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ABSTRACT 
Previous work looked at the solidification process of PCM 
(phase change material) paraffin wax. Experimental results 
were compared with numerical work done in CFD package 
FLUENT. In the current study, the effects of vibration on heat 
transfer during the solidification process of PCM in a sphere 
shell are investigated. Enhancement of heat transfer results in 
quicker solidification times and desirable mechanical properties 
of the solid. The amount of PCM used was kept constant during 
each experiment by using a digital scale to check the weight, 
and thermocouple to check consistent temperature. A small 
amount of air was present in the sphere so that the sphere was 
not filled completely. Commercially available paraffin wax, 
RT35, was used in the experiments. Experimentations were 
done on a sphere of 40 mm diameter, wall temperature 20°C 
below mean solidification temperature, and consistent initial 
temperature. A vibration frequency was varied from 10-300 Hz 
was applied to the set-up and results compared with that of no 
vibration. Samples were taken at different times during the 
solidification process and compared with respect to solid 
material present. 
 
INTRODUCTION 
Directional solidification is a topic of wide interest due to its 
importance to the iron and steel industry. Solute convection in 
the solidification process results in channel formation, which 
has a freckle like appearance in the cross-section and has a 
critical effect on the mechanical strength of casting. 
Rotational effects [1,2,3] as well as gravitational effects [4,5] 
on solidification are well documented and show a stabilizing 
effect on convection for the synchronous solutions, but slowly 
destabilizes convection for the region of sub-harmonic 
solutions [6]. Additional numerical results for convection in a 
porous layer subjected to vibration and heated from below, 
show that increasing the frequency of vibration causes the 
amplitude of convection to approach zero [7]. 
Experimental results using a hand tapping technique have 
shown an improvement in density, hardness, ultimate tensile 
strength, and % elongation [8]. This has proven to be an 

inexpensive technique for improving the properties of long 
freezing range LM25 or 356 Al alloys. 
Even though the hand tapping technique proves useful, it is 
unpractical for mass production. This method is also 
susceptible on an uneven vibration amplitude and frequency 
due to the human factor. Further experimentation is required to 
prove the necessity for implementing the vibration technique, 
and a better method is required to introduce vibrations. 
 

NOMENCLATURE 
Latin Symbols 

  = acceleration due to gravity. 

 = the height of the layer. 

  = the length of the porous domain. 

 = reciprocal of aspect ratio, equals . 

= Rayleigh number, equals . 
PrD = Darcy-Prandtl number equals øPr/Da. 
R = scaled Rayleigh number 

 = time (dimensionless) 

T = dimensionless temperature, . 
TC = coldest wall temperature.  
TH = hottest wall temperature. 
X = rescaled amplitude.  
Y = rescaled amplitude. 
Z = rescaled amplitude. 
Greek Symbols 
Ø = porosity 

  = stream function. 

 = characteristic temperature difference. 
ω = frequency. 
δ = amplitude 
Subscripts 
*  = dimensional values. 
cr  = critical values. 
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C  = related to the coldest wall. 
H  = related to the hottest wall. 
 
 
PROBLEM FORMULATION 
Numerical: 

!! "+ ! #$% !"!( )

 
Figure 1: Porous media heated from below, subject to vibration. 
 

The aspect ratio is defined by 
  
L =

L*

H*
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We separate the stream function and temperature into a basic 
conduction part and variation convection one in the form 
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We consider the truncated expansion 
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This representation is equivalent to a Galerkin expansion of the 
solution in both the  x  and  z  directions, truncated when 

  (i + j) = 2 , where  i  is the Galerkin summation index in the 

 x  direction while  j  is the Galerkin summation index in the  z  
direction. 
Then, from (4) we can perform the derivatives 
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Substituting (4) into equation (3a) by using the expressions for 
the derivatives from (5) yields 
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which upon definition of   1 ! = 1 L2 +1 can be grouped in the 
form 
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or in the expanded form 
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The nonlinear terms 

 
!"V ! z( ) !TV ! x( )  and 
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in equation (3b) are evaluated from (5) in the form 
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Therefore, the form which appears in (3b) is 
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Substituting now (7) and (5) into (3b) yields 

   

d B11

d!t
cos

! x
L

"
#$

%
&'

sin ! z( )
(" #$$$$ %$$$$

+
d B02

d!t
sin 2! z( )
)" #$$ %$$

*
! 2

2L
A11B11 sin 2! z( )

)" #$$$ %$$$

+
! 2

L
A11B02 cos

! x
L

"
#$

%
&'

sin ! z( )
(" #$$$$$ %$$$$$

*

! 2

L
A11B02 cos

! x
L

"
#$

%
&'

sin 3! z( )
+" #$$$$$ %$$$$$

+
!
L

A11 cos
! x
L

"
#$

%
&'

sin ! z( )
(" #$$$$ %$$$$

=

                  *
! 2

,
B11 cos

! x
L

"
#$

%
&'

sin ! z( )
(" #$$$$ %$$$$

* 4! 2 B02 sin 2! z( )
)" #$$ %$$

 

Grouping likewise terms leads to 
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Summarizing the resulting equations (6) and (8) in the form 
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Multiplying now equation (9a) by the corresponding 
eigenfunctions and integrating over the domain, produces a 
system of ordinary differential equations for the amplitudes 
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Multiplying equation (9b) by 
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the domain yields 
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The resulting equations are 
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By introducing for convenience the following notation 
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and by rescaling the time variable in the form 
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where the forcing vibration’s frequency was also rescaled in 
(18a) in the form 
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In the limit, when  ! = 0 , i.e. without vibrations the system has 
the following stationary (fixed) points 
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the trivial motionless conduction solution that is expected to be 
stable for   Ra < 4! 2 , and the following steady convective 
solution that is expected to be stable for   4!
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Rescaling the Rayleigh and Darcy Prandtl numbers in the form 
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A first rescaling of the amplitudes is convenient for plotting the 
bifurcation diagrams 
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Rescaling the amplitudes again in a way that removes the 
explicit dependence of the fixed points on  R  in the form 
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The convective fixed points are now 
  
X f = ±1 , Yf = ±1 , Z f = 1. 

Substituting the rescaled amplitudes by using (25) into the 
equations (17) yields 
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To summarize, the rescaled equations have the form 
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where the Newtonian notation for time derivatives was 
introduced in the form 
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and !  as the forcing vibration’s amplitude. 
Also, in (31) and (33) the following parameters and variables 
are defined 
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! ~ 1 ;  " ~ L ;  # ~

PrD

$ 2  ;  t ~ $ 2!t  and 
  
R ~

Ra
! 2 L"2   as the 

approximations for   L >> 1 . Large values of  L  produce finite 
values of  R  only for large values of  Ra . In order for 

  
R = O 1( )  the Rayleigh number has to be of the order of 

magnitude 
  
Ra = O L2( ) . 

For the solution of the non-autonomous system (29), (30), (31) 
one introduces an additional dummy dependent variable 

 W =! t  (35) 
transforming (29), (30), (31) into 
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Experimental: 
Various samples were taken under different conditions to check 
the effect of vibration on the following: average density, void 
formation and solidification time. 
To simplify the experimental procedure and reduce cost, 
solidification of Paraffin is used. Although this is not a metal 
the effects of vibration apply the same theory. This will give a 
good basis and will help with the understanding of the effects. 
Due to the lower melting temperature (35°C) of Paraffin, a 
furnace is not needed. Working at lower temperatures allows 
for simpler, more cost effective experiments to be run. 
Sample spheres were prepared by drilling a 4 mm hole, then 
attaching a plastic pipe over the hole by means of hot glue and 
glue gun. The plastic pipe allowed the sphere to be completely 
submerged in the thermal bath. By submerging the ball 
completely in the water, a more uniform wall temperature is 
achieved. The PCM was heated and temperature constantly 
checked, until desired temperature is reached. The PCM was 
extracted using a syringe and inserted slowly into the sphere. 
Using a digital scale the weight of the PCM was measured to 
achieve consistency. The sphere was then secured in the 
vibration rig and lowered into the thermal bath. For 
experiments with no vibration the vibration source was omitted. 
The thermal bath was set to a constant temperature prior to 
starting the experiments and allowed to stabilize. The time for 
complete solidification was known from prior testing. Different 
samples were done for different time intervals and different 
frequencies. The sphere was taken out the vibration rig, plastic 
pipe was removed and the sphere cut in half. All samples were 
photographed extensively for comparison. Measurements were 
also taken of the PCM thickness at the walls and void size for 
comparison. Each sample was repeated under identical 
conditions to check for consistency of experimental procedure. 
 
RESULTS AND DISCUSSION 
Samples in figures 2(a) and 1(b) show the solid PCM were 
taken out after 10 minutes. It can be seen that more solid PCM 
was formed when the sample was excited by the vibration 
source; Measurements of wall thickness and average density 
taken support this. 
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Figure 2(a): Cross section of the 40mm ball starting with ∆T = 
20° using RT35 paraffin wax, and allowing for 10 minutes of 
solidification time. 

 
Figure 2(b): Cross section of the 40mm ball starting with ∆T = 
20° using RT35 paraffin wax, and allowing for 10 minutes of 
solidification time under a vibration frequesncy of 100 Hz. 
 
Samples in figures 3(a) and 3(b) show the solid PCM were fully 
solidified under 25 Hz and 10 Hz vibration frequency 
respectively. Apart from seeing a large effect on the void shape 
and size, the average density has also been affected. It can be 
seen tin figure 3(b) that the material formed has formed a more 
porous structure (apart from the area near the wall). Figure 3(a) 
shows a more uniform solid structure. Other samples taken also 
showed different types of pores and average densities by 
changing the vibration frequency. Figure 3(c) shows the affect 
on the pores very well. Not only are there very small pours only 
seen under magnification, but there can be seen a very 
interesting arrangement of larger pores in the shape of a face. 
 

 
Figure 3(a): Cross section of the 40mm ball starting with ∆T = 
20° using RT35 paraffin wax, and allowing for full 
solidification under a vibration frequesncy of 25 Hz. 
 

 
Figure 3(b): Cross section of the 40mm ball starting with ∆T = 
20° using RT35 paraffin wax, and allowing for full 
solidification under a vibration frequesncy of 10 Hz. 
 
After the samples were taken out the thermal bath and 
processed the weight was measured and recorded on a digital 
scale. The results seen in figure 2  are shown in Table 1. It can 
be seen that at 5 minutes there is significantly more solid 
formed under vibration comparing the 18.22g to the 15.58g 
under no vibration. The final time for solidification under no 
vibration is 30 minutes whereas under a vibration frequency of 
100 Hz the time is 25 minutes. 
 
Table 1: Measured weight of PCM at different times for no 
vibration and vibration at frequency of 100 Hz. 
Time (minutes) 0 Hz (no vibration) 

Weight of PCM 
(grams) 

100 Hz Weight of 
PCM (grams) 

5 15.58 18.22 
10 17.83 19.02 
20 19.80 20.21 
25 NA 21 
30 21.29 NA 
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As can be seen in figure 4 there is more solid PCM formed at 
each point in time until final solidification time. The difference 
between the two final values of 0.29g is due to initial amount of 
liquid PCM being different by the same amount. At 5 minutes 
there is a large difference between the two graphs and this 
difference decays with time, however never reaches zero. This 
means there is always more solid PCM formed under vibration 
then without. The reason for this may be due to the decay in 
effects of vibration due to more solid being formed. 
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Figure 4: Weight of PCM formed versus time for no vibration 
and vibration frequency of 100 Hz. 
 
Measurements were also taken of the thickness of the solid 
PCM for comparison. These measurements validated the visual 
findings that there was more solid formed for the sample under 
vibration. Average density was also checked to see that the 
effects of vibration do not cause some kind of porous structure. 
It was seen that the average densities between the samples with 
and without vibration were similar. In fact the sample with 
vibration shows slightly higher density than that without. Doing 
this test shows there is more heat transfer with the vibration 
induced, and an overall 17% improvement in solidification time 
calculated using equation 4. 
 
The computed numerical results of amplitude vs. amplitude and 
vs. t for a vibrating porous media heated from below at rescaled 
Rayleigh number R = 25, are presented in the next Figures. 
Figure 5 shows a well known result for the chaotic behaiviour 
at R = 25. This can be seen clearly in all the figures 5(a)–(d). 
 

 
(a) (b) 

 
(c) (d) 
Figure 5: (a) Amplitude X versus time under no vibration with 
rescaled Rayleigh number R = 25. (b) Amplitude X versus Y 
under no vibration with rescaled Rayleigh number R = 25. (c) 
Amplitude X versus Z under no vibration with rescaled 
Rayleigh number R = 25. (d) Amplitude Y versus Z under no 
vibration with rescaled Rayleigh number R = 25. 
 
Figure 6(a) shows what seems to be a periodic function. Figures 
6(b)-(d) further indicate a periodic relation with the projection 
of the amplitudes versus eachother. At an rescaled frequency 
omega value of 8, the vibration has eliminated the chaotic 
behaiviour previously seen at a Rayleigh number of 25. 
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(a) (b) 

 
(c) (d) 
Figure 6: (a) Amplitude X versus time under rescaled vibration 
frequency omega = 8, with rescaled Rayleigh number R = 25. 
(b) Amplitude X versus Y under rescaled vibration frequency 
omega = 8, with rescaled Rayleigh number R = 25. (c) 
Amplitude X versus Z under rescaled vibration frequency 
omega = 8, with rescaled Rayleigh number R = 25. (d) 
Amplitude Y versus Z under rescaled vibration frequency 
omega = 8, with rescaled Rayleigh number R = 25. 
 
Figures 7 (a)–(d) show the result with a rescaled frequency 
omega of 7. In figure 7(a) it shows what seems to be chaotic 
behaiviour that transformes into periodic with time. Figures 6 
(b)–(d) show a similar effect, where it looks as if there is both 
the periodic lines of the projected frequencies and some chaotic 
behaiviour. 

 
(a) (b) 

 
(c) (d) 
Figure 7: (a) Amplitude X versus time under rescaled vibration 
frequency omega = 7, with rescaled Rayleigh number R = 25. 
(b) Amplitude X versus Y under rescaled vibration frequency 
omega = 7, with rescaled Rayleigh number R = 25. (c) 
Amplitude X versus Z under rescaled vibration frequency 
omega = 7, with rescaled Rayleigh number R = 25. (d) 
Amplitude Y versus Z under rescaled vibration frequency 
omega = 7, with rescaled Rayleigh number R = 25. 
 
From figures 5–7 it can be seen that vibration has a large effect 
on the stability of the system. At certain frequencies the system 
turns from chaotic to periodic and back again. 
 
CONCLUSIONS 
Experimental results show how vibration is used to affect 
solidification time, average density, and void formation. 
Further work will need to be done to find a unique relationship 
between vibration and the above mentioned properties. 
Numerical results show how vibration can control the periodic 
or chaotic region in a porous media heated from below. 
Although the control system has not been identified, further 
work is justified with the results presented. It is important to 
mention that the experiments and numerical work are not 
directly comparable because of the different systems. The 
experiment is a solidification model and the numerical a porous 
media model. Some links can however be made; the anticipated 
affect of the vibration in the solidifcation model is in the porous 
region (solid/liquid interface), which would suggest further 
numerical and analytical work is needed with a solidification 
model. Also seeing that there is a clear affect on both 
experimental and numerical systems due to vibration, leads to 
the need for further work in this field. Emphasis is placed on 
the control of both systems by means of vibration. 
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