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ABSTRACT 

With the increase in power consumption within a limited 

volume of present day power electronics, heat sink design has 

become a central aspect of thermal management of these devices. 

In this study, a plane fin heat sink with surface augmentation was 

optimized to meet and exceed the operating requirements of 

DARPA’s Microtechnologies for Air Cooled Exchangers 

(MACE) program. To accomplish the computational efficiency 

required of a multi-parameter optimization problem, conjugate 

heat transfer and fully developed flow were modeled using 

Volume Averaging Theory (VAT). By modeling a highly detailed 

heterogeneous structure as a homogeneous porous medium, VAT 

based numerical simulation overcomes the meshing difficulties 

and computational cost associated with traditional CFD 

methods. The configuration considered was elliptic scales 

located on the fin surfaces where the scale height, transverse 

pitch, and longitudinal pitch were variable. These parameters 

along with fin base thickness, tip thickness, and fin pitch were 

varied simultaneously while the heat sink length (101.6mm), 

width (101.6mm), and height (25.4mm) were held constant. 

Design of Experiments (DOE) software was used to conduct a 

Response Surface Methodology (RSM) design to minimize the 

thermal resistance with constant pumping power as the flow 

condition. The optimized heat sink presented has a thermal 

resistance of 0.0246°C/W when cooled by air with a pumping 

power of 33W. 

 

INTRODUCTION 
Preventing semiconductor failure while minimizing the size 

and power input for air moving devices has been a challenge for 

researchers over the past few decades. Many innovative concepts 

for air cooled heat sinks [1-4] and liquid cooled microchannel 

heat sinks [5-7] continue to be developed in efforts to achieve 

highly efficient electronic cooling systems. However, much of 

the design over the years has been empirical in nature. A more 

systematic approach to designing advanced heat sinks is multi-

parameter optimization. The key challenge present in all 

optimization techniques is acquiring an accurate yet efficient 

simulation model. CFD simulations including conjugate effects 

are highly accurate, and have been used to optimized heat sinks 

[8,9], but the computational cost associated with these 

simulations limits the optimization capability. An approach to 

modeling conjugate heat transfer that is very suitable for heat 

sink optimization is Volume Averaging Theory (VAT).  

Volume Averaging Theory (VAT), first developed in the 

1960s, has been shown to be a powerful tool for modeling 

conjugate heat transfer in heat sinks and heat exchangers. This 

modeling technique treats a heterogeneous system with two 

phases (solid and fluid) as a homogeneous porous medium. The 

development of the VAT governing equations begins by applying 

rigorous averaging procedures to a Representative Elementary 

Volume (REV) within the macroscopic system. The resulting set 

of differential equations, while simplified, requires closure of 

integral terms that appear as a result of the averaging process. 

The closure of these terms is accomplished using friction factor 

and Nusselt number correlations, which can be obtained for a 

wide variety of geometric configurations. Closure expressions 

can also be obtained for heat sinks with surface augmentation 

[10]. The configuration used in this study is elliptic shaped scales 

located on the surfaces of a plane fin heat sink, as shown in 

Figure 1a. The computational domain and coordinate system for 

the VAT based numerical simulation is shown in Figure 1b.  
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Figure 1 (a) Plane fin heat sink with elliptic surface scales and 

(b) computational domain and coordinate system. 

The closed set of VAT based governing equations can then 

be solved numerically without the need to create a highly 

detailed mesh. Most VAT based simulations for heat sinks run 

in less than one minute on a PC. The geometric parameters of a 

heat sink can then be optimized using techniques such as Design 

of Experiments (DOE). The type of DOE design used in this 

work is based on Response Surface Methodology (RSM), where 

one response variable is minimized while varying multiple 

parameters simultaneously. Because DOE is a very systematic 

approach to optimization, in many cases it requires fewer 

simulations than other methods such as Genetic Algorithm (GA) 

or Particle Swarm Optimization (PSO).  

NOMENCLATURE 
 

A,B,C [s-1] Finite difference matrices 

Aw [m2] Wetted surface area 
b [-] Empirical coefficient 

Cµ [-] Empirical coefficient 

cp [J/kg-K] Specific heat 
Dh [m] Hydraulic diameter 

e [m] Scale height 

F [m] Finite difference matrix 
Fp [m] Fin pitch 

ff [-] Friction factor 

h [m] Grid spacing 
H [m] Fin height 

k [W/m-K] Thermal conductivity 

l [m] Turbulent mixing length 
<m> [-] Porosity 

p [Pa] Pressure 

Pr [-] Prandtl number 
Q [W] Heat transfer rate 

Re [-] Reynolds number 
Sw [m-1] Specific surface area 

u  [m/s] Volume average velocity 

T  
[K] Volume average temperature 

Special Characters 
α [W/m2-K] Heat transfer coefficient 

ρ [kg/m3] Density 

ν [m2/s] Kinematic viscosity 
ΔΩ [m3] Volume of REV 

Subscripts and Superscripts 

f  Fluid phase 

S  Solid phase 
T  Temperature or turbulent 

VAT BASED GOVERNING EQUATIONS 
Volume Averaging Theory (VAT), first developed by 

Whitaker [11], is a rigorous mathematical procedure where 

point-wise correct conservation equations are averaged over a 

Representative Elementary Volume (REV). The resulting 

equation set represents the system in a hierarchical manner, 

which makes VAT an effective tool for studying the system 

effects of various parameters. Because quantities such as 

velocity, pressure, and temperature are averaged over a large 

scale volume, VAT based numerical simulations run much faster 

than time consuming CFD simulations. Equation 1 shows the 

VAT based continuity equation for incompressible flow. 
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The volume averaged momentum conservation equation for 

fully developed turbulent flow is: 
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The last term on the right hand side of Equation 2 is closed 

using the turbulent kinetic energy equation of Gratton et al. [12], 
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The turbulent kinetic energy T   is expressed in terms of a 

mixing length,  l z , defined by Travkin and Catton [13]. 

 

  T C l z b    (4) 

 
The volume averaged equation for conservation of energy in 

the fluid phase is given by: 
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And the energy equation for the solid phase is: 
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The VAT based momentum and energy equations shown here 

need expressions for ( )m z ,
wS , ff , and 

T to obtain closure. 

The porosity ( )m z  and the specific surface area 
wS  are 

functions of geometry only and are easily determined. The 

internal friction factor  ff  and heat transfer coefficient 
T can 

be determined either by experiment or CFD. Using CFD, Zhou 

et al. [10] provides the following expressions to close the VAT 

equation set for plane fin heat sinks with elliptic surface scales. 

The porosity and specific surface area are determined from 

Equations 7 and 8. 
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Where the hydraulic diameter is given by: 
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The hydrodynamic boundary conditions used in this 

analysis are no-slip surfaces at the top and bottom walls. In the 

optimization study a constant temperature boundary condition 

was used at the base to achieve the fastest running simulations. 

After the optimized configuration was obtained a constant heat 

input of 1000W was used to verify that the heat sink met 

DARPA’s MACE program goals. For all cases the thermal 

boundary condition at the top surface was adiabatic. 

NUMERICAL SOLUTION OF GOVERNING EQUATIONS 
The VAT momentum and energy conservation equations are 

solved using finite difference numerical methods. The 

computational domain is discretized using a Cartesian grid, 50 

by 100 points, refined near the lower boundary. The finite 

difference approximations in the governing equations are based 

on a three point grid stencil. Three point central differencing is 

applied to interior grid points, and two point one-sided 

differencing is applied at all boundaries. Equations 14-20 show 

the discretized VAT momentum conservation equation. 
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The superscript 1s  denotes the updated value of u . 

Iterations are performed on Equation 14 until sufficient 
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convergence is obtained. The energy equations for the solid and 

fluid phases in 2-D are discretized in a similar manner. The 

discretization of the fluid phase energy equation is shown in 

Equations 21-26. 

 

 
, 1 , , 1 ,i j i j i j i j

s s s s s s s s s

jTF jTF jTF jTF S iTFA T C T B T C T F
 
      (21) 

 

 

where 

 

 

s

js

jT

j j

a
A

h h
   (22) 

 

 

s

js

jT

j j

a
B

h h
   (23) 

 

 1

1

1
s s

sj js

jT p f Tj wjj
j j j j i

a a
C c m u S

h h h h h
 





      (24) 

 

  1,

s

i js

jT pf f j
i

T
F c m u

h



   (25) 

 

   
1 1

1

2

s s

j T f T fj jj j
a m k k m k k

 

    
  

  (26) 

 

Similarly, the finite difference equations for the solid phase 

are: 
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The VAT fluid and solid energy conservation equations are 

solved using and Alternating Direction Implicit (ADI) method. 

In a two-dimensional case the ADI scheme sweeps through the 

computational grid in one direction to obtain intermediate 

values, s+1/2, and uses these values as it sweeps through the grid 

in the second direction to obtain the updated values s+1. For the 

fluid energy equation, the first sweep is in the z-direction 
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The updated values,
1sT 
, are then determined by sweeping 

through the grid in the x-direction.  
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Similarly, the ADI equation for the solid energy equation in 

the z-direction is: 
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And for the x-direction,  
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A flow chart illustrating the entire solution process is shown 

in Figure 2. 

 

 
Figure 2 Numerical solution method flow chart 

 

OPTIMIZATION BY DESIGN OF EXPERIMENTS 
The geometric parameters of a plane fin heat sink with 

elliptic surface scales were optimized while maintaining a 

constant pumping power of 33W. All simulations were for 

aluminum heat sinks cooled by air at 15°C. A DOE optimization 

study based Response Surface Methodology (RSM) was used to 

minimize the quantity 1/Qtot  where Qtot is the total heat input at 

600



  

  

the baseplate of the heat sink. Table 1 shows the dimensions of 

the parameters that were held constant and the ranges for the six 

parameters that were varied.  

 

Table 1 Dimensions and ranges for optimization of elliptic 

scale heat sink 

Parameter Value/

Range 

Heat sink width (mm) 101.6 

Heat sink length (mm) 101.6 

Fin height (mm) 25.4 

Baseplate thickness (mm) 1 

Fin thickness at base, WRH (mm) 1-3 

Fin thickness at tip, WRHT (mm) 0.5-2 

Pitch/fin thickness ratio at base, POY  1.5-3 

Surface scale height, ESC (mm) 0.05-0.1 

Surface scale transverse pitch, PT (mm) 1-4 

Surface scale transverse/longitudinal pitch, PTOL 0.5-2.5 

 

The response surface resulting from the DOE optimization in 

Figure 3 shows the response variable 1/Qtot as a function of the 

parameters POY and PTOL. Although the response surface 

represents a saddle point solution, only one of the six parameters 

was found to be optimal at the lower bound. The optimal 

dimensions predicted by the response surface are shown above 

the name of the variable in Figure 2. The units of WRH, WRHT, 

ESC, and PT are millimeters.  

 

 

Figure 2 Prediction profiler displaying optimum parameters. 

 

 

Figure 3 Response surface of (1/Qtot) versus dimensionless fin 

pitch and dimensionless scale transverse pitch. 

The dimensions of the optimized elliptic scale heat sink are 

shown in Table 2. The maximum midpoint temperature of the 

optimized heat sink is 37.3°C, which is well below the target 

temperature of 65°C. The thermal resistance is 0.0246°C/W and 

the heat sink mass is 222g. 

 

Table 2 Dimensions of optimized elliptic scale heat sink 

Parameter Value  

Heat sink width (mm) 101.6 

Heat sink length (mm) 101.6 

Fin height (mm) 25.4 

Baseplate thickness (mm) 1 

Fin thickness at base, WRH (mm) 1.04 

Fin thickness at tip, WRHT (mm) 0.5 

Pitch/fin thickness at base, POY (mm) 2.92 

Fin Pitch (mm) 3.04 

Surface scale height, ESC (mm) 0.0879 

Scale transverse pitch, PT (mm) 3.65 

Scale transverse/longitudinal pitch, PTOL 2.43 

Scale longitudinal pitch, PL (mm) 1.50 

Pumping power (W) 33 

Midpoint baseplate temperature (°C) 39.6 

Thermal Resistance (°C/W) 0.0246 

Heat sink mass (g) 222 

 

CONCLUSIONS 
Design of Experiments aided by VAT based numerical 

simulation has been shown to be a very effective approach to 

heat sink optimization. A plane fin heat sink with elliptic scale-

roughened surfaces was successfully optimized and found to 

exceed all of DARPA’s MACE program goals. With a total heat 

input of 1000W and 33W pumping power, the optimized heat 

sink had a thermal resistance of 0.0246 °C/W and a maximum 

midpoint temperature of 39.6°C. The findings of this work 

demonstrate that modeling conjugate heat transfer using Volume 

Averaging Theory opens the door to optimizing heat sinks with 

enhanced surfaces. 
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