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Abstract

The present paper propound an analytical inverse
method to calculate the heat transfer coefficient
of cutting fluids in machining processes. This
method starts by establishing an estimation of the
heat sources in the transient heat conduction dis-
tribution in a rectangular domain with convective
bounders in free convection. The non homogeneous
partial differential equation (PDE) is solved by In-
tegral Transform method. The test function for
the heat generation term is obtained by model-
ing of chip geometry and thermomechanical cut-
ting. Then the solution of PDE with heat gener-
ation term optimized is used to present an inverse
problem to calculate the convective heat transfer
coefficient.
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Nomenclature

(¢&,m) Dimensionless coordinate system

(z,y) Coordinate system

a Thermal diffusivity of solid, %, [m?/s]
Bm Eigenvalues, m =1--- o0

P

p

Bi
Cp

Fo
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. . . L2
Dimensionless heat-generation, W
oo

Density of solid or fluid, [K g/m?

T—To

Dimensionless temperature, oo T

Biot number

Specific heat of solid or fluid, [J/Kg - K]
Fourier number, %

Heat generation in the solid, g(z, y, 2), [J-m/s]

Heat transfer coefficient at the boundary sur-
face s;

Thermal conductivity coefficient of the solid,
(W/m - K]

Eigenfunction, v =& or 7

Volume

Characteristic dimension of solid, g—r——==—
Surface area

Heat liberation rate of moving rectangular heat
source [J]

Bounding surface of the solid, i = 1,2, 3,4

Temperature, Too Ambient temperature, Tp
Initial temperature, [K]

Time, [s]



Introduction

In a typical metal cutting operation almost 100% of the
total energy spent is converted into heat, which has to
be dissipated by the tool cutting edge, workpiece, chip
and also by the cutting fluid normally used. The cut-
ting fluid is, in general, a liquid containing basically a
mixture of water, oil and some other additives. The
percentages of these, and other components, are care-
fully adjusted to satisfy the demands of a particular
process. One of the main purposes of these cutting flu-
ids is to cool down the chip formation region, which in
turn, keeps the tool at acceptable temperatures delay-
ing the wear and making the process more economically
efficient. In addition, the dimensions are better kept if
the heat is conducted away from the workpiece. Lately,
with the tightening on legislation to dispose the cut-
ting fluids, costs can be very high when using certain
products and also there has been an increase in number
of different formulations and basic substances. To be
able to clearly test and distinguish among these new
proposals a comprehensive study of the heat propaga-
tion and temperature distribution has become a basic
requirement. Such study can, in the near future, set the
grounds for a realistic and practical method to test and
select the best products for metal cutting applications.

For such purpose simple mathematical formulations
to deal with heat conduction problems is of prime inter-
est in manufacturing processes optimization based on
metal cutting. In this context the heat transfer coef-
ficient is a important topic in the field of heat trans-
fer technology. The heat transfer coefficient, regulates
the heat transmission between the surface of a solid
body and a neighboring fluid. In addition, The Biot
number, the dimensionless form of the heat transfer
coefficient, may physically be interpreted as the ratio
of the internal and external conductances of a heat
problem with convective boundary. In this paper, an
method for estimating time-dependent heat transfer co-
efficient for linear inverse heat conduction problem is
proposed. In [6] a method is proposed for the evalua-
tion of the local convective heat transfer coefficient for
an unidimensional steady heat conduction problem us-
ing Fourier transform. The same problem is studied
in [5] where the time-dependent Biot number in a one-
dimensional linear heat conduction problem is obtained
from the solutions of the inverse heat conduction prob-
lems of determining boundary heat flux and boundary
temperature. Non of the studies found in literature
deals with the case of a inverse method to calculate the
heat transfer coefficient for a two-dimensional transient
heat conduction problem with heat generation subject
to convective boundary in all body surface. To fill this
gap, the present work studies the finite integral trans-

form techniques to solve the two-dimensional, transient
heat-conduction problem with general time-dependent
heat sources and boundary conditions. The solutions
is obtained, based on the work of [10]. This solution
is formulated in terms of quasi-steady and transient
terms and given in the form of infinite series. Using the
Fourier theory to orthogonal function, an approximated
solution is taken and an error is established. Then the
heat transfer coefficient time dependent is formulated
by direct inverse of this approximated solution. Finally,
the inverse method is applied to the case of a plate with
convective boundary conditions of third kind and mov-
ing heat generation.

Analytical Model of Tempera-
ture distribution

The process starts by modeling the heat distribution
in a typical orthogonal cutting with fluid surrounding
in all borders of a rectangular solid surface R. The
dimensionless model of temperature distribution on a
stationary, homogeneous, isotropic solid with constant
thermal properties subject a heat generation near its
boundary and convection dissipation too. The problem
under consideration can be governed by the following
equation, [11]:

0 O\, . 00
oz " o ~ 9K

where § = ¥ and n = %, with the following boundary
conditions

in R, Fop >0 (1)

00

Bi© =
aNii i©=0

on s;, Fo >0

(2)

and initial condition

0=1 in R, Fo=0 (3)

where R = [0,1] x [0, 1], s; is a bounding surface of
the solid, for ¢« = 1,2,3,4, and % = differentiation
along outward-drawn normal to the boundary surface
si in the dimensionless coordinate system The dimen-

sionless excess temperature © is defined by

T -Ty

@7T0_Too

(4)
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The dimensionless time variable Fy , which can be
called the Fourier number, is defined as follows:

k.72
_ at _ (E)L
Fo= L2 = TpcpL3/1)
rate of heat conducted across L
in the volume L3

rate of energy storage
in reference to volume L3

The dimensionless heat-generation variable ® , is de-
fined as follows:

g(zy, ) L2 _  g(zy,t)L3

o= E(To-Teo) — EL2(Ty-Tw)

rate of heat generation in reference to volume L3

rate of heat conduction across L in L3,
with temperature difference (7o — Too)

1 Fo _2p2 F, o - _ _
- mfo | 9 &(8,., Fo)| dF;
552 /0 e o7 (Bm, Fo) | dFo

where

F(Bm) = / 1 / K (B &, n)dEdT (9)

B(B, Fo) = /0 /O K (B, €, )®(E, 7, Fo)dédij (10)

K(Bm:€,m) = Ke(Bm) Ky (Bm) (11)

Ko(fm) = V2 e 7
(6) (824 B2 (14 522) + B
(12)

The dimensionless heat-conduction parameter Bi,
which is called the Biot number is interpreted as:

s h
Bi = m

heat transfer coefficient
at the boundary surface

unit conductance of the solid
across thickness L

(7)

The equation (1) is a nonhomogeneous PDE. We
can’t use separation variables method to reduced the
nonhomogeneous equation to a characteristic-values
problem in each space variable involved. However, the
integral transform method is convenient for nonhomo-
geneous problems due to the presence of heat genera-
tion term in the equation (equation (1)) or due to non-
uniformity of boundary conditions, or both, see [12].
The dimensionless solution of the model governed by
equation (1) is formulated by [10] as follows:

@(é, m, FO) =

Z %K(Bm: '57 n)i)(ﬁmy FO)

m=1

+ 3 e PP K (B, £,m)
m=1
1

F(ﬂ‘lﬂ) - W

[®(Bm, 0)]

where x(v, Bm) = Bmcos(Bmv) + Bisen(Bmv) for v =&
orv=n.

Fourier theory of approxima-
tion

The uniform convergence of the infinite series in equa-
tion (8) is ensured by requirements that heat-generation
variable & possesses continuous first and second order
partial derivatives in the space variables, and possesses
continuous first order partial derivatives with respect to
time Fy, see [10, p. 310]. By the Cauchy criterion for
series convergence one can approximate equation (8) by

O, Fy) = Q—;fK(ﬁl,s,m@(Al,Fo)

+e VK (8,6, F(Br) = o5 [8(81,0)]

1
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1 Fo —Qﬁ%ﬁo o - _ _
_Tﬂ%‘/o € 8714:'0@(617}7’0) dFo

(13)

Substituting the equations (9) , (10) and (12) for
m = 1 in the solution (13) and the heat generation
with parabolic distribution, ie, ® = g(aF§ + bFy + c),
we obtained the following equation:
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Gapp'r(f, m, F()) = ! - X
(ﬁf+Bi2)(1+B%f;i2)+Bi
2<I><x(§,@1))(x(n,zsl))th'fsin(ﬁl)m+Bz‘cos(ﬁl))Q+
ﬁf[(ﬁ2+3i2+23i)]

—2p2 —Bi—sin i cos 2
2e7 270 (x(&, m)) (x(, 1)) =P )

— *25250
X (2 — % q(aFo-H))(2 lil+e 1 ))}
(14)

The approach given by the equations (14) is reasoned
in the approximations theory of orthonormal functions
in Fourier series in the sense of least squares, see [15].
From this theory one presents the following approxima-
tion error

F. = farea[e(Sa 7, FO) - @appT(§7 7, FO)]sz

area

1 r1
= A A [6(5777714—‘0) - @app'r(g,?% FO)]2d€d’q (15)

The error given by equation (15) will be used to evalu-
ate the heat transfer coefficient error.

Heat Transfer Coefficient

The equation (7) indicates that simultaneous effects of
k and h may be investigated in terms of a single dimen-
sionless number, the Biot number.

The convective heat transfer though boundaries, h
in equation (7), is important in the formulation and
solution of conduction problems. The range of values
of heat transfer coefficients h occurs under various con-
ditions. It should be remembered that h, similar to
but more strongly than k, depends on certain variables.
These may include the space, time, geometry, flow con-
ditions, and physical properties. The space wise av-
eraged, steady values of commonly encountered heat
transfer coefficients are given in Table 1.

Table 1: Range of heat transfer coefficients in sev-
eral conditions

Conditions | Fluid [ AW -m~7 K1)
Free Gases 5-30
convection ‘Water 100 - 900
Gases 10 - 300
Forced Water 300 - 11.500
Convection Viscous oils 60 - 1300
Liquid metals 5.700 - 114.000
Phase Boiling liquids 3000 - 57 .000
change Condensing vapors 5.700 - 114.000

Source:Adapted by [1]

The wide variation in the values of heat transfer coef-
ficients suggests further investigations of the boundary
condition under study for limiting values of h.

Method to calculate the Heat
Transfer Coefficient

Taking the equation (14) as the approximate solution
and knowing the temperature at some points for differ-
ent times on the solid surface, one can find the values
of 81 and therefore the heat transfer coefficient h, by
the Biot number Bi. Suppose that the temperatures at
the point (£o,m0) for times F{ and Fj is known. Let

— O(0,m0,Fg) _
Ao = oo o B and 1 = 8 then

Aoy =

FO+% .
<1>(F8)+e—2f*2F8{232711[177(‘1 2;2) <5_2/32F871>:|}

_op2pl Flib o2 pl
B(Fl)+e 207 {2[32_(1[1_M(e 28 Fu_1)]}

B2
(16)
The equation (16) depends only on 1, since ® , F¢,
Fy and Ap,1 are input of problem.
Then to find the Biot number Bi one replaces the
numerical value of f; calculated by equation (16) in
the following equation

2Bif
tan 8 = B

It can be observed that equation (17) is a transcen-
dental equation, therefore one can take only positive
roots, see [11]. Moreover, in order to obtain the solution
in real values, it is necessaries to apply an asymptotic
analysis to choose the relation between FY and Fy.

The asymptotic analysis provide the relation Fy <
F required to solve the equation in real values.

If the heat generation is the uniform distribution, ie,
® = ¢, then the equation (16) become

(17)

gy TH (258 )

18
D gt e (282 —g) "

In particular case when ® = 0 this method according
with calculus of Bi for homogeneous PDE, see [7] or
[14].

02
o 2F5B

Ao = (19)

132
e—2F38

Heat source modeling

The heat generation rate g can be modeled by assuming
two different distributions: uniform and parabolic and
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various shapes. Komanduri and Hou [8] formulated a
general equation for various plane heat sources (ellipti-
cal, circular, rectangular, and square) of different heat
intensity distributions. The general equation for go can
be expressed as:

q

F.
A, C

qo = (20)

The parameter E and F and G for rectangular (and
square) heat intensity distributions are given in Table
2.

Table 3: Thermal properties of steel AIST H13

Specific Thermal Density Thermal
heat conductivity diffusivity
cp k p o
[J/KgK] | [W/mK] | [Kg/m®] | [m?/s]
475 ] 38 7850 [ 1.18-10°°

Source: Adapted from [3]

Table 4: Necessary parameters for reaching the
Heat Transfer Coefficient

Rate Characteristic Inicial Fluid
feed dimension temperature | temperature
Table 2: Coefficients E, F, G and area Ay for the [m/s] [mm] [K] [K]
for the general solution for uniform and parabolic _Yf= 3.33 | L =50 | To=297 [ Too =285
heat intensity distribution shear _ Heat feed depth
angle intensity per tooth cut
Distribution [J] [mm] [mm]
Of intensity E F G Apl (b — 925° [ q= 25 [ f —=0.1 [ ap = 0.2
Uniform 1 1 1 4a0bo
Parabolic | § | (1-(32)) | (1 = (§)) | or (4ad)
Source: Adapted of [8]

Here, qo is the heat flow absorbed by the workpiece
defined in equation (20), ¢ is time and vy is the source
velocity. The heat generation is defined as

@ 0<x;<wvy-t

—bo < yi < bo

g(z,y,t) = (21)

0 otherwise

Calculus of the Heat Transfer
Coefficient for a machining pro-
cess

In order to investigate the applicability, the method will
be applied to a machining process. The experiment se-
lects the milling of the AISI H13 steel in orthogonal cut-
ting being cooled by a fluid at 285K . Table 4 shows the
experimental thermomechanical data necessary for the
Heat Transfer Coefficient calculation, extracted from
[2]. Table 3 shows the thermal properties of steel AISI
H13.

When the tool is cutting the contact area can be
reasonably approximated by an area as shown in
figure 1, being modeled as a moving heating source
on the workpiece surface. An energy balance can be
conducted on the workpiece area where the cutting
energy is being generated. It is known that during
cutting the energy is generated in the chip formation
zone, CFZ. For orthogonal cutting, this volume can be

associated to the shear plan introduced by Merchant’s
theory, [9]. For all practical purposes, the CFZ can be
approximated with parallelepiped with sizes a, b, c, as
shown figure 1. The length a was set equal to ﬁ,
[13]. Analyzing the figure 1, one can observe that one
of the faces of the CFZ is in contact with the workpiece
surface. That can be modeled as the heat genera-
tion, the CFZ contact with the workpiece, by a heat
source of rectangular shape dimension ¢ x a, see figure 1.

Figure 1: Heat source geometry

The heat generation propagation inside of workpiece
can be model with uniform or parabolic distribution.
Table 5 gives the heat generation, equation (6), where
the function g is calculated by equation (20), considered
ao = a/2 and by = ¢/2.

The input data for Biot number calculus are k = 38,
F§ = 0.41 (for t = 100s), Fg = 1.22 (for t = 300s),
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Table 5: Equation of heat generation propagation
inside of workpiece

Distribution || (&, n, Fo)
Uniform TIR0=F
Parabolic Taeao=s (—2.5 x 1072 F§ 4+ 1.5 x 10~ % Fp)

given by table 5 and

0(0.5,0.25, FY)) 3/4
A1 = =

T 9(0.5,0.25, F})  25/12

where T(0.5,0.25, F) = 294K and T(0.5,0.25, Fy) =
310K.

The function ® has continuous first and second order
partial derivatives in the space variables, and has also
continuous first order partial derivatives with respect
to time Fy for both distribution. Therefore one can
use the approximation equation (14) to calculate the
temperature © and find the Heat Transfer Coefficient
of the fluid being tested. For this, firstly it is needed to
find the values of 81. The data obtained for a uniform
distribution are in table 6. The table 7 shows the data
calculated for a parabolic distribution.

(22)

Table 6: Heat Transfer Coefficient for uniform dis-
tribution: Data obtained versus expected data

q 51 h h Erro x10~—8
[J] | (Eq. (18)) (Eq. (17)) | Table 1 (Eq. (15))
2.5 0.277 29.33 10 - 300 1.6
5 0.277 29.32 10 - 300 6.6
10 0.277 29.32 10 - 300 26
20 0.277 29.32 10 - 300 100

Table 7: Heat Transfer Coefficient for parabolic dis-
tribution: Data obtained versus expected data

q B1 h h Erro x10~10
(/] | (Eqa. (16)) | (Eq. (17)) | Table1 | (Eq. (15))
2.5 2.93 234.9 10 - 300 7.4

5 2.93 234.9 10 - 300 30
10 2.93 234.89 10 - 300 120
20 2.93 234.89 10 - 300 480

Conclusion

This work has examined the problem of transient heat
conduction driven by convective cooling with a heat
generation moving source. Using as a case-study the
exact temperature solutions for two-dimensional model
in a rectangular geometries, it can be concluded that:

1. The solution of the problem in a sense that Integral
Transform given by equation (8) can be approxi-
mated by equation (13) since the heat-generation
variable ® has continuous first and second order
partial derivatives in the space variables, and has
continuous first order partial derivatives with re-
spect to time Fp and satisfy the hypothesis all
boundary conditions is the same (unless the sig-
nal of) Bi.

2. The use of inverse analysis techniques permits the
estimation of the heat transfer coefficient, from the
knowledge of temperature and the thermomechan-
ical of process.

3. The Heat Transfer Coefficient method calculate
from equations (16) and (17) is a simple math tool
to calculated the ratio of the internal and external
conductances of a heat conduction, subject to con-
vective boundary with a heat generation source. In
addition, this method agrees with the particular
case studies in literature, the steady heat conduc-
tion.

4. The simple analyses of this method admit the
generalization for another simple geometry (cylin-
der and sphere). The generalization can be ob-
tained replacing the model given by equation (1)
by the respective model in appropriate coordinates
(cylindrical and spherical) found in the following
literature [4], [12] and [11]

The Heat Transfer Coefficient method formulated
here applied in an experimental calculus are in
good agreement with those predicted by empiri-
cal correlations cited in table 6 and 7.

o
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