *[h +h,]+a,e *[h +h;]
+23,72 [, + hy +hy +hy, ]+ 28,67 [h + hy +hy, +h ]+ tg,e™ +a,e 7= [h, +hy +hy +h]

—¢sinwt

L de,
At the top wall, it is given by Nu, = d_ (44)
=t,C, 8" +at 6" +at.e"
fe"[ay, cos f, +a,,sin f,]+ f,e[asin T, +ay, cos f,]+ f,e"[l, cos f, +1,sin f,]
+ecosot{+f,e"[-1,sin f,+1,cos f,]+ f,e"[I,, cos f, +1,sin f,]+ f,e"[-I,,sin f, +1,cos f,]
05008 + 088" +0,,8,6% +0,,28,6°% +0,,20,6™ +0,, "
%Smwt{fse's [l cos f, + 1 sin f,]+ f,e® [, sin f, + 1, cos f,]+ f,e“[lg cos f, +1,ysin 1,]
+ 1,8 [l sin f, + 1,y €08 f,]+ Nyt €% +hya,6™ +hy,a,6% +hy,2a,6" +h, 28,6 +hy, fe"
(45)
3.2. Mass flux
The dimensionless mass flow rate per unit with of the channel

s Q = F +F, (46)
0

Where F _ [u,(y.0dy (47)
-1

C C
F=—t[l-e™]+—2[1-e*] 5 P >
a a, " +M;

e . f . e, cos wt —e, sin wt
L — (R coswt - R, sinwt)+——— (R, sin ot - R cos ot ) + 2————
2 2 1 2 2 fz 6 5
el + 1 1 + 1 ai
e,coswt—e.sinot ™ . .
te{+ 2 - ——— (e, cos f, - f;sin f,)(R coswt - R, sin wt)
a, e +f
e . .
+27fz(el sin f, + f, cos f,)(R, cos wt — R, sin ot)
1 + 1
(48)
And
1
49
F, = [u,(y.)dy (49)
0
F, :&(ea" —1)+&(e“‘ -1)+d,
aa aa
s
eziifz[(e6 coswt + f,sin wt)(R, cos wt — R, sin wt)] +[(e; sin f, — f, cos f,)(R, cos wt — Ry sin wt)]
)
+& Jr%[e7 cusa)t7e\gsina)t]+%[eg cos wt —e,, sin wt]+cos wt e;iR;; —eéfiR;; +:71+Z—j]
eR f,R e €
—sinpt| 24— —%+%__ % _ 1
e2+f) e+f a a,
(50)



Interface velocity
Taking y =0 in the equation (37) or in equation (38)
we get the interface velocity as

u, =C, +C, —%—G—S{COS(M[RI +e,+e,]-sinwt[R, +e, +
o"+M]
(51)
(on)
Uy =C,+C, +d, +¢ { coswt[R, +e, +e,]-sin wt[R, +&; +e,]}
(52)

GRAPHICAL RESULTS AND DISCUSSION

The effect of pressure gradient on the velocity profiles is
discussed through Fig.2. It is observed that for a given pressure
gradient the velocity profiles are parabolic. The velocity in the
porous matrix region increases with the increasing y value and
attains the maximum at the interface ( i.e y = 0). After that the
velocity decreases for increasing y in the clear viscous fluid
region. And also it is noticed that the velocity increases with
decreasing pressure gradient for any given y.

From Fig.3 it is noticed that for a given vy, the velocity
increases with decreasing magnetic parameter M. The velocity
profiles are parabolic, in which it attains the maximum at the
interface. Fig.4 is drawn to study the effect of Jeffrey parameter
on the flow pattern.It is observed that the velocity increases

with increasing Jeffery parameter( 4,) . And also for any given

A, the velocity profiles are parabolic. The velocity increases in

the region 1 and decreases in the region 2. Similarly, from Fig
5.it is observed that the velocity decreases with increasing
values of the ration of viscosity. The effect of porous medium
on the velocity is discussed through Fig.6.For a given O the
velocity profiles are parabolic. And also the velocity decreases
with increasing O .

The effect of various parameters on temperature is
shown in Figs 7 — 13. Fig.7. is drawn to study the effect of
magnetic parameter on the temperature. For a given magnetic
parameter, the temperature decreases with increasing y in both
the regions. And also it is noticed that temperature increases
with decreasing values of Magnetic parameter. From Fig.8 the
effect of Jeffrey parameter on temperature can be observed.The
temperature decreases with increasing Jeffrey parameter.

It is observed from Fig 9,that the temperature
increases with an increase in the ratio of viscosity. From Fig.10,
it is noticed that the temperature decreases with decreasing ratio
of thermal conductivity. The effect of Prandtl number on
temperature is observed from Fig.11.it is noticed that
temperature decreases with increasing Prandtl number. From
Fig.12, it is observed that the temperature decreases with
decreasing Eckert number. The variation of temperature in both
the regions can be observed from Fig.12. The effect of porous
medium parameter is observed from Fig 13. It can be seen that
the temperature increases with increasing porous medium
parameter O .

e}
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The variation of interface velocity is calculated from
equation (51 or 52) for different values of the ratio of Jeffrey

parameter A, with effect of viscosity ratio m, magnetic field
parameter M, and porous medium parameter O and is shown
in the Table. 1. It is found that the interface velocity increases
with the increment in Jeffrey parameter A,, with the effect of
the ratio of viscosity m, magnetic field parameter M and porous
medium parameter O . For a given Jeffrey parameter A,, the

interface velocity decreases with increasing of ratio of viscosity
m, magnetic field M and porous medium parameter O

CONCLUSION

In this paper, oscillatory flow of conducting Jeffrey fluid in
a horizontal composite porous channel is investigated. The
closed form solutions are reported for small & such that

oscillation amlitude €A <1. It following conclusions are
drawn from this

1. Velocity increases with the decreasing of pressure
gradient, Magnetic parameter, viscosity ratio, and
porous medium parameter.

2. The velocity increases with the increasing of Jeffrey
parameter.

3. Temperature increases with decreasing Magnetic
parameter, Jeffrey parameter, Prandtl number.

4. Temperature increases with increasing viscosity ratio,
Eckert number and porous medium parameter.

N
Y=h
Region - 2 Jeffrey fluid u,
0 5""51 R PR T AR TERINGS > Y=0
A AL Al e 3 AN S
Region-1 |* Porous matrix Jeffrey fluid & 1 G
L. VP L N, RS Y=_ h

ARARANARRARA

Fig. 1 Physical Model
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Fig. 4: Velocity profile for different values of Jeffrey parameter
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Fig. 3: Velocity profile for different values of Magnetic field parameter M.
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Fig.5: Velocity profile for different values of ratio of viscosity



0.04 T T T T T T T

c =02

0.035

0.03

0.025

0.01

0.005

0.2 0.4 0.6 0.8 1

Fig.6: Velocity profile for different values of porous medium parameter O
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Fig. 7: Temperature profile for different values of Magnetic Field parameter
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A =01
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Fig. 8: Temperature profile for different values of Jeffrey parameter 1,

1.2 T T T T T T T
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0.2 r r r r r r r r r
-1 -0.8 0.2 0.4 0.6

Fig.9: Temperature profile for different values of ratio of viscousity m.
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Fig.10: Temperature profile for different values of ratio of thermal
conductivity n

1.2 T

: Temperature profile for different values of Eckert number Ec.
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Fig.11: Temperature profile for different values of Prandtl number Pr.
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Fig.13: Temperature profile for different values of porous medium
parameter O
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A | m=1 | m=2 | m=3 M=1 | M=15 | M=2 |0 =0.2 |0 =05]| 0 =0.8
0 0.0323 | 0.02541 | 0.0206 0.0323 0.0240 | 0.0175 [ 0.033 | 0.0323 | 0.0308
0.2 | 0.0364 | 0.0291 | 0.0239 0.0364 0.0268 | 0.0196 | 0.0374 | 0.0364 | 0.0348
0.4 | 0.0395 | 0.0324 | 0.0269 0.0395 0.0282 0.02 0.0403 | 0.0395 | 0.0379
0.6 | 0.0421 0.0354 | 0.0297 0.0421 0.0294 | 0.0206 | 0.0428 | 0.0421 | 0.0405
0.8 | 0.0443 | 0.0380 | 0.0323 0.0443 0.0304 | 0.0210 | 0.0450 | 0.0443 | 0.0428
1 0.0462 | 0.0405 | 0.0347 0.0462 0.0313 | 0.0214 | 0.0468 | 0.0462 | 0.0448

Table 1: Interface velocity for different values of A, varies asm, M, and o .
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