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ABSTRACT
It is investigated the influence of recombination on the

energy flux in bipolar semiconductors. The expression for
energy flux in a nondegenerate semiconductor in a linear
approximation with respect to perturbation in a quasi-neutral
approximation taking into account recombination (the presence
of nonequilibrium charge carriers in the semiconductor) has been
obtained. In a one-dimension case when the different
temperatures from the both sides of the semiconductor have been
considered the energy flux density has been calculated in two
different cases: the case of weak recombination and the case of
strong recombination.

INTRODUCTION
It is generally accepted that the energy transfer in solids is by

means of heat conductivity and the energy flux density is set by
the Fourier's law, T  , where  is the material conductivity,
T is the temperature [1].

Nevertheless, the electrical currents of electrons and holes
can be presented in bipolar semiconductors when the total
electrical current is absent. Therefore, the energy can be
transferred not only by means of heat conductivity but also by
means of electrons' and holes' transports since they carry the
energy. The process of an appearance of these electrical currents
is as follows. The temperature gradient that arises because of the
different values of the temperature from the both sides of the
semiconductor causes the nascency of both the thermoelectric
currents and thermal generation of electron-hole pairs.
Nonequilibrium electrons and holes that have arisen because of
the inhomogeneous thermal generation form the diffusion
electrical currents. The redistribution of electrons and holes takes
place because of diffusion and thermal diffusion of charge
carriers. The latter changes the electrical potential in the
semiconductor. As a result of this, the electrical field arises that
causes the electrical current too.

The purpose of this paper is to investigate the process of
energy transport in nondegenerate bipolar semiconductors taking

into account not only the process of heat conductivity but also
the process of an energy transport by means of electrons’ and
holes’ transference (diffusion, thermal diffusion, drift motion in
an electrical field), bearing in mind recombination (the presence
of nonequilibrium charge carriers).

NOMENCLATURE

T [J] Temperature
 [W/m J] Thermal conductivity
g [J] Bandgap
w [W/m2] Energy flux density
j [A/m2] Electrical current density
 [V] Electrochemical potential (Fermi quasi-level)
 [V] Peltier coefficient
x [m] Cartesian axis direction
 [V] Electrical potential
 [J] Chemical potential
E [C] Hole charge (the magnitude of electron charge)
R [-] The exponent in the momentum relaxation time for

electrons (holes)
m [s] The momentum relaxation time for electrons (holes)
 [s] Lifetime of charge carriers
bb [s] Lifetime of charge carriers with respect to band-band

recombination
t [s] Lifetime of charge carriers in extrinsic semiconductor

with respect to recombination through the impurities
 [V/J] Seebeck coefficient (thermopower, thermoelectric power,

and thermoelectric sensistivity)
 [-1 m-1] Electrical conductivity
 [-] Dimensionless coefficient that depend on the exponent in

the momentum relaxation time for electrons (holes)
t [J] Impurity energy level
n [m-3] Electron concentration
p [m-3] Hole concentration
R [m-3s-1] Recombination rate
k [m3/s] Capture coefficient
Nt [m-3] Impurity concentration
d [m] Half-length of the semiconductor

Subscripts
n Electrons
p Holes
0 Equilibrium besides of j0 і w0
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ENERGY TRANSPORT IN A BIPOLAR
SEMICONDUCTOR: GENERAL EQUATIONS

The classic approach to the energy transport in
semiconductors assumes that this transport takes place only by
means of heat conductivity [1]. This approach neglects the
influence of recombination on the energy transport process. In
this case, the heat flux density, q , is equal to the energy flux
density, w . Moreover, the expression for the energy flux density
is set by the Fourier's law:

T  w , (1)
where n p ph      is the thermal conductivity of the

semiconductor ( n is the thermal conductivity of electrons in a
conduction band, p is the thermal conductivity of holes in a

valence band, and ph is the thermal conductivity of phonons)
and T is the temperature. We assume that the temperature has
the energy units (the Boltzmann constant is equal to unity and
has no dimension).

Nevertheless, if the temperature in a semiconductor is
nonuniform so the thermal diffusion of electrons and holes take
place. This means that electrical currents of electrons and holes
can be presented in a semiconductor, in which the total electrical
current is absent. These currents have the same magnitude but
opposite directions and take place due to recombination. As a
result of these electrical currents the energy can be transferred
not only by means of heat conductivity but also by means of
electrons’ and holes’ transport. Thus, the expression for the
energy flux density is as follows [2]:

   n n n p p pT         w j j , (2)

where n ( p ) is a electrochemical potential (Fermi quasi-level)

of electrons (holes); nj ( pj ) is electrical current density of

electrons (holes); and n ( p ) is the Peltier coefficient of
electrons (holes). Let us note that we consider a uniform
specimen without a total electrical current. Therefore the Peltier
effect is absent.

It is seen from Eq. (2) that, only if the electrical currents of
electrons and holes are absent, then the energy flux (2) reduces
to Eq. (1).

The expressions for electrochemical potentials of electrons
and holes are as follows [3,4]:

1
n ne    , 1

p pe    ,                    (3)

where  is the electrical potential and n ( p ) is the chemical
potential of electrons (holes).

Let us consider the case of a nondegenerate semiconductor.
In this case the expressions for Peltier coefficients are as follows
[5-8]:

 51
n,p n,p n,p2e r T       , (4)

where nr ( pr ) is the exponent in the momentum relaxation time

for electrons (holes) [9];   n,pm m
n,p 0;n,p / rT   , where  is the

energy of the carriers (the constant quantities m
0;n,p and n,pr for

different relaxation mechanisms can be found in Ref. [9].
Let us consider a quasi-neutral approximation [3,10-14]. In

this approximation the concentration of electrons and holes in
equilibrium, 0n , 0p , are constant [15]. Hence, the electrical
potential in equilibrium, 0 , the chemical potential of electrons
(holes) in equilibrium, n0 ( p0 ), and the electrochemical

potential of electrons (holes) in equilibrium, n0 ( p0 ), are
constants.

The expressions for the densities of electrical currents of
electrons and holes, which are in expressions for energy flux
densities (see Eqs. (2)), are as follows [16,17]:

 n,p n,p n,p n,p T       j ,…………….(5)

where n ( p ) is electrical conductivity of electrons (holes);

n ( p ) is the Seebeck coefficient of electrons (holes);

n,p n,p n0,p0      ; and 0T T T   , where 0T is the
equilibrium temperature.

It is seen from Eqs. (2)-(5) that the energy flux density
depends not only on the temperature distribution in a
semiconductor but also on the distributions of electrochemical
potentials of electrons and holes, n,p .

Substituting Eqs. (5) for the electrical current densities, n,pj ,
in Eq. (2) for energy flux density in a semiconductor, the
following expression for energy flux density can be obtained:

   
   

n n n n p p p p

n n n n p p p p

T       

     

        

     

 

   

w
. (6)

It is seen from Eq. (6) that the energy flux in a semiconductor
depends on the gradient of the temperature, T , and on the
gradients of the electrochemical potentials, n  and p  .

It is worth to mention here that the following expression must
take pace in a semiconductor, in which the total electrical current
is equal to zero:

n p 0 j j .                                      (7)
Substituting the expressions for electrical currents (5) into

Eq. (7), the following additional equation that connects the
temperature with electrochemical potentials can be obtained:

   n n n p p p 0T T                . (8)
Hence, the energy flux density in a semiconductor, in which

the total electrical current is equal to zero ( 0 0j , where

0 n p j j j ), is expressed by Eq. (6), and in addition, the Eq. (8)
must take place too.

Substituting the expressions for electrochemical potentials
(3) into the equation for the energy flux density (6) and into the
condition of a total electrical current absence (8), taking into
account the expressions for Peltier coefficients (4), two
following formulas can be obtained:
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 
   

   

5 51 1
n p2 2

5 51 1
n p2 2

5 51

n p

n n p p

1 1
n n pn 2 p

1
p2 , (9a)

e e

e e

ee e e

r T r T

r T Tr T

r T r T

   

       

     

      

      

   

     

      

      

w

  1 1
n n p p n n p p 0e eT                   , (9b)

where n p    .
Equation (9a) expresses the energy flux density in a

nondegenerate bipolar semiconductor by means of the following
functions:  , T , n , and p .

Expressing  from Eq. (9b) and substituting in the
expression of the energy flux density in a semiconductor (9a),
the expression for w that now depends on the three functions,
T , n , and p , can be obtained

 

n p
2

n pp n ,
e

T

T T T

 



  

  

  

   

           

w
(10)

where n p 5r r    . In Eq. (10) we have taken into account

Eqs. (4), and also the expression n,p n,pT  [16,18,19] that

connects the Peltier coefficient, n,p , with the Seebeck

coefficient, n,p .
Formula (10) is the equation for the energy flux density in

nondegenerate bipolar semiconductor, in which the total
electrical current is absent, 0 0j .

If the semiconductor does not irradiate and absorb light the
energy balance equation in a stationary case is as follows [2]:

div 0w .                                  (11)
In a one-dimensional case the Eq. (11) means that the energy

flux density is constant:
0=w w , (12)

where 0 constw .
Let us consider the case of a linear approximation with

respect to perturbation. In this case expression (10) for the
energy flux density reduces to the following:

 n0 p0

0
20 n p0 g0 0e

TT T T 


                  w ,(13)

where 0 is the thermal conductivity of a semiconductor in
equilibrium; n0 ( p0 ) is the electrical conductivity of

electrons (holes) in equilibrium; 0 n0 p0    ; and g0 is the
energy bandgap in a semiconductor in equilibrium. The equation

n0 p0 0     [16,18,19] has been utilized for obtaining
expression (13).

The chemical potentials of electrons and holes in a linear
approximation with respect to perturbation are [17,18]:

 n0 0

0 0

3
n 2

T
T nT n      ,                    (14a)

 p0 0

0 0

3
p 2

T
T pT p

      , (14b)

where n n n0    ; p p p0    ; 0n n n   ;

0p p p   ; and n ( p ) is the concentration of electrons
(holes). Equations (14a) and (14b) do not take into account the
dependences of effective masses of electrons and holes on the
temperature [17].

Substituting expressions (14a) and (14b) for chemical
potentials into Eq. (13), we obtain:

    n0
2

0 0

p0

0
0

2
0 03 .p

n p
n

e
T T TT  


        w (15)

This equation expresses the energy flux density, w , by
means of the temperature gradient, T , and the gradient of

concentrations’ combination,  
0 0p

pn
n

  .

In Ref [2] the balance equation for the diffusion heat flux,
diff T   q , is obtained in a linear approximation with

respect to perturbation for a nondegenerate semiconductor in a
quasi-neutral approximation:

diff 0div T Rq . (16)
where R is the rate of recombination, which is set by such
expression [20,21]:

 g00 0

0 0 0 0 0 0 0

1 3n p pn T
n p n p T TR  

 
      

, (17)

where 0 is the time that characterizes the lifetime of electrons
and holes. If the semiconductor is intrinsic, then 0 bb  , where

   1
bb 0 0 0k n p


  is the time that characterizes the lifetime

of electrons and holes with respect to band-band recombination
[20] ( 0k is the capture coefficient of electrons by holes in
equilibrium); if the semiconductor is extrinsic, then

1 1 1
0 bb t      , where    1

t n0 p0 t 0 0k k N n p


 

    n0 0 10 p0 0 10k n n k p p   [21] is the lifetime of charge
carriers in an extrinsic semiconductor with respect to
recombination through the impurity energy level, where n0k
( p0k ) is the capture coefficient of electrons (holes) by impurities

in equilibrium; tN is the impurity concentration;

 10 n0 t0 0exp /n T   ;  10 p0 g0 t0 0exp /p T       ;

 3/221
n0,p0 n0,p0 04 2 /m T   are the electron and hole densities

of states at the bottom of the conduction band and at the top of
the valence band, n0,p0m are the electron and hole effective

masses in equilibrium; t0 is the impurity energy level in
equilibrium. Here the Shockley-Read model is used for
recombination [22].

From Eqs. (16) and (17) the following relationship between
the function of concentrations,

0 0

n
n p

p  , and the temperature,

T , in a linear approximation with respect to perturbation can
be obtained:

 g0 0 0 0

0 0 0 0 0 0

0

0
3 n ppn T

n p T T n p T T

      .             (18)
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Substituting the expression for concentration’s combination,

0 0

n
n p

p  , from Eq. (18) into Eq. (15), the following expression

for the energy flux density can be obtained:

  
2

g0

n0 p

0 0

0 0

0

0

0
0

0 00 0 .

e

n p
T n p

T

TT T T


 





  

    

   




  

w
(19)

Comparing Eq. (19) for the energy flux density with the
Fourier's law (see Eq. (1)), we see that they are different. In
contrast to the Fourier's law the energy flux density in a
semiconductor (see Eq. (19)) depends not only on the thermal
conductivity, 0 , but also on many other its parameters such as
the lifetime of charge carriers, 0 , the bandgap, g0 , and the

electrical conductivities of electrons and holes, n0,p0 .
Moreover, the energy flux density depends not only on the
temperature gradient, T , but also on the third derivative of the
temperature with a coordinate,  T  . Just the term, which is
proportional to the third derivative of the temperature,

 0 0n

0

p0
2

0

0

0
0 00

n p
n pe

T T 


    , depends on recombination (on the

lifetime of charge carriers, 0 ). Due to that the heat dissipates
by means of recombination [2] then the temperature is not a
linear function with a coordinate [15,23] because of nonuniform
recombination. Therefore the third derivative of the temperature
is nonzero (   0T   ).

In particular, in the case of strong recombination ( 0 0  )
expression for the energy flux density (19) reduces to the
following:

 gn 0
2

p0

0 0

0
0 0 .Te

T T 


         

w (20)

It is seen from Eq. (20) that the energy flux density does not
depend on the third derivative of the temperature,  T  , in
this partial case ( 0 0  ) but depends only on the temperature
gradient, T . Moreover, we can see that the expression for the
energy flux density is not the same as in the Fourier's law (see
Eq. (1)), and differs from it because Eq. (20) has additional term,

 n0 p0

0

g0
2

0 0Te
T T 


    . Since this term is proportional to the

electrical conductivities of electrons and holes, n0 p0  , so this
means that it is connected with the drift motion of charge
carriers.

One-Dimensional Case
In a one-dimensional case the general Eq. (19) for the energy

flux density is (taking into account Eq. (12)):

 3n0 g0 0 0
2

0

p0
3

0 00

d d d
0 0 0d d0 0 0 d

n p
T

T T
n p

T
x x xe

T Tw 


   


   



   (21)

It is shown in Ref. [15,23] that for any stationary processes
of the energy and charge propagation the temperature is:

 
0 01 2 3 4exp expx x

L LT C C x C C      , (22)

where 1C , 2C , 3C , and 4C are unknown constants, the values
of which depend on the boundary conditions;

0 0

0 0

g00
2

n0 p0 0

0 0
0

1
n p
n p

e

T
L

e 
  

 




(23)

is the generalized diffusion length [15,23] for the temperatures
0 g0T  . Equation (22) is correct for nondegenerate bipolar

semiconductors in a quasi-neutral case in a linear approximation
with respect to perturbation.

Substituting expression for the temperature (22) into the
expression for the energy flux density (21) and taking into
account the expression for the generalized diffusion length (23),
we obtain the following equation for 0w for 0 g0T  :

 p
2
n0 0

0
0 0 g0 2e

w C 


   . (26)

Equation (26) confirms that the energy flux density in a one-
dimensional case does not depend on coordinate, i. e., is a
constant.

As it seen from Eq. (26), the energy flux density, 0w ,
depends on the thermal conductivity, 0 , a bandgap, g0 , the

electrical conductivities of electrons and holes, n0,p0 , and the

boundary conditions because of a constant 2C that is presented
in the temperature (22).

Let us consider two partial cases: strong ( 0 0  ) and weak
( 0  ) recombination. In these two partial cases the
temperature is a linear function with respect to coordinate [23].
Therefore, the expression for the temperature (22) reduces to the
following:

1 2T C C x   .                              (27)
Here it is worth to mention that the surface recombination on

the ends of the semiconductor must take place in the case of the
absence of bulk recombination ( 0  ) because the electrical
currents of electrons and holes in an isolated semiconductor can
exist only by means of recombination.

Let the semiconductor has isothermal contacts with a
thermostats at x d  and x d , and the temperatures of the
thermostats are equal to 1T at x d  and 2T at x d . Let the
lateral sides are adiabatically insulated. Then the boundary
conditions at x d  are as follows:

1 0( )T d T T    , 2 0( )T d T T   . (28)
Substituting formula for the temperature (27) into boundary

conditions (28), we find the constant 2C :
2 1

2 2
T T

dC  .                                (29)

Substituting the expression for the constant 2C (see Eq. (29))
into Eq. (26), we obtain the following expression for the energy
flux density:

 n0 p0 1 2

0
20 0 2g0

T T
de

w  


    . (30)
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As it is seen from this equation the energy flux density differs
from the Fourier's law, 1 2

0 2
T T

d  (see Eq. (1)), because Eq. (30)

has an additional term, n0 p 2

0
2

0 1
g0 2e

T T
d

 


  . This term is the energy

flux density by means of a drift motion of electrons and holes.
We can see from this expression that the energy flux density by
means of a drift motion of charge carriers increases with
increasing both electrical conductivities of charge carriers and
the bandgap.

It is seen from Eq. (30) that the energy flux density depends
not only on the thermal conductivity, 0 , the length of the
semiconductor, 2d , and the difference of the temperature,

1 2T T , on the ends of the semiconductor, as it is in classic

result, 1 2
0 2

T T
d  , but also on the bandgap, g0 , the electrical

conductivities of electrons and holes, n0,p0 , and the
mechanisms of momentum relaxation of charge carriers,  .
Also, it is seen from Eq. (30) that the energy flux increases with
increasing the bandgap. Nevertheless, if the semiconductor tends
to monopolar hole (electron) semiconductor, i. e., when

n0 p0  ( p0 n0  ), then the expression for the energy
flux density (30) reduces to the following:

 n0 1 2
2g0 0 0 2

T T
de

w     (  p0 1 2
2g0 0 0 2

T T
de

w 
    ). It means

that the energy flux density does not depend on the electrical
conductivity of majority carriers but depends on the electrical
conductivity of minority carriers: with increasing the electrical
conductivity of minority carriers the energy flux density
increases. If the semiconductor is monopolar ( n0 0  or

p0 0  ), then, as it is seen from two previous equations, the

energy flux density has classic expression, 1 2
0 0 2

T T
dw   .

CONCLUSIONS
The expression for the energy flux density in nondegenerate

bipolar semiconductor is obtained. We have used the following
statements: 1) a linear approximation with respect to
perturbation; 2) a quasi-neutral approximation; 3) an absence of
a total electrical current (the electrical currents of electrons and
holes can exist). This flux depends on many parameters of the
semiconductor: the thermal conductivities of electrons, holes,
and phonons; the electrical conductivities of electrons and holes;
the bandgap; the mechanisms of momentum relaxation of charge
carriers; the lifetime of charge carriers; the electron and hole
concentrations.

The expressions for the energy flux densities are obtained in
a one-dimension case under infinitely large and infinitely small
recombination rates when there are different temperatures on the
ends of the specimen. In these cases the energy flux density
depends on the thermal conductivity of the semiconductor, the
electrical conductivities of electrons and holes, the bandgap, and
the mechanisms of momentum relaxation of charge carriers. It is
shown that, when the semiconductor tends to a monopolar one,
then the energy flux density leaves the dependence on the

electrical conductivity of majority carriers but maintains the
dependence on the electrical conductivity of minority carriers. If
the semiconductor is monopolar, then the expression for the
energy flux density is classic.
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