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ABSTRACT 

Mixed convection heat transfer in two-dimensional lid-

driven rectangular cavity filled with air (Pr =0.71) is studied 

numerically. A hybrid scheme with multiple relaxation time 

Lattice Boltzmann Method (MRT-LBM) is used to obtain the 

velocity field while the temperature field is deduced from 

energy balance equation by using the Finite Difference Method 
(FDM).  

    The main objective of this work is to investigate the model 

effectiveness for mixed convection flow simulation. Results are 

presented in terms of streamlines, isotherms and Nusselt 

numbers.  

    Excellent agreement is obtained between our results and 

previous works. This comparison demonstrates the robustness 

and the accuracy of our proposed approach. 

 

INTRODUCTION 

    Nowadays, the Lattice Boltzmann Method (LBM) is 

considered as an alternative numerical method which has 
attracted much attention as a technique in fluid engineering [1]. 

This method based on a mesoscopic study of the macroscopic 

problem incorporates the basic conservation laws of the 

hydrodynamic variables such as density and velocity. This 

scheme is initially developed from its predecessor, the Lattice 

Gas Automata (LGA). The LBM has rapidly evolved into a 

self-standing research subject. Thereafter, it has to be an 

efficient tool for simulating problems of fluid mechanics and 

transport phenomena [2-7].  

   A literature survey shows that this method is also used for 

applications involving interfacial dynamics and complex 
boundaries such as multiphase flows [8,9], compressible flows 

[10,11] and porous media [12]. Moreover, LBM is well-suited 

for high-performance implementations on massively parallel 

processors such as, for example, graphics processing units.  

Concerning the term of collision in the lattice Boltzmann 

equation, two types of collision operator are considered. One of 

the simplest and most widely used model, proposed by 

Bhatnagar et al. [13] and called BGK model, is based on a 

single relaxation time (SRT). It achieved considerable success 

due to its easy implementation and the ability to take complex 

geometries [15-17]. 

     Despite the great advantages, this model, with single 

relaxation time, reveals deficiencies due to the numerical 

instabilities [14] and then difficulties to reach high Reynolds 

number flows. This deficiency can be easily treated by using 
the second type of collision operator called Multiple Relaxation 

Time (MRT) operator [18-20]. The MRT model presents 

numerous advantages compared to the BGK model. It leads to a 

stable solution for flows with higher Reynolds numbers. 

NOMENCLATURE 
 
c       [m.s

-1
]              Lattice speed 

dx     [m]                  Lattice width   

Gr     [-]                    Grashof number 

x       [m]                  Horizontal coordinate   

g       [m.s
-2

]              Gravitation acceleration  

y       [m]                  Vertical coordinate   

H      [m]                  Cavity height   

L       [m]                  Cavity width   

Nu    [-]                   Average Nusselt number  

Pr      [-]                   Prandtl number  

Ri      [-]                   Richardson number   

Re     [-]                   Reynolds number  

Ra     [-]                   Rayleigh number    

t        [s]                   Time step    

T       [K]                 Temperature   

u,v    [m.s
-1

]             Velocity components 

U,V   [-]                     Dimensionless velocity components 

U0     [m.s
-1

]             Lid-driven constant velocity   

Greek symbols 

       [m
2
.s

-1
]           Thermal diffusivity  

       [K
-1

]               Thermal expansion coefficient  

       [m
2
.s

-1
]            Kinematic viscosity  

       [kg.m
-3

]           Density of fluid  

       [-]                   Dimensionless temperature 

Subscripts 

h                              hot 

c                              cold 

f        fluid 

w                             wall 
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    The main limitation of using LBM in engineering 
applications is the lack of satisfactory model for the thermal 

fluid flows problems. To remedy this problem, several 

approaches have been proposed which can be gathered into 

three categories: multispeed approach, double population 

approach and hybrid approach. The multispeed model [21,22] 

consists in extending the distribution function in order to obtain 

the macroscopic temperature. Previous workers [21-23] 

concluded that this model is not advantageous because it 

requires more computational resources and less stable than the 

other approaches described below. The double population 

approach, called passive scalar approach, has been proposed to 

use two independent distributions function [24,25]. The first 
approach is for the velocity field and the second is for the 

temperature field while using different relaxation time. In this 

approach the temperature is considered as a passive scalar 

transported without changing the velocity field. This model 

assumes that the viscous dissipation and compression work can 

be neglected for incompressible fluids. The evolution of the 

temperature is given by the advection-diffusion equation. 

However, this approach is considered ineffective, because it is 

not necessary to add a distribution function to simulate a 

passive scalar. 

Concerning the hybrid model and according to Lallemand 
and Luo [26], the instability of previous models inherent the LB 

method is due to a coupling between the modes of collision 

operator. Authors show that the fault cannot be eliminated by 

increasing the number of speeds. Therefore, they argue that the 

best alternative to build a thermal model is to use a hybrid 

method in which the flow is determined by the LBM method 

and the energy equation is solved by another method. Thus, the 

present article aims to present a novel model based on the 

Hybrid Multiple Relaxation Time Lattice Boltzmann Method 

(MRT-LBM) for solving the mass and momentum conservation 

equations with D2Q9 lattice model, coupled with the Finite 

Difference Method (FDM) for computing the temperature. The 
method is validated thereafter for the classical MRT-lid-driven 

cavity. Finally, the model has been used to simulate the 2-D 

mixed convective flow in lid-driven square cavity. 

This work is organized as follows. First we present the hybrid 

multi relaxation time Lattice Boltzmann Method with D2Q9 

lattice model to simulate the fluid flow. In the second step we 

describe  the Finite Difference Method (FDM) used to solve the 

energy equation. Thereafter,  we present the MRT-lid-driven 

cavity for code validation and results for coupled (MRT-LBM) 

with (FDM) for mixed convection simulation in 2D-lid-driven 

square cavity. Finally,  Effects of varying, both, Richardson and 
Reynolds numbers on the average Nusselt number are analyzed.  

 

MULTIPLE RELAXATION TIME LATTICE BOLTZMANN 
METHOD (MRT-LBM) 
The Lattice Boltzmann equation with the multiple relaxation 

time (MRT) operators can be expressed as: 

 )t,x(mmSM)t,x(f)tt,tex(f eq

ijjij

1

iii       (1)      

where fi is the discrete distribution function at computing node 

x , at time t, moving with velocity .ei  M is a transform matrix 

projecting the discrete distribution function f into moment 

space ,f.Mm  eq
ijm  is the equilibrium moment and S is the 

relaxation matrix. 
Physically moments are given by: 

T
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where  is the intensity,  jx and jy the x and y components of 

momentum, e is the energy,  is defined as the kinetic energy, 

qx and qy correspond to the x and y components of the energy 
flux vector, pxx and pxy correspond to the diagonal and off-

diagonal components of the viscous stress tensor, and T denotes 

the transpose operator. 

The nine velocity square Lattice Boltzmann model D2Q9, as 

shown in Fig. 1, has been used in our work due to its widely 

and successfully simulation of the two-dimensional thermal 

flows. 

 

 

 

 

 

 

 

 

Fig. 1 Lattice structure for the (D2Q9) model. 

 

For the D2Q9 lattices, the particle speeds ie  are defined as: 
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Where 
dt

dx
c   is the lattice speed, dx and dt are the lattice 

width and time step, respectively. It is chosen that  dx=dt, thus 

c=1. The macroscopic variables such as density  velocity 

u are calculated as the moments of the distributions functions: 
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The equilibrium density distribution function which 
depends on the local velocity and density is given by: 
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Where i is the weighting factor defined as: 
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In the LBM the kinematic viscosity  is related to the 
relaxation time by the relation: 

tc)5.0( 2
s                                                           (7) 

where 
3

c
cs   is the speed of sound for the D2Q9  lattices. It is 

to be noted that the viscosity is positive which requires the 

choice of 5.0 . 

In the present work, the transformation matrix M, the velocity 

moment vector m and the equilibrium value of moments are 

defined in the same form as well as in Refs [24].  

The diagonal relaxation matrix can be written as: 

S=[ S0, S1, S2, S3, S4, S5, S6, S7, S8] 

where S0=S3=S5=0 for mass and momentum conservation 

before and after collision [15]. S7=S8=1/ due to the fact that 
the viscosity formulation is the same as in SRT model [26]. 

In the present simulation S1=1.64, S2=1.2 and  
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FINITE DIFFERENCE METHOD FOR TEMPERATURE 
FIELD 

The purpose of this study is to apply the lattice Boltzmann 

method (LBM) to simulate mixed convection in a lid-driven 

cavity with no source term inside. We assume that the viscous 

heating and compression work are neglected If we restrict our 

considerations to 2D cartesian coordinates, the energy balance 

equation is given by: 
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This equation is discretized by the Finite Difference Method 

(FDM) using the Taylor series expansion of the second order. 

To improve the stability of the hybrid model used in this letter, 

Lallemand and Luo [26] suggest using a discretization in 

accordance with discretization speeds. While this choice is not 
unique, these authors proposed the following discretization for 

the derivatives: 
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 For the time derivative, we use an explicit scheme: 
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According to the above equations, the discrete form of the 

energy equation is written as: 
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   The coefficient that accompanies (Ti,j) in the above equation 
plays an important role for explicit schemes. These schemes are 

conditionally stable and then lead to constraints on the time 

step and space step choices. One of the conditions of stability is 

that this coefficient is positive [26] implying that the thermal 

diffusivity  is limited:  .
6

1

Pr



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Concerning the Mach number, the assumption is that 

the flow remains within a Mach number limit (normally less 

than 0.3). Calculations have been done for incompressible fluid  

with a Mach number equal to 0.1 . 

PROBLEM DESCRIPTION AND BOUNDARY 
CONDITIONS 

Problem description 

    Simulations of mixed convection in a lid-driven cavity have 

carried out to demonstrate the applicability of this method.    

Fig 2 (case (b)) shows the 2D-lid-driven cavity when the 

vertical side walls are thermally insulated and the top wall 

moves at a constant velocity U0=0.1. 

    The top and bottom walls are maintained isothermally at 

temperatures Tc  and Th, where Th >Tc. 

 

 

 
 

 

 

 

 
                        

Fig. 2 Physical model and boundary conditions. 

A multiple Relaxation Time (MRT) model is used to carry 

out LBM computations to obtain steady solutions for both 

geometric situations (Fig2.a and Fig2.b). 

The dimensionless variables governing this problem are U 

the x-component velocity, V the y-component velocity. The 

Richardson number Ri , The Grashof number Gr, the Reynolds 

number Re and the Prandlt number Pr are defined as: 
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The average Nusselt number, defined by temperature 

gradient at walls, is calculated via: 
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The following dimensionless quantities are given by: 
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Boundary conditions 

Implementation of boundary conditions for simulation is 

very important. For the present work there are two types of 

boundary conditions applied to the computational domain. 

The Dirichlet boundary conditions are given by: 

for velocity:      Top wall: U=U0=0.1 

                                        V=0.0 

                         Rest of walls: U=V=0.0 

for temperature:    Hot wall:  =Th =1. 

                         Cold wall:  =Tc=0.0 

                       Adiabatic wall: 0
n wall



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Fig. 3 Implementation of Bounce-back boundary condition 

   For the Lattice Boltzmann equation the difficulty is that the 

unknown distribution functions at the boundary nodes pointing 

to fluid zone must be specified. So, we apply the bounce-back 

condition [24] at the walls, as shown in Fig.3. The physical 

wall condition is located at the half grid spacing beyond the last 

fluid node (xf). The particle moves from the last fluid node 

toward the physical wall (xw) then it comes back to its place 

after being reflected by the stationary wall, so at the walls we 

have u=v=0, this is expressed as: 

),1t,ex(f)1t,x(f ififj   

 where fj is the unknown distribution function of the velocity:    
ej ≡ ei.  

As the scheme is built without a special treatment of the 

velocity-pressure coupling which arises in incompressible 

situations, LBM, in its  standard form, works in the stability 

condition
 

known from the explicit scheme for diffusion 

equation. The relation 1x/t  , is be frequently used [24]. 

RESULTS AND DISCUSSIONS  
MRT-lid-driven cavity 

Firstly, the present 2D-code is validated for the classical lid-

driven square cavity (Fig.2 (case(a)) applying the hybrid MRT-
LBM. In simplest of geometrical settings, the lid-driven cavity 

flow is of great scientific interests [28]. In terms of accuracy 

and numerical efficiency, the lid-driven cavity is considered as 

the classical test problem for the assessment of numerical 

methods and is relevant to many industrial applications and 

academic research [29-33]. That why it has attracted 

considerable attention and is probably one of the most studied 

fluid problem in computational fluid dynamics.  

Figures from 4a to 4d show results of streamlines at 

different Reynolds numbers ranging from 400 to 5000, the 

number of lattice nodes in each coordinate direction is equal to 

161 for Re ≤ 1000 and  321 when Re increased beyond 3200. 
We should noted from these figures that, at low Reynolds 

numbers, a main vortex occupies most of the cavity volume  

and two secondary vortices at the bottom upstream and 

downstream corners. 

When Reynolds number  reaches 3200 another top left 

corner vortex starts to appear. In addition, small corner vortex 

emerged at the bottom right corner beyond Re=5000. 

Compared with earlier results in the literature [30,34-36] we 

noted that our computer streamlines are graphically 

comparable. 

Table1 shows the numerical results of the locations of the 
primary vortex and two bottom secondary vortices at different 

Reynolds numbers. Numerical results given by many authors 

[30,34-37] are included for comparison. 

Table 1: Comparison of the locations of the vortices at 

different Reynolds numbers Re, (case (a) Fig2).  

              Primary vortex       Left secondary vortex    Right secondary vortex 

                     x         y                     x          y                        x          y  

Re = 400 

Our work    .5525   .6084                  .0483      .0485                .8787    .1232 

Ref [30]      .5547    .6055                  .0508      .0469                  .8906    .1205 

Ref [34]      .5563    .6000                   .0500     .0500                  .8875    .1188 

Ref [35]      .5532    .6055                  .0528      .0439                  .8908    .1384 

Ref [36]      .5608    .6078                  .0549      .0510                  .8902    .1255 

Ref [37]      .5571    .6071                  .0500      .0428                  .8857    .1142 

 Re = 1000 

Our work     .5294    .5677                 .0817      .0783                  .8670    .1143 

Ref [30]      .5313    .5625                  .0859      .0781                  .8594    .1094  

Ref [34]      .5438    .5625                  .0750      .0813                  .8625    .1063 

Ref [35]      .5266   .5532                   .0840      .0840                  .8577    .1092 

Ref [36]      .5333    .5647                  .0902      .0784                  .8667    .1137 

Ref [37]      .5285    .5642                  .0857      .0714                  .8642    .1071 

Re =3200 

Our work     .5129   .5439                  .0813      .1164                  .8293    .0892 

Ref [30]      .5165    .5469                  .0859      .1094                  .8125    .0859 

 Re = 5000 

Our work     .5144    .5350                 .0748      .1311                  .8122    .0780 

Ref [30]      .5117    .5352                  .0703      .1367                  .8086    .0742 

Ref [34]      .5125    .5313                  .0625      .1563                   .8500   .0813 

Ref [36]      .5176   .5373               .0784     .1373                .807     .0745 
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Fig 4 Streamline distributions at different Reynolds numbers, (case 

(a) Fig2). 

 
     These results include Ghia et al. [29] who employed the 

multigrid method for Navier-Stokes equations solution for the 

shear-driven flow in square cavity when Reynolds number is up 

to 10000. Vanka [34] used the multigrid technique for the 

coupled iterative solution for the momentum and continuity 

equations. In this work, asymmetrical Gauss-Siedel technique is 

proposed for the smoothing process. Schreiber and Keller [37] 

used an efficient and reliable numerical techniques of high-

order accuracy for solving problem of driven cavity. The 

present comparison takes into account sstudy of Pandlt [35] 

who carried out the numerical simulations using a second order 

compact finite difference discretization of the fourth order 
stream function equation for rectangular geometry. Hou et al. 

[36] used the Lattice Boltzmann method with the BGK model 

to demonstrate the capabilities of this method for simulating the 

two-dimensional driven cavity flow. 

    From comparison of the locations of the vortices at different 

Reynolds numbers presented inTable1, we can conclude that 

the present MRT-Lattice Boltzmann method seems to be more 

accurate when Re increases because the difference between the 

present results and those of Ghia et al. [30] decreases. Thus, the 

present method is validated and can indeed be used for 

simulating mixed convective flows in lid-driven cavity. 

Table2 Comparison of CPU times and number of steps with 

Ref [40] for different grid sizes, for Ra = 105 

Grid size 

)(

)(

AFGMSteps

LBMSteps  

)(

)(

AFGMCPU

LBMCPU  

32*32 13.5 0.73 

128*128 64.2 0.278 

256*256 115.1 0.606 

 

Table2 summarize the comparison of CPU time ratio as well as 

number of steps ratio between LBM and finite volume multi-
grid method used in Ref.[40] for the same geometrical and 

physical configurations.  

In order to check the accuracy of LBM-MRT model, 

comparisons have been done between our results and those of 

Bruneau and Saad [33]. Table 3 shows velocity values (u and v) 

through the horizontal and vertical centerline of the cavity at 

Re=1000.  

It seems from this table, that the present results are in good 

agreement with numerical results of Bruneau and Saad [33]. 

Table 3: Horizontal and vertical velocity, through the horizontal 

and vertical centerline of the cavity at Re= 1000 with Ref  [33]. 
 

x 

 

v 

 

y 

 

u 

Ref [ 33] Our work Ref [33] Our work 

0.0000 0.0000 0.0000 1.0000 -1.0000 -1.0000 

0.0547 -0.41018 -0.40836 0.9531 -0.47239 -0.46874 

0.5000 0.02580 0.02574 0.5000 0.06205 0.06203 

0.7734 0.33398 0.33217 0.2813 0.28040 0.28029 

0.9297 0.29622 0.29592 0.0625 0.20227 0.20216 

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Coupled hybrid-MRT Lattice Boltzmann Method with 

FDM for simulation of mixed convection 

     In this section we will study the association of the hybrid 

model of Lattice Boltzmann method with multiple relaxation 

time operators for collision term in order to solve the velocity 

field. Finite Difference Method is implemented for the energy 
equation resolution in order to explore the temperature field in 

the case of a lid-driven cavity shown in Fig.1b. 

We present in Figs 5 a-c-e the temperature distributions and in 

Figs 5 b-d-f the velocity fields for different values of 

Richardson and Reynolds numbers corresponding to the 2D-lid-

driven cavity when the vertical side walls are thermally 

insulated and the top wall moves at a fixed velocity U0=0.1ms-1. 

    In order to study the effect of Richardson number, as an 

important parameter providing a measure of the relative 

magnitude of natural convection effect compared to forced 

convection effect, calculations have been carried out for the 
three following cases:  Ri>1, Ri=1  and Ri<1. The Grashof 

number is fixed at Gr=106
, while Ri and Re are changed in the 

range of (10;316), (1;1000) and (0.1;3162), respectively. 

    For dominant natural convection (Ri=10, Re=316), Figs.5a-

5b show the formation of two primary counter-recirculating 

vortices, one is upper driven by the moving top lid and the 

other is lower driven by buoyancy forces. This is due to the 

interaction between the shear forces and buoyancy due to 

unstable temperature gradient in a moving lid. It can noted that, 

in the lower portion of the cavity the recirculating vortex is 

larger than in the upper due to the effect of the buoyancy 
outweighs. The mixing hot and cold fluids between the counter-

recirculating vortex and the impingement of cold and hot fluids 

on the top and bottom walls, simultaneously, result in steeper 

temperature gradients in these regions. 

971



    

Streamlines and isotherms plots for (Ri=1, Re=1000) are shown 

in Figs.5c and 5d. The formation of two almost equal counter-
recirculating vortices is due to the relatively balanced 

interaction of the buoyancy and shear effects. In addition, the 

apparition of the vortex in the lower half of the cavity is due to 

opposing action of the moving lid. This case is quantitavily in 

good agreement with Moallemi and Jang [38] (for Pr=1) who 

studied the effect of Prandtl number (.01<Pr<50) for laminar 

mixed convection using the control volume approach with the 

power low scheme. They used a non-uniform grids ranging 

from 22*22 to 52*52. 

On the other hand, Figs.5e-5f  show, respectively, the isotherms 

and streamlines predicted by the present hybrid Lattice 

Boltzmann-finite difference simulation for (Ri=.1, Re=3162). 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig 5 Richardson and Reynolds numbers effects on temperature 

(a-c-e)  and velocity fields (b-d-f), (case (b) Fig2). 

    As shown from Fig.5f, the main circulation filled the entire 

cavity. Due to stagnation pressure and frictional losses three 

smaller secondary vortices are visible on the left vertical wall 

and near the bottom corners. All these results are similar to 

those of conventional mechanically-driven flow in absence of 

buoyancy for same Reynolds number (see Fig.4). Also, this 

case  clearly shows that the effect of the mechanically-driven 
top wall (lid) dominates the entire cavity. 

    Figure 5e depicted the distribution of isotherms and indicates 

that the steep temperature gradients occur at locations near the 

top and bottom walls, and the cavity is filled with the well 

mixed cold fluids. 

   The effect of  both Richardson and Reynolds numbers on the 

average Nusselt number are presented in Table 4. We observe 

that the heat transfer at the hot wall increases with decreasing 

the Richardson number Ri due to the increased buoyancy effect 

in the lower portion of the cavity. Comparison has been done 

with results of Cheng and Lin [39] who studied the effect of 

temperature gradient orientation on the fluid flow and heat 
transfer in lid-driven differentially heated square cavity using 

the higher-order compact scheme.  

From these comparisons we can conclude that the use of MRT 

operators coupled with the FDM can capture fundamental 

behaviours in thermal flows of engineering interest and for 

simulating mixed convection in lid-driven square cavity. 

Table 4 Comparison of average Nusselt number Nu with 

previous works for the lid-driven square cavity 

 
  Ri                  Present work          Ref [39]         Error (%) 

10                   4.848                     4.860             0.246% 

1.                    5.739                     5.750             0.191% 

0.1                  12.138                   12.161           0.189% 

CONCLUSION 

      In this work, we have developed a hybrid Lattice 
Boltzmann Method with multiple relaxation time coupled with 

the Finite Difference Method to simulate mixed convection. 

Firstly, the code has been validated for the classical lid-driven 

cavity. Second, we have simulated the effect of, both, 

Richardson and Reynolds numbers on mixed convection fluid 

flow inside a lid-driven square cavity. 

    The numerical results for a wide range of Reynolds number 

show that this method is adequate and numerically stable at 

high Reynolds number. The results predicted by the present 

model are in excellent agreement with other numerical results. 

As a perspective of this work that this method will be tested for 

more general problems ultimately in three spatial directions and 
especially in the combined mode problems which are 

computationally very expensive. Work in this direction is 

underway. 
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