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ABSTRACT

The bituminous oil sands formations in northern Alberta,
Canada are a vital economic natural resource for Canada as
their potential for oil production has become quite relevant in
recent years due to advances in petrochemical technology.
However, the disposal of slurries from the synthetic oil
production processes has become quite problematic and
addressing this issue is of paramount importance in order to
preserve the sensitive ecosystems in this area. These slurries are
also known as oil sands tailings, and composed of coarse, fine
and mature fine tailings (partially processed).

The focus of this paper is on the flow characteristics of
mature fine tailings since they possess poor consolidation
properties and take a very long time, often decades, to settle as
compared with coarse tailings. Due to the chemical
composition of the oil sands tailings, their rheological
characteristics are extremely complex. Therefore, a theoretical
study of their flow properties with simple test geometries that is
valuable in gaining an understanding of the settling process
dynamics is performed in this work. The model development
was carried out using a commercial computational fluid
dynamics (CFD) package FLUENT (version 6.3) and validated
with empirical data for further development of processes for
tailings transfer and settling with minimal disturbance.

INTRODUCTION

The bituminous oil sands formations in northern Alberta are
a vital economic natural resource for Canada as their potential
for oil production has become quite lucrative in recent years
due to advances in petrochemical technology. These oil
reserves' capacity in the energy market is undoubtedly
enormous. Unfortunately, the disposal of slurry wastes from the
synthetic oil production processes has become quite
problematic [4] and addressing this issue is of paramount
importance in order to preserve the sensitive ecosystems in this
area. These slurry wastes are also known as oil sands tailings,
and they can be classified into three categories: coarse tailings,
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fine tailings, and partially processed mature fine tailings. The
focus of this project is on the flow characteristics of mature fine
tailings. They are known to have poor consolidation properties
and take a very long time, often decades, to settle [4]. On the
other hand, coarse tailings settle out quickly and form the
containment dykes/berms of the settling basin [5]. Oil
companies currently deposit them in large reservoirs known as
tailing pond dykes [5].

NON-NEWTONIAN FLUID FLOW BEHAVIOUR

Shearing is one mechanism of momentum transport in
a fluid. Consider a fluid between a stationary plate and a
moving plate, as in Figure 1. When the fluid moves, it feels
resistance due to the velocity differences between its layers.
The basic premise of a Newtonian fluid is that, for laminar
flow, the shear stress is proportional to velocity gradient in the
direction perpendicular to the fluid layers. This gradient is
known as the shear rate, and the constant of proportionality is
called viscosity.
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Figure 1: Fluid undergoing unidirectional shear under laminar
flow conditions [1]
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where F is the applied force (N), 4 is the surface area of the
plate (m?), T is the shear stress (Pa), x is the viscosity (Pa-s), v
is the velocity field (m/s) representing the laminar flow, and ¥




is the shear rate (1/s). The negative signifies the fluid resistance
to the applied force) [1].

This model holds for a large variety of fluids such as
water, vegetable oil and alcohol, but does not describe the
peculiar behaviour of fluids such as honey, ketchup, cornstarch
solutions or molten chocolate. Hence, one requires a more
advanced formalism to describe the behaviour of such fluids or
mature fine tailings. For such fluids, the viscosity may vary
with shear rate or even depend on the shear history. Fluids
which have a variable viscosity (i.e. a complex nonlinear
relationship to other variables) are termed non-Newtonian
fluids. Figure 2 depicts the various classes of non-Newtonian
fluids (note the hysteresis for the time-dependent fluids).
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Figure 2: Shear-rate dependent (a) and time-dependent (b) non-
Newtonian fluids [1]

Oil sands tailings form cake-like solids when allowed
to stand, but flow freely when there is an applied shear stress. It
is postulated that these fluids fall into the category of
thixotropic fluids (time-dependent data is not available to
confirm this, but physical intuition suggests that they would not
exhibit rheopecty). The fluid's composition is chiefly
responsible for this behaviour as the fine particulates form a
very stable and fine dispersion that makes separation very
difficult. Recent evidence seems to suggest that the fluid is both
shear rate dependent as well as time dependent [4]. Therefore,
it is thought that both time-dependent models as well as shear-
rate dependent models must be coupled for a more complete
description of the non-Newtonian fluid.

However, we will only consider the shear-rate
dependence here for simplicity and because time-dependent
data is unavailable. Many empirical models have been proposed
to explicitly address this shear-rate dependence. One model,
known as the Herschel-Bulkley model, is especially useful as it
combines the properties of several other models into a more
generalized, flexible structure. The model's flexibility manifests
itself via the combination of the concepts of yield stress and
nonlinear power-law dependence. Naturally, the drawback is
the increased number of free parameters. The equation for this
model is given on the next page [1]:

T=1,+ky" @
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where 7 is the shear stress (Pa), 7 is the yield stress (Pa), & is
the fluid consistency parameter (Pa-s"), ¥ is the shear rate (1/s)

and n is the power law index (dimensionless). The 7~y curve

for this model resembles the visco-plastic curve in Figure 2
when all the free parameters (7, k, n) are nonzero. Please see
Appendix A, for more information on the process of nonlinear
regression applied to available material data and the final
Herschel-Bulkley parameters obtained for mature fine tailings
samples of various solids contents.

Solving any fluid dynamics problem usually involves
treatment of the conservation equations, such as mass,
momentum and energy. For our case, we consider mass and
momentum equations for a control volume (CV). They are
presented below [6,7].
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where p is a scalar density field, v is the velocity field, p is the
scalar pressure field, v is the kinematic viscosity, and f

represents body forces acting on the control volume,

normalized by the density. %(t) is the substantial derivative

given by % + V-V( )

The first equation is known as the continuity equation,
and its physical translation suggests that any net outflow of
matter from the control volume constitutes a time-dependent
decrease (reason for negative sign) in density within that
control volume. The second equation, known as the Navier-
Stokes equation, is a momentum conservation applied to an
ensemble of infinitesimal fluid elements, and in fact reduces to
Newton's second law for a control volume if dimensional
analysis is applied.

As our problem deals with an incompressible fluid, it
is important to realize that the continuity equation simplifies to:

V-v=0 5)

This equation, along with the Navier-Stokes equation
is the governing equations for fluid flow in our problem. Note
that the viscosity parameter will be variable instead of constant
due to the inherent nature of the non-Newtonian fluid.
However, these transport equations still do not address the
existence of two phases and problem of interface tracking. This
requires another mathematical framework known as the volume
of fluid (VOF) method, which will be discussed in the next
section.

MULTIPHASE SIMULATION

Numerous methods exist for tracking of interfaces in
multiphase flow include; the front tracking method, boundary
integral method, volume of fluid method, Lattice Boltzmann
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method, diffuse interface modelling, and the level set method
[8]. The volume of fluid (VOF) method was chosen for this set
of simulations, as that was the most appropriate method
available in FLUENT.

There are several key components to the VOF
implementation, among them is the definition of the colour
function and the concept of interfacial geometry reconstruction.
The colour function C is defined on a computational grid as the
volume fraction (sometimes written as ¢ ) of the liquid phase in
each cell (position indices £, /, k). In fact, it is the direct discrete
analog of the continuous characteristic function y (x, y, z) that
gives the volume fraction at every point in space. This is
definition is summarized in the equation below for a regular
hexahedral cell (all side lengths equal to %) [2].

Cuh® ~ || j}k 2(x, v, 2) drdydz ©)

Naturally, this colour function must obey some
conservation law so that it is a realistic representation of the
moving interface. One of the equations it must satisfy is the
advection equation, presented below [9]. This equation
basically states that the interface must be transported along with
the fluid elements. The discrete form of this equation provides
the basis for interface propagation in the VOF algorithm[2].

6_C +v-VC=0 @)
ot
The second part of the VOF algorithm involves

reconstruction. This is actually quite a difficult mathematical
problem to solve as we intend to reconstruct the shape of the
interface using only the information about the volume fraction
in a cell of interest and its nearest neighbours. Several
piecewise reconstruction algorithms have been developed using
finite difference methods as well as least squares methods [2],
but they will not be discussed here for the sake of brevity as
this is not the main focus of the project. As expected, the
computational costs increase with the order of the method. A
linear (second-order) reconstruction of an interface is shown in
Figure 3.
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Figure 3: Piecewise linear reconstruction (b) of interface (a) [2]
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This interfacial model is typically integrated into the
continuity equation and Navier-Stokes equations, and the whole
system is then solved using the material properties, boundary
conditions and operating conditions supplied to the solver.
However, it should be noted that VOF does have its set of
advantages as well as drawbacks. It advantages include its
effectiveness in mass conservation, its implicit recognition of
topology (no special requirement for reconnection or breakup),
the natural extension to higher dimensions, and ease of
parallelization [2]. Furthermore, it maintains a very sharp
(discontinuous) representation of the interface [8]. However,
this means that it requires robust reconstruction algorithms and
may sometime perform poorly in estimating local curvature,
especially in cases involving high curvatures [8].

NUMERICAL METHOD

CASE 1: GRAVITY-DRIVEN FLOW

Consider the geometry in Figure 5, where a fluid fills
the funnel nearly to the top initially and we would like to
simulate the drainage process. In practice, the initial height of
fluid in the funnel was approximately 14 cm to account for the
diffuse nature of the interface when patching the registers in
FLUENT; this was done for numerical stability reasons.

r ?15
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Figure 5: Schematic of funnel used for gravity-driven flow case

NOTE: ALL DIMENSIONS IN CENTIMETRES

Simulation Assumptions:

1. Open system: pi, = Pour = Pam (101.325 kPa). p;, is
applied at the boundary represented by the top
face/edge and p,,, is applied boundary represented by
the bottom face/edge.

2. Walls: no-slip boundary condition.

3. Body forces: g = -9.81/m/s” aligned with centre line of
funnel (downward with respect to orientation of
drawing).

Material properties (viscosity, density and surface tension) are
given by those in Appendix A.



CASE 2: SIPHON

Consider the geometry in Figure 6, where the
(inverted) funnel is incorporated into siphon system and the
inlet is initially at a very high pressure relative to the outlet due
to the hydrostatic head imposed on that side by the large tank
filled with the tailings sample. It is important to note that the
computational grid is only defined in the interior of the siphon
(hatched pattern), and the effect of the applied pressure is
incorporated in user-defined time-dependent pressure functions.
In order to commence siphon action, the system must be
primed; the simulation accounts for this by having the entire
interior patched with fluid in its initial state. Subsequently, the
pressure increases at the outlet and decreases in the inlet as
fluid begins to empty in the large tank.

FUNNEL
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PE DIA. = 1.19 CM

Figure 6: Schematic of siphon system used for tailings
transfer

MESH GENERATION

The type of cells used in this work was exclusively
hexahedral (3-D) or quad (2-D), completely avoiding
tetrahedral (3-D) or triangular (2-D) elements. However, mesh
quality is extremely critical for complex simulations to prevent
divergence. There are several metrics used to evaluate the
quality of a mesh such as Aspect Ratio (AR), EquiAngle Skew
(EAS), size change, and others [10]. The two that were used in
this work are defined below [11]:

_ max {e.}

Op=— Jdgfori=1...,N 8)
m]n{ei}

emax - 96q Heq - Gmin
X 9
180° -0, 0

eq
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where e; is mean edge length in the local coordinate direction
indexed by i, where N=2 for quadrilateral elements and N=3 for
hexahedral elements, 6, and 6,, are the minimum and
maximum internal angles in the cell, and 0,, is the internal
angle in an equilateral cell (0, = 90" for quadrilateral and
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hexahedral cells). Optimal values for Q,z and Qg5 are 1 and 0,
respectively. As a general rule, "high-quality meshes contain
elements that possess average EAS Q values of 0.1 (2-D) and
0.4 (3-D) [11]." For our application, EAS will be major criteria,
at least initially, for judging quality as it is more crucial for
simulation convergence.

Keeping these criteria in mind, consider the problem
where we are required to construct the mesh for the full three-
dimensional funnel. We wuse the method of volume
decomposition [12] and mesh edge, then face, and then project
to volume mesh in a bottom-up fashion [12,13]. This is a
difficult problem from a geometric point of view, as the area
shrinkage from the top to bottom face is an intrinsic
characteristic of the object, and this introduces skew since we
will be using a pure hex mesh and projection algorithm
(Cooper) to extend the mesh from a source face to create the
volume mesh (similar to an extrusion process) [10]. As visible
from Figure 5, the diameter ratio « for the funnel is very large
[10]:

max

d_. 1.19cm

min

_d _ 15cm ~12.6

Since we are restricted to using a projection method
due to GAMBIT's limited hex meshing options, there is clearly
no solution for reducing skew in the axial direction due to the
narrowing nature of the object, we must at least take extreme
care to minimize skew in the source face. As the source face is
a circle (bottom face), the meshing problem now reduces to
finding the optimal method for meshing a circle.

Several strategies are possible: a simplistic pave
method, a decomposition into five logical rectangles with an
inset square and a map scheme [10], or a decomposition into
four logical triangles and a tri-primitive scheme. The results of
these 3 strategies along with corresponding skew histograms
(bin size = 0.1) are presented in Figure 7.

L

(@) (b) ©
Figure 7: Schemes for paving a circle: pave (a), map (b), tri-
primitive (c)

It is evident from Figure 7 that tri-primitive scheme
offers the best skew distribution and the lowest maximum skew
and it therefore the optimal choice. Through a process of trial-
and-error, it was found that 50 intervals in the radial edge mesh
and 30 intervals in circumferential edge mesh for each quadrant
(a quarter of the circle) gave the best results for skew. This
method is easy extended to three dimensions for cylinders and
conical frustums.

The final mesh is presented in Figure 8a, after
projection of the face mesh. Note that the mesh is especially
fine at the region where the conical frustum meets the cylinder,
as the flow behaviour in this region is expected to be critical.
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The same mesh design principles discussed above
were also applied to the 2-D test meshes prepared in this
project. See Figure 8b, and 9 for the axi-symmetric funnel mesh
and a close-up of the siphon mesh

(a) (b)
Figure 8: Optimized meshes for 3-D funnel (a), axisymmetric
funnel (b)

Figure 9: Optimized mesh for siphon

SOLUTION STRATEGIES

In this subsection, we will simply present the final
solution settings used for the 2-D axi-symmetric gravity-driven
flow simulation (this case was performed for testing the model
before proceeding to 3-D), the full 3-D gravity-driven flow
simulation, and the 2-D siphon simulation; these settings are
listed in Table 1.

Table 1: Simulation solver settings
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Setting Axisymmetric 3-D 2-D siphon
gravity-driven flow gravity-driven flow
Solver pressure-based pressure-based pressure-based
Navier-Stokes Navier-Stokes Navier-Stokes
Space axisymmetric (no 3-D 2-D
swirl)

Time formulation unsteady unsteady unsteady
Flow regime laminar laminar laminar
Mulriphase VOF, 2-phase VOF, 2-phase VOF, 2-phase

Pressure-velocity SIMPLE SIMPLE SIMPLE

coupling

dia | _ 5
ﬂ](lx{d—,‘} =4

S
n]‘lx{d_l,} =41

Pressure bedy-force weighted body-force weighted body-force weighted
discretization [14]
Momentum first-order upwind first-order upwind first-order upwind
discretization
Volume fraction geo-reconstruct geo-reconstruct geo-reconstruct
discretization
Convergence Res (Vy,Vy) < 10~ Res (Vy,Vy, Vo) < 1073 Res (Vy, Vy) < 107
criteria [15] Res (continuity) < Res (continuity) < Res (continuity) <
10-6 10-5 10-%
Time step [10] variable variable constant
global(CFL) =2 global(CFL) =2 dr=10"*
dtin= 10755 dtpin=10735
Afigr = 10735 Atygr = 10725
min {‘jg!'—"} =0.5 min{ md‘!‘z } =05

lrerarions

max {iterations } =40

max {iterations } =40

max {iterations} = 40

Although the funnel has a high degree of symmetry,
the shear effects arising due to the non-Newtonian properties of
the tailings will only manifest themselves in the full 3-D
simulation, with a potentially asymmetric flow and even the
formation of small vortexes. The same arguments also apply to
the siphon, but work on this case has just begun, so only a 2-D
model is available at present for testing purposes. It is quite
typical in CFD to test simpler models (often with lower
dimensionality) and then progress to more complex models
when the test cases are successful; this is the most reasonable
methodology. Simulations are tracked with a surface monitor
(e.g. average height of gas-liquid interface in gravity-driven
flow) and are manually terminated at a meaningful end state for
the system (e.g. when funnel is completely drained), or
automatically terminated by floating-point errors caused by
divergence of the simulation.

To begin with, we will discuss the reasons for the
choices for settings that are common to all the simulations in
Table 1. A pressure-based solver was used instead of a density-
based solver because it is better suited for low-speed
incompressible flows [16], and only a bulk density value was
available as opposed to of density distribution (a requirement
for the density-based solver) for the materials in this project.
All of these simulations have unsteady formulations (also
known as transient simulation) since we are interested in the
time evolution of fluid properties, whether it be the draining of
a funnel or the siphon action in the second case. Laminar flow
is a natural assumption as the flows are low-speed and no
significant turbulence is expected. The choice of the VOF
multiphase model has already been discussed in Section 2.3,
and it is apparent that there are two phases in the simulation: air
(gas-phase) and tailings (liquid-phase). In terms of pressure-
velocity coupling, SIMPLE (semi-implicit method for pressure-
linked equations) was required as the pressure-based Navier-
Stokes equations cannot be solved without the use of some
approximations, and this comes in the form of iteratively solved



pressure and velocity correction equations which are substituted
into other model equations for updates on fluid properties. The
choice of SIMPLE is due to the lower computational cost
compared to PISO (pressure-implicit with splitting of
operators), which is far more intensive, but offers no noticeable
advantage for multiphase flows [3]. The pressure discretization
scheme was very important choice as these problems involve
multiphase flows with large body forces (gravity) and perhaps
strong swirling. For such applications, the body-force weighted
strategy [14] is much more favourable compared to PRESTO!
(pressure staggering option) as the body forces are known a
priori [16]. Although second-order momentum is more accurate
[15], the first-order was favoured due to the lower
computational cost and concerns about the numerical stability
of second-order differentials. Geo-reconstruct is the interfacial
reconstruction methods native to VOF method and applied for
this work. Residuals for velocity are at default values, but the
continuity residual has been lowered three orders of magnitude
due to the sensitivity of the VOF algorithm; these values are
very important as they dictate if the simulation is judged as
"converged" or "not converged" at any given flow time.
Iterations simply represent the marching of the solver in other
(non-time) dimensions, and the default maximum value of 20
was doubled for increased spatial accuracy of the results.

The simulations were performed with a smaller time
step as it is already more computationally intensive due to its
three-dimensional nature and this is an effort to reduce the cost.
Early simulations of the siphon simulation were performed with
a fine temporal resolution (10*s) as the simulation is very
unstable and easily diverges. To improve this even further, one
could start the simulation at even finer resolutions (10 s) and
increase the time step size as the residuals begin to stabilize.

VISUALIZATION SCHEMES

Our proposed scheme for our visualization of the
gravity-driven case involves splitting the funnel with radial
planes at various angles and displaying different properties on
various pieces of the model. Limited visualization results are
available for the siphon yet, so we will only discuss results for
the first case.

As the time-evolution of the interface is especially
important for evaluating the results of the simulation, one half
of the funnel was devoted to displaying the volume fraction ¢
of the secondary phase (in this case, the tailings) with an
overlay of the velocity vectors (along streamlines) with
proportionally sized and appropriately coloured arrows. The
other half of the funnel was divided into quarters (45 span for
each section) and these pieces were devoted to displaying
interpolated contour maps of pressure (Pa), velocity magnitude
(m/s), wall shear (Pa), and vorticity (Vxv) magnitude (1/s)
respectively. Transparency features were utilized appropriately
on the various sections to maximize the visibility of all pieces
of the structure and also different colour maps for different
properties to avoid any ambiguity. Figure 10 shows a
representative visualization result for the settling in a funnel
geometry (the pressure given is the static gauge pressure).

Advanced environmental systems

Time =0.0265s
velocity (m/s)
1.40
1.20
100
0380
0.60
040 vorticity
0.20
0.00

ressure &5 "
J vorticity magnitude (1)

volume fraction

Gravity-driven flow of 35% MFT sample in funnel 0.00
Figure 10: Representative visualization scheme for MFT
settling

RESULTS AND ANALYSIS

CASE 1: GRAVITY-DRIVEN FLOW

MFT (35% solids content) gravity driven simulation
is used in this work. This representative MFT is chosen by
examining the progression of the untreated fluids from visco-
plastic fluid with n > 1 to Bingham plastics (n = 1) and the
increase of the yield stress 7, with increasing solids content.
Additionally, the slope m for MFT increases within the
Bingham plastics with solids contents. See Appendix A for
details.

TIME EVOLUTION OF THE GAS-LIQUID INTERFACE

To begin with, we examine the interface development
as time progresses to confirm if the funnel is draining
realistically. Figure 11 shows the iso-surfaces of ¢ = 0.5 (the
best numerical representation of the shape of the interface) in
the cross-sectional plane at various flow times. The times are
not evenly spaced due to the discrepancy caused by using a
variable time stepping scheme and a data save frequency given
by a constant number of time steps.

- 5
< -+ Time = 0.026
< —Time = 1.333
o —/Time = 2.233
N\ 4
< ~ Time = 2.547

Time = 3.530

Figure 11: Iso-surfaces of ¢ = 0.5 in the cross-sectional plane at
various flow times
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From close examination of Figure 11, it is apparent
that the shape of the interface is quite flat until it reaches the
cylindrical part of the funnel. This change in geometry clearly
alters the flow conditions as it forces the fluid from a gradually
narrowing "pipe" (frustum) into a constant diameter "pipe"
(cylinder). The fluid accelerates rapidly through this small cross
section. However, some very unphysical effects such as wall
adhesion of thick layers and wave-like menisci were showing
up in this cylindrical region before the variable time step was
employed. In this corrected simulation, we can see that only a
thin layer of fluid remains adhered to the walls instants before
complete drainage (¢ = 3.530 s), which is quite realistic.

Ideally, the model is most effectively evaluated with
an experimental value of drain time. Unfortunately, these
experimental values are not yet available, so the best possible
comparison for the time-dependent behaviour is to a theoretical
drain curve, given the same geometry, for an incompressible
fluid obeying Torricelli's law.

016 T

height (m)

theoretical

flow fime (s)
Figure 12: Comparison of model (35% MFT) and theoretical
drain curves for the funnel geometry

Note that the theoretical calculation was modified to
account for the fact that the funnel was only filled initially to
the height of about 14 c¢m, measured from the outlet of the
funnel. It is clear that the two curves show excellent agreement
until about 2.2 s, but begin to rapidly diverge after that point. It
is interesting to note that the model curve is somewhat noisy
compared to the smooth progression of the theoretical curve.
This "noise" arises from the fact that the interface displayed
slight undulations as it drained. These were captured in the
height function, since it was defined, through a surface monitor,
as the vertex average of the ¢ = 0.5 iso-surface on the funnel
symmetry axis with respect to flow time. The most important
similarity between the curves is their overall shape, and one can
casily recognize the transition from the gentle slope of the
frustum to the sharp falloff in cylinder, which occurs at
approximately 3.1 s in the theoretical curve and a little after 3.4
s in the model curve. These are expected characteristics of a
funnel geometry, so the existence of them in both curves is a
promising sign.

Next, we can proceed to calculate an error percentage
€ between the curves for the total drain time:
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3.5s—3.2s
3.2s

o= tf,model _tf,theo %100% ~
tf,theo

This is a fairly low accuracy (< 10%,) and multiphase
CFD simulations can be attributed to the inherent numerical
complexity. Also, the theoretical calculation ignores effects
such as density, viscosity, and surface tension, all of which as
incorporated into the FLUENT simulation; these may very well
be the reasons for the increasing discrepancies at larger flow
times. But until further data becomes available, this is the best
possible evaluation at this time.

NON-NEWTONIAN FLOW BEHAVIOR OF OIL SANDS
MFT

Representative hydrodynamics of oil sands MFT
(pressure, velocity, wall shear, vorticity) at one instance of time
(t=3.474 s) when the flow becomes critical (i.e. when interface
reaches the region between frustum and cylinder is presented.
Figure 13 shows the results in the cross-sectional plane (the
black lines in Figures 13 a, b, and ¢ are the iso-surfaces of ¢ =
0.5 at the given time).

From Fig. 13(a), it is clear that the fluid is
accelerating, and that the trough of the interface is moving
downwards fastest. The pressure increases towards the bottom
of the cylinder, as expected, due to the hydrostatic head. Fig.
13(b) shows that the wall shear reaches a maximum of about 25
Pa, at the corner vertex. This is expected as the transition
between frustum and cylinder is sharp, with no smoothing (i.e.
fillets/chamfers) applied. Lastly, Fig. 13(c) shows the formation
of two small symmetrical vortices centred on the line separating
frustum and cylinder. This is also quite typical as swirling may
occur at sharp transitions to a constant diameter "pipe."

pressure (Pa)
S0
0

[

Figure 13: Velocity field superimposed on pressure contours
(a), contours of wall shear (b), and contours of vorticity (c)

(c)

x100 =9.375%



CASE 2: SIPHON

The siphon geometry was also simulated a s a
component of the overall transfer process using MFT
properties. Figure 14 shows the flow field at siphon intake 1 s
after initialization. As is visible, the velocity vectors point
upwards, and are being accelerated into the cone-structure due
to the large pressure difference between inlet and outlet. As a
result the simulation is complete when the outlet pressure
reaches 4.6 kPa.
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Figure 14: Siphon flow field at intake at t=1 s
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CONCLUDING SUMMARY

Flow behaviour of oil sands tails was examined in funnel
shaped geometries with the goal of developing a new transfer
facility for addition of partially processed tailings to the tailings
ponds without disturbing the settled tailings.

An understanding of the flow behaviour with MFT containing
35% solids was obtained from the CFD simulations of the
funnel and siphon. The velocity in the funnel (gravity driven
flow) peaks at the end of the cone while in the siphon the
velocity will continue to increase through the cylindrical
section. Also maximum shear rate and the formation of small
vortices is obtained close to the transition in the geometry from
the cone to the cylinder in both funnel and siphon geometries
indicating the need to develop rigorous models to predict this
transition.

With regards to future possibilities, the progress made so far on
the funnel and additional studies on the siphon and other
geometries is expected to improve the understanding of settling
dynamics of oil sands tailings and in improving existing
methods or designing new methods for tailings transfer
processes.
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