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ABSTRACT 
Two-dimensional numerical simulations are carried out for 

natural convection in an enclosure with an hot inner cylinder 
located at the center for four different Rayleigh numbers of 

310 , 410 , 510  and 610 . The immersed boundary method 
(IBM) was used to handle the virtual surface of the inner 
circular cylinder with a no-slip boundary condition. The Prandtl 
number Pr was taken to be 0.7 corresponding to that of air. This 
study focuses on the effect of the temperature variation of 
bottom wall of the enclosure on thermal and flow structures of 
natural convection. The results indicate negligible changes in 
thermal and flow structures based on variations in the size of 

the local heating zone on the bottom wall at 310Ra   and 410 , 
although there is a small variation in the convection velocity in 
the enclosure. At 510Ra  , small inner vortices formed in the 
lower part of the cylinder show significant changes in their size 
with increases due to increasing the bottom wall temperature. 
At 610Ra  , the magnitude of convection velocity becomes 
much larger than that when 510Ra  . As a result, much 
stronger rising plumes than those for 510Ra  were formed on 
the top of the cylinder. And the secondary vortices form and 
separate above the bottom surface of the cylinder. The 
generation and dissolution of vortices are dependent mainly on 
the temperature of bottom wall in the enclosure. 

 
INTRODUCTION 

Natural convection phenomena are encountered in many 
practical applications such as the energy conservation in 
buildings, cooling of electronic equipment, cooling of nuclear 
reactor systems, solar engineering, and environmental and 
geothermal fluid dynamics. These application areas include the 
cooling of electronic devices, double-pane windows, heating 
and cooling of building, refrigerators, room ventilating, heat 
exchangers, solar collectors and so on.  

NOMENCLATURE 
Symbols 
fi  Momentum forcing 

g  Gravitational acceleration 

H  Vertical length of enclosure 
L  Horizontal length of enclosure 
n  Direction normal to the wall 

Nu  Nusselt number 

P  Pressure 
Pr   Prandtl number 
q  Mass source or sink 

R  Radius of circular cylinder 
Ra  Rayleigh number 
t  Time 

T  Temperature 
u,v  Velocity components in x and y directions 
x, y  Cartesian coordinates 

Greek symbols 
  Thermal diffusivity 

    Thermal expansion coefficient 

ij  Kronecker delta 

     Density 

  Kinematic viscosity 
  Angle (degrees) 

  Dimensionless temperature 

Sub/superscripts 
b  Bottom wall 
c  Cold 

cyl  Cylinder 

h  Hot 
t  Top 

*    Dimensional variable 

Mathematical symbols 
 Surface-averaged value 
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Due to a wide range of applications, fundamental studies on 
the natural convection in an enclosure, and Rayleigh-Bénard 
convection in a horizontal layer of the fluid confined between 
two parallel plates, have been performed by many investigators 
over the last few decades. Gelfgat [1] provided a complete 
numerical solution of a formulated benchmark problem devoted 
to the parametric study of Rayleigh-Bénard instability in 
rectangular two-dimensional (2-D) and three-dimensional (3-D) 
boxes. The results of the parametric calculations were presented 
in [1] as characteristic curves showing the dependence of the 
critical Rayleigh number on the aspect ratio of the cavity. 
Quertatani et al. [2] numerically performed a study on a 
classical Rayleigh-Bénard convection problem, and reported 
the characteristics of the flow and thermal structures for 
Rayleigh numbers ranging from 310  to 610 . D’Orazio et al. [3] 
studied the case of 2-D Rayleigh-Bénard convection developed 
in a cavity with a large aspect ratio ranging between 2 and 6, 
where the Rayleigh number range of 3 610 ~ 2 10  was 
considered in the study. 

In many engineering applications, the situation frequently 
arises wherein diverse thermal boundary conditions are 
imposed on walls of an enclosure. Therefore, many studies 
have considered the effect of a thermal boundary condition on 
natural convection. Corcione [4] studied natural convection in 
an air-filled rectangular enclosure heated from below and 
cooled from above with respect to variable thermal boundary 
conditions imposed on the side walls. The author reported that 
bi-direction differential heating has a significant effect on the 
flow mode transition of natural convection in the horizontal 
cavity. Kim et al. [5] recently investigated the natural 
convection induced by a temperature difference between a cold 
outer square cylinder and a hot inner cylinder for different 
Rayleigh numbers in the range of 310  to 610 . The location of 
an inner circular cylinder was changed vertically along the 
centerline of the square enclosure. They reported that the 
numerical solutions for the flow and thermal fields eventually 
reach the steady state for all Rayleigh numbers considered. The 
number, size, and formation of the convection cells strongly 
depended on the Rayleigh number and the position of the inner 
circular cylinder. Kandaswamy et al. [6] numerically studied 
unsteady laminar natural convection in an enclosure with 
partially-heated side walls and an inner body as an internal heat 
source. They investigated the effects of the aspect ratio of the 
enclosure, different Prandtl numbers, and locations of the 
thermally active part of the side walls. They described the flow 
structure and the heat distribution in the enclosure, and the 
profile of the convection velocity in the mid-plane of the 
enclosure, for various simulation parameters. In addition, they 
assessed the heat transfer rate from walls of the enclosure. 
Aydin and Yang [7] numerically investigated the natural 
convection in a vertical square cavity with localized isothermal 
heating from below and symmetrical cooling from the side 
walls. They considered various length of the local heating zone 
as a main simulation parameter. They reported that the Nusselt 
number on the heated part of the bottom wall increases with 
increasing Rayleigh number and with the length of the heating 
zone. Basak et al. [8] studied the effects of thermal boundary 

conditions in a square enclosure on buoyancy-induced 
convection flow with respect to fluids with different Prandtl 
numbers by using the finite element method. They imposed a 
non-uniform heating condition on the bottom wall. They 
reported that the non-uniform heating of the bottom wall 
produces a greater heat transfer rate in the center region of the 
bottom wall than the rate produced in the uniform heating case 
for the Rayleigh numbers considered.  

In our study, 2-D numerical simulations were performed for 
natural convection in a square enclosure with a hot inner 
circular cylinder for a wide range of Rayleigh numbers 
( 3 610 10Ra  ). We investigated the effect of various 
temperature conditions of the bottom wall on the characteristics 
of the flow structure and heat transfer of natural convection. 
 
NUMERICAL METHODOLOGY  

A schematic of the system is shown in Figure 1. The system 
consists of a square enclosure with sides of length L , within 
which a circular cylinder of radius R (= 0.2 L ) is located at the 
center. As shown in Figure 1, the top and side walls of the 
enclosure are kept at a constant low temperature cT , whereas 

the bottom wall of the enclosure is kept at a constant 
temperature bT  whose value changes as a parameter in the 

present computation. The cylinder surface is kept at a constant 
high temperature hT .  

 

 

Figure 1 Computational domain and coordinate system 
along with boundary conditions 

 
The governing equations describing steady incompressible 

viscous fluid flow and thermal fields are the continuity, 
momentum, and energy conservation equations in their non-
dimensional forms, which are defined as 

 

0i

i

u
q

x


 


                                        (1) 

2

2
i i i

j i i
j i j j

u u uP
u Pr RaPr f

t x x x x


  
     

    
   (2) 

2

j
j j j

u h
t x x x

    
  

   
                         (3) 

 

610



   

where the dimensionless variables in equations (1)-(3) are 
defined as follows: 

 
*

2

t
t

L


 , 

*
i

i

x
x

L
 , 

*
i

i

u L
u


 , 

* 2

2

P L
P


 ,

* *

* *
c

h c

T T

T T






   (4) 

          
In equation (4), the superscript (*) denotes the dimensional 

variables;   and  represent the density and the thermal 

diffusivity of the fluid, respectively; P ,  , and t  represent the 
dimensionless pressure, the dimensionless temperature, and the 
dimensionless time, respectively; ix  represents the 

dimensionless Cartesian coordinates; and iu  represents the 

corresponding dimensionless velocity components (where the 
subscripts i  and j  are the tensor notation with i =1, 2 and j

=1, 2). Radiation effects were neglected and the fluid properties 
were assumed to be constant except in the buoyancy term 
according to the Boussinesq approximation. The 
aforementioned non-dimensionalization yielded two 

dimensionless parameters: Pr   and 
3 ( )h cg L T T

Ra





 , 

where  , g , and   are the kinematic viscosity, gravitational 

acceleration, and volume expansion coefficient, respectively. 
The gravitational acceleration g acted in the negative y 
direction. The Prandtl number was set to 0 7Pr . , 
corresponding to the property of air. The Rayleigh number Ra 
varied in the range of 3 610 ~ 10 . 

The immersed boundary method was used to represent the 
virtual surface of the inner circular cylinder with a no-slip 
boundary condition. The mass source/sink term q  in equation 

(1) and the momentum forcing term if  in equation (2) were 

applied on the body surface or inside the body to satisfy the no-
slip condition and mass conservation in the cell containing the 
immersed boundary. In equation (3), heat source/sink h  was 
applied to satisfy the isothermal boundary condition on the 
immersed boundary. The four-step time-split scheme was used 
to advance the flow field. 

For the velocity field, no-slip and no-penetration boundary 
conditions were imposed on the walls. For the temperature 
fields, the hot dimensionless temperature of 1h   was 

imposed on the wall of the inner cylinder, whereas the cold 
dimensionless temperature of 0c   was imposed on the top 

and side walls of the enclosure.  For the bottom wall of the 
enclosure, the dimensionless temperature varying in the range 
of 0.0 ~ 1.0b   was imposed as an important variable to 

govern the fluid flow and heat transfer in the enclosure.  
Once the velocity and temperature fields were obtained, the 

local and surface-averaged Nusselt numbers were calculated as 
follows:   
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Figure 2 Distribution of the grid generated in the 
computational domain 

 

Table 1 Grid dependency test results for the surface-averaged 

Nusselt number around the inner cylinder cylNu  when 
610Ra   and 0.0b  . 

Grid number cylNu  Difference (%)

202 202  4.9921 0.18 
252 252  4.9902 0.21 
302 302  4.9978 0.06 
352 352  4.9998 0.02 
402 402  5.0009 - 

 

Table 2 Comparison of present surface-averaged Nusselt 
numbers at the hot inner cylinder with those of the previous 

numerical results 

Ra

Surface-averaged Nusselt 
Number at the hot inner 

cylinder 

Difference 
(%) 

Present 
study 

Kim et al. 
[5] 

 

103 5.020 5.093 1.433 

104 5.113 5.108 -0.098 

105 7.750 7.767 -0.219 

106 14.20 14.11 0.638 

 
where n is the direction normal to the wall and S is the 

surface length. The uniform grid is distributed in the 
computational domain as shown in Figure 2. The numerical 
procedure is carried out the in-house code using FORTRAN 
scheme. Table 1 shows the grid dependency test results when 

610Ra   and 0.0b  . As shown in Table 1, the difference in 

the values of surface-averaged Nusselt number on the cylinder,

cylNu , calculated using different grid points of 202 202 , 

252 252 , 302 302 , 352 352  and 402 402  for 
610Ra   and 0.0b   is very small. Based on this grid 
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dependency test result, a grid resolution of 302 302  along 
horizontal ( )x  and vertical ( )y  directions was employed in the 

present study. To validate the present numerical methods, we 
compared the surface-averaged Nusselt number on the cylinder 
surface obtained from the present computation with that 
obtained by Kim et al. [5] obtained from their numerical 
simulation when 0.0b  , showing a good agreement between 

them with the maximum error less than 1.4%. 
 
RESULTS AND DISCUSSION  

Figure 3 shows the distribution of isotherms and streamlines 
in the enclosure for the case of 0.0b   for different Rayleigh 

numbers of 310Ra  , 410 , 510  and 610 . The flow and 
thermal fields eventually reached the steady state for all 
simulation cases at four different Rayleigh numbers considered. 
In terms of general fluid motion occurring due to natural 
convection as shown in Figure 3, the heated lighter fluid is 
lifted along the hot surface of the inner cylinder due to 
buoyancy as a driving force. As the fluid flow approaches the 
cold top wall of the enclosure, it becomes gradually colder and 
denser. The fluid cools further as it moves along the cold top 
wall in the lateral direction. Finally, a denser fluid cooled 
moves downward along the cold side walls of the enclosure. 
Thus, the main circulation of the convection flow is formed in 
the enclosure. 

 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 3 Isothermals (left) and streamlines (right) distributed in 
the enclosure; (a) 310Ra  , (b) 410Ra  , (c) 510Ra  and (d) 

610Ra   

 
When 310Ra  , the heat transfer in the enclosure mainly 

develops through a quasi-heat conduction process due to a very 
low convection velocity, as shown in the thermal fields of 
Figure 3(a). The main circulation flow in the enclosure shows a 
two-fold symmetric pattern about the vertical and horizontal 
center lines of the enclosure due to a very weak buoyancy 
effect that exhibits two inner vortices, as shown in Figure 3(a).  

As we increase the Rayleigh number to 510Ra  , the role 
of convection in the heat transfer becomes more significant. As 
a result, the dominant convection flow occurs in the upper part 
of the cylinder where the thermal gradient is strong. The two 
inner vortices of each main circulation, which exists in the 
cases of 310Ra   and 410Ra  ,  merge with each other at 

510Ra  . Thus, a single vortex core of each main circulation is 
located in the upper part of the cylinder. At this Rayleigh 

number, a single upwelling plume can be clearly identified 
above the top surface of the cylinder, as shown in Figure 3(c).  
At 610Ra  , the heat transfer is mainly governed by the 
convection mode in the enclosure. Since the convection 
velocity significantly increases with increasing Rayleigh 
number, the boundary layer behavior can be clearly observed in 
regions of the lower part of cylinder and the upper part of the 
enclosure as shown in isotherms of Figure 3(d). The thermal 
boundary layer separates from the surface near the top of the 
cylinder and as a result a strong plume appears. As a result, the 
flow strongly impinges on the top of the enclosure, which also 
leads to form a thinner thermal boundary layer in this region 
and enhances the heat transfer. Tiny symmetric vortices appear 
in the vicinity of the bottom wall of the enclosure owing to the 
separation of the boundary layer by the strong convective flow. 

Figure 4 shows the distribution of isotherms and streamlines 
at 310Ra   according to the variation of b . As shown in this 

figure, the variation in the bottom wall temperature has a small 
effect on the change in overall flow structures at the low 
Rayleigh number of 310Ra  . For the cases of 0.1 ~ 1.0b  , 

the twofold symmetric pattern in the main circulation is broken, 
unlike to that for the case of  0.0b   shown in Figure 3(a). 

The main convection structure has a mirror symmetric pattern 
about the vertical center line of the enclosure, as shown in 
Figure 4(a)-(f). The sizes of inner vortices in the lower parts of 
the cylinder increases slightly, compared to those in the upper 
part of the cylinder because of the heating from the bottom wall 
of the enclosure. The isotherms in the lower part of the cylinder 
change their shape according to the variation of b . As we 

increased b  at 310Ra  , the isotherms in the lower part of the 

cylinder increase in their values gradually as shown in Figure 
4(a)-(f), resulting in a decrease in the thermal gradient near the 
lower surface of the cylinder. As we increase b  at 310Ra  , 

the isotherms gradually concentrate near each lower edge of the 
enclosure where the cold side and hot bottom walls are in 
contact. As a result, the thermal gradient around each lower 
edge of the enclosure becomes large. 

Figure 5 shows the distribution of the local Nusselt number 
along the cylinder surface, the top wall of the enclosure and the 
bottom wall of the enclosure ( cylNu , tNu  and bNu ) at 

310Ra   for different values of b . In this figure, the positive 

and negative values of the local Nusselt number are used to 
denote the direction of the heat transfer on the walls of the 
enclosure and cylinder surface. Positive values represent heat 
transfer from the surrounding fluid to the walls, and negative 
values represent the heat transfer from the walls to the 
surrounding fluid. When 0.0b  , cylNu  has a maximum value 

at 180o   which corresponds to the lower stagnation point in 

the cylinder  and  decreases slightly in its value with increasing  
   from  180o  to  360o    (or decreasing    from  180o  to  

0o  ). The variation in the values of cylNu  according to   at 

0.0b   is small in the absence of any heating from the bottom 

wall at the low Rayleigh number of 310Ra  , as shown in 
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Figure 5(a). However, when 0.1b  , because the fluid 

temperature in the lower part of the cylinder increases as a 
result of the heating from the bottom wall, the absolute values 
of cylNu  has a minimum value at 180o   and decrease with 

increasing b . Especially, the change in the absolute values of 

cylNu  is large in the region of 90 ~ 270o o  .  

 

 
(a) 

 
(c) 

 
(e) 

 
(b) 

 
(d) 

 
(f) 

Figure 4 Isothermals (left) and streamlines (right) distributed in 
the enclosure at 310Ra   (contour range from 0 to 1 with 21 
levels); (a) 0.2b  , (b) 0.4b  , (c) 0.6b  , (d) 0.8b  , 

(e) 0.9b   and (f) 1.0b   

 

   
(a) 

 

   
(b)                                              (c) 

Figure 5 Distribution of the local Nusselt number along the 
cylinder surface, the top wall of the enclosure and the bottom 
wall of the enclosure ( cylNu , tNu  and bNu ) at 310Ra   for 

different values of b  

 

As shown in Figure 5(b), the distribution of tNu  does not 

depend on b  under the dominant conduction heat transfer 

mode at the low Rayleigh number of 310Ra  . For all cases of 
0.0 ~ 1.0b  considered, tNu  has the maximum value at the 

center of the top wall ( 0.5S  ) because the distance between 
the cold top wall and hot cylinder surface has the smallest value. 
As shown in Figure 5(c), bNu  has the highest value around 

each lower corner of the enclosure at 0.0S   and 1.0S   due 
to a large temperature difference between the side walls and the 
bottom wall of the enclosure. 

Figure 6 shows the distribution of isotherms and streamlines 
at 510Ra   according to the variation of b . When 0.4b   

in Figure 6(b), small inner vortices start to be formed in the 
lower part of the cylinder because of the increase in the thermal 
gradient in the lower part of the cylinder, which is caused by 
the increase in temperature of the bottom wall. As we increase 

b  from 0.4 to 0.8, the thermal gradient between the bottom 

wall and the cylinder surface becomes continuously stronger; 
thus, the inner vortices in the lower part of the cylinder 
gradually increase in size. By following the circulation flow of 
the lower inner vortices, the isotherms are distorted further as 

b increases. 

 

 
(a) 

 
(c) 

 
(e) 

 
(b) 

 
(d) 

 
(f) 

Figure 6 Isothermals (left) and streamlines (right) distributed in 
the enclosure at 510Ra   (contour range from 0 to 1 with 21 
levels); (a) 0.2b  , (b) 0.4b  , (c) 0.6b  , (d) 0.8b  , 

(e) 0.9b   and (f) 1.0b   

 
When 0.9b  , a pair of secondary vortices form and 

separate from the main circulation flow above the top surface 
of the cylinder as shown in Figure 6(e). This pair rotates in the 
clockwise and counter clockwise directions. The upwelling 
flow, which is induced by a strong buoyancy effect, occurs 
around the locations of 60o   and 270o   on the surface 

of cylinder. In addition, the descending flow from the top wall 
to the cylinder surface is generated above the top surface of the 
cylinder along the vertical centerline of the enclosure because 
of the presence of the secondary vortices. The upper part of the 
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main circulation is confined around the side wall of the 
enclosure. As a result, the inner vortices distributed in the upper 
part of the cylinder shrink in size, and the vortex cores move 
downward. As shown in the temperature field in Figure 6(e), a 
single upwelling plume at 0.2 ~ 0.8b   is divided into a pair 

of upwelling plumes at 0.9b  . The plumes are formed near 

60o   and 270o   on the cylinder surface by following the 

upwelling flow separating from the cylinder surface. The 
isotherms are sparser near the surface of cylinder but denser 
near the top wall due to the presence of the pair of upwelling 
plumes, while the isotherms are denser near the cylinder 
surface but sparser near the top wall due to the presence of the 
descending flow of secondary vortices. The overall flow and 
thermal structures at 1.0b   are very similar to those at 

0.9b  . 

 

   
    (a) 

 

   
(b)                                              (c) 

Figure 7 Distribution of the local Nusselt number along the 
cylinder surface, the top wall of the enclosure and the bottom 
wall of the enclosure ( cylNu , tNu  and bNu ) at 510Ra   for 

different values of b  

 
Figure 7 shows the distribution of the local Nusselt number 

along the cylinder surface, the top wall of the enclosure and the 
bottom wall of the enclosure ( cylNu , tNu  and bNu ) at 

510Ra   for different values of b . The distribution shapes of 

cylNu and tNu  at 510Ra   are different from that at 310Ra    

and 410  because the distribution of the fluid flow and 
isotherms at 510Ra   is much different from that at 310Ra    
and 410 . As shown in Figure 7(a), the minimum absolute value 

of cylNu  occurs at 0o   (or 360o  ) for the cases of 

0.0 ~ 0.8b   because of the presence of a single upwelling 

plume. For the cases of 0.0 ~ 0.8b  , the absolute value of 

cylNu  monotonically increases with increasing   from 0o   

to 180o  , and cylNu  has the maximum absolute value at 

180o  . However, for the cases of 0.9b  and 1.0, cylNu  

has the maximum absolute value at 0o   (or 360o  ) 

because of the descending flow of the secondary vortices that 
forms above the top surface of the cylinder, unlike the cases of 

0.0 ~ 0.8b  . cylNu  has the minimum absolute values at 

60o   and 300o   because of the presence of a pair of the 

upwelling plumes. For all cases of 0.0 ~ 1.0b  , the absolute 

values of cylNu  gradually increase with increasing b , except 

for 0 ~ 60o o   and 300 ~ 360o o   at 0.9b   and 1.0 . 

As shown in Figure 7(b), the distribution of tNu  has high two 

peaks on the top wall of the enclosure for all cases of 
0.0 ~ 1.0b  . For the cases of 0.0 ~ 0.8b  , which have a 

single upwelling plume above the top surface of the cylinder, 
the two high peaks occur around the center region of the top 
wall at 0.35 ~ 0.65S   depending on the value of b . As 

shown in Figure 7(c), the distribution shapes of bNu  according 

to S  on the bottom wall at 510Ra   are similar to those at 
310Ra   shown in Figure 5(c). However, the variation of bNu  

according to b  at 510Ra   is relatively larger than that at 
310Ra   around the side walls since the cold fluid is further 

encouraged into the lower part of the cylinder by the 
strengthened convection flow with increasing Rayleigh number. 

 

 
(a) 

 
(c) 

 
(e) 

 
(b) 

 
(d) 

 
(f) 

Figure 8 Isothermals (left) and streamlines (right) distributed in 
the enclosure at 610Ra   (contour range from 0 to 1 with 21 
levels); (a) 0.2b  , (b) 0.4b  , (c) 0.6b  , (d) 0.8b  , 

(e) 0.9b   and (f) 1.0b   

 
Figure 8 shows the distribution of isotherms and streamlines 

at 610Ra   according to the variation of b . When 610Ra  , 

the magnitude of convection velocity becomes much larger 
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than that when 510Ra  . As a result, when 610Ra  , much 
stronger rising plumes than those for 510Ra   are formed on 
the top of the cylinder. Because of the effects of the strong 
convection and rising thermal plume impinging on the top 
surface of the enclosure at 610Ra  , thinner thermal boundary 
layers are formed on the surfaces of the cylinder and the top 
surfaces of the enclosure, resulting in a much larger heat 
transfer rate than at 510Ra  . 

 

   
    (a) 

 

   
 (b)                                             (c) 

Figure 9 Distribution of the local Nusselt number along the 
cylinder surface, the top wall of the enclosure and the bottom 
wall of the enclosure ( cylNu , tNu  and bNu ) at 610Ra   for 

different values of b  

 
Figure 9 shows the distribution of the local Nusselt number 

along the cylinder surface, the top wall of the enclosure and the 
bottom wall of the enclosure ( cylNu , tNu  and bNu ) at 

610Ra   for different values of b . Because the effect of 

convection on the heat transfer in the enclosure becomes much 
larger with increasing Rayleigh number, the absolute values of 
the local Nusselt numbers at 610Ra   are much larger than 
those at 310Ra  , 410  and 510 . As a result, the distribution of 
local Nusselt numbers at 610Ra   is also different from that at 

510Ra  . When 0.0b  , the absolute value of cylNu  has the 

almost uniform maximum value around  120 ~ 240o o   

which corresponds to the lower surface of the cylinder 
including the lower stagnation point of the cylinder. When we 
increase  b , the region at which the absolute value of cylNu  

has an almost constant value at the lower surface of the cylinder 
becomes narrower because of the added effect of heating from 

the hot cylinder and the bottom wall. As a result, when  
0.3b  , the absolute value of cylNu  has the maximum peak 

value at 180o  , resulting in monotonically decreasing 

absolute value of cylNu with decreasing (or increasing)    from 

180o   to 0o   (or 360o  ) because of the thermal 

boundary layer development along the cylinder surface. When  
0 0.3b  ,  the maximum absolute value of cylNu  at 

180o   increases with increasing  b   due to the added effect 

of heating from the hot cylinder and the bottom wall on the 
rising thermal plume along the cylinder surface. However, as 
we increase b  at 0.3 1.0b  ,  the maximum absolute value 

of cylNu  at 180o   decreases because the temperature 

difference between the hot cylinder  and the bottom wall 
decreases and as a result the thermal gradient around the lower 
stagnation point of the cylinder decreases. When 0.9b   and 

1.0 at 510Ra  , cylNu  has the maximum absolute value at 

0o   and 360o   while it has the minimum absolute values 

at 60o   and 300o  , because of the presence of a pair of 

the upwelling plumes formed on the top surface of the cylinder. 
However, when 0.9b    and 1.0 at 610Ra  , a pair of the 

upwelling plumes are not formed on the top surface of the 
cylinder and the distribution of streamlines and isotherms is 
similar to that when 0.3 0.8b   at 610Ra  , as shown in 

Figure 8(a)-(f). As a result, when 0.9b    and 1.0 at 
610Ra  , cylNu  has the minimum absolute value at 0o   (or 

360o  ), while it has the maximum absolute values at 

180o  , similar to that when 0.3 0.8b    at 610Ra   but 

unlike to that when 0.9b    and 1.0 at 510Ra  . As shown 

in Figure 9(b), the distribution of tNu  at 610Ra   has the 

maximum one peak at the center of the top wall of the 
enclosure ( 0.5S  ) for all cases of 0.0 ~ 1.0b  , compared 

to two high peaks and one low peak of tNu  at 510Ra   as 

shown in Figure 7(b), because the strength of the thermal plume 
rising from the cylinder upper surface becomes much larger 
with increasing Rayleigh number from 510Ra   to 610Ra  . 
The distribution shapes of bNu  according to S  on the bottom 

wall at 610Ra   are similar to those at 310Ra  , 410  and 510 , 
which has the maximum value at the side walls ( 0.0S   and 
1.0 ) and the minimum values close to zero at the center of the 
bottom wall ( 0.5S  ), as shown in Figure 5(c), Figure 7(c)  
and Figure 9(c). Similarly, the absolute value of bNu   is almost 

zero at  0.0b    because of the formation of the large 

stagnation region between the lower surface of the cylinder and 
the bottom wall at the high Rayleigh number of 610 ,  as shown 
in Figure 3(d). 
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Figure 10 Distributions of the surface-averaged Nusselt 
number as a function of b  for four different Rayleigh numbers; 

(a) cylinder surface, (b) top wall and (c) bottom wall 

 
Figure 10 shows the distributions of the surface-averaged 

Nusselt number on the cylinder surface, top wall, and bottom 

wall of the enclosure ( cylNu , tNu , and bNu , 

respectively) as a function of b  for three different Rayleigh 

numbers considered in our study. In these figures, as previously 
mentioned, positive or negative values of the Nusselt number 
denote the direction of the heat transfer on the walls.  

As shown in Figure 10(a), the absolute value of cylNu  

decreases monotonically with increasing b  at 310Ra   and 
410Ra   since the fluid temperature around the cylinder 

gradually increases with increasing b . The absolute values at 
410Ra   are slightly augmented for the cases of 

0.0 ~ 0.3b   and are slightly reduced for the cases of 

0.4 ~ 1.0b  , compared to the cases of 310Ra  . When 
510Ra  , the absolute value of cylNu , having a decreasing 

trend from 0.0b   to 0.8b  , slightly increases at 0.9b   

because of the effect of the descending flow of the secondary 
vortices that are formed above the top surface of the cylinder, 
as shown in Figure 6(e). As we increase b  from 0.9b   to 

1.0b  , the absolute value of cylNu  decreases again. When 

610Ra  , the absolute values of cylNu  increases further 

compared to the cases of 310Ra  , 410Ra   and 510Ra  . 
As a result, the temperature difference between the hot cylinder 

surface and the surrounding fluid decreases sharply as b  

increases, which results in a rapid decrease in heat transfer on 
the cylinder surface with increasing b . As shown in Figure 

10(b), the variation of tNu  according to b  is very small for 
310Ra   and 410Ra  . For 510Ra   with higher values of 

tNu  than those for the cases of 310Ra   and 410Ra  , the 

value of tNu  slightly decreases with increasing b  from 0.0 

to 0.8. When 0.9b   at 510Ra  , the value of tNu  steeply 

decreases because of the influence of a pair of secondary 
vortices that is formed above the top surface of the cylinder. At 

610Ra  , as b  increases, tNu  increases because of an 

increase in the heat transfer capacity around the center of the 
top wall, as shown in Figure 9(a). 
 
CONCLUSIONS  

Two-dimensional numerical simulations were performed for 
natural convection in a square enclosure with an hot inner 
cylinder for four different Rayleigh numbers of 310 , 410 , 510  
and 610 , by using the immersed boundary method to provide 
an in-depth  analysis of various phenomena associated with 
natural convection such as the formation of the vortex structure 
and the corresponding heat transfer based on the various 
temperature conditions of bottom wall. 

When 310Ra   and 410Ra  , variations in the value of 
the bottom temperature have little effect on thermal and flow 
structures, although there are small variations in the convection 
velocity in the enclosure. Consequently, there is a little 
difference in the overall heat transfer capacity in terms of the 
Nusselt number between the top wall and the cylinder surface 
based on variations b .  A primary vortex pair showing a 

mirror symmetric pattern at 310Ra   and 410Ra  . For the 
cases of 310Ra  , the temperature variation of the bottom wall 
had little influence on the change in overall flow structures. In 
the cases of 0.1 ~ 1.0b  , the two-fold symmetric pattern of 

the main circulation at 0.0b   was slightly broken, and the 

main convection structure with a mirror-symmetric pattern 
about the vertical centerline of the enclosure was distributed in 
the enclosure. The sizes of inner vortices in the lower parts of 
the cylinder became slightly larger than those in the upper part 
of the cylinder. For the cases of 410Ra  , the main convection 
structures show a mirror symmetric pattern about the vertical 
centerline of the enclosure for all cases of 0.0 ~ 1.0b  . With 

increasing b , the inner vortices in the lower part of the 

cylinder gradually increased in size.  
For the cases of 510Ra  , the small inner vortices of the 

cylinder started to form in the lower part of the cylinder at 
0.2b   with increasing b . Then, the lower inner vortices 

gradually increased in size with increasing b  to 0.8b  . For 

the cases of 0.9 ~ 1.0b  , a pair of secondary vortices 

separating from the main convection structure formed above 
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the top surface of the cylinder because of the strong buoyancy 
effect.  

For the cases of 610Ra  , the small inner vortices of the 
cylinder started to form in the lower part of the cylinder at 

0.4b   with increasing b  which is caused by the increase in 

temperature of the bottom wall. For the cases of 0.4 ~ 1.0b  , 

the thermal gradient becomes continuously stronger; thus, the 
inner vortices in the lower part of the cylinder gradually 
increase in size. By following the circulation flow of the lower 
inner vortices, the isotherms are more distorted further as b
increases compared to 510Ra  . The generation and 
dissolution of vortices are dependent mainly on the temperature 
of bottom wall in the enclosure. 
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