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ABSTRACT 
Nanofluids are generally found to exhibit better thermophysical 
properties and heat transfer capabilities than the corresponding 
base fluids. Experimental and theoretical investigations on the 
forced and free convection behavior have reported superior heat 
transfer capability of nanofluids, except in a few cases. Studies 
on natural/free convective heat transfer in nanofluids have 
shown negative impacts when investigations were performed 
on a vertical column of the fluid. The absence of a pumping 
system makes natural circulation loops silent and also saves the 
energy for pumping the fluid. Since the thermosyphon loop 
resembles a forced circulation loop except for the absence of a 
pump, a nanofluid can be expected to yield enhanced heat 
transfer, compared to the base fluid. The present work captures 
the heat transfer performance of oxide nanofluids in a 
rectangular thermosyphon loop. The density gradient created by 
the temperature gradient between the heating and cooling 
sections, assisted by gravity, constitute the driving force in the 
loop. The temperature of the fluid at the inlet and exit of the 
heating sections and, on the pipe surface along the heating 
section is measured. The effect of the external heat input, 
concentration of nanofluids and average temperature of the 
cooling section on the heat transfer are investigated. The results 
have shown that the Al2O3 nanofluids have enhanced heat 
transfer characteristics as compared to water in rectangular 
thermosyphon loops. 

 

NOMENCLATURE 
 
Grm [-] Modified Grashoff’s number 
D
  

[m] Loop diameter 

L [m] Length of the loop 
Stm [-] Modified Stanton number 
Lt [m] Total Loop length 
 

 
INTRODUCTION 
Thermosyphon cooling systems find wide applications in 
automobiles, nuclear power plants, electronic circuits, and other 
similar equipment. Compared to forced circulation systems, 
thermosyphon systems do not require a pump to aid in 
circulation, resulting in lesser power consumption and silent 
operation. As far as cooling fluids are considered, water is one 
of the most widely used, owing to its superior heat capacity. A 
number of investigations have been undertaken in the past, on 
the heat transfer behavior of suspensions of particulate solids in 
liquids, which are expected to be cooling fluids of enhanced 
capabilities, due to the much higher thermal conductivities of 
the suspended solid particles, compared to the base liquids. 
However, most of the early studies were focused on 
suspensions of millimeter or micron sized particles, which, 
although showed some enhancement in the cooling 
performance, also exhibited problems such as sedimentation 
and clogging. The gravity of these problems has been more 
significant in systems using passages of small dimensions. The 
suspension of nanometer sized particles in fluids have offset a 
lot of sedimentation and clogging issues.  
It was Choi [1] who first introduced the term nanofluids for the 
suspensions of nanoparticles in fluids. Investigations on various 
nanofluids [2][3][4][5] have shown that their thermal 
conductivities are superior to that of base fluids like water and 
HE-200 oil. A number of investigations have been reported on 
the heat transfer performance of different types of nanofluids, 
under various flow regimes and different configurations of the 
heat transfer equipment. Convective heat transfer studies have 
been carried out in the developing region [8, 14] as well as 
under fully developed conditions [6]. Studies have been 
reported pertaining to laminar [6, 7, 9, 10, 11], transition [12, 
15] and turbulent [10, 13] regimes of flow.  

Investigations on the influence of filling ratio, operating 
temperatures, inclination and dimensions on two phase 
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thermosyphons containing different nanofluids have shown 
both enhancement and deterioration in performance. Xue et al. 
[16] showed that carbon nanotube-water nanofluid deteriorates 
the heat transfer in the thermosyphon as compared with water. 
Investigations by Khandekar et al. [17,18] on the overall 
thermal resistance of a closed two-phase thermosyphon using 
water-based Al2O3, CuO and laponite clay disk nanofluids have 
shown that nanofluids are inferior to water. The heat transfer 
performance of TiO2 -water and TiO2-alcohol nanofluids in a 
thermosyphon is found to be 10.6% superior to that of water, as 
reported by Naphon et al. [19].  Naphon et al. [20] also reported 
that thermosyphon efficiency can be enhanced by 40% by the 
use of TiO2-R11 nanofluid.  Experiments by Liu et al. [21,22] 
in a heat pipe using CuO and CNT nanofluids showed that heat 
transfer performance of the evaporation section and the 
maximum heat flux (MHF) could be enhanced.  Noie et al. [23] 
reported that Al2O3-water nanofluid in a thermosyphon 
enhances the heat pipe efficiency by 14.7%, and that the 
thermosyphon shows a more uniformly distributed temperature. 
The use of Ag-water nanofluid in a thermosyphon by 
Paramatthanuwat et al. [24] has hown that the heat transfer 
capacity can be enhanced by 70%.  Teng et al. [25] reported 
that Al2O3-water nanofluid  with a mass concentration of 1.0% 
results in 16.8% enhancement of thermosyphon efficiency.  
 Investigations into the steady state and transient 
behavior of single phase thermosyphon loops with water as the 
base fluid has been carried out by many researchers. Vijayan et 
al. [26] investigated the influence of loop diameter on the 
stability of the loop at a wide range of heater power and cooling 
water flow rate.  It was found that stable steady state is obtained 
for 6 mm and 11 mm loops for the entire single-phase region, 
while for a 23.2 mm diameter loop, instability was observed for 
certain range of operating conditions. Instability was identified 
from the flow reversals and the fluid temperature oscillations. It 
has been recognized that generally acceptable non-loop specific 
scaling laws are a necessity for understanding and comparing 
the behaviour of natural circulation in loops. Vijayan et al. [27] 
has proposed that for rectangular natural circulation loops 
under steady state conditions, the Reynold’s number is a 

function of 







L
DGrm . This shows that Grm(D/L) is the 

appropriate scaling parameter for the steady state behaviour.  
Though the power-to-volume scaling principles correctly 
simulate the steady state behaviour of loops, they fail to do so 
as far as the transient and stability behaviour are concerned, 
owing to the influence of loop diameter and modified Stanton 
number (Stm). Misale et al. [28] analysed the influence of 
thermal boundary conditions on the flow regimes inside the 
pipes and on the stability of a natural circulation system 
containing distilled water. It was found that varying the heat 
sink temperature between -20 oC and +30 oC resulted in 
crossing the stability threshold. The fluid circulation rates were 
also found to increase with an increase in the sink temperature. 
Vijayan et al.[29] analysed steady state and stability 
characteristics of single phase rectangular natural circulation 
loops with different cooler and heater orientations, namely, 
Horizontal Heater Horizontal Cooler (HHHC), Horizontal 

Heater Vertical Cooler (HHVC), Vertical Heater Horizontal 
Cooler (VHHC) and Vertical Heater Vertical Cooler (VHVC). 
The HHHC cooler orientation was found to give the maximum 
flow rate but was also the least stable, while the VHVC 
orientation was the most stable. Cammarata et al. [30] 
presented a stability analysis considering the effect of the 
variation of the modified Grashof number, Grm, for a wide 
range of loop geometrical configurations, assuming various 
aspect ratios (ratio of the vertical to the horizontal length of the 
tube) and inner tube diameters. It was found that loops with 
lower aspect ratios are more stable and less sensitive to 
variations of Grm. The effect of pressure drop on the stability of 
single phase natural circulation loops was analyzed by Misale 
et al. [31]. The insertion of orifices in the vertical legs of the 
loop increased the pressure drop resulting in stabilizing the 
loop. Vijayan et al [32] reported the effect of loop diameter in 
the performance of single and two phase natural circulation 
loops. In the stability map (Grm v/s Stm) the unstable zone is 
found to shift up with reduction in loop diameter. In other 
words, increasing the loop diameter destabilizes single-phase 
natural circulation loop. It was also revealed that the Lt/D ratio 
(where Lt is the total loop length) is an important parameter 
affecting instability; higher the Lt/D ratio better will be the 
stability. 
 In the present work the steady state performance of a 
rectangular loop with VHVC orientation was experimentally 
analysed using water as well as Al2O3-water nanofluid as the 
working fluid. 

EXPERIMENTAL SETUP 
The experimental setup consists of a natural circulation loop 

fabricated using copper tube of 10mm diameter. The aspect 
ratio (height to width) of the loop was maintained as 1, as loops 
with aspect ratio greater than unity are reported to be less stable 
[30]. The orientation of the heater and cooler were also chosen 
as vertical as they are reported to be most stable [29]. The loop 
was fabricated with a height and width of 150 cm. The heating 
section was fabricated by wrapping a band heater (Brisk Heat 
Inc., USA) tightly over the copper tube to provide a constant 
heat flux, which was then thermally insulated.  The heating 
section was isolated from the other parts of the loop using 
Teflon sleeves to prevent axial conduction of heat along the 
tube. The cooling section consisted of a counter-flow heat 
exchanger which was supplied with cooling water from a 
refrigerated constant temperature water bath at the required 
temperature. The parts of the tube other than the heater and 
cooler sections were also thermally insulated from the ambient. 
The fluid and heater surface temperatures were measured using 
calibrated T-type thermocouples. The loop fluid temperatures 
were measured at the inlet and exit of the heater and the cooler. 
The temperature of the cooling water was also measured at the 
inlet and exit of the cooler. The temperatures on the tube 
surface along the heater region were measured with the help of 
six T-type thermocouples which were braced on to the copper 
surface. The thermocouples were connected to a Agilent 
Benchlink datalogger interfaced to a computer. thus   recording 
the data online at intervals of one second. The heater was 
connected to the mains through a variable transformer, which 
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helps in varying the heater power input. A schematic diagram 
of the experimental setup is shown in Fig:1. 

 
Figure 1 Natural Circulation Loop 

The working fluids used in the experimental study consisted 
of both distilled water and Al2O3-water nanofluids. The 
distilled water was supplied by a Millipore water purification 
system. The Al2O3 nanoparticles were of an average diameter 
of 30 nm which was supplied by Sigma Aldrich, USA. The 
nanofluids were prepared by the two step method. The stability 
of the nanofluids were improved with the addition of Sodium 
Dodecyl Benzene Sulfonate (SDBS) as surfactant and by 
sonicating using a probe sonicator (Sonics, USA) for 2 hrs. It 
was found that the stability of Al2O3-water nanofluids are 
maximum when the amount of SDBS is equal to 25% of the 
mass of the Al2O3 nanoparticle. The required quantity of 
surfactant is first measured using an electronic balance of 0.1 
mg accuracy and is added to the distilled water. The required 
quantity of nanoparticle is then measured and transferred to a 
container to which the distilled water containing surfactant is 
added and then subjected to sonication for proper dispersion of 
the nanoparticles in the fluid giving them long term stability. 
The quality of the dispersion is ascertained using a Malvern 
Zetasizer which measures the zeta potential of the fluid. The 
SEM image of Al2O3-water nanofluid is shown in Figure 2. 
Figure 3 shows the zetapotential value of 0.01% by volume of 
aqueous alumina nanofluid containing 25% by mass of SDBS 
surfactant. 

 
Figure 2 SEM image of Al2O3-water nanofluid of 0.01% by 

volume concentration 

 
Figure 3 Zeta potential value of 0.01% by volume aqueous 

alumina nanofluid containing 25% by mass of SDBS surfactant 
 
The experiments were conducted initially using water as the 
working fluid in the loop at various heat inputs and cooling 
water temperatures. The experiments were then repeated at the 
same conditions using nanofluids of particle concentrations 
0.01%, 0.025%, 0.05%, 0.075% and 0.1% by volume.  

TRANSIENT ANALYSIS 
A transient analysis of the thermosyphon loop was 

performed by monitoring the time varying  temperatures of the 
heater surface and the fluid at various locations in the loop 
carrying distilled water and nanofluids. The loop temperature 
gradient is one of the main parameters that indicates the 
transient characteristic of the loop.  

 

 
 

Figure 4 Loop temeprature gradient for water at 15 deg Celsius 
for different heat input values 

 
Figure 4 shows the transient variation of the loop temperature 
gradient (difference between average heater temperature and 
average cooler temperature) at different heat inputs. for water. 
Figure 5 shows the transient variation of loop temperature 
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gradient at different heat inputs for 0.05% concentration 
nanofluid. In both cases the maximum temperature difference 
reaches earlier at higher heat inputs, as expected. Also all 
transient profiles show a unidirectional temperature gradient, 
stating that the flow is unidirectional and the loop is stable at all 
conditions. 
 

 
Figure 5 Loop temperature gradient for water- Al2O3 0.05% at 

15 deg Celsius for different heat input values 
 
 

 
Figure 6 Loop temperature gradient for water at 460W for 

different cooling water temperatures 
 

Figures 6 and 7 show the transient variation of loop 
temperature gradient with sink temperature for water and 0.1% 
concentration nanofluid. In both cases, the maximum loop 
temperature gradient was obtained for a sink temperature of 
10oC. The loop temperature gradient is an important parameter 
in thermosyphon systems as it propels the flow inside.  

Figure 8 shows a comparison of the transient loop 
temperature gradient between water and different 
concentrations of nanofluids. Eventhough the maximum loop 
temperature was reached for water, by the time the system 
reaches steady state the temperature gradient was higher for 
nanofluids, showing that the loop containing nanofluids have 
achieved higher fluid flow rates. 

 

 
Figure 7 Loop temperature gradient for water- Al2O3 0.1% 

at 460W for different cooling water temperatures 
 
Figure 9 shows the transient variation of average surface 

temperature for water and different concentrations of 
nanofluids. For all concentrations of nanofluids, the average 
heater surface temperature is found to be lower than that for 
water. 

 

 
 

Figure 8 Loop temperature gradient at 460W, 15 deg 
Celsius cooling water temperature, for water and nanofluids 
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Figure 9 Average heater surface temperature at 460W  

 for water and nanofluids 
 

STEADY STATE ANALYSIS 
 

A steady state analysis was performed based on the 
temperatures at various points on the heater surfaces and the 
fluid after they have reached the steady state. The heat 
capacities of the fluids were arrived at from the energy balance 
across the heat exchanger acting as the sink. The heat transfer 
coefficient was obtained from the heat input, heat capacity of 
the fluid and the steady state fluid temperatures at the inlet and 
the exit of the fluid and heater surface. Figure 10 shows the 
variation of the local heat transfer coefficient along the heater 
section for water and different concentrations of nanofluids. 
The nanofluids were found to be better heat transfer fluids in a 
thermosyphon loop as compared to water. This is due to the 
increased flow rates created by the higher loop temperature 
gradients in the case of nanofluids, compared to the base fluid. 

 

 
Figure 10 Local heat transfer coefficient at 460W and 15 

deg Celsius for water and nanofluids 
 

CONCLUSION  
 

Experimental investigations were performed on a 
rectangular thermosyphon loop to evaluate its steady state 
perfromance and stability characteristics. Transient analysis 
shows that the nanofluids are stable at different combinations of  
heat inputs and sink temperatures. The loop temperature 
gradients were found to be higher in the case of nanofluids, 
compared to water. This is found to result in higher flow rates 
and is reflected in the higher heat removal capability of 
nanofluids.  As a result of this, the average heater surface 
temperature is also found to be lower in the case of Al2O3-water 
nanofluids, compared to the base fluid.  
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