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ABSTRACT
Text-book knowledge proclaims that Lie symmetries such as

Galilean transformation lie at the heart of fluid dynamics. These
important properties also carry over to the statistical description
of turbulence, i.e. to the Reynolds stress transport equations and
its generalisation, the multi-point correlation equations (MPCE).
Interesting enough, the MPCE admit a much larger set of symme-
tries, in fact infinite dimensional, subsequently named statistical
symmetries.

Most important, theses new symmetries have important con-
sequences for our understanding of turbulent scaling laws. The
symmetries form the essential foundation to construct exact so-
lutions to the infinite set of MPCE, which in turn are identified
as classical and new turbulent scaling laws. Examples on vari-
ous classical and new shear flow scaling laws including higher
order moments will be presented. Even new scaling have been
forecasted from these symmetries and in turn validated by DNS.

Turbulence modellers have implicitly recognised at least one
of the statistical symmetries as this is the basis for the usual log-
law which has been employed for calibrating essentially all en-
gineering turbulence models. An obvious conclusion is to gen-
erally make turbulence models consistent with the new statistical
symmetries.

1 Introduction
The special importance of turbulence is determined by its

ubiquity in innumerable natural and technical systems. Exam-
ples for natural turbulent flows are atmospheric flow and oceanic
current which to calculate is a crucial point in climate research.
Only with the advent of super computers it became apparent that

the Navier-Stokes equations provide a very good continuum me-
chanical model for turbulent flows. Still, the exclusive and direct
application of the Navier-Stokes equations to practical flow prob-
lems at high Reynolds numbers without invoking any additional
assumptions is still several decades away.

However, in most applications it is not at all necessary to
know all the detailed fluctuations of velocity and pressure present
in turbulent flows but for the most part statistical measures are
sufficient.

This was in fact the key idea of O. Reynolds who was the
first to suggest a statistical description of turbulence. The Navier-
Stokes equations, however, constitute a non-linear and, due to the
pressure Poisson equation, a non-local set of equations. As an
immediate consequence of this the equations for the mean or ex-
pectation values for velocity and pressure leads to an infinite set
of statistical equations, or, if truncated at some level of statistics,
an un-closed system is generated.

In order to obtain a much deeper insight into the statistical
behavior of turbulence we presently apply Lie symmetry group
theory to the full infinite set of statistical equations investigating
various canonical turbulent flow situations.

This work is a continuation of that first reported in [1]. It
extends the set of symmetries reported in [2] and [3] and is illus-
trated by application to various rotating channel flows and those
with wall transpiration.

2 Equations of statistical turbulence theory
2.1 Navier-Stokes equations

The starting point of the analysis is the three dimensional
Navier-Stokes equations for an incompressible fluid assuming
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Newtonian fluid behaviour under constant density and viscosity
conditions. In Cartesian tensor notation we have the continuity
equation

∂Uk

∂xk
= 0 (1)

and the momentum equation writes

∂Ui

∂ t
+Uk

∂Ui

∂xk
=− 1

ρ

∂P
∂xi

+ν
∂ 2Ui

∂xk∂xk
, i = 1,2,3 . (2)

where t ∈ R+, x ∈ R3, U = U (x , t) and P = P(x , t) represent
time, position vector, instantaneous velocity vector and pressure
respectively. The density ρ and the kinematic viscosity ν are
positive constants. Normalising pressure with constant density
as P∗ = P/ρ , and inserting it into (2), leads to a modified mo-
mentum equation and the asterisk is omitted from here on

Mi(x ) =
∂Ui

∂ t
+Uk

∂Ui

∂xk
+

∂P
∂xi
−ν

∂ 2Ui

∂xk∂xk
= 0 , i = 1,2,3 (3)

where all terms have been collected on one side. Applying the di-
vergence operator ∂/∂xi to equation (3) and using the continuity
equation (1) we obtain the Poisson equation for the pressure

∂ 2P
∂xk∂xk

=−∂Uk

∂xl

∂Ul

∂xk
. (4)

2.2 Statistical averaging
In the following we define the classical Reynolds averaging.

Though definitely mathematical more sound it is not intended to
define the necessary multi-point probability density function to
derive the multi-point equations in the subsequent section.

The quantity Z represents an arbitrary statistical variable, i.e.
U and P, which in the following we also denote as instantaneous
value. According to the classic definition by Reynolds all in-
stantaneous quantities are decomposed into their mean and their
fluctuation value

Z = Z̄ + z . (5)

Here, the overbar denotes a statistically averaged quantity
whereas the lower-case z denotes the fluctuation value of Z. The
most general definition of statistically averaged quantity is given
by an ensemble average operator K

Z = Z̄(x , t) = K [Z(x , t)] = lim
N→∞

(
1
N

N

∑
n=1

Zn(x , t)

)
. (6)

In many cases a mean value in time is introduced for pro-
cesses with a stationary mean:

Z̄(T )(x ) = L (T ) [Z(x , t)] = lim
τ→∞

1
τ

∫ t+ τ
2

t− τ
2

Z(x , t ′)dt ′ (7)

Its equivalence with the ensemble operator defined before is
given by the Ergodic theorem. In problems with one or more
homogeneous directions this property can be used to average in
the particular direction. In turbulent flows through well-bounded
chanals for example, averages are taken in layers parallel to the
wall.

The definition of the mean value leads, according to the
Reynolds decomposition, to the fluctuation value of Z

z = Z− Z̄ . (8)

From the averaging operator above, several calculation rules
may be derived e.g.

z = 0 ,

Z = Z ,

Z1 +Z2 = Z1 +Z2 ,

∂Z
∂ s

=
∂Z
∂ s

,∫
Zds =

∫
Zds ,

Z(1)Z(2) . . .Z(m)z(n) = 0 ,

z(1)z(2) . . .z(k) 6= 0 with k > 1 , (9)

which in the following sub-sections will be employed to derive
the multi-point equations.

2.3 Reynolds averaged transport equations
After U and P are decomposed according to the Reynolds

decomposition, i.e. U = Ū +u and P = P̄+ p, we gain an aver-
aged versions of the continuity equation

∂Ūk

∂xk
= 0 , (10)

the momentum equations

∂Ūi

∂ t
+Ūk

∂Ūi

∂xk
=− ∂ P̄

∂xi
+ν

∂ 2Ūi

∂xk∂xk
− ∂uiuk

∂xk
, i = 1,2,3 (11)

and Poisson equation for the pressure

∂ 2P̄
∂xk∂xk

=−∂Ūk

∂xl

∂Ūl

∂xk
− ∂ukul

∂xl∂xk
. (12)
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At this point we observe the well-known closure problem
of turbulence since, compared to the original set of equations,
the unknown Reynolds stress tensor uiuk appeared. However,
rather different from the classical approach we will not proceed
with deriving the Reynolds stress tensor transport equation which
contains additional four unclosed tensors. Instead the multi-point
correlation approach is put forward the reason being twofold.

First, if the infinite set of correlation equations is consid-
ered the closure problem is somewhat bypassed. Second, the
multi-point correlation delivers additional information on the tur-
bulence statistics such as length scale information which may not
be gained from the Reynolds stress tensor, which is a single-point
approach.

For this we need the equations for the fluctuating quantities
u and p which are derived by taking the differences between
the averaged and the non-averaged equations, i.e. (1)/(10) and
(3)/(11). The resulting fluctuation equations read

∂uk

∂xk
= 0 , (13)

and

Ni(x ) =
D̄ui

D̄t
+uk

∂Ūi

∂xk
− ∂uiuk

∂xk
+

∂uiuk

∂xk
+

∂ p
∂xi

−ν
∂ 2ui

∂xk∂xk
= 0, i = 1,2,3 (14)

and extended by the corresponding Poisson equation for the pres-
sure fluctuations

∂ 2 p
∂xk∂xk

=−2
∂Ūk

∂xl

∂ul

∂xk
+

∂ 2ukul

∂xl∂xk
− ∂ 2ukul

∂xl∂xk
. (15)

2.4 Multi-point correlation equations
It is considered that the idea of two- and multi-point equa-

tions in turbulence was first established in [4]. At the time it
was assumed that all correlation equations of orders higher than
two may be neglected. Theoretical considerations showed that all
higher order correlations should be accounted for. Consequently,
all multi-point correlation equations have been considered in the
symmetry analysis that follows below.

Two different sets of multi-point correlation (MPC) equa-
tions will be derived below. The first is based on the instanta-
neous values of U and P while the second follows the classical
notation based on the fluctuating quantities u and p.

2.4.1 MPC equations: instantaneous approach
In order to write the MPC equations in a very compact form,
we introduce the following notation. The multi-point velocity
correlation tensor of order n+1 is defined as follows:

Hi{n+1} = Hi(0)i(1)...i(n) = Ui(0)(x(0)) · . . . ·Ui(n)(x(n)) , (16)

where the index i of the farthermost left quantity refers to its ten-
sor character, while its superscript in curly brackets denotes the
tensor order. The central term exemplifies this since a list of n+1
tensor indices is given where the index in parenthesis is a counter
for the tensor order. It is important to mention that the index
counter starts with 0 which is an advantage when introducing a
new coordinate system based on the Euclidean distance of two or
more space points. The mean velocity is given by the first order
tensor as Hi{1} = Hi(0) = Ūi.

In some cases the list of indices is interrupted by one or more
other indices which is pointed out by attaching the replaced value
in square brackets to the index

Hi{n+1}[i(l) 7→k(l)]
= Ui(0)(x(0)) · . . . ·Ui(l−1)(x(l−1))·

·Uk(l)(x(l))Ui(l+1)(x(l+1)) · . . . ·Ui(n)(x(n)) . (17)

This is further extended by

Hi{n+2}[i(n+1) 7→k(l)]
[x(n+1) 7→ x(l)] =

Ui(0)(x(0)) · . . . ·Ui(n)(x(n))Uk(l)(x(l)) , (18)

where not only that index i(n+1) is replaced by k(l), but also that
the independent variable x(n+1) is replaced by x(l). If indices are
missing e.g. between i(l−1) and i(l+1) we define

Hi{n}[i(l) 7→ /0] =

Ui(0)(x(0)) · . . . ·Ui(l−1)(x(l−1))Ui(l+1)(x(l+1)) · . . . ·Ui(n)(x(n)) . (19)

Finally, if pressure is involved we write

Ii{n}[l] =

Ui(0)(x(0)) · . . . ·Ui(l−1)(x(l−1))P(x(l))Ui(l+1)(x(l+1)) · . . . ·Ui(n)(x(n)) ,
(20)

which is, considering all the above definitions, sufficient to derive
the MPC equations from the equations of instantaneous velocity
and pressure i.e. equation (1) and (3).

Applying the Reynolds averaging operator according to the
sum below

Si{n+1}(x(0), . . . ,x(n)) =

Mi(0)(x(0))Ui(1)(x(1)) · . . . ·Ui(n)(x(n))

+Ui(0)(x(0))Mi(1)(x(1))Ui(2)(x(2)) · . . . ·Ui(n)(x(n))

+ . . .

+Ui(0)(x(0)) · . . . ·Ui(n−2)(x(n−2))Mi(n−1)(x(n−1))Ui(n)(x(n))
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+Ui(0)(x(0)) · . . . ·Ui(n−1)(x(n−1))Mi(n)(x(n)) , (21)

we obtain the S -equation which writes

Si{n+1} =
∂Hi{n+1}

∂ t
+

n

∑
l=0

[
∂Hi{n+2}[i(n+1) 7→k(l)]

[x(n+1) 7→ x(l)]

∂xk(l)

+
∂ Ii{n}[l]

∂xi(l)
−ν

∂ 2Hi{n+1}

∂xk(l)∂xk(l)

]
= 0

for n = 1, . . . ,∞ . (22)

In general equation (22) implies the full multi-point statistical in-
formation of the Navier-Stokes equations at the expense of deal-
ing with an infinite dimensional chain of differential equations
starting with order 2 i.e. n = 1. The remarkable consequence of
the derivation is that (22) is a linear equation which considerably
simplifies the finding of Lie symmetries to be pointed out below.

From equation (1) a continuity equation for Hi{n+1} and Ii{n}[l]
can be derived. This leads to

∂Hi{n+1}[i(l) 7→k(l)]

∂xk(l)

= 0 for l = 0, . . . ,n (23)

and

∂ Ii{n}[k][i(l) 7→m(l)]

∂xm(l)

= 0 for k, l = 0, . . . ,n and k 6= l . (24)

At this point we adopt the classic notation of distance vec-
tors. Accordingly the usual position vector x is employed and
the remaining independent spatial variables are expressed as the
difference of two position vectors x(l) and x(0). The coordinate
transformation are

x = x(0) , r(l) = x(l)−x(0) with l = 1, . . . ,n . (25)

and

∂

∂xk(0)

=
∂

∂xk
−

n

∑
l=1

∂

∂ rk(l)

,
∂

∂xk(l)

=
∂

∂ rk(l)

for l≥ 1 . (26)

For consistency the first index i(0) is replaced by i. Thus the
indices of the tensor H{n+1} are Hii(1)i(2)...i(n) . Using the rules of
transformation (25) and (26) the S -equation leads to

Si{n+1} =
∂Hi{n+1}

∂ t
+

∂Hi{n+2}[i(n+1) 7→k][x(n+1) 7→ x ]

∂xk

−
n

∑
l=1

[
∂Hi{n+2}[i(n+1)7→k(l)]

[x(n+1) 7→x ]

∂ rk(l)

−
∂Hi{n+2}[i(n+1)7→k(l)]

[x(n+1) 7→r(l)]

∂ rk(l)

]

+
∂ Ii{n}[0]

∂xi
+

n

∑
l=1

−∂ Ii{n}[0]

∂ rm(l)

∣∣∣∣∣
[m(l) 7→i]

+
∂ Ii{n}[l]

∂ ri(l)


−ν

[
∂ 2Hi{n+1}

∂xk∂xk
+

n

∑
l=1

(
−2

∂ 2Hi{n+1}

∂xk∂ rk(l)

+
n

∑
m=1

∂ 2Hi{n+1}

∂ rk(m)∂ rk(l)

+
∂ 2Hi{n+1}

∂ rk(l)∂ rk(l)

)]
= 0

for n = 1, . . . ,∞ , (27)

and the two continuity equations become

∂Hi{n+1}[i(0) 7→k]

∂xk
−

n

∑
j=1

∂Hi{n+1}[i(0) 7→k( j)]

∂ rk( j)

= 0 ,

∂Hi{n+1}[i(l) 7→k(l)]

∂ rk(l)

= 0 for l = 1, . . . ,n

(28)

and

∂ Ii{n}[k][i7→m]

∂xm
−

n

∑
j=1

∂ Ii{n}[k][i7→m( j)]

∂ rm( j)

= 0 (29)

for k = 1, . . . ,n,

∂ Ii{n}[k][i(l) 7→m(l)]

∂ rm(l)

= 0 (30)

for k = 0, . . . ,n, l = 1, . . . ,n, k 6= l.

2.4.2 MPC equations: fluctuation approach In
the present subsection we adopt the classical approach i.e. all cor-
relation functions are based on the fluctuating quantities u and
p as introduced by Reynolds and not on the full instantaneous
quantities U and P as in the previous sub-section. Hence, simi-
lar to (16) we have the multi-point correlation for the fluctuation
velocity

Ri{n+1} = Ri(0)i(1)...i(n) = ui(0)(x(0)) · . . . ·ui(n)(x(n)) . (31)

Further, all other correlations defined in sub-section 2.4.1 are
defined accordingly i.e. equivalent to the definitions (17)-(20)
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we respectively define Ri{n+1}[i(l) 7→k(l)]
, Ri{n+2}[i(n+1) 7→k(l)]

[x(n+1) 7→
x(l)], Ri{n}[i(l) 7→ /0] and Pi{n}[l].

Finally, we define the correlation equation in analogy to (21)
where Mi is replaced by the equation for the fluctuations (14)
denoted by Ni and Ui and P are substituted by ui and p. The
resulting equation is denoted by Ti{n+1}

Ti{n+1} =
∂Ri{n+1}

∂ t
+

n

∑
l=0

[
Ūk(l)(x(l))

∂Ri{n+1}

∂xk(l)

+Ri{n+1}[i(l) 7→k(l)]

∂Ūi(l)(x(l))

∂xk(l)

+
∂Pi{n}[l]

∂xi(l)

−ν
∂ 2Ri{n+1}

∂xk(l)∂xk(l)

−Ri{n}[i(l) 7→ /0]

∂ui(l)uk(l)(x(l))

∂xk(l)

+
∂Ri{n+2}[i(n+1) 7→k(l)]

[x(n+1) 7→ x(l)]

∂xk(l)

]
= 0

for n = 1, . . . ,∞ . (32)

The first tensor equation of this infinite chain propagates Ri{2}
which has a close link to the Reynolds stress tensor, i.e.

lim
x(k)→x(l)

Ri{2} = lim
x(k)→x(l)

Ri(0)i(1) = ui(0)ui(1)(x(l)) mit k 6= l ,

(33)
which is the key unclosed quantity in the Reynolds stress trans-
port equation (11). Here x(k) and x(l) can be arbitrary vectors out
of x(0), . . . ,x(n).

Also equation (32) implies all statistical information of the
Navier-Stokes equations. However, apart from the latter simple
relation to the Reynolds stress tensor it possesses the key dis-
advantage of being a non-linear infinite dimensional system of
differential equations which make the extraction of Lie symme-
tries from this equation rather cumbersome. There are two es-
sential sources of non-linearity in these equations. One is the
known convection non-linearity which links the mean velocity
to all correlation equations. The second source of non-linearity
originates from the second row of equation (32). It is based on the
fact that the gradient of the Reynolds stress tensor is contained in
the equations of fluctuation. Hence, considering the following
identity, this term is not equal to zero for turbulent flows and for
multi-point correlation tensors of order higher than two

Ri{1}[i(l) 7→ /0] = 0 . (34)

As a direct consequence all multi-point correlation equations of
order n > 1 are coupled to the two-point correlation equation.

From equation (13) a continuity equation for Ri{n+1} and
Pi{n}[l] can be derived. They have identical form to (23) and (24)

for Hi{n+1} and Ii{n}

∂Ri{n+1}[i(l) 7→k(l)]

∂xk(l)

= 0 for l = 0, . . . ,n (35)

and

∂Pi{n}[k][i(l) 7→m(l)]

∂xm(l)

= 0 for k, l = 0, . . . ,n and k 6= l . (36)

As above in 2.4.1 the classical difference vector notation
(25) is adopted which leads to

Ti{n+1} =
D̄Ri{n+1}

D̄t
+

n

∑
l=1

Ri{n+1}[i(l) 7→k(l)]

∂Ūi(l)(x(l))

∂xk(l)

+
n

∑
l=1

[
Ūk(l)(x +r(l))−Ūk(l)(x )

]
∂Ri{n+1}

∂ rk(l)

+Ri{n+1}[i7→k]
∂Ūi(x )

∂xk
+

∂Pi{n}[0]

∂xi

+
n

∑
l=1

−∂Pi{n}[0]

∂ rm(l)

∣∣∣∣∣
[m(l) 7→i]

+
∂Pi{n}[l]

∂ ri(l)

−ν

[
∂ 2Ri{n+1}

∂xk∂xk

+
n

∑
l=1

(
−2

∂ 2Ri{n+1}

∂xk∂ rk(l)

+
n

∑
m=1

∂ 2Ri{n+1}

∂ rk(m)∂ rk(l)

+
∂ 2Ri{n+1}

∂ rk(l)∂ rk(l)

)]

−Ri{n}[i 7→ /0]
∂uiuk(x )

∂xk
+

∂Ri{n+2}[i(n+1) 7→k][x(n+1) 7→ x ]

∂xk

−
n

∑
l=1

∂Ri{n+2}[i(n+1) 7→k(l)]
[x(n+1) 7→ x ]

∂ rk(l)

−
n

∑
l=1

Ri{n}[i(l) 7→ /0]

∂ui(l)uk(l)(x(l))

∂xk(l)

[x(l) 7→ x +r(l)]

+
n

∑
l=1

∂Ri{n+2}[i(n+1) 7→k(l)]
[x(n+1) 7→ r(l)]

∂ rk(l)

= 0 , (37)

for n = 1, . . . ,∞, and the two continuity equations transform
alike.

∂Ri{n+1}[i(0) 7→k]

∂xk
−

n

∑
j=1

∂Ri{n+1}[i(0) 7→k( j)]

∂ rk( j)

= 0 ,

∂Ri{n+1}[i(l) 7→k(l)]

∂ rk(l)

= 0 for l = 1, . . . ,n

(38)
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and

∂Pi{n}[k][i7→m]

∂xm
−

n

∑
j=1

∂Pi{n}[k][i 7→m( j)]

∂ rm( j)

= 0 for k = 1, . . . ,n,

∂Pi{n}[k][i(l) 7→m(l)]

∂ rm(l)

= 0 for k = 0, . . . ,n , l = 1, . . . ,n , k 6= l .

(39)
From (5) - (9) it is apparent that there is a unique relation

between the instantaneous (H, I) and the fluctuation approach
(R, P) though the actual crossover is somewhat cumbersome in
particular with increasing tensor order because they may only
be given in recursive form. Since needed later we give the first
relations

Hi(0) = Ūi(0) (40)

Hi(0)i(1) = Ūi(0)Ūi(1) +Ri(0)i(1) (41)

Hi(0)i(1)i(2) = Ūi(0)Ūi(1)Ūi(2) +Ri(0)i(1)Ūi(2)

+Ri(0)i(2)Ūi(1) +Ri(1)i(2)Ūi(0) +Ri(0)i(1)i(2) (42)

...
...

where the indices also refer to the spatial points as indicated.
With the identities (40)-(42) and alike equations it becomes

apparent that, in contrast to the rather compact H-notation in
equation (22), the MPC equation written in R-notation in equa-
tion (32) based on the mean and fluctuating quantities leads to a
non-linear and non-local set of equations.

As a special case of the equations (32) we consider n = 1
including the (x ,r)-coordinate system (25) and we derive the
equation for the two-point correlation tensor. To abbreviate the
notation we introduce the following nomenclature:

Ri{2} = Rii(1) = Ri j(x ,r , t) = ui(x , t)u j(x +r , t) . (43)

In this case equation (32) reduces to

Ti{2} =
D̄Ri j

D̄t
+Rk j

∂Ūi(x , t)
∂xk

+Rik
∂Ū j(x , t)

∂xk

∣∣∣∣
x+r

+[Ūk (x +r , t)−Ūk (x , t)]
∂Ri j

∂ rk
+

∂ pu j

∂xi
−

∂ pu j

∂ ri

+
∂ui p
∂ r j
−ν

[
∂ 2Ri j

∂xk∂xk
−2

∂ 2Ri j

∂xk∂ rk
+2

∂ 2Ri j

∂ rk∂ rk

]
+

∂R(ik) j

∂xk
− ∂

∂ rk

[
R(ik) j−Ri( jk)

]
= 0 . (44)

The quantities pu j, ui p and R(ik) j, Ri( jk) are respectively spe-
cial cases of Pi{n}[k] and Ri{n+2}[i(n+1) 7→k(l)]

[x(n+1) 7→ r(l)] and defined

as

pu j(x ,r , t) = p(x , t)u j(x +r , t)

ui p(x ,r , t) = ui(x , t) p(x +r , t)

R(ik) j = ui(x , t)uk(x , t)u j(x +r , t)

Ri( jk) = ui(x , t)u j(x +r , t)uk(x +r , t) . (45)

For the two-point case the continuity equations take the form

∂Ri j

∂xi
−

∂Ri j

∂ ri
= 0 ,

∂Ri j

∂ r j
= 0 , (46)

∂Ri( jk)

∂xi
−

∂Ri( jk)

∂ ri
= 0 ,

∂R(ik) j

∂ r j
= 0 , (47)

and

∂ pui

∂ ri
= 0 ,

∂u j p
∂x j

−
∂u j p
∂ r j

= 0. (48)

The non-locality of the two- and multi-point correlation equa-
tions is most obvious when we use the commutation of the two-
point correlation tensor. Given ui(x(0))u j(x(1)) = u j(x(1))ui(x(0))
with equation (25) leads to the functional relations

Ri j(x ,r ; t) = R ji(x +r ,−r ; t) (49)

and, similarly, to

R(ik) j(x ,r ; t) = R j(ik)(x +r ,−r ; t) , (50)

pu j(x ,r ; t) = u j p(x +r ,−r ; t) . (51)

Analogous identities can be derived for all other two- and multi-
point correlation tensors.

3 Symmetries of statistical transport equations
In the present section we first revisit the Lie symmetries of

the Euler and Navier-Stokes equations. In turn they will all be
transferred to its corresponding ones for the MPC equations. In
the second part we show that the MPC equations admit even more
Lie symmetries which are not reflected in the original Euler and
Navier-Stokes equations.

1694



Both sets of symmetries will finally be employed in section
4 to show that classical and new scaling laws may not be deter-
mined from the classical symmetries alone but essentially rely on
the new symmetries which we will call statistical symmetries.

In order to appreciate the analysis on Lie symmetries below
we will define its basic concepts including that of invariant solu-
tions which in the fluid mechanics community is usually referred
to as self-similar solution though this in principle is limited to in-
variant solutions with certain scaling properties involved. In the
turbulence community these types of solutions are usually de-
noted turbulent scaling laws though there they are in most cases
not solutions of equations derived from first principles.

Suppose the system of partial differential equations under
investigation is given by

F (y ,z ,z (1),z (2), . . .) = 0, (52)

where y and z are the independent and the dependent variables
respectively and z (n) refers to all nth-order derivatives of any
component of z with respect to any component of y . A trans-
formation

y = φ(y∗,z ∗) and z = ψ(y∗,z ∗) (53)

is called a symmetry or symmetry transformation of the equation
(52) if the following equivalence holds

F (y ,z ,z (1), . . .) = 0 ⇔ F (y∗,z ∗,z ∗(1), . . .) = 0, (54)

i.e. the transformation (53) substituted into (52) does not change
the form of equation (52) if written in the new variables y∗ and
z ∗.

To illustrate this concept consider the 1D heat equation

∂T
∂ t

=
∂ 2T
∂x2 (55)

which, beside four other symmetries, admits the two scaling sym-
metries

t∗ = e2α1t, x∗ = eα1x, T ∗ = eα2T, (56)

with the two independent group parameter (α1,α2) ∈ R. For
brevity the underlying two symmetries are presently combined
into one transformation (56). It is evident that condition (54)
is fulfilled since the implementation of (56) into (55) leaves the
equation invariant if written in the new variables denoted by ∗.

A second concept which will be heavily relied on is that of
an invariant. It refers to quantities that do not change structure
under a given symmetry i. e.

I(y ,z ) = I(φ(y∗,z ∗),ψ(y∗,z ∗)) = I(y∗,z ∗) (57)

or in other words the form of I is invariant under the transforma-
tion. This may easily be clarified using the two-parameter sym-
metry (56). Beside others, in fact infinitely many, we may define
and easily prove the existence of the two subsequent invariants

δ =
x√
t

=
x∗√
t∗

, ∆ =
T

t
α2

2α1

=
T ∗

t∗
α2
2α1

. (58)

as the insertion of (56) in δ and ∆ in (58) shows the invariance of
the latter quantities

The final concept in this context is that of an invariant so-
lution. This concept implies that the invariants may be taken as
new dependent and independent variables which in turn leads to
a reduction of the number of the independent variables often re-
ferred to as symmetry reduction. It is this property of self-similar
solutions which is profitable for some further analysis as fewer
dimensions are involved.

For the example of the heat equation above we introduce δ

and ∆ as new independent and dependent variables respectively,
i.e. we implement its definitions (58) into (55) and obtain the
reduced differential equation

d2∆

dδ 2 +
1
2

δ
d∆

dδ
− α2

2α1
∆ = 0. (59)

It should be noted that the actual computation of the sym-
metries such as (56), the invariants such as (58) and the invariant
solutions is extremely simplified if the infinitesimal form of the
symmetry is invoked [see 5]. This has been left out in the present
contribution.

3.1 Symmetries of the Euler and Navier-Stokes equa-
tions

The Euler equations, i.e. equation (1) and (3) with ν = 0
admit a ten-parameter symmetry group,

T1 : t∗ = t + k1, x ∗ = x , U ∗ = U , P∗ = P,

T2 : t∗ = t, x ∗ = ek2x , U ∗ = ek2U , P∗ = e2k2P,

T3 : t∗ = ek3t, x ∗ = x , U ∗ = e−k3U , P∗ = e−2k3P,

T4−T6 : t∗ = t, x ∗ = a ·x , U ∗ = a ·U , P∗ = P,

T7−T9 : t∗ = t, x ∗ = x + f (t), U ∗ = U +
df
dt

,

P∗ = P− x · d
2f

dt2 ,

T10 : t∗ = t, x ∗ = x , U ∗ = U , P∗ = P+ f4(t) , (60)

where k1-k3 are independent group-parameters, a denotes a con-
stant rotation matrix with the properties a · aT = aT · a = I and
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|a| = 1. Moreover f (t) = ( f1(t), f2(t), f3(t))T with twice differ-
entiable functions f1- f3 and f4(t) may have arbitrary time depen-
dence.

Each of the symmetries has a distinct physical meaning. T1
means time translation i.e. any physical experiment is indepen-
dent of the actual starting point. T4-T6 designate rotation invari-
ance which refers to the possibility to let an experiment undergo a
fixed rotation without changing physics. Note, that this does not
mean moving into a rotating system since this does significantly
change physics and hence is not a symmetry. The symmetries
T7-T9 comprise translational invariance in space for constant f1-
f3 as well as the classical Galilei group if f1- f3 are linear in time.
These are key properties of classical mechanics referring to the
fact that physics is independent of the location or if moved at a
constant speed. In its rather general form T7-T9 and T10 are direct
consequences of an incompressible flow and do not have a coun-
terpart in the case of compressible flows. The complete record of
all point-symmetries (60) was first published by Pukhnachev [6].

Invoking a formal transfer from Euler to the Navier-Stokes
equations symmetry properties change and a recombination of
the two scaling symmetries T2 and T3 is observed

TNaSt : t∗ = e2k4t, x ∗ = ek4x , U ∗ = e−k4U , P∗ = e−2k4P,
(61)

while the remaining groups stay unaltered.
It should be noted that additional symmetries exist for di-

mensional restricted cases such as plane or axisymmetric flows
[see 7, 8].

3.2 Symmetries of the MPC implied by Euler and
Navier-Stokes symmetries

Adopting the classical Reynolds notation first, where the in-
stantaneous quantities are split into mean and fluctuating values,
we may directly derive from (60)

T̄1 : t∗ = t + k1, x ∗ = x , r ∗(l) = r(l), Ū ∗ = Ū ,

P̄∗ = P̄, R∗{n} = R{n}, P∗{n} = P{n},

T̄2 : t∗ = t, x ∗ = ek2x , r ∗(l) = ek2r(l), Ū ∗ = ek2Ū ,

P̄∗ = e2k2 P̄, R∗{n} = enk2R{n},P
∗
{n} = e(n+2)k2P{n},

T̄3 : t∗ = ek3t, x ∗ = x , r ∗(l) = r(l), Ū ∗ = e−k3Ū ,

P̄∗ = e−2k3 P̄, R∗{n} = e−nk3R{n},

P∗{n} = e−(n+2)k3P{n},

T̄4−T̄6 : t∗ = t, x ∗ = a ·x , r ∗(l) = r(l), Ū ∗ = a · Ū , P̄∗ = P̄,

R∗{n} = A{n}⊗R{n}, P∗{n} = A{n}⊗P{n},

T̄7−T̄9 : t∗ = t, x ∗ = x + f (t), r ∗(l) = r(l), Ū ∗ = Ū +
df
dt

,

P̄∗ = P̄− x · d
2f

dt2 , R∗{n} = R{n}, P∗{n} = P{n},

T̄10 : t∗ = t , x ∗ = x , r ∗(l) = r(l), Ū ∗ = Ū ,

P̄∗ = P̄+ f4(t), R∗{n} = R{n}, P∗{n} = P{n}, (62)

where all function and parameter definitions are adopted
from 3.1 and A is a concatenation of rotation matrices as
Ai(0) j(0)i(1) j(1)...i(n) j(n) = ai(0) j(0)ai(1) j(1) . . .ai(n) j(n) .

The latter symmetries may also be transformed into the H-
notation. This will be omitted for briefness and also because
the turbulent scaling laws to be derived and discussed below are
rarely considered in this notation.

3.3 Statistical symmetries of the MPC equations
The concept of an extended set of symmetries for the MPC

equation in the form (22) or (32) may e.g. be taken from [9] and
[10]. Its importance was not observed therein - rather it was
stated that they may be mathematical artifacts of the averaging
process and probably physically irrelevant. The set of new sym-
metries was first presented and its key importance for turbulence
recognised in [1] and later extended in [2].

The actual finding of symmetries of the non-rotating MPC is
rather difficult since an infinite system of equations has to be an-
alyzed. For this task, however, it is considerably easier to inves-
tigate the linear H-I-system (22)-(24) rather than the non-linear
R-P-system (32)-(36). However, since the latter formulation is
more common, the symmetries will finally be re-written in this
notation.

This entire new set of symmetries for the H-I-system (22)-
(24) can be separated in three distinct sets of symmetries

T̄ ′1 : t∗ = t, x ∗ = x , r ∗(l) = r(l) +k(l),

H∗{n} = H{n}, I∗{n} = I{n}, (63)

T̄ ′2{n} : t∗ = t, x ∗ = x , r ∗(l) = r(l),

H∗{n} = H{n}+C{n}, I∗{n} = I{n}+D{n}, (64)

T̄ ′s : t∗ = t, x ∗ = x , r ∗(l) = r(l),

H∗{n} = eksH{n}, I∗{n} = eks I{n}, (65)

all of which are of purely statistical nature. Subsequently, we
will call them statistical symmetries. In the translation of the
relative coordinates (63) k(l) represents the related set of group
parameters. Note that this group is not related to the classical
translation group in usual x -space (here T7−T9 in equation (60)
with f = const.).

The second set of statistical symmetries (64) was in fact al-
ready partially identified in [9], however, mistakenly taken for
the Galilean group. In the above general form it was identified
in [1] where C{n} and D{n} refer to group parameters and further
extended in [2], so that C{n} is a function of time C{n}(t) and then
a temporal derivative of C{n} appears also for the transformation
of I∗{n}.
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It is considered that Kraichnan [11] recognised this first. He
observed the first element of the infinite set of symmetries in (64),
which is in fact valid for the mean velocity, i.e. Ū ∗= Ū +C and
which he named random Galilean invariance.

It is essentially this latter statistical group that is one of the
key ingredients for the logarithmic law of the wall which in fact
constitutes a solution of the infinite set of MPC equations to be
shown below.

The third statistical group (65) that has been identified de-
notes simple scaling of all MPC tensors.

Furthermore there exists at least one more symmetry, which
consists of a combination of multi-point velocity and of pressure-
velocity correlations [see 2]. Its concrete form is omitted at this
point because it is not needed for the further considerations.

It should finally be added that due to the linearity of the MPC
equation (22) another generic symmetry is admitted. This is in
fact featured by all linear differential equations [see 5]. It merely
reflects the super-position principle of linear differential equa-
tions though usually cannot directly be adopted for the practical
derivation of group invariant solutions.

Transforming (63)-(65) into classical notation we have

T̄ ′1 : t∗ = t, x ∗ = x , r ∗(l) = r(l) +k(l), Ū ∗ = Ū ,

P̄∗ = P̄, R∗{n} = R{n}, P∗{n} = P{n}, (66)

T̄ ′2{1} : t∗ = t, x ∗ = x , r∗(l) = r(l), Ū∗i(0)
= Ūi(0) +Ci(0) ,

R∗i(0)i(1)
= Ri(0)i(1) +Ūi(0)Ūi(1)−(

Ūi(0) +Ci(0)

)(
Ūi(1) +Ci(1)

)
, · · · (67)

T̄ ′2{2} : t∗ = t, x ∗ = x , r ∗(l) = r(l), Ū∗i(0)
= Ūi(0) ,

R∗i(0)i(1)
= Ri(0)i(1) +Ci(0)i(1) , · · · (68)

T̄ ′s : t∗ = t, x ∗ = x , r ∗(l) = r(l), Ū∗i(0)
= eksŪi(0) ,

R∗i(0)i(1)
= eks

[
Ri(0)i(1) +

(
1− eks

)
Ūi(0)Ūi(1)

]
, · · · , (69)

where for the translation symmetry (64) only n = 1 and n = 2
are presented in (67) and (68). Despite of the fact that each of
these groups appear to be almost trivial, since they are simple
translational groups in the dependent coordinates, they exhibit an
increasingly complexity with increasing tensor order if written in
the (Ū ,R) formulation.

4 Turbulent scaling laws
The visionary and rather classical idea of a turbulent scaling

law [see 12] usually refers to two distinct facts:

(i) Introducing a certain set of dimensional parameters such
as the wall-friction velocity uτ or boundary layer thickness
Θ to non-dimensionless statistical turbulence variables, for
instance the mean velocity, and which in turn leads to a

collapse of data if one external parameter is varied such as
the Reynolds number.

(ii) An explicit mathematical function is given for statistical
turbulence variables such as the mean velocity, Reynolds
stresses, etc.

Presently we primarily contemplate with the second def-
inition while the normalisation according to (i) will be intro-
duced on dimensional reasons as well as employing classical ar-
guments. In order to rigorously derive such laws directly from
the MPC equations we employ the previously defined idea of a
group invariant solution.

It appears to be the driving mechanism for quantities of sta-
tistical turbulence which have the strong tendency to establish
invariant solutions of the MPC equations while at the same time
maximising the number of symmetries involved being limited by
the boundary condition.

In the remaining two subsections we adopt the latter condi-
tion for the derivation of the accordant invariant solution alterna-
tively later also named turbulent scaling laws, which is the usual
phrase in the turbulence literature.

4.1 Near-wall turbulent shear flows
Due to its practical importance wall bounded shear flows

are by far, and have been for more than a century, the most in-
tensively investigated turbulent flow. This study employs a vast
number of numerical, experimental and modelling approaches.

From all the theoretical approaches the universal law of the
wall is the most widely cited and also accepted approach with
its essential ingredient being the logarithmic law of the wall.
Though a variety of different approaches have been put forward
for its derivation neither of them have employed the full multi-
point equations, which are the basis for statistical turbulence, nor
do they solve an equation that is related to the Navier-Stokes
equations.

In the following we demonstrate that the log-law is an invari-
ant solution of the infinite set of multi-point equations and further
it is shown that it essentially relies on one of the new symmetry
groups (64) or more specifically (67).

Already in [13] it was observed that in the limit of high
Reynolds numbers and |r | � ηK the logarithmic wall law allows
for a self-similar solution of the two-point correlation equation
(44). This is rather remarkable since for inhomogeneous flows
equation (44) is not a partial differential equation in the clas-
sic sense but a non-local functional differential equation. Non-
locality is denoted by the fact that for a given point x and r not
only the dependent variables and derivatives are connected but
also terms “at the point” x + r contribute to the equation. In
equation (44) this is given by the last term in the first row and the
first term in the second row.

Indeed, the terms mentioned above were the major cause for
the limitation of the two-point correlation equation to be only
applicable to homogeneous flows and, even more challenging, if
the Fourier transformed version was considered. In particular the
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above mentioned non-local terms may not be transformed into
Fourier space. It is important to note that this limitation is not
present for the symmetry approach.

Within this subsection we exclusively examine wall-parallel
turbulent flows only depending on the wall-normal coordinate
x2. Further, we only explicitly write the two-point correlation Ri j
though all results are also valid for all higher order correlations.
This finally yields

Ū1 = Ū1(x2), Ri j = Ri j(x2,r), . . . . (70)

With these geometrical assumptions we identify a reduced
set of groups. Necessary for the calculation of the subsequent
scaling laws are the two scaling groups T̄2 and T̄3 and the transla-
tion invariance form T̄7− T̄9 in x2-direction in (62). Additionally,
it is necessary to use the above-mentioned statistical symmetries,
especially the translational group in correlation space (66), the
translational group (67) for Ū1, the translational group (68) for
Ri j and finally the scaling group (69)

With the known symmetries of the MPC equations we may
in a final step generate invariants and as a consequence invari-
ant solutions as have been done for the heat equation above in
equation (58). As was noted above the actual calculations may
be done invoking infinitesimal transformations [see 5] leading to
an equivalent form of the invariance condition.

For the reason of briefness we skip the lengthy computations
and obtain the invariance condition for the MPC equation

dx2

k2x2 + kx2

=
dr[k]

k2r[k] + kr[k]
=

dŪ1

(k2− k3 + ks)Ū1 + kŪ1

=
dR[i j]

ξR[i j]

= · · · with

ξRi j = (2k2−2k3 + ks)Ri j− (ksŪ1(x2)Ū1(x2 + r2)+

kŪ1
(Ū1(x2)+Ū1(x2 + r2))

)
δi1δ j1 + kRi j , (71)

where no summation is implied by the indices in square brack-
ets and instead a concatenation is implied where the indices are
consecutively assigned its values. For brevity explicit dependen-
cies on the independent variables are only given where there is an
unambiguity. Any solution of (71) for an arbitrary set of param-
eters ki generates a set of invariants which are in fact invariant
solutions and hence if implemented into the MPC equation leads
to a symmetry reduction, similar to the heat equation example in
(55)-(59).

In fact, with a distinct combinations of parameters k2, k3 and
ks a multitude of flows may be described where here we first
focus on the log-law. We may keep in mind that Ū1 exclusively
depends on x2 and not on r .

Considering the classic case of the logarithmic wall law the
reason of the appearing symmetry breaking can be found by re-
visiting the key idea of von Kármán. He assumed that close to the

wall the wall-friction velocity uτ is the only parameter determin-
ing the flow. This condition causes a symmetry breaking of the
scaling of the velocity. In order to comprehend this we combine
three admitted scaling groups of the MPC equation (32), i.e. T̄2
and T̄3 in (62) and T̄ ′s in (69), which leads to

Ū∗1 = ek2−k3+ksŪ1 , (72)

where all other variables have been omitted for clarity. As uτ is
a velocity scale, it acts as some kind of external constraint on the
flow and hence, velocities are no longer scalable, which results
in

k2− k3 + ks = 0 (73)

[see 1].
Under this assumption (71) leads to the extended classical

functional form of the mean velocity

Ū1 =
kŪ1

k2
ln
(

x2 +
kx2

k2

)
+Clog, (74)

where Clog in (74) is a constant of integration.
Obviously equation (74) is a slightly generalised form of the

classic logarithmic wall law since the term
kx2
k2

induces a possible
displacement of the origin. In its dimensionless form it reads

Ū+
1 =

1
κ

ln(x+
2 +A+)+C . (75)

Moreover, the invariant solutions for the two-point correlations
(not shown here) can be reduced to Reynolds stresses by taking
the limit r→ 0 so that we gain

uiu j
+ = Di j(x+

2 +A+)γ +Ai j +Bi jx+
2 , i j 6= 11

u1u1
+ = D11(x+

2 +A+)γ − 1
κ2 ln2(x+

2 +A+)

+σ ln(x+
2 +A+)+A11 +B11x+

2 (76)

where the new constants σ , Ai j, Bi j and Di j are combinations
of the kα in the symmetries (62)-(66). Of course, κ is the same
constant in all higher moments, so that the main behavior of these
scaling laws only depends on a reduced set of parameters.

Both the mean velocity (75) and the stresses (76) are com-
pared to the DNS data of [14] in the near-wall region of a turbu-
lent Poiseulle flow (see Figure 1) where the mean velocity is in
Figure 2 and the stresses are given in Figure 3.
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Figure 1. Flow geometry of the pressure driven channel flow.

Figure 2. Comparison of DNS data (· · · ) [14] with the log-law
(75) with κ = 4.05, B = 5.07 and A+ = 0 (−) for the averaged
velocities.

4.2 Non-rotating and rotating channel flow
The second application considered is the rotating channel

flow, where, besides the classical non-rotating case, different ro-
tational axes are considered.

Using our symmetry analysis to gain scaling laws, the calcu-
lated symmetries have to be transformed into the coordinate sys-
tem of a rotating frame [see e.g. 3]. Then the invariant system can
be developed and for each rotational axis the symmetries must be
determined.

This leads to a rather complex and involved form of the op-
erator (71) so details have to be omitted and only results for the
mean flow will be given. In the present sub-section we consider
two cases of a rotating channel i.e. rotation about the x2 and about
the x3 axis.

We first assume that the rotational axis lies along the x3 di-
rection i.e. only Ω3 is non-zero. Applying Lie symmetry analysis
the classical symmetries i.e. scaling in space and the Galilei in-
variance are used and they are extended by the action of the new
scaling symmetry (69) and the translation of the velocities (67).

Figure 3. Comparison of DNS data (· · · ) [14] with our analyti-
cal results (76) (−) for the Reynolds stress tensor.

Solving the resulting system for the invariant solution, we gain
an exponential type of solution which in normalised form reads

Ū1(x2)−Ūcl

Ω3h
= A(Ro2)

(
eγ(Ro3)x2/h−1

)
, (77)

where A(Ro3) and γ(Ro3) are unknown functions of the rotation
number Ro3 = 2Ω3h

Ub
, though its functional form has not been de-

termined from symmetry theory. Ub and Ūcl are respectively bulk
and center line velocity. γ(Ro3) converges to zero for increasing
Ro3 while A(Ro3) tends to a constant in this limit. Carrying out
the latter limit Ro3 → ∞ we obtain the well-known scaling law
for a rotating channel about the x3-axis [see 15]

Ū1(x2) = A∞Ω3x2 +Ūcl . (78)

A clear validation of (77) and (78) is given in Figure 4 for various
Ω3 taken from the DNS of [16]. Interesting enough the value for
A∞ appears to be very close to 2.

As the stresses are not available from the literature but the
corresponding kinetic energy (formulas may be taken from [3])
are shown in Figure 5.

Next, assuming rotation about x2, two velocity components
Ū1 and Ū3 have to be taken into consideration since the Corio-
lis force induces a cross flow. Again, both averaged velocities
may only depend on x2. Different to the first case is that one ad-
ditional symmetry appears, namely translation in time i.e. T̄ ′1 in

1699



Figure 4. Comparison of the mean velocity scaling law (−) in
(77)/(78) with the DNS data (· · · ) of [16] at rotation rates Ro3 =
0.1, 0.15, 0.2, 0.5 and Reτ = 194.

(63). From this we derive the new Ω2 depending scaling laws

Ū1

uτ

=
( y

h

)b [
a1 cos

(
cRo2 · ln

y
h

)
+a2 sin

(
cRo2 · ln

y
h

)]
+d1(Ro2)

Ū3

uτ

=
( y

h

)b [
a1 sin

(
cRo2 · ln

y
h

)
−a2 cos

(
cRo2 · ln

y
h

)]
+d2(Ro2) . (79)

with Ro2 = 2Ω2h
uτ0

. A first comparison to DNS data is done for
the non-rotating case. Here we employ the DNS data of [14]
at Reτ = 2003 and compare them with the scaling law (79a) at
Ro2 = 0, which then maybe rewrittent in defect scaling to obtain

Ucl−Ū1

uτ

= a
( y

h

)b
(80)

where Ucl is the velocity at the center of the channel and uτ is
the friction velocity. Figure 6 shows an almost perfect agreement
of the scaling law (80) with the latter DNS where the parameters
are fitted to a = 6.43 and b = 1.93.

For the non-rotating cases the stresses computed from the
above symmetries (62)-(66) have a rather compact form and we

Figure 5. Comparison of the kinetic energy scaling (−) with the
DNS data (· · · ) of [16] at rotation rates Ro3 = 0.1, 0.15, 0.2, 0.5
and Reτ = 194.

Figure 6. Comparison of the mean velocity scaling law (−) in
(80) with the DNS data (· · · ) of [14] at Reτ = 2003.

give them here as an example

uiu j
+ = D̃i j

(x2

h

)b−1
+ Ãi j + B̃i j

x2

h
, i j 6= 11

u1u1
+ = D̃11

(x2

h

)b−1
−a2

(x2

h

)2b

+ σ̃
Ucl

uτ

(x2

h

)b
+ Ã11 + B̃11

x2

h
(81)
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Figure 7. Comparison of the turbulent stress scaling law (−) in
(81) with the DNS data (· · · ) of [14] at Reτ = 2003.

Figure 8. Comparison of the scaling law (−) in (79) with the
DNS data (· · · ) of [17] at Ro2 = 0.011.

and compare them to the above given DNS data by [14] in
Figure 7.

For the rotating case Ro2 6= 0 we compare the DNS data of
[17] at Reτ = 360 with the scaling law (79). Results are depicted
for two different rotation numbers Ro2 defined below equation
(79) in the Figures 8 and 9 exhibiting an excellent fit in the cen-
ter of the channel for all cases. uτ0 refers to the friction velocity
of the non-rotating case. It is to note from all the DNS data sets

Figure 9. Comparison of the scaling law (−) in (79) with the
DNS data (· · · ) of [17] at Ro2 = 0.18.

in [17] we find that with an increasing Ω2 the magnitude of Ū1
and Ū3 switch position since with increasing rotation rates Ū1 is
suppressed while Ū3 increases up to a certain point and decreases
again though to a smaller extend compared to Ū1. This behav-
ior is exactly described by the scaling law (79). Because of its
complexity the corresponding stresses have been omitted.

4.3 Channel flow with constant wall transpiration
The final setting to be investigated is a turbulent Poiseulle

flow with constant wall transpiration, i.e. blowing and suction at
the lower and upper wall respectively. Subsequently we show
that the transpiration velocity is symmetry breaking, rather sim-
ilar to the near-wall mechanism at the wall where uτ breaks the
scaling symmetry of velocity pointed out below (72) and which
in turn implied the classical near-wall log-law. In the present case
the constant transpiration velocity v0 implies a logarithmic scal-
ing law in the core of the channel and a set of DNS runs validated
this result of Lie symmetry analysis and further aided to establish
a new logarithmic law of deficit-type of the form

Ū1−UB

uτ

=
1
γ

ln
(x2

h

)
. (82)

Further, it is not only the region of validity of the new logarithmic
law which is very different from the usual near-wall log-law but
also the slope constant in the core region differs from the von
Kármán constant κ and is equal to γ = 0.3.

5 Summary and outlook
Within the present contribution it was shown that the admit-

ted symmetry groups of the infinite set of multi-point correlation
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Figure 10. Mean velocity profiles at constant transpiration rate
v+

0 = 0.16: ◦◦◦, Reτ = 250; •, Reτ = 480; ..., Reτ = 850 vs. the
scaling law (82).

equations are considerable extended by three classes of groups
compared to those originally stemming from the Euler and the
Navier-Stokes equations. In fact, it was demonstrated that it is
exactly these symmetries which are essentially needed to vali-
date certain classical scaling laws such as the log-law from first
principles and also to derive a large set of new scaling laws.

Implicitly, symmetries have been used in turbulence model-
ing for several decades since essentially all symmetries of Euler
and the Navier-Stokes equations have been made part of modern
turbulence models. Still, this is only partially true for the new sta-
tistical symmetries. In fact, some of them have been employed
even in very early turbulence models since many of them where
calibrated against the log-law. Many other symmetries, however,
have never been made use of and in fact, it might be even im-
possible to make turbulence models consistent with some of the
symmetries such as the new scaling symmetry (65).

Still, even with these new symmetry groups at hand which
give a much deeper understanding on turbulence statistics there
are still some key open questions to be answered. (i) So far com-
pleteness of all admitted symmetries of the MPC equation has not
been shown. This appears to be necessary not only from a the-
oretical point of few but rather essential to generate scaling for
all higher moments. (ii) From turbulence data it is apparent that
the appearing group parameters do have certain decisive values
which are to be determined. In some very rare cases such as the
classical decaying turbulence case values such as the decay expo-
nent may be determined from integral invariants. Still, a general
scheme is unknown. (iii) Finally, we clearly observe that certain
scaling laws such as the log law only cover certain regions of a
turbulent flow and are usually embedded within other layers of
turbulence. Still, the matching of turbulent scaling laws is still an

open question.
An apparent extension of the presented machinery to turbu-

lent hear transfer problems is achieved by adding the scalar heat
transfer equation to the Navier-Stokes equations (1), (2). This
might be either in the most simple case a passive temperature
equation or, if buoyancy is considered, the temperature equa-
tion again, while the momentum equation (2) is extended by the
Boussinesq approximation. In both cases, the multi-point system
(22) is extended by an additional tensor composed of the tem-
perature correlated with m velocities, where m = 1, . . . ,∞. Note,
that because of the linearity of the temperature equation and the
linearity of the temperature in the momentum equation due the
Boussinesq approximation, it is not necessary to derive corre-
lations and equations which contain the temperature more than
once.

Other extension such as to Navier-Stokes equations for com-
pressible fluids, i.e. the gas dynamics equations prolonged by vis-
cous terms, are less forward. The reason is that a correlation ten-
sor of density and velocities may be defined rather straight for-
ward, the corresponding equation may only contain terms, where
density and one of the velocities are at the same point. Addition-
ally, the situation is further complicated by the fact, that an en-
ergy equation is coupled in which may also gives rise to tensors,
that may in principle be defined but the corresponding equation
may only contain terms, where energy and one of the velocities
are at the same point.

Finally, depending on the Mach number Ma, the gas-
dynamics equations may change type and hence, for Ma > 1 cor-
relations may only be uniquely defined within the Mach cone.
This, apparently, posses an additionally non-trivial constraint on
the problem which is unsolved to date.
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