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Abstract

LASSO - Simultaneous shrinkage and selection via the ¢; norm

by Lisa-Ann Kirkland

Two major purposes of regression models are explanation and prediction of scientific phenomena.
Explanation is obtained by producing interpretable models through variable selection, while prediction
accuracy is optimised by balancing the bias and variance of predictions. This dissertation explores the
LASSO, a shrinkage method that simultaneously performs selection and estimation, yielding interpretable
models with high prediction accuracy. By penalizing the regression model, the variance is substantially re-
duced and sparsity is promoted by using the ¢; norm. It often outperforms traditional methods like subset
selection and ridge regression, each focusing either on variable selection or prediction, respectively. The
LASSO has favourable statistical properties and can also be applied to high dimensional data. Applied in
two-stage procedures, the bias is controlled to achieve consistency for both prediction and selection. Con-
cave penalties reduce the bias more effectively by applying different penalty functions over fixed ranges of
each coefficient’s size. Adaptations of the LASSO penalty allow incorporating different structures between
predictors, such as ordering predictors in a meaningful way or including known groups of predictors like
dummy variables or polynomials. Penalties combining the ¢; norm with other norms allow the identifi-
cation of unknown groups of correlated variables. Overall the LASSO provides an elegant foundation for

a class of methods which improves the way that sparse regression problems are solved.

Keywords: lasso, lars, shrinkage, regularization, variable selection, high-dimensional data,

sparsity, oracle property, prediction accuracy, model selection, linear regression
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Essentially,
all models are wrong,
but some are useful.

George E. P. Box
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Chapter 1

Introduction

Statistical models are formulated to solve specific problems. The regression model expresses the relation-
ship between the response variable, Y, and the predictor variables, X, with a systematic component and

an additive random component,

Y=f(X;B)+e.

It is assumed that Y is subject to the error € and that X and ¢ are independent. That is, the predictor
variables may be fixed variables or they may be random variables measured without error. In the latter
case, the regression is conditional on the observed values of X. The error, or noise, is assumed to contain
any deviations from the deterministic relationship Y = f (X; ), including measurement errors in Y and
any unmeasured variables that have an effect on Y. Therefore, it is considered as a random variable and

we assume that E (€) = 0 so that the regression function is

E(Y) = f(X:p).

The regression function thus attempts to estimate the mean of the response variable using the informa-
tion contained by the predictor variables. When the relationship between the predictor variables and the

response variable is approximately linear, the regression function is

F(XB) = Bo+ PiXi+ PaXo+ -+ BpXps

where f3) is an intercept term and p is the number of predictor variables. The estimate,

F(X3B) = Bo+ BuXa + PoXo + -+ Bp Xy,
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is calculated using a sample of n observations and can be used to predict the response variable at future

values of the predictor variables.

The quality of the estimate often depends on two critical aspects: prediction accuracy, which is a trade-
off between the bias and the variance of the estimate, and model interpretability. Least squares estimation
provides a simple approach to solve the linear regression model by minimizing the squared error loss, or

residual sum of squares (RSS),

RSS(B) = (y - f(X:))*.

The least squares estimate (LSE) is unbiased and has the lowest variance, and consequently the best pre-
diction accuracy, among all linear unbiased estimates. When #n > p then this variance will be small and
the prediction accuracy will be satisfactory. However, when p is near n, the LSE can be highly variable
and result in poor prediction accuracy. Furthermore, least squares cannot be used when p > n since the
estimate is not unique and the variability is infinite. Collinearity and overfitting can also inflate the vari-
ance of the LSE. Removing irrelevant predictors that have little effect on the response produces a more
interpretable model and can significantly improve the estimate. However, it is highly unlikely that least
squares will set any of the parameter estimates to zero. In any of these situations, a biased estimate may

perform better than the LSE provided that the bias is small and the reduction in variance is substantial.

Traditional methods to overcome these drawbacks of least squares include subset selection methods
and ridge regression. They produce biased estimates and can be used when p is near n or p > n . How-
ever, they address only one of the aspects while falling short on the other. Subset selection methods focus
on model interpretability. A subset of size d < p relevant variables are identified and the model is es-
timated using least squares, essentially setting the parameter estimates of the remaining p — d variables
to zero. However, since the process is discrete, the estimate can be very unstable and sensitive to small
perturbations in the data, often yielding low prediction accuracy. In contrast, ridge regression (proposed
by Hoerl & Kennard (1970)) focuses on stabilizing the variance to give greater prediction accuracy. A
constraint is placed on the size of the parameters so that the estimates are shrunk towards zero. This is

equivalent to minimizing the penalized RsS,

RSS (B) + Py (IB])

where A > 0 is called the tuning parameter (also called the decay, shrinkage, regularization or penalty
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parameter) and Py (f3) is the penalty function which depends on A. When A = 0 the least squares estimate

is obtained and the amount of shrinkage increases as A increases. The ridge penalty is the squared ¢, norm
of the parameters and is differentiable at zero. Thus, ridge regression does not set any parameter estimates

exactly to zero and produces a less interpretable model.

Tibshirani (1996) proposed the least angle selection and shrinkage operator (LASSO) as a method
which could provide interpretable models with high prediction accuracy. It is thought to contain the best
of both the traditional approaches, shrinking estimates of the relevant variables to control the variance
and setting estimates of the irrelevant variables to zero to yield interpretability. The LASSO is similar to
ridge regression, it minimizes the penalized RSS, but the penalty is the £; norm of the parameters. The
LASSO has the ability to set parameter estimates to zero since its penalty function is non-differentiable
at zero. Although the non-differentiable nature of the problem prevents us from establishing an explicit
expression for the estimate and its standard error, the LASSO solution path is piecewise-linear and efficient
algorithms have been developed to compute the entire path, from the null model up to the least squares

fit (if p < n), and standard errors can be calculated using either the bootstrap or approximations.

Subset selection methods, ridge regression and the LASSO are part of a general class of estimates, called

bridge estimates, with penalty function

PR =A(6(B)

where the €,-norm is given by 1
LAY
& (8) =], = { X1l ) -
A
The idea was suggested by Frank & Friedman (1993) as a paradigm for understanding subset selection
and ridge regression. The £y-norm can be interpreted as the number of nonzero parameters and corre-
sponds to the subset selection methods. They noted that it would be beneficial to estimate the parameters
A and y simultaneously to widen the choice of possible models but did not develop the method any fur-
ther. The parameter A controls the size of the parameters and the y parameter determines the directions
in which the parameters are aligned with respect to the coordinate axes. Estimates are only likely to occur
on the axes when y € [0,1] and in this case parameters are set to zero. The problem is discrete when y = 0
and the penalty function is concave when y € (0,1), making y = 1 (LASSO) an attractive choice for the

¢,-norm. Knight & Fu (2000) showed that bridge estimates are consistent and have asymptotic normal
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distributions.

The LASSO estimate relies strongly on the choice of the tuning parameter, which can be estimated
using cross-validation (CV). For lower computational expense, information criteria and generalized cross-
validation (GCV) can also be utilized by using an approximation of the effective degrees of freedom and
an estimate of the error variance. Both approaches select the A which minimizes the prediction error (PE).
Greenshtein & Ritov (2004) show that the LASSO is consistent for prediction, a property which they call
persistence. While the LASSO performs shrinkage and selection, it can fail to be optimal in both aspects
with the use of only one tuning parameter. If we could choose A so that the correct model is selected,
its value would have to be large in order to shrink parameter estimates exactly to zero. But large values
of A tend to overshrink large parameters so the estimate can suffer large bias and thus poor prediction
accuracy. On the other hand, if A is chosen for optimal prediction (which is the usual case), its value
will be smaller and it tends to overfit the model by including irrelevant variables. Although, it has been
shown that all the relevant variables are included with high probability. This suggests using the LASSO in

a two-stage procedure, performing selection in one stage and estimation in another.

Meinshausen (2007) proposed the relaxed LASSO to control the bias of the LASSO. Firstly, the entire
path of the LASSO is computed. The LASSO is then applied to each model in the path with a smaller tuning
parameter ¢pA, where ¢ € (0,1], to obtain the entire path of the relaxed LASSO. The tuning parameter
A in the first step performs variable selection. In the second step, the tuning parameter ¢ relaxes the
penalty so that the parameters are estimated with less bias. The tuning parameters ¢ and A are chosen
simultaneously using CV. He shows that the choice of tuning parameters for optimal prediction also
yields consistent selection. Another two-stage procedure is the adaptive LASSO proposed by Zou (2006).
He controls the bias by scaling each parameter in the penalty function with different weight factors. The
weights depend on an initial estimate and are chosen adaptively. The amount of shrinkage applied to
each parameter is inversely proportional to the size of its initial estimate so that the parameter estimates
of relevant variables remain large and those of irrelevant variables are shrunk to zero. As with the relaxed
LASSO, good selection properties are achieved using a prediction-optimal tuning parameter. In addition,
he showed that provided the initial estimate is consistent for estimation, the adaptive LASSO has the oracle
property. An oracle procedure estimates the parameters with efficience that is asymptotic to using least
squares with the correct subset of variables, as if the correct model were known in advance. For the initial

estimate, he proposed using the LSE when p < n and no collinearity is present, and the ridge estimate
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otherwise. Around the same time that Tibshirani (1996) proposed the LASSO, the nonnegative garrote was

proposed by Breiman (1995). The goal of the nonnegative garrote is the same as for the LASSO, but the LSE
is scaled directly by nonnegative constants. Although the method is often criticized for its dependence on
the LSE, Zou (2006) showed that the nonnegative garrote is equivalent to the adaptive LASSO (when the LSE
is used as the initial estimate) and thus also enjoys oracle properties. Yuan & Lin (2007) also generalized
the nonnegative garrote to use estimates from ridge regression, the LASSO or the elastic net (EN) instead

of the LSE and showed promising results.

The LASSO has also been modified to incorporate different structures among the predictor variables.
Tibshirani et al. (2005) proposed the fused LASSO to handle predictor variables that can be ordered in
some meaningful way, where parameters are similar for predictors that are near to each other. An ad-
ditional LASSO penalty is imposed on the difference between adjacent parameters to encourage similar
estimates for nearby variables. For handling known groups of predictors, such as a categorical variable
coded as a group of dummy variables or a set of basis functions for polynomial or nonparametric compo-
nents, the group LASSO was proposed, first by Bakin (1999) and developed further by Yuan & Lin (2006).
Each group of predictors, also called factors, corresponds to one observed variable so that variable se-
lection should consider the importance of factors rather than the derived variables within them. The
penalty function is the sum of the £, norms of each group, weighted by the size of the group (the number
of variables within it). An ungrouped variable is just a group of size 1 and the penalty reduces to the LASSO
penalty but for groups including two or more variables it is similar to the ridge penalty. Thus the group
LASSO promotes sparsity between groups but not within groups. Zhao et al. (2009) proposed composite
absolute penalties (CAP), a generalization of the group LASSO to use any €4, -norm for the k-th group with

gk > linstead of the ¢, norm. In particular, they focus on using the ¢.,-norm,

s (B) = lim |g] = max {|Bil. B2l B}

which encourages estimates within the group to be equally sized. They further generalize to combine the
group norms with the £,-norm instead of the sum. The £,-norm is called the overall norm and controls
the relationship between groups, while the group €,, -norm controls how variables within each group are
related. Using y = 1 ensures sparsity between groups. Besides performing group selection, they allow
overlapping groups to be defined and describe how to use them to enforce hierarchical information. If

higher order effects are included in the model, it is usually desirable to include any main effects involved
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so that the model is shift invariant. Huang et al. (2009) proposed a similar idea, called the group bridge,

which uses the £;-norm as the group norm and the £,-norm with 0 < y < 1asthe overall norm. The penalty
performs variable selection at the group level and within groups, so that if a group is included, estimates
for variables within that group may be set to zero. They show that the method has oracle properties for

group selection.

Predictor variables can also occur in unknown groups with high pairwise correlations between vari-
ables in the group and it may be desirable to select all the variable in the group. When variables are highly
correlated, the LASSO tends to randomly pick one of the variables and discard the rest. Ridge regression
often outperforms the LASSO in terms of prediction when collinearity is present. While the LASSO penalty
is convex, the ridge penalty is strictly convex (in fact, all bridge penalties with y > 1 are). The strict con-
vexity encourages a grouping effect but these penalties do not promote sparsity. Zou & Hastie (2005)
proposed the EN as a combination of ridge regression and the LASSO. The ridge penalty performs decor-
relation while the LASSO penalty performs both shrinkage and selection. The EN also performs very well
with high-dimensional data, when p > n. The LASSO selects at most min (#, p) variables so that no more
than n variables can be selected for high dimensional data. In contrast, the EN can potentially select all
p variables. Zou & Zhang (2009) extended the EN as a two-stage procedure, the adaptive EN. They com-
bine the ridge penalty with the adaptive LASSO penalty and suggest using the EN estimate to calculate the
weights. They showed that the adaptive EN has the oracle property. Bondell & Reich (2008) proposed a
similar method called octagonal shrinkage and clustering algorithm for regression (OSCAR). The penalty
function is a combination of the LASSO penalty and an €..-norm on pairs of parameters. The motivation
is similar to the EN but the £, -norm sets estimates exactly equal for highly correlated variables that have
a similar effect on the response. The method thus performs supervised variable clustering automatically
as part of the estimation procedure. Sharma et al. (2013) recently proposed pairwise absolute clustering
and sparsity (PACS) as a generalization of both OSCAR and the EN. The penalty consists of an adaptive
LASSO penalty and weighted penalties on the sums and differences of pairs of parameters. They pose four
alternatives for calculating the weights. In particular, they show that the method has the oracle property

when using data adaptive weights.

Fan & Li (2001) were the first to propose a shrinkage method with the oracle properties, smoothly
clipped absolute deviation (SCAD). They realize that a good selection procedure requires a penalty func-

tion that is continuous to ensure stability, discontinuous at zero to enable sparsity and bounded by a
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constant to control bias. They achieve this with a penalty function that is concave and applies a different

penalty over three regions based on the size of the parameters. Another concave penalty is minimax con-
cave penalty (MCP) proposed by Zhang (2010) who shows that the method has superior selection accuracy

over SCAD.

Opverall, shrinkage methods provide a convenient way to simultaneously select variables and estimate
parameters. Modifications of the LASSO method and other shrinkage methods have been developed to
overcome any shortcomings with the LASSO. Note that the LASSO is a special case in every method so that
the LASSO estimate can be calculated using any of the methods. Unfortunately, no method works well
in every situation and prior information should be used to match the problem at hand to the relevant

procedure - see the "no free lunch" theorems by Wolpert & Macready (1997).

The organization of this paper is as follows. Chapter 2 examines the relevant aspects of the traditional
methods available for linear regression prior to the development of modern shrinkage methods, including
least squares, subset selection and ridge regression. Methods like subset selection and ridge regression
produce a set of models which vary with complexity and we need some way to choose between them.
Methods for model selection are discussed in Chapter 3, where most of them are focussed on selecting
the best model for prediction. Chapter 4 explores the LASSO in detail, including an examination of the
penalty function; methods for computing the parameter estimates and their standard errors; the statisti-
cal properties of the LASSO; and model selection methods. The chapter further explores two-stage LASSO
methods for controlling the bias and modified LASSO methods which allow for different structures be-
tween variables. Other shrinkage methods utilizing combined penalties and concave penalties are briefly
discussed in Chapter 5. Appendices containing some background theory and calculations are provided

in Appendix A and Appendix B.

Comprehensive simulation studies are presented in Chapter 6 to support the theory and identify sce-
narios in which the LASSO performs well. An application of the LASSO and other shrinkage methods is
presented in Chapter 7, in which the data collected for a study of possible factors influencing the pro-
gression of diabetes is analysed. Some R packages that are available for fitting these models are given in
Appendix C, and the R code used to produce the figures, simulations and application can be downloaded
at http://www. filedropper.com/rcode. Concluding remarks and recommendations for further research are

given in Chapter 8.
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Chapter 2
Least Squares and Traditional Methods

This chapter provides an overview of least squares estimation and the traditional methods of subset selec-
tion and ridge regression. Least squares provides the framework on which every other method is based
and is the topic of Section 2.1. The basics of estimation for both the full rank and rank deficient cases
are covered in Section 2.1.1. Properties of the LSE are given in Section 2.1.2, while properties of the least
squares predictor are given in Section 2.1.3. Section 2.1.4 deals with centering and scaling the data, which
will be necessary for the shrinkage methods, and provides formulae for converting back to the original
location and scale. Section 2.1.5 is a brief overview of the drawbacks faced when using least squares with a
large number of variables. Overfitting and collinearity are identified as the two main causes of instability
and their effect on the variance is shown in Section 2.1.6 and Section 2.1.7, respectively. The remaining two
sections of Chapter 2 look at the traditional methods available for overcoming these two problems in least
squares. Subset selection methods are useful for preventing overfitting and some well known methods
are discussed briefly in Section 2.2, including all possible subsets (Section 2.2.2), forward selection (Sec-
tion 2.2.3) and backward elimination (Section 2.2.4), while some less known methods and modifications
are mentioned in Section 2.2.5. Ridge regression was designed to combat collinearity and is discussed in
Section 2.3. Since ridge regression is part of the class of shrinkage methods, it is afforded a closer exami-
nation. A formulation of the problem and its estimation is discussed in Section 2.3.1, while Section 2.3.2
shows how collinearity is eliminated during estimation. The ridge estimates are then compared to least
squares estimates, showing how they are shrunk in Section 2.3.3 and the effect of shrinkage on the their
properties in Section 2.3.4. Lastly, Section 2.3.5 provides some recommendations for selecting the ridge

shrinkage parameter.
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2.1 Least Squares

2.1.1 Estimation

The linear regression model assumes that the regression function is linear in the parameters, that is

f(X) = ﬁo + [3’1X1 +ﬂ2X2 + .- +ﬁpo

p
=Bo+ > X;B),
=1

where f3) is a constant term representing the intercept. The predictor variables can consist of quantitative
variables, nonlinear transformations, polynomials or interactions between them, or qualitative variables

that are coded as dummy variables.

In order to estimate the parameters of the linear regression model, a set of training data is collected. A
sample of n observations (x;, y1), (x5, ¥2) .. .» (gn, yn) should be drawn randomly and independently
from the population, where x; = (1, Xils Xidy o o> Xi p) are realizations of the predictor variables (including
1 for the intercept) and y; is a realization of the response variable for the i-th case. The model can then

be written as

n p
yi=Po+ Zx,-jﬁj+sifori=1,2,...,n.
i=1 j=1
Let
N 1 X1 X12 ... xlp /30 &1
1 x X . X £
y =72 x bl g P e |22
nxl : nx(p+1) (p+D)x1 nx1
Vn 1 Xp Xm2 oo Xpp By €n

where the first column of X will have subscript j = 0 so that xo = 1, and each column x; corresponds to

the observations of the j-th predictor variable X;. Then the regression function is

fx)=x/p (2.1.1)
and the model can be written in the matrix form

y= X[_% + &. (2.1.2)

There are a number of methods available to estimate the parameters in equation (2.1.2). The parameter
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estimates E, are usually found by optimizing some objective function. Least squares estimation is the most
common estimation method used for linear regression because of its simplicity and the good properties it
has without any distributional assumptions. The only assumptions made are that the random errors have
zero expectation, constant variance and are uncorrelated with each other. However, a further assumption
of Gaussian errors improves its properties and is necessary for making any inferences on the model. Under

the assumption of normality, the random errors are independent.

Least Squares Assumptions:
1. E(e) =0and var(¢) = o’I

2. optionally, e ~ N (0, 021)

The objective function in least squares is the residual sum of squares (RSS),

» 2
(yi —/30 - injﬁj) >
j=1

M-

I
uly

RSS (Bos Pus---»Bp) = ang%:

i=1 i

or in matrix form

RSS (B) = e"e
- (y-x8) (v-x8)

- (e:(v-x8))

- HY—XEHZ’ (2.13)

where €, (+) is the £, norm (see Definition A.1.1). The least squares estimate (LSE) is the minimizer of RSS,
that is

. 2
B = argmin Hy - X[J’H . (2.1.4)
2 s P
Differentiating with respect to é, we have the gradient
VRSS (B) = -2X" (y - XB)

and the Hessian

V2RSS (E) - 2xTX.

10
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The matrix X’ X, known as the Gramian matrix of X, is always nonnegative definite. Thus, the Hessian is
nonnegative definite for all [_3 and RSS ( ﬁ ) is a convex function (Definition A.3.2). By Definition A.3.4, E
is optimal if VRSS ([)’) =0,

x" (y-xp)=o. (2.1.5)

This leads to a system of linear equations known as the normal equations,

X"xp=x"y.

If X has full column rank then X”X has full rank since rank (XTX) = rank (X) = p + L. Thus, the
Hessian is positive definite for all 8. This means that RSS ( ﬁ) is a strictly convex function and f is a
unique global minimum. Consequently, X7 X is nonsingular so that the LSE of 3 is given by

B=(x"x)"xTy. (2.1.6)

If rank (X) < p + 1 then X' X is rank deficient and the Hessian is positive semidefinite for all 3. This
occurs when the predictors are not linearly independent or when p > n since rank (X) < min (n, p +1).
In this case RSS ( B ) is a convex function and all stationary points are global minimums. Since X7X is
singular, a solution to the normal equations is given by

p=(x"x) xy,
where (X'X) " is any generalized inverse of X”X. However, the solution is not unique since the gener-
alized inverse of a matrix is not unique. In particular, the solution with minimum ¢, norm is obtained

when using the unique pseudoinverse or Moore-Penrose inverse. See Gentle (2007:227-228) for a proof.

This solution is given by
é =X"y.

Definitions of the generalized inverse and Moore-Penrose inverse are given in Definition A.1.2 and Def-
inition A.1.3. Seber & Lee (2003:470) show that E = Xy is a solution to the normal equations for any
generalized inverse of X that satisfies conditions (1) and (3) in Definition A.1.3. Since é is not unique,
these solutions are not estimators for f. However, if a is in the row space of X then al B is an estimable

function (see Definition A.2.1) and a’ f is a unique estimator of a” §, it is invariant to the choice of .

11
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The fitted model is a linear combination of the response vector y,
f (X) = Xp= Hy, (2.1.7)

where

H=X(x'x) x". (2.1.8)

Note that (XTX)_ = (XTX)_1 when X has full column rank. Let rank (X) = r. It is easy to show that
H is a symmetric idempotent matrix and rank (H) = r. The properties in Theorem A.L1 can be used in

the rank deficient case, see Searle (1971:20-21) for details. It can also be shown that H is invariant to the

choice of (XTX)_.

Geometrically, the regression function f (X) = Xp is a vector in R" and lies in the column space of
X denoted by C (X). See Definition A.1.4 for a definition of the four fundamental subspaces of a matrix.
Least squares attempts to find E so that the vector f (X) = Xé € C (X) is the closest to the vector y. The
distance betweeny and X[_§ will be a minimum when (y - X[_§ ) L C (X). So H is an orthogonal projection
matrix that projects the response vector y onto C (X) to produce X/_?. The complementary projection
matrix of H is given by I — H and projects y onto the null space of X7, or C* (X), to produce the residual
vector (y - X[é’ ), which can clearly be seen by equation (2.1.5). RSS ( E ) = Hy - Xé H2 measures the length
of this vector, or the orthogonal distance between y and the subspace spanned by the columns of X.
In R, the regression function f (X) = X[é’ is an r-dimensional hyperplane and each residual vector,
Yi—X; [é’, is a vector going from the hyperplane to the point y;. Least squares finds E so that the sum of the
squared residuals is minimized. This E is the point in R"*! where RSS ( B ), an r-dimensional hypersurface,

attains its minimum.

The minimum RSS is given by

rss (B) = [y -xB] = la-myP =y" -1y, 219)

12
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since I — H is symmetric and idempotent. Its expected value is

E[Rss (B)]
=E[y" 1-H)y]

=tr[(1-H)var (y)] +E(y)" (1-H)E (y) by Theorem A.1.2

T
=o’tr(I-H) + (X[)’) (I-H) Xp since E (&) = 0 and var (&) = ¢°I
= o’ tr(I-H) since (I-H)X =0
= o” rank (I - H) since I - H is idempotent

=o*(n-r).

This leads to the LSE of the error variance

, RsS (é)

n-—-r

(2.1.10)

2.1.2 Properties of Least Squares Estimates

When X has full column rank, the LSE E has all of the following properties:

1. 8 is unique and linear in the response vector y.

2. éis unbiased, E (E) = B.

3. var ([_3) =¢? (XTX)_I.

The mean squared error (MSE) measures the accuracy of an estimate and is the sum of its variance

R R 2 R R 2 R
and squared bias. Here, MSE (E) =E HE—/}H =tr [Var ([_3)] + HE (E) - EH = 25):0 var (ﬁ]) (see Sec-
tion B.1.1). So MSE is just the total variance when the estimate is unbiased. By comparing the MSE of an
estimate to that of another estimate, we can get an idea of its efficiency relative to the other estimate. If

MSE (01) < MSE (62) then 6, is a relatively more efficient estimate of 6 than 0, (see Spanos (1989:234-

237) for a discussion).
For any estimable function a” §, the LSE a § has all of the following properties:
L QTB is a linear combination of y.

13
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2. gTé is unbiased, E (QTE) =aTB.
3. var (QTE) = O'ZQT (XTX)

4. a T[)S is the best linear unbiased estimator (BLUE) of gT/J’ (see Definition A.2.2 and Theorem A.2.1).
Since gTﬁ has the lowest variance among linear unbiased estimates, it also has the lowest MSE. It

follows that a” f is relatively more efficient than any other linear unbiased estimate.

5. gTé is the uniformly minimum variance unbiased estimator (UMVUE) QTE ife~N (0, 021) (see
Definition A.2.3 and Theorem A.2.2 (1)). Under normality a T E has the lowest variance (and thus
lowest MSE) among all unbiased estimates, not just linear estimates. In this case, var ( QTE ) equals
the Cramér-Rao lower bound CR (QT[_;) =1, (gT/j’)_l (Theorem A.2.3) and is fully efficient. The
Fisher information I, ( a’l B ) involves differentiating the likelihood function and can be related to

maximum likelihood estimation.

Note that when X is rank deficient, both a”$ and var (gTﬁ) are invariant to the choices of § or
(XTX)_ . Shao (1999:159-161) shows that, under certain conditions and without assuming normality, the

LSE a Tﬁ also has the following asymptotic properties (see Definition A.2.7):

R 5 L
1. a® is consistent in MSE, gT[)’n 3 B.
N N d
2. asymptotic normality, a” (ﬁn - /3)/\ | var (gTﬁ) - N (0,1).

The LSE 62 has all the following properties:
1. 62 is unbiased, E (62) = o2

2. 6% isthe UMVUE of 62 if e ~ N (0, 021) (see Theorem A.2.2 (2)).

Under the assumption of normality the distribution of /_3, and hence QT[_%, can easily be obtained.
Similarly, the distribution and variance of 6% can easily be derived. Inferences about the LSEs can then be
drawn by making use of the their distributional properties. This is beyond the scope of this paper and
the interested reader is referred to Seber & Lee (2003:47-49) or Searle (1971:99-130,174-180) for a more

thorough explanation.

14
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Maximum likelihood estimation is another method that can be used to estimate the linear regression

model. The objective function is the likelihood function which, under the assumption of normality, is

given by

202

- 2\72 _
= (2710 ) ’ exp 752

L (/_3, 02|s) = (27102)_% exp (—8T8)

(2.1.1)

Unlike with least squares, the maximum likelihood estimate (MLE) of 8 and o2 are found simultaneously

by maximizing the likelihood,

(é, 62) = argmax L (E, 02|e) ,
(8)

or equivalently, minimizing the negative log-likelihood,

—1nL(E,02|s)=% nln(2n)+nln(02)+ =

It is easily shown that the MLE of j3 is equal to the LSE,

B=(x"X)"X"y=g

Thus, when the errors are Gaussian, ﬁ also enjoys the desirable properties of MLEs. Under certain regu-

larity conditions, MLEs have the following asymptotic properties:
1. Consistency, Eﬂ £ B
2. Asymptotic normality, \/n (/_Sn - /_3) 4N (0, 1% (E))
3. Asymptotic efficiency, V (0) = ;}Lngo (%I n (0)).

See Definition A.2.7 for an explanation of these properties. The MLE of the error variance is given by

, RsS (E)

Note that the MLE of 2 is biased and its variance only attains the Cramér-Rao lower bound asymptotically,

see Seber & Lee (2003:49-50). When using maximum likelihood estimation, the deviance is a statistic that

15
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is similar to RsS for least squares estimation and is given by

D(ﬁ) - —ZlnL(E, 0—2|s) (2.112)
and the minimum deviance is )
D (;_3) = nln (2767) + %2(/—3). (2.113)

For more information about MLEs and the regularity conditions necessary, Spanos (1989:267-281) or

Casella & Berger (2002:470,472,516) can be consulted.

2.1.3 Prediction

Once we've estimated the regression parameters, we can formulate the predictor used to predict a new

response at a new observation x,

yo = f(xg) + €0.

Assume that y, has the same probability structure as the elements of y. Thatis, E (yo) = f (x,), var (yo) =

0% and cov (¥, y) = 0. Then the predictor is given by

flxy) =xp

and

var ( (x)) = var (2] ) = o (X"X) " .

The expected prediction error (PE) is a measure of how well the estimated model predicts the new response
and is given by

PE(f (x0)) = E (yo - f (x5))" = 0> + MSE (f (x,)).

The predictor f (x,) can be seen as an estimator of E (o). The expected PE consists of the MSE of this
estimator and includes var () = 6 to account for the variation in the new data. Notice that f (x0) = x& /_'3
is a linear function of y and is estimable if x,, is in the row space of X (see Definition A.2.1). Thus, the
least squares predictor has all the properties of linear unbiased estimates as discussed in Section 2.1.2. In

particular, it is the BLUE.
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2.1.4 Centering and Invariance to Scale

Centering the data shifts the location of the data and only affects the estimation of the intercept, which
gives the location at which the regression hyperplane crosses the y-axis. The intercept can be interpreted
as the expected value of the response when all the predictors are set to zero. When the predictors are
centered at their means, the interpretation changes to having the predictors set at their average values.
While this may be meaningful for interpretation in some situations, it is generally not necessary to center

the data since least squares performs a natural centering of the data during estimation.

The parameter estimates corresponding to the predictor variables are not affected by centering. Since
they provide the gradients or slopes of the regression hyperplane, a shift in location has no influence
on them. However, they are affected when the scale of the data is changed. If a predictor is scaled by a
constant, the LSEs will be scaled by the inverse of that constant. This can be helpful for interpretation,
changing the scale of a predictor with a large order of magnitude can make the estimate more readable.
Scaling the data can also improve the accuracy of calculations when the scale of different predictors vary
by alarge order of magnitude. In some situations it is desirable to scale the data so that all of the predictors
are on the same scale. In particular, this is necessary when using shrinkage methods. Therefore, this
section examines the effects that centered and scaled data have on the estimates. In general, least squares

is scale invariant and does not benefit from a change in location or scale.

Centered Data

Suppose we fit the model using the original variables. Assume X has full column rank so that (XTX)_1
exists. Let X = (1,,X 4), where A = {j:1,2,..., p} so that X 4 is the last p columns of X, to separate the

intercept vector from the predictors. Then

xTx - 1T "X, | [ n nxt
x4 XX || nx XOXa |

_ - _\T. - _ .. .
where x = (xl, X2y euis xp) is a vector of the column means x i=n 1 Y Xi - The partitioned matrix can

be inverted using Theorem A.1.3. It turns out that

(X'x)"' =
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where C is the centered predictor matrix with typical element c;; = x;; — x;. The LSEs are given by

B=(x"x)"x"y

-(c’c) % (c'c)

which leads to

and

Since C”y has typical element

St (xij = %)) yi = i (xijyi = %)
= XiXijyi — X2y

= XiXijyi — nyxj,
we have that X’y — nj% = C'y in Equation (2.1.15). Thus

ﬁA - (CTC)_I c'y,

ny
XLy

J

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)

(2.1.18)

which is the LSE when estimating the model using the centered predictor matrix. This shows how the data

is naturally centered as a result of estimation. See Searle (1971:83-86) for a derivation of this result.

Suppose now that we estimate the model using the centered matrix C. The above shows that /3 A=

( B, Bas.. s B p) remained unchanged, but what happens to the intercept? We are fitting the same model
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that has just been reparameterized,

Ji = Bo+xaPi+-+xiphp

= (/30 +xiBy *pﬁp) + (xn = i1) Pr+oe + (xip - %) By

= ﬁ(’) + Cilﬁl + e+ Cipﬁp.
Here it is clear that [3  are unchanged but the intercept is now estimated by

Bg = Bo + )_CIBI + e+ )Z'pﬁp

= ﬁo + XT[E’A = y from (2.1.14).

More formally, we have that Y7, ¢;; = X7, (x;; — &;) = 0 so that 17C = 0. Then the LSE, is given by

31 T 4T -l T
5 e el Te b
[171 1Tc [ 1Ty
| ¢t c'c Cly

[0 T ny
"1 0o c’c Cly

and

(2.1.19)

(2.1.20)

(2.1.21)

(2.1.22)

Thus, the intercept term is always estimated by y with constant variance 0?/n and is uncorrelated with

the other estimates. This suggests fitting a reparameterized model,

V:CﬁA+s,

(2.1.23)

where v is the centered response vector with v; = y; — y. In this form, the model does not explicitly
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estimate the intercept term, which can be convenient. Thus,

Vi = CilﬁAl + e+ Cipfgp'

Note that if S = CTC so that S has typical element Sik = chck =3 (x,-j - a'cj) (xix — x¢) for j, k =
L,2,...,p, then ﬁs is the sample variance-covariance matrix of the predictors.
Centered and Scaled Data

Suppose now that the data is standardized. Let Z be the centered and scaled predictor matrix with typical

- (i — 7)Y NS (= %) no2 T,
element z;; = ¢;; / /Sij = (x,J —x])/ Y (x,j —x]) . Consequently, 7", zij =zjzj = 1s0 that the
columns of Z have unit £, norm and all the predictors are now on the same scale. Note also that }°7", z;; = 0

so that 17Z = 0. Therefore, equations (2.1.19) to (2.1.22) hold, with C replaced by Z. By the same argument

as above, we can fit the reparameterized model,
v=Za+c¢. (2.1.24)
We have,

Vi = Cil/gl toeeet Cip/;)p
= (Cil/\/s_ll) \/E/gl +toeeet (Cil/\/s_ll) \/%/';P

= Zil&l + e+ Z,‘P&P.
So the standardized estimates are given by
-1
a=(2"2) 7, (2.1.25)

with
&j =~\/SiiPj-
This form of the standardized estimates shows that least squares is scale invariant. If any predictor is

scaled by some constant, say k, then its regression coefficient will be scaled by 1/k so that 8 X always
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remains unchanged. Let D = diag (1 / Sji ), then Z = CD so that

var (&) = o? (ZTZ)71
- ¢’ (DC’CD)
- ¢*p?(c’C)”

= diag (sjj) var ([_3?) .

Thus,

Var(écj) = sjjvar (Bj), (2.1.26)

COV(éCj,&k) =\/SjiSkk COV(ﬁAj,/;k). (2.1.27)

Note that R = ZTZ is the sample correlation matrix of the predictors since it has typical element

rjk = ZjTZk
~ Y (xij = &) (i — %)
~\2 -
\/Z?zl (xij - %) \/Z?zl (xik — %)
o Y (xij - %) (xar — &)
2 )
52 (i = %)/ 55 S (xik — Xx)
cov (X]-,Xk)

\/var (Xj)\/var (Xk)

where p i is the correlation between X; and X.

Inference and Prediction

Centering and scaling the data does not have an effect on the regression function f (X) or on RSS ( E)
Inspection of the projection matrix H = X (XTX) 7' XT indicates that it is not affected by any scalar change
made to X. It can easily be verified using the partitioned matrices above that H remains unchanged when
substituting X with either one of (1,X,), (1,C) or (1,Z). It follows that f(X) = Hy and RSS (E) =
y! (I - H)y are also unaffected by any of these changes. Thus, RSS always attains the same minimum and
2

6“ remains unchanged.
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If any inferences are to be made on the model or the model is used for prediction, it is best to convert

back to the original location and scale. Equations (2.1.14), (2.1.16) and (2.1.17) can be used to correct for the
intercept, while equations (2.1.25), (2.1.26) and (2.1.27) can be used to convert back to the original scale.
For more information on centering and scaling the data, (Draper & Smith, 1998:371-375) or Seber & Lee

(2003:69-72) can be consulted

2.1.5 Large Number of Variables

When there is a large number of variables the model may be very difficult to interpret. If explanation
is the primary goal of the analysis then the analyst is challenged to find the most parsimonious model
which fits the data well. The time and cost of including predictor variables can also play an important
role. If observations for a predictor variable are expensive to collect, or difficult to measure, then it may

be preferable to use other predictors that could explain its effect on the response.

Least squares depends largely on the sample size in relation to the number of variables. When n > p
then it is likely to estimate the parameters accurately and efficiently. When # < p, as seen in Section 2.1.1,
the XX matrix is singular and generalized inverses must be utilized. If the purpose of the regression
is explanation then least squares cannot be used since f§ cannot be estimated uniquely. However, Sec-
tion 2.1.3 shows that least squares can still be used effectively for prediction purposes, provided that the
new observations lie in the row space of X. When # > p but the sample size is inadequate, LSEs are likely
to suffer from high variance. The variation of the estimates and the predictions are both proportionally
dependent on (XTX)_1 and o%. When p is near n, the XTX matrix can become ill-conditioned and its
inversion will be very unstable with extremely large elements in (XTX)_I. Another difficulty is that o? is
often unknown and is estimated by 6% = RSS ( E ) / (n—p—1). As p approaches n, (n — p — 1) becomes
smaller and 6% can become very large. When n = p + 1 exactly, then there are no residual degrees of

freedom and &2 is undefined.

There are at least two other causes of high variance in LSEs: overfitting and collinearity. Overfitting
can invalidate the model by including too many irrelevant variables which are not related to the response.
If the model starts to explain the noise in the training data then it will not generalize well to new obser-
vations. In contrast, collinearity can weaken the model by including too many relevant variables. If there
are many variables that are highly correlated with the response, they could contain similar information

and exhibit high pairwise correlations between themselves. Sections 2.1.6 and 2.1.7 look at why these sit-
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uations inflate the variance. The risk of encountering them is higher when there are a large number of

predictors available.

2.1.6 Overfitting

The regression function attempts to estimate the population average of the response variable via the deter-
ministic relationship between the response and the predictors. When too many predictors are included in
the model the regression function starts adapting to the specific training sample. It is possible to include
enough predictors so that the model fits the training sample perfectly. However, such models are likely
to be fitting the noise in the data and as a result, the model will perform poorly on any other data set
because it does not represent the relationship inherent in the population. Including too many predictors
in the model is called overfitting. The effect of overfitting is to increase the variances of the estimates and

predictions.

Estimation

Suppose that the true model includes only d predictors. Without loss of generality, assume that these
are the first d + 1 columns of X (d predictors plus the intercept). Thus, X = (Xp,Xpc), where D =
{j:0,1,...,d} and ET = ([é;é;c) = (EIT),QT). Thus the true model is given by

E(y) = f™ (X) = Xpp,.

Suppose we overfit the model by including all p predictors,

f(X)=Xp=Xpp_+Xpp_ .

Expressions for the estimates, their expected values and variances are derived in Section B.2.1. It is shown

that,
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var(B) = o* (XpXp) " + BM'B’,
A ol
Var(/_ZDC)—aM s
where

B = (X5Xp)  X5Xpe

is the estimate obtained when regressing Xp: on Xp and
M = XL, (I-Hp) Xpe

is the minimum RsS from that regression.

Thus, when overfitting the model, /;’D is an unbiased estimate of [3D but its variance is inflated by an
amount of ¢ tr (BM_IBT). Although ch has zero expectation, its presence in the model further inflates
the total variance of the model by o’ tr (M‘l). Since there is no bias and the variance is increased, the

MSE will always be larger when the model is overfitted.

Prediction

When using the overfitted model to predict a new response y at x,, = (EO,D) ﬁo,DC) , it is shown in Sec-

tion B.2.1 that

E(f(x)) = 2508,

so that the bias is

B (f (Eo)) =0=B (ftrue (ﬁo))

and the variance is

var (f (5y)) = 01 p (XpXp) " x0p + 0’d M 'd

= var (J?true (&0)) 4 O'ZdTM_ld,

where

_nT
d=B"xp~ X pe-
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Thus, the predictor of the true model and the predictor of the overfitted model are both unbiased. But

the variance of the overfitted predictor is larger, so the expected PE when overfitting will always be larger.

2.1.7 Collinearity

When using least squares, problems arise when the X matrix does have full rank but is ill-conditioned
so that the X”X matrix is nearly singular. The problem is usually due to some of the columns of X being
highly correlated so that they are nearly linear dependent or collinear. Geometrically, collinearity occurs
when a column vector x; is nearly parallel to a subspace spanned by a set of other column vectors, or the
angle between them is small (see Gentle (2007:202)). The effect of collinearity is to inflate the variances

of the parameter estimates.
Estimation

Supposed that we fit the standardized model (2.1.24). Let p = 2, then

777 =R = 1 m
12 1 >

where ), is the sample correlation between X; and X;. Then

(ZTZ)—I _ R_l _ 1 1 —7’12 )
1-r5 | -2 1

. -1
So the variances of the estimates are given by var (&) = o2 (ZTZ) , or

02

var (&) = var (&) = >
"2

Thus, it is clear that the variances of the parameter estimates depend only on ¢? and the correlation
between the two variables. If the two variables are very highly correlated with 72, close to 1 then the

estimates will have very large variances.

Consider the straight line regression of Xj on X, then, r, = R? , where R? is the coefficient of deter-

mination (see Definition A.2.8) and measures how well the variation in Xj is explained by X,. The same
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is true for the regression of X; on X, rj; = R%. Therefore,

2 2
var (&) = 1:7—2 and var (&;) = d

R 1-R%
However, 7, = R} = R} only holds for a straight line regression. Seber & Lee (2003:252-254) show that
this result can be generalized for all p variables. By partitioning the correlation matrix R to isolate the
correlations between the j-th variable and the other variables, the diagonal elements of R™! can be related
to R?, the coefficient of determination when regressing z; on the other columns of Z. Thus, they show

that

0.2

var (&]) = m,
J

where 1/(1 - RJZ) are the diagonal elements of R},
2
1= Rj = |(1-H-j) 2]

and H_j; is the projection matrix onto C (Z_ j), the column space of the matrix Z with the j-th column

removed.

Geometrically, 1 - Rjz- = |(1-H_j) z]-H2 measures the orthogonal distance between z; and the sub-
space spanned by all the other columns of Z. The smaller this orthogonal distance is, the smaller the angle
between them and X is likely to be nearly collinear to the other variables. This idea can be used as a way

to detect collinearity. For the j-th predictor, the variance inflation factor (VIF) is

Since R; is a measure of the relationship between X; and the remaining variables, VIF; measures how
much ¢ /s;; is inflated by that relationship. Now, 0 < R? < land R? = 0 when z; is orthogonal to
the other columns of Z because then rj = ijZ_ i = 0. Thus, the minimum value of VIF; is 1 when X
is uncorrelated with all the other predictor variables. Very large values of VIF; can indicate that X is
nearly collinear with the other variables. Since the VIFs are the diagonal elements of R™}, we can detect
collinearity by examining the eigenvalues and eigenvectors of R. Consider the spectral decomposition of

R (see Definition A.1.6),

R=VEV,
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where V is an orthogonal matrix and E is a diagonal matrix. The columns of V are orthonormal eigen-

vectors of R and the diagonal elements of E are the eigenvalues of R, denoted by e;. Then

R'=VEVT

1
= Vdiag(—)VT
€j

= V diag (%) vl (2.1.28)

j

since the eigenvalues of R = ZT Z are the squared singular values of Z, denoted by d]%. Thus,

), -3

VIF; = (R~ =) —

j .. 5
=

where (R’l)jj denotes the j-th diagonal element of R. So any eigenvalue e; of the correlation matrix

that is close to zero could lead to large VIFs and indicates the presence of collinearity. See Seber & Lee

(2003:255) or see Draper & Smith (1998:375-378) for more information.

More generally, any ill-conditioning of the X matrix with rank (X) = r can be determined by its

spectral condition number,
maxd; (X)

K2 (X) = mind; (X)’ (2.1.29)

where d; (X) > 0 are the singular values of X for j = 1,2,...,r. If X has full rank then the condition

‘ max e; (XTX)
K2 (X) = m,

where e i (XTX) > 0 are the eigenvalues of XTX. If X has orthonormal columns then its condition number

number can also be specified as

is 1. It will be infinite when X is rank deficient and very large when X is ill-conditioned, or nearly rank
deficient. Note that «; (XTX) = [k2(X)]*. See Gentle (2007:129-131,203-206) for more information
about condition numbers and matrix norms. Seber & Lee (2003:256-260) show how changes in the data
can affect the parameter estimates. Small changes in the observed data shouldn't cause a big change in
the estimates, provided that the condition number of X is not too large, so that the regression is stable.

The condition number of the correlation matrix can be examined as a first step in detecting collinearity.
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Seber & Lee (2003:315-319) show that

o (R) > ——

>——— > VIF,; forall j. 2.1.30
mine; (R) jroraty ( )

Thus, if the condition number of the correlation matrix is small then none of its eigenvalues would be
too small and none of the VIFs will be large, so there shouldn’t be any collinearity present. However,
because small changes in the original data could cause large changes in the centered and scaled matrix,
they suggest rather examining the matrix which is scaled but not centered. The condition number can

also be used to determine the accuracy of the estimates, see Gentle (2007:218-219) for details.

Prediction

If we use the parameter estimates to predict a new response at x,,,
f(xo) =x5B
then the variance of the prediction is
var (f (50)) = UZ&)T (XTX)71 Xo-

Thus the variance depends on (XTX)_1 and it appears that they will suffer from collinearity, resulting
in unstable predictions. However, Seber & Lee (2003:261) assert that the predictions are not affected by

collinearity. They consider predicting the new response using the centered model (2.1.23),
fla) =7+ (xg-2)" B,
where A ={j|j=1,2,..., p}. Then the variance is

var (f (x,)) = var (7) + (xg - £) " var (B , ) (xy - 2) + 2cov (7. 8 ,)

1
==0?+0%(xy - %) 87 (x5 - %)
n

- 0?2+ (5 - 98 (5~ 5)].
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since cov ( 7, B A) = 0. Therefore predictions made at points that are close to the average observed val-
ues will have small variances regardless of any collinearity present. For outlying points far from x, the
predictions will have large variances, although they argue that making predictions outside the range of

observed data is generally discouraged.

2.2 Subset Selection Methods

2.2.1 Estimation

LSEs have the desirable properties of Section 2.1.2, provided that the model f (X) has been specified cor-
rectly. Subset selection methods attempt to find the correct subset of the available predictors for the
model specification. Once the subset is identified, the model is fitted using least squares. Assume that the

true model is linear and has the form
Y = /30 + Xlﬁl + Xzﬂz + -+ Xpﬂp + E.

The problem of selecting a subset of d < p predictors can be interpreted as finding the p—d predictors that
are not related to the response and setting their parameters to zero. Without loss of generality, suppose

that the first d variables are selected. Gentle (2007:347) notes that the parameter estimates in the model
d
Yi= Z xifi + &
i=1

are the same as the parameter estimates in the model

d
yi= inﬁi + &,
i=1

where §; are the fitted values from the model including all p variables. Thus, fitting a subset of variables is
equivalent to approximating the least squares predictions. Subset selection could be helpful in addressing
some of the problems with least squares, it eases interpretation and provides a direct way to prevent

overfitting. Furthermore, the forward selection method discussed below can be used when p > n.

The LSEs obtained for a subset of variables will be biased. Suppose we estimate a subset D of size d.

Section B.2.2 derives the properties of the LSE when the model is underfitted. Suppose that the true model
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is given by
E (Y) = ftrue (X) = Xﬁﬁ@ + Xﬁcéﬁc)

where D = { j:0,1,..., d } and the model is underfitted using only d predictors,

F (%) =Xppo.
The LSE is ET = (E;,QT), with
E(B5) = b5+ Bbs.

and

A

var (,85) = o? (ngﬁ)‘l.

So, it is clear that the estimate is biased. Miller (2002:3-6) interprets B[S,ﬁc as the bias in the first d + 1
estimates resulting from the omission of the last p — d variables, and calls it appropriately the omission

bias. Although the estimate is biased, var 3) < var gire and the MSE is given b
g P P g Y

MSE (B) = o tr (X5X5) ) + 85, (B"B+1) B ..
Comparison with the true MSE,

MSE (B™) = 0 (r (X5Xp) ) + tr (BM7'B") + tr (M)

shows that the biased estimator may be more efficient if

B5. (B'B+1)p <tr(BM'B) +tr(M).

Similarly, the predictions are biased but have reduced variance. The bias of the prediction at a new
observation x,, = (50 5% 55) is
; T
B (f (EO)) = d /_31'55
and the variance is

var (f (x9)) = 0°x) 5 (X5X5) " %05

>
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so that the expected PE is
: 2, 2T T\ T 2
PE(f (x,)) = 0* + *x] 5 (XEX5) " xy 5+ (4 ﬁ@) :
Comparison with the true PE,

PE (ftrue (&0)) — 0,2 + 02£§§ (X%Xﬁ)_lﬁo)ﬁ 4 O'szM_ld

2
shows that the biased predictor has smaller expected PE when (d Tﬁﬁc) < 0*d™™'d. Seber & Lee

(2003:398) show that this will be the case when ﬁ%c Mﬁﬁc <o’

Any discussion of the LSEs above is under the premise that the model f (X) is chosen a priori. Besides
omission bias, subset selection will also suffer from selection bias unless independent data sets are used
for model selection and estimation. Since the variables are selected adaptively (using the response) the
selection bias will be high. All possible subsets sufters from very large bias since a large number of mod-
els are considered. Little is known about the properties of the parameters when subset selection methods
are used, but it is clear that the effective degrees of freedom for the model is larger than the number of
parameters in the model because of the adaptive selection (see page 3.1 for a discussion). The subset selec-
tion methods are not oracle estimators (see Definition A.3.8). They are not consistent because the greedy
searches often select a local minimum. Further evidence of their inconsistency is due to instability, re-
moving one observation from the training data could result in a completely different sequence of models.
The estimation is ineflicient due to their discrete nature, since parameters are either included or forced to

zero, a particular parameter estimate can vary dramatically depending on which covariates are excluded.

2.2.2 All Possible Subsets

The all possible subsets procedure involves fitting every possible model including an intercept term and

any number of predictor variables. If there are p = 2 predictor variables available then the following
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models would be fitted:

Y=[)70+£
Yzﬁo-i‘ﬁle-l‘S
Y=/30+ﬂ2X2+£

Y=/30+ﬂ1X1+ﬁ2X2+8

Each predictor variable is either included or excluded so that, if there are p available predictor variables,
then there are a total of 27 possible models. Thus, an exhaustive search is performed so that the method is
capable of finding the globally optimal subset of variables. However, it can quickly become too expensive
computationally. Table 2.2.1 below shows that this methods quickly becomes unfeasible as p is increased,
with over a thousand possible models when p = 10, over 1 million when p = 20, and over 1 billion when

p =30!

Predictor Variables All Possible Subsets Forward / Backward

2 4 4
4 16 1
6 64 22
8 256 37
10 1,024 56
12 4,096 79
14 16,384 106
16 65,536 137
18 262,144 172
20 1,048,576 21
30 1,073,741,824 466

Table (2.2.1) Number of models considered in subset selection methods. All possible subsets
quickly becomes infeasible, while forward selection and backward elimination require far less
computation.

Algorithm 2.2.1, from James et al. (2013:205), describes the all possible subsets procedure. First the
null model, including only the intercept, is fitted. For each subset size k = 1,2,...,p all (*Z) possible
models are fitted and the best one is selected. This leads to a set of p +1 models, including the null model.
The best of these models is selected using one of the information criteria in Section 3.2 or CV which is

discussed in Section 3.3.1. See Draper & Smith (1998:329-334) for more information.
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Algorithm 2.2.1 All possible subsets

1. Fit the null model including only the intercept Dy

2. Fork=12,...,p:

(a) Fitall (’Z) possible subsets of size k

(b) Select the subset of size k which has the smallest RSS and call it D;

3. Using some selection criteria, select the best subset D ;j among ﬁo, 51, .. j)}

Seber & Lee (2003:439-442) discuss algorithms for computing all possible subsets and show that the
calculations can be reduced by 50% using sums of squares and cross-product matrices. Although, the
use of these matrices can be inaccurate if there are high correlations between the predictors. Instead,
orthogonal matrix reductions, such as the QR-decomposition (see Definition A.1.7), can be used for
updating models to add or delete variables (see Seber & Lee (2003:446-447)). Miller (2002:11-36) and

Lawson & Hanson (1974) also discuss efficient algorithms for performing least squares.

A way to further reduce computation is to only consider the ¢ best models of each size, for some
constant c. Clarke et al. (2009:572-573) discuss two variations of branch and bound optimization meth-
ods which eliminate subsets of variables in an efficient way. The computation for one of these methods,
the leaps and bounds procedure, is described in Seber & Lee (2003:442-446). Miller (2002:48-54) also

discusses algorithms and computational issues for these selection algorithms.

2.2.3 Forward Selection

The forward selection method begins with the null model, including only the intercept term so that
E(y) = y, and selects variables for inclusion one by one. Once a variable is included, it is retained in
all further subsets. Miller (2002:39-40) describes the process with regards to the RSS. The variable that
produces the smallest RSS is selected first. At each subsequent step, the variable selected is that which
minimizes the RSS when added to the variables previously selected. The process continues until all the
variables are included or until satisfying some stopping rule. He also relates the process to a compar-
ison of correlations. If the variables have been centered, then the first variable selected has the largest

correlation with the response. Each subsequent variable selected has the largest partial correlation with
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the response, given the variables previously selected. James et al. (2013:207-208) describe the procedure,

shown in Algorithm 2.2.2, to continue until all the variables are added and then to use some selection cri-
teria to decide upon the best model. This could be more beneficial because there are p + 1 models which
can be examined instead of just the final model produced by a stopping rule. Their algorithm is shown
below. It involves fitting 1 + p (p + 1)/ 2 models, which is far more efficient than all possible subsets, see

Table 2.2.1.

Algorithm 2.2.2 Forward selection

1. Fit the null model including only the intercept D

2. Fork=0,2,...,p-1

(a) Fitall p — k subsets of size k + 1 which add one variable to subset 5k

(b) Select the subset of size k + 1 which has the smallest RS and call it Dy,

3. Using some selection criteria, select the best subset D ; among ﬁo, 51, ... ,5p

Alternatively, the process has been described as performing a sequence of hypothesis tests. A version
of the procedure where F-tests are used to decide which variable to include is described in Seber & Lee
(2003:414). At each step, the variable which produces the largest value of the F-statistic is included if the
statistic exceeds a specified value, say F;,. If no such variable is found then the procedure stops. F;, can
be a specified value or it can be calculated as the critical value for the F-distribution corresponding to a
significance level a. A drawback with this formulation is that the F-tests performed are not strictly valid
since the F-statistics do not meet the necessary distributional requirements. Suppose we are at a single
stage in the algorithm we want to test whether a variable should be added. The F-test assumes that, under
the null hypothesis, the current model is the true model with normal residuals that are independently
and identically distributed. If one of the remaining variables is chosen randomly then the F-statistic will
follow the F-distribution. However, since the F-statistic selected for testing is the maximum among a set
of statistics which are correlated, the statistic will not follow an F-distribution. Thus it seems arbitrary
to choose values F;, and F,,; with any meaning. Attempts have been made to correct this problem, see
Draper & Smith (1998:343), Miller (2002:43-44) and Seber & Lee (2003:419), but there is no uncompli-

cated solution.
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An advantage of using forward selection, as pointed out in Hastie et al. (2009:59), is that it can be

performed even when p > n. Since we begin with the null model, the process can continue while n > k.
However, there is no guarantee that the best subset of variables will be found with forward selection. The
procedure follows a greedy algorithm, once a variable is chosen it cannot be reversed. Since variables are
never discarded, all models of size 1,2, ..., k — 1 are nested within the model of size k. It is possible that,
when comparing the best fitting models of two different sizes, only some of the variables are present in
both. Miller (2002:67-69) shows an example where the best fitting model of size 3 does not contain any
of the variables that are in the best fitting model of size 2. Furthermore, forward selection is not likely
to include any groups of variables. Miller (2002:41) provides an example where a linear combination of
variables, (X; — X3), is an excellent predictor of the response but X; and X, are both poor predictors
on their own. Since forward selection includes one variable at a time, it will often fail to include both
variables. Essentially, the algorithm performs optimization locally. At each step, variables are considered
that improve the current state of the model. Therefore, it is possible that the best fitting model could be

completely overlooked by forward selection.

2.2.4 Backward Elimination

Backward elimination follows the same principal as forward selection but in reverse order. The method
begins by including all the variables and at each step the variable is removed which produces the smallest
residual sum of squares after its deletion. The process continues until all the variables are removed or until
satistying some stopping rule. James et al. (2013:208-209) provide the Algorithm 2.2.3 below for backward

elimination, simply as the reverse of forward selection, again considering a total of 1+ p (p + 1)/ 2 models.

Algorithm 2.2.3 Backward selection

1. Fit the full model including all the variables 517

2. Fork=p,p-1,...,1

(a) Fitall k subsets of size k — 1 which removes one variable from subset 51(

(b) Select the subset of size k — 1 which has the smallest RSs and call it Dy,

3. Using some selection criteria, select the best subset D ; among ﬁo, ﬁl, ... ,5p
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Since backward elimination begins with the full model, it cannot be used when p > n unless some

unsupervised screening is utilized to obtain a smaller subset of variables to start with. However, backward
elimination could be susceptible to similar drawbacks as least squares in the presence of collinearity. As
with forward selection, the algorithm is greedy and searches are local so that the true model may be
overlooked entirely. Although, Miller (2002:45) states that backward elimination would tend to keep
groups of variables in the model. See Draper & Smith (1998:339-341), Miller (2002:44-45), Seber & Lee

(2003:416,418) and Clarke et al. (2009:574) for more information.

2.2.5 Other Subset Selection Methods

Stepwise regression, or Efroymson’s algorithm, is a combination of forward selection and backward elim-
ination. At each step, variables can be entered or removed, thereby overcoming the greedy aspect of the
forward and backward procedures. However, the algorithm proceeds by performing a series of hypoth-
esis tests and its use is strongly discouraged for same the reasons mentioned on page 34. The method is

discussed in Draper & Smith (1998:335-338), Miller (2002:42-43) and Seber & Lee (2003:418-419).

Hastie et al. (2009:60) describe a procedure called forward stagewise regression. The procedure is
carried out on centered variables and starts with the null model. At each step, the variable which has
the highest correlation with the residuals is found. The residuals are then regressed on this variable and
its coeflicient in the model is incremented by that regression coeflicient. The process continues in that
manner until none of the variables are correlated with the residuals. When # > p, the final model is the

least squares model and it can take very many steps to reach it.

Miller (2002:46-48,54-47) discusses variations of the forward and backward procedures described
above. He talks about sequential replacement algorithms which can be used in conjunction with one of
the procedures. Once a number of variables are included in the model, a search is made to see if replacing
any of the variables will lead to a reduction in RSS. The process continues until RSS cannot be reduced
any further. He also discusses the possibility of considering pairs of variables for inclusion or exclusion
instead of individual variables. Lastly, he mentions an untried method whereby variables are placed into
smaller groups and all possible subsets is performed on each group. The groups would have to defined
so that the RsS for variables in different groups are additive. This situation occurs when the variables are
orthogonal. He does provide another case when this condition is met, but ultimately leaves the problem

for further research.
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2.3 Ridge Regression

2.3.1 Estimation

Ridge regression, proposed by Hoerl & Kennard (1970), is the oldest and most well known shrinkage
method. A constraint is placed on the size of the parameters which has the effect of shrinking them to-
wards zero. Since the constraint is focused on the size of the parameters, it is important that predictors are
on the same scale to allow them equal consideration. Ridge regression is not scale invariant, a parameter
estimate can change drastically if the scale of the predictor is changed and can be also be affected by the
scale of other predictors. Therefore, the data is standardized before estimation. The ridge estimator is
given by

&R = argmin |v - Za|? subject to |a|* < 7, (2.3.0)

3

where 7 > 0 and RSS (a) = |v — Za/|*. The constrained problem is equivalent to the penalizing the RsS,

& = argmin |v-Za|® + Aa|?, (23.2)

@

where A > 0 is chosen so that H &R H2 = 7. This can be shown by looking at the Karush-Kuhn-Tucker (KKT)
optimality conditions (see Definition A.3.6). Suppose that @X is the optimal solution for problem (2.3.2),
then

=0. (2.3.3)

T

\Y Hv - Z@RH2 + AV

For problem (2.3.1), the KKT conditions imply that «* and A* are optimal if:
L la*|*-7<0,
2. A7 20,
3. 2 (Ja*|* - 7) =0,and
4.V |v-Za [P+ 2V (la*[* - 7) = V [v - Za*|* + A7V a*|* = 0.

Let HéRuz = 7. If we set a* = &R then conditions (1) and (3) are met. If we also set A* = ) then
condition (4) is met because of equation (2.3.3). Therefore, problems (2.3.1) and (2.3.2) are equivalent

2
when A > 0 (2) and H QR H = 7 since they have the same solution.
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The ridge penalty function is
2 P
Pr(a)=2[al*=Aa"a=1}" o] (2.3.4)
j=1

We have that P, (a) = 2Aa and Py («) = 2 > 0. Thus, the ridge penalty is differentiable and is strictly
convex when A > 0 for all a. Since both RSS («) and Pg («) are both positive quantities, each of them is
minimized and it is clear that P («) will be a minimum when ay, as, ..., « pare all close to zero. A is called
the shrinkage parameter and it controls the amount of shrinkage. A set of estimates can be produced, one
for each value of A, and we can follow the path of each parameter estimate as A increases. If we set A = 0,
we would obtain the least squares estimates and the penalty would have no effect. As A — oo, the effect of
the penalty increases and &* — 0. Note also that the gradient P} (&) o< a so that the shrinkage applied

by ridge regression is proportional to the parameters.

Since the penalty function is differentiable, ridge regression can be solved explicitly. Setting the partial

derivatives of (2.3.2) to zero, we have

V (RSS () + Py (la])) = 0
< V{(V—ZQ)T(V—ZQ)+/XQTQ}=O
= 22T (v-Za)+21a =0
o ZTZa+la=ZTv

< (Z2"Z+M1,)a=2Z"v.
Thus, the ridge regression estimator is
&t = (27z+ 1) 2. (2.3.5)

with variance

var (&R) = 0> (272 + M) 272 (2" 2+ 1) (2.3.6)

2.3.2 Collinearity

Ridge regression corrects any problems with the correlation matrix, R = ZTZ. Adding the positive con-

stant A to each diagonal element of R has the following effect:
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o IfRis singular, (R + AI) is nonsingular. Therefore, Z is not required to have full column rank and

a unique estimator can be found when p > n.

« IfRisnonsingular butisill-conditioned, (R + AI) is not ill-conditioned. Therefore, ridge regression

overcomes any problems with collinearity.

Elaborating on the second point, Gentle (2007:206) states that, when R has full rank, the condition
number of (R + AI) is lower than the condition number of R since
max (dj + A) max (dj)

min (dj + )L) < min (dj)’

where A > 0 and here, d; = d; (R), the singular values of R. See equations (2.1.29) and (2.1.30). This can
easily be confirmed. Since R has full rank, the singular values are all positive. Suppose thatd; > d, > --- >

d, > 0, then we can write
dl +A < dl
dy,+A d,

< (di+A)d,<di(dy+1)

<~ dldp + Adp < dldp + dl/\

o Ad, <Ay
=4 dp < dl.
More directly, we have that
_ -1
1+7 112 Tp
- r 1+A - 1
(R+AI)7" = 12 . 2p
| rlp r2p 1 + A
i L VI § I
1+ 1+A
Mmoo L 2
= (1 + /\) 1+ ] 1+1
Tp. ﬁ 1
- +A  1+A
12 np 71
1+ 1+A
1 o L 2
= m ltA . . 1":"1 . (237)
o
1+4  1+A

Thus, ridge regression shrinks each of the correlations by a factor of 1/ (1+ 1), an operation called decor-

relation by Zou & Hastie (2005). In addition, a direct shrinkage factor of 1/ (1+ A) is applied to control
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the variance.

Another way to deal with collinearity is to collect additional data. Seber & Lee (2003:322) point out
that ridge regression can be interpreted as the least squares solution if the data is augmented with addi-

tional observations (\/XIP, 0). Let

&" = argmin [v'-Z"a|’,

a

where
v

VA and v' = ) (2.3.8)
(n+p)xp [ \/_Ip ] (n+p)x1 [ 0 :|

Then the ridge estimate is obtained by applying least squares,

éR _ (Z*TZ ) Zx—T *

:[[ZT fl][fl]]_l[ZT \/XI][X]

= (2"z+ )" Zv.

2.3.3 Shrinkage

It is useful to compare ridge regression with least squares to examine how ridge regression shrinks the
estimates and the effect that shrinkage has on the properties of the estimates. Assume that Z has full

column rank so that the LSEs exists. We can write the ridge estimate as

&R = (27z+ ) 2"y
2'72+2(2"2 (sz)’l]flva
(z'z [I+/\ (2'z) ]} zv

(
[
[1 w1 (z 1] (27z)"' 2"
-|

-1
1+1(Z ] & =B84, (2.3.9)

-1
where B, = [I +A (ZTZ) 1] and & are the least squares estimates.
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Consider the singular value decomposition (SVD) of Z (see Definition A.1.5),

Z =UDV/,

where D is a p x p diagonal matrix, U is an n x p matrix with orthogonal columns and Visa p x p

orthogonal matrix. The diagonal elements of D are the singular values of Z, with d; >

The columns of U span C (Z) and the columns of V span C (ZT). Then,
R=2"2=VD*V".
So,

1+1(2"z2) N
B = | )T

[V 42 (VDZVT)’I]_1 since VV =

VvV £ AVD V] since VI = V!

Il
—

= [V(1+AD?) V]

=V (I + /\D_2)71 VT since v =v~!

and &" is given by

It is clear that:
. When/\:O,djz./(dJZ.+}L) -
2 2 2 2
2. When A >0, dj < dj + A so that d; /(dj+/\) € (0,1)

(a) df/(dfm) > 0as ) — oo, and

(b) d]?/(djm) > 0asd? - 0.

With these results we can make some deductions about the form of shrinkage in ridge regression.
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Since V is an orthonormal basis for C (ZT), VT4 are the coordinates of & with respect to the basis V
and are affected by a factor of djz. / (dJZ + /1) . Points (1) and (2) above verify that the LSEs are not affected
when A = 0 and are shrunk towards zero when A > 0, while (2a) clarifies that the amount of shrinkage
increases as A increases. Point (2b) states that the shrinkage affects the coordinates corresponding to the
smaller singular values more. Now, p; = Zv j are the principal components of X and each p; accounts
for a proportion of the sample variance of X. From the SVD we have that Zv j=u jdj so that var (p j) =
d]z /n. Since dy > --- > d,, the first principal component p; has the largest sample variance, p, the second
largest, and so forth until the last p, which has the minimum variance. Thus, since the columns of U
span the column space of Z, the small singular values of Z correspond to directions of C (Z) that have low
variance. That is, those predictor variables whose observations are have no spread. It is these coordinates
that experience the most shrinkage. See Hastie ef al. (2009:66-67,79) and Seber & Lee (2003:325-326) for

information about principal components.

2.3.4 Properties of Ridge Estimates

If we assume the linear model is correct, E (v) = Za, then QR is biased since

E(&")=E(B)4)

=B)E (&)

Hastie et al. (2009:224-225) refer to this bias as estimation bias because the model is estimated in a re-

stricted model space. The variance-covariance matrix of & in terms of the SVD is (also seen from (2.1.28)),

o (2"z)"

var (&)

o> (VvDVT) ™

o*VD 2V  since VI = V!

o>V diag (%) VT,

J
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so that

var (&) = var (B, )
= By var (&) B}
=V (1+AD2) " VT (¢>VvD2VT) V (1+AD2) " VT
= *V(1+AD2) * D2V since VIV = T
1
@2 (1+ 1/d2)’
d?

= 0’V diag W \'d

= 0%V diag v

Thus the ridge estimates have much lower variance than the least squares estimates for A > 0. For small
singular values or large values of A, the decrease in the variances of the ridge estimates are extreme.
Draper & Smith (1998:396-397) show that there is a value of A for which MSE (QR) < MSE (&) and
Seber & Lee (2003:322-323) show that if A is sufficiently small then MSE ( QR) will decrease as A increases.

However, finding the value of A that minimizes MSE (QR) depends on the unknown parameters o and

a2,

As with least squares, the fitted model is a linear combination of the response,
zé® =7 (2'2+ M) 2"V = Hyv,
where Hy = Z (ZTZ + M)_l Z7 . The effective degrees of freedom for the model (see (3.1.10)) is therefore,

df =t (H)) =tr[2(27Z+ 1) ' Z"]

= tr[UDV" (VD*V" +AVV") " VDU |since VV' =1

tw {UDV' [V (D? + /\I) V'] vpu'}

:tr[U (D> + 1) ]sincevT:V‘1 and VIV =1
= tr[U"UD? (D?+ A1) |

AR
_Zd +AsmceUU I.

J=l
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Thus the degrees of freedom for the model decreases as A increases. For a least squares fit the degrees of

freedom is equal to the number of parameters, p + 1.

2.3.5 Model Selection

Ridge regression requires little computational effort. James ef al. (2013:219) state that finding the ridge
estimates simultaneously for all A requires almost the same amount of computation as using least squares.
One difficulty is the selection of the tuning parameter but many suggestions are available in the literature.
Draper & Smith (1998:388-389) and Seber & Lee (2003:324) discuss the ridge trace, a plot of each &f
against A - the original authors suggested using the plot to determine at which value of A the parameters
are stabilized. Draper & Smith (1998:390-391) and Miller (2002:59) provide some formulae for calculating
the optimal value of A and also discuss using an iterative ridge regression algorithm for this purpose.

Seber & Lee (2003:424) recommend using resampling methods to determine which value of A to use.

Ridge regression provides an attractive method which can be used to fit the linear regression model
when p > n or when there is collinearity present. Although the parameter estimates are shrunk to-
wards zero, they are unable to attain the value of zero exactly and no variable selection is performed.
Draper & Smith (1998:391) explain how one could use ridge regression for variable selection purposes.
The process involves performing ridge regression in two stages together with some kind of thresholding
rule. For the first stage, the model is estimated and the optimal value for A is selected. After inspection
of the estimates, any estimates that are smaller than some pre-specified value, or threshold, are removed
from the model. The model is then estimated using ridge regression again in a second stage where these
parameters have been removed . For further details about ridge regression, see Draper & Smith (1998:387-

400), Seber & Lee (2003:321-324,423-425) or Hastie et al. (2009:61-68).
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Chapter 3

Model Selection

Subset selection methods and ridge regression both produce a set of models with varying complexity
from which a best-fitting model must be selected. This chapter focuses on methods that are available
for performing model selection, which are usually based on prediction error (PE). Section 3.1 examines
the composition of PE and its relation to model complexity. Models with low complexity have high bias
and models that are too complex have high variance. The model selected has the best balance of bias
and variance, the one with minimum PE. However, we cannot calculate PE directly since we usually do
not know the true model function. If enough data is available then model selection can be carried out
using a validation data set. In the absence of extra data, we need to estimate PE using the training data.
Although the training error is an over optimistic estimate of PE, the optimism of the training error can
be estimated. Section 3.2 looks at some information criteria which adjust the training error to form a
better estimate of PE. If Gaussian errors are assumed then methods that penalize the likelihood function
can also be used. Alternatively, Section 3.3 explains how PE can be estimated by resampling data from the
training set using CV(Section 3.3.1) or bootstrapping (Section 3.3.2). Choosing the best model for variable
selection is slightly more difficult. The Bayesian information criterion (BIC) in Section 3.2 is consistent for
variable selection and the one-standard-error rule mentioned in Section 3.3.1 can be also used to select

more parsimonious models.

3.1 Prediction Error

Prediction error (PE) provides us with a measure of how well a predictive model performs so that we
can assess the quality of the model. It also aids in model selection since it allows us to make comparisons
among different models. Hastie et al. (2009:222) provide some guidelines on how to use the available data
effectively when choosing and assessing a model. When there is sufficient data, they recommend splitting

the data into three parts:
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1. 50% training sample for estimating the models,
2. 25% validation sample for model selection,
3. 25% test sample for assessing the accuracy of the final model.

When the observations available are too few to allow for such a split of the data, they suggest using in-
formation criteria or resampling methods for the model selection step. PE was introduced in Section 2.1.3.
This section takes a closer look at PE and how it relates to model complexity, particularly when used for

model selection.

Suppose that our predictive model f (X) is estimated from a set of training data given by 7 =
{(xp 1) (2 92) .. (%, yn) } that is drawn randomly from the population. The training error of the
model is the average loss over the training sample. For squared error loss,

(yi-f(x) = M. (3.11)

n
i=1 n

S|~

TE(f (x)) =

The test error is the PE over an independent test sample. Hastie et al. (2009:220) provide these definitions

for PE. Using a speciﬁc training sample T, the test error, or extra—sample error, is

PE ( (x0)) = E[ (3o - f (x9))] T]. (3.12)

The training set in this conditional expectation is fixed. (Xp, Yp) is a new observation from the joint
distribution of X and Y, and the expectation is over this distribution. The expected test error, or expected

PE averages the randomness in the training data,

PE(f (x5)) = BTE[ (3o - f ()| T] = E[PET (F (x))]. (3.0.3)

Section B.1.2 shows that the expected PE can be divided into three components,

PE(f (x0)) = E[y0 - f (x0)]°
=E[po-E(0) +E[f (x0) - f (x0)]
= var (y0) + E[f (x0) ~ E(f (x0))] +[E(f (x0)) -~ f (x0)]
= o® +var (f (x,)) + B (f (x,))’. (3.1.4)
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The first term var () = ¢ is unavoidable, it is the variance of the new response around the true mean
f (x,). Hastie et al. (2009:223) calls it the irreducible error since our estimate of f (x,) is unable to change
it. The second term is the variance of f (x,) around its mean and the third term is the squared bias
of f (x,), the squared difference between the mean of f (x,) and the true mean f (x,). Hastie et al.

(2009:224) split the average squared bias further,

E[B( (x))"] = E[E(F (x0)) - F ()]’
= E[f () 588, | +E[sB £ (F (x0))]

= Ave [Model Bias]* + Ave [[Estimation Bias]*, (3.1.5)

where they call E , the "best-fitting linear approximation to f*, defined by

o ) T \2
p = argmmE(f(X)—X ﬂ) .

p— E fu—

The model bias is the difference between the true model and the best-fitting linear approximation. This
bias is irreducible unless a larger class of linear models, including transformations and interactions, is

considered (see Hastie et al. (2009:224)). The estimation bias is the difference between the best-fitting

linear approximation and the average model estimate E ( f (lo))-

For a least squares fit, model complexity is controlled by p, the number of variables in the model.
We can denote the model by fp (x) = QTEP with residual sum of squares RSS,. If the model is too
complex, the model starts to fit the noise in the training data - overfitting occurs and the model will be
too variable. However, if the model is underfitted then it will be very biased. In both cases, the model
will not generalize well to new data. The training error is given by RSS, / n and is over optimistic since
RSS), always decreases as p is increased. Thus, training error is unable to detect overfitting. To asses
the predictive power of the model, we need to look at the test error. The test error accounts for model
complexity and starts to increase as we begin overfitting. The minimum test error enables us to choose
the correct balance of bias and variance. The bias and variance are the last two terms in (3.1.4) and can be
controlled by choosing different values of p. Generally, the model has high bias and low variance when
p is small. As p increases, the bias decreases and the variance increases. Least squares does not have any

estimation bias since E (fp (x0)) =E (XOTBP) = gOTB*.
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For a ridge fit, model complexity is controlled by the parameter A. We can denote the model by
fA,l (x) = gTé v where ﬁ N is the vector of restricted estimates. The situation is similar and the last two
terms in (3.1.4) and can be controlled by choosing different values of A. The model has low bias and high
variance when A is small. As A increases, the bias increases and the variance decreases. The only difference

is that the ridge model has additional estimation bias since E ( fA (Eo)) =E (&g _/\) # gOT _A*.

Figure 3.1.1 demonstrates these concepts for the LASSO using 100 training samples of size 60 each.

There were 45 predictor variables, of which 15 were relevant. Model complexity is indexed by the fraction

#l/1e

how the training error is an optimistic estimate of the test error. The light curves represent the extra-

of the ¢; norm, s =

v where the null model occurs at 0 and the LSE at 1. Figure 3.1.1a shows

sample error in equation (3.1.2) and the thick curves are the averages given by equation (3.1.3). The large
test error near 0 is due to high bias and the variation in the test error increases as we approach 1. The
trade-off between the bias and variance is seen clearly in Figure 3.1.1b. The squared bias steadily decreases
and the variance increases as the complexity is increased, while the minimum MSE (marked with a point)

provides the best balance between them.

200
0

- SqBias
Var

- - Variance
—— MSE

150
0

Prediction Error
100
Mean Squared Error

(a) (b)

Figure (3.1.1)  Prediction error and model complexity: (a) the training error and test error for
100 training samples of size 60, the average error is indicated by the thick solid lines; and (b) the
composition of prediction error - the variance, squared bias and Mst for the simulated data.

Assume we have a sample of m test observations (ﬁo,l’ yo,1) , (50’2, yo,z) eees (ﬁo,m’ yo,m) drawn ran-
domly and independently from the same population as the training data. Let the test data be given by

Y& = (Yo Yo2s---» Yom)and XI = (Eo,p&o,z’ . >£0,m)- .Assume that y, has the same probability
Ixm (p+1)xm
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structure as y. That is, E (yo) = f (Xo), var (yo) = 0*I and yy is independent of y. Then the expected PE

is (see Section B.1.2),

E (f, (Xo)) = ma* + MSE (£, (Xo)) -

Since the MSE is the major part of the expected PE, results are often reported for the MSE of the test data

set (yo, Xo). For the linear model f (Xo) = Xof3, we have

MSE (f (Xo)) = Exo.v, [(Xo[j—xoﬁ) Xoﬁ Xop ]
- £(BXXaf - BXIXB 87X Xo-B X Xaf)

E[(B-) XIxoB - (-B) XiXof)|

If we assume E (X) = 0 then E (XOT Xo) = XI'X, / n, is the population variance-covariance matrix of Xo.

In practice, the true form of the model is unknown. The expected test error cannot be evaluated di-
rectly and must be estimated. The training error TE is an underestimate of the test error PE7. Hastie et al.
(2009:228) also call PET the extra-sample error since the observations of the predictor variables differ
from the training observations. Conversely, they define the in-sample error as the error when new re-
sponse values y are observed at each of the training observations of the predictor variables. For squared
error loss,

PE;, (f (x)) = fE[(yo,i ~f=)]T]- (316)

i=1

X | =

Hastie et al. (2009:228-229) define optimism as the difference between the training error and the in-
sample error. Furthermore, they have the expected optimism, where the average is over the response

values of the training sample (the parameters in the training set are fixed),

o (f(x)) = E(PEw (f (x))) - E(TE(f (x)))
= % iz:cov (yi,f(gi)). (3.1.7)
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See Section B.1.3 for a proof. For a linear model where f (X) = Hy,

A

cov (v f (x,))
= cov (y,-, Zn: hijyj)

Jj=1

= hjjvar (y;) + Zhij cov ()’i’)’j)

i£j

= h;;0% since var (y;) = 0* and cov (yi,yj) =0

and therefore,

= Zotr (H). (3.1.8)
n

This leads to general definition for the effective degrees of freedom (DF) of a fitted model f (x). For any

adaptively fitted model with additive error, Y = f (X) + &, where var (¢) = 02, the effective DF is given by

1 & A
af = 3 2cov (i ] () (3.19)

As we fit the model to the data using the response, the covariance between the response and the fitted

model increases - the harder we fit, the larger the covariance. For a linear model f (X) = Hy we have
df =tr (H). (3.1.10)

For least squares estimation the DF is the number of estimated parameters in the model, df = p +1, the
number of variables plus the intercept. For maximum likelihood estimation, the DF is also defined as the
number of estimated parameters in the model and in this case, df = p + 2 since ¢ is also estimated. If
a subset of d variables is fitted using least squares then df = d + 1 if the subset D is specified a priori.
However, if subset selection is used to find the best subset D of size ﬁ, the search for the optimal subset

uses extra DF so that df > d + 1. In this case, (3.1.9) can be estimated by simulation. See Hastie ef al.
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(2009:77-79,232-233) for a discussion. The expected in-sample error is therefore given by

E[PEi (f (x))] = E[TE (f (x))] + 24] 2, (3.111)

n

For a least squares fit the in-sample error is (see Hastie et al. (2009:224) or Seber & Lee (2003:394-

397)),
PEi (f (x)) =%§1PE (f (=)
_ 02+%§;var(f(£,~)) +%2:[E (f(ﬁz)) _f(&)]z from (3.1.4)
=0t Pt S B (f (1)) - ()]

> var (f (x,)) = tr[var (f (X))]

i=1

= tr [var (Hy)] from (2.1.7)

=o*tr (H) = (p +1) o*

if X has full column rank. The in-sample error is therefore directly related to the number of variables p.

However, f (x;) must be known to calculate it. The expected optimism is given by
> 2 5 2(p+1) ,
w(f(x))==0"tr(H) = ~—~¢"
n n

So for least squares, the expected optimism increases as p increases, and decreases as the number of train-
ing observations n increases. Adding the expected optimism to the training error provides an estimate of

the in-sample error,

_ RSS(é) 2(p+1) ,
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In summary, prediction error provides a useful measure to assess the predictive performance of a

model. Since PE is related to model complexity, it can be used for model selection to select the best
balance of bias and variance. However, the expected PE cannot be calculated directly because it depends
on the true form of the model f (X) which is usually unknown. PE can be estimated by estimating the
expected optimism and adding it to the training error. Although this leads to an estimate of the in-sample
error, where the observations coincide with the training sample, Hastie ef al. (2009:230) assert that it can
be used effectively for model selection. Some of the information criteria in Section 3.2 are estimates of
the expected in-sample error. The resampling methods in Section 3.3 estimate the PE, or expected extra-

sample error, directly.

3.2 Information Criteria

Information criteria are used to make comparisons between models for the purpose of model selection.
To select the best model of size d < p, the selected criterion is calculated for models of size k =1,2,..., p
and the model corresponding to the best value is selected. The RSS and R? measures cannot be used
to compare models of different sizes because they always improve when more variables are added to the
model. The estimated error variance s* and the adjusted R? account for model complexity by adjusting
these measures with the DF. Mallow’s C, works in a similar way and is also an estimate of the expected
in-sample error (see 3.1.6). If the errors are Gaussian, nested models can be compared using F-statistics
or the likelihood ratio test. These test will not be discussed here, the interested reader is referred to
Searle (1971:124-125), Seber & Lee (2003:98-102) and Johnson & Wichern (2007:219-220). For non-nested
models, measures that penalize the likelihood, like Akaike information criterion (AIC) and BIC can be used

when the errors are Gaussian.

An advantage of information criteria is that they have considerably less computational expense than
resampling methods - once the models are estimated, it is simply a matter of evaluating an expression
for each model. However, there are some drawbacks. Although the criteria are defined by the number of
variables in the model, this is only strictly correct for least squares or maximum likelihood estimation.
Note that for si, Ri and Cy we use k +1 for the k predictors plus the intercept. When using the maximum
likelihood, 6 is another estimable parameter and we use k +2 to account for it, except when o2 is assumed
known in (3.2.12) and (3.2.13). The correct adjustment is thus for the effective DF . Now, DF is not always

easy to specify. For alinear fit such as y = Hy, equation (3.1.10) can be used. However, for a nonlinear fit or
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if the parameters are chosen adaptively, the equation does not hold and DF can be estimated by simulation
using (3.1.9). Alternatively, Hastie et al. (2009:237-241) discuss the Vapnik-Chervonenkis Dimension,
which is a generalization of (3.1.9). Another difficulty is that 0% is needed to calculate each criterion and a
model that is roughly correct is necessary to estimate 6. The criteria that penalize the likelihood function

have the further disadvantage of relying strongly on distributional properties.

s? and Adjusted R*

Let RSSx = RSS ( /_3 k)’ the minimum RSS for a least squares model containing k predictors. Since least
squares seeks to minimize RSS it can be used as a measure of how well the model fits. However, the RSS
decreases as more variables are added to the model and should only be used to compare different models
of the same size k. To compare models of different sizes, RSSy can be adjusted by the residual DF to arrive

at the estimated residual variance,
RSS;

_ 3.2.1
n—-k-1 ( )

sp =

Let §* (k) be the average of the s; for all models of size k. Draper & Smith (1998:331) suggest that s
starts to stabilize and approach the true error variance o as the model is being more and more overfitted.
Thus, a plot of 5? (k) against k should reveal an approximate 0% and the ideal number of variables k. They
assert that such a plot is most informative when there is a large number of variables and a large number

of observations, specifically p > 10 and 5p < n <10p.
The coeflicient of determination,

RSS;

RP=1- 2%
£ > (yi-3)

(3.2.2)
is also a well known measure for assessing least squares models. Similarly to RSS, the value of R always
increases as more variables are included in the model. The adjusted R? can be used to compare models of

different sizes and and is given by

ooy RSS/(n-k-1)

- , 323
S G- (n-) (3:23)

where both RSS and ¥ (y; — 7)* are adjusted by their DF (see Draper & Smith (1998:139-140)). It is easily
shown (see Seber & Lee (2003:400-401)) that the model with the maximum R? is the same model with

the minimum s2.
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Mallow’s C »

Mallows’ C, is defined for a model containing k predictors as

RSS;

Cr=—; +2(k+1)-mn, (3.2.4)
lij

where an estimate of o from a low bias model can be used. It is suggested to use the estimate 6* = s‘% from
the least squares fit including all the predictors available. See Clarke et al. (2009:572,579). If the largest
model contains p variables, then 6° = RSS, / (n - p —1) and for that model we have

RSS,
(}2

RSS,
+2(p+1)—-n RSSP/(n—p—1)+ (p+1)-n=p+

Cp =

So by using 62, we are comparing each model to the full model where C, = p + 1. In fact, for all k, the

expected value of Cy is

E(ck):%u(kﬂ)—n
:—(n_i;1)02+2(k+1)—n
=k+1,

if the model is correct, E (y) = Xk/_Sk, so that E (RSS;) = (n—k—1) ¢ Thus, a plot of C; against k
should reveal adequate models close to the Cy = k + 1 line. According to Draper & Smith (1998:332),
biased models will appear above the C; = k + 1line. This is because RSSy is larger when the model is
biased so that Cy > k + 1. Seber & Lee (2003:402) show that when the estimate 62 from the largest model
is used, and if n is much larger than k, then the lowest value of Cy — k — 1 coincides with the highest value
of I_Qi. Efron & Tibshirani (1993:242), Hastie et al. (2009:230) and James et al. (2013:211) define a version

of the Cj statistic as an estimate of the expected in-sample PE,

Cx = PEi (f (x4))
=TE (f (ﬁk)) + @62 from (3.1.11)

n n

(3.2.5)
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Seber & Lee (2003:402) show that Cy, is an estimate of E [MSE (f (X))]/ 0. This result can be used to
show that the two versions in equations (3.2.4) and (3.2.5) are proportional and differ by a factor of G2 [n.
For more information, Miller (2002:116-127) discusses Mallow’s C, and modifications thereof in detail.

AIC and BIC

If the errors are Gaussian, we can use measures based on the likelihood function. If the true model

contains d < p predictors then the best model is selected having size

62 = argmin ICy,
k

with

ICy = Dy + ¢, (K) (3.2.6)

where Dy is the minimum deviance (see (2.1.13)) for a model containing k predictors,

Dk = —ZlnLk (/_jk’ 5‘2|€)
RSS;

=nln (276%) + = (3.2.7)
=nln (27162) +n (3.2.8)
=n+nln(27m) +nln (%), (3.2.9)

and ¢, (k) is the penalty function which increases with n. Thus, these information criteria penalize the
likelihood function L and the idea is quite similar to shrinkage methods which penalize RSSy. However,
the penalty function for shrinkage methods applies to the parameters L and depends on the shrinkage
parameter A, whereas the penalty function for these criteria applies to the number of predictors k and
depends on the sample size n. These criteria are consistent for model selection if lim,,_, o, P (d =d ) =1
Clarke et al. (2009:579) show that if lim, . ¢, (k)/n = 0thenlim,_ . P (d < d) = 0 so that consistency

for selection can be shown by proving that lim,,_, o, P (d >d ) =0.

AIC has penalty function ¢, (k) = 2 (k + 2). From (3.2.8), the AIC is given by

AICy = nln (2n6%) + n+2(k +2). (3.2.10)
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It is derived from the Kullback-Leibler discrepancy and is an estimate of the discrepancy between the
density of the true distribution of y and that specified by the model. Seber & Lee (2003:407-410) show

that an unbiased estimate of the discrepancy between the densities is given by the modified criterion

oy n(n+k+1)

CAICk—nln(Zﬂa )+m

+2(k+2)(k+3)
n—-k-3

2n (k+2)

n-k-3°

= AIC,

=Dy + (3.2.11)

The bias correction is necessary for small samples, Burnham & Anderson (2002:66) recommend using

this version when n/ (k + 2) < 40. When n is large AIC; and CAICy, are asymptotically equivalent since

2n(k+2)
li k)= lim ———= =1.
A (0= s
When o2 is known, AIC is

RSS;
0—2

AIC; = +2(k+1), (3.2.12)

by using (3.2.7) and omitting the constant 7 log (27102) which does not dependent on the model. This
form of AIC is proportional to C, in (3.2.5) with o® known, they differ by a factor of 6*/n. In the literature,
AIC has many similar definitions based on either equations (3.2.7) to (3.2.9), possibly removing constants

and dividing by # or 6%. For example James et al. (2013:212) define

RSSk +2(k+2)'

AlCi = ng? n

(3.2.13)

Clarke et al. (2009:580-581) shows that lim,,_, ., P (d >d ) > 0 so that AICy is not consistent for selection.
Butlim,_ . P (d >d ) =1, so asymptotically, AIC; will select too many variables. In the finite sense, this
can be seen by its small penalty function which does not depend on 7. Because the deviance is not heavily
penalized, more variables are allowed to enter the model. For this reason, Clarke et al. (2009:585-586) say
that AIC is robust and should be used when selecting a model for prediction purposes. Furthermore,
Clarke et al. (2009:580-581) show that the model chosen by AIC is minimax optimal. For small samples,
or when p is large compared to n, CAICj will select less variables than AICy because its penalty function
is larger. Miller (2002:162-163) shows that AICy and Cj are equivalent, but if 6> = RSS/ (n -k —1) is

used for AICy then it will select more variables than Cy. For more information, Burnham & Anderson
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(2002) provide extensive details about AIC.

The Bayesian information criterion (BIC), also known as the Schwarz criterion, penalizes the deviance

with penalty function ¢, (k) =1n (n) (k +2). It is given by

BICy = nln (276%) + n +1In (n) (k +2) (3.2.14)
and when ¢ is known then
RSS;
BIC, = —% +1In(n) (k+1). (3.2.15)
o

The BIC was developed from a Bayesian approach: choosing the model with minimum BIC is equivalent to
choosing the model with the largest posterior probability. For a discussion about the Bayesian perspective
of BIC, see Seber & Lee (2003:410-413), or Hastie et al. (2009:233-235). As with AIC, there appear to be

many forms of BIC in the literature. In particular, James et al. (2013:212) define it as

BIC = (3.2.16)

RSS; . (Inn) (k +2) 62
n n '
The BIC penalty depends on 7 and is much stricter than AIC since In# > 2 when n > ¢? = 7.389. Thus, BIC
allows less predictors into the model and is more appropriate for identifying the correct model. In fact,
Clarke et al. (2009:584) show that BIC is consistent for selection because lim,,_, o, P (d >d ) = 0. However,

it is not minimax optimal.

Other Information Criteria

The information criteria discussed above are among the most popular criteria used but there are many
others. The minimum description length (MDL) minimizes the negative log-posterior distribution and
is thus equivalent to the BIC which maximizes the posterior probability (see Miller (2002:158-160) and
Hastie et al. (2009:235-237)). There are also a number of modified AIC and BIC criteria. Miller (2002:157)
explains two modifications of the AIC, Risannen’s criterion and the Hannan and Quinn (HQ) criterion.
Clarke et al. (2009:586-587) also mentions the HQ criterion including some others, the deviance informa-
tion criterion (DIC), the focused information criterion (FIC) and the covariance inflation criterion (CIC).
Miller (2002:127-129) discusses the risk inflation criterion (RIC), which has a much smaller dependency on
the number of variables. Shao (1997) examines the asymptotic properties of various information criteria

for linear model selection.
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M 4
3.3 Resampling Methods

Resampling methods consist of repeatedly drawing random samples from the training data and estimat-
ing the same model or measure on each sample. They can be immensely beneficial if there is not a wealth
of data available since the same observations are reused in different subsets of data. A disadvantage of
resampling is that it can be very computationally expensive. If the model is computationally expensive
then resampling methods will be even more so, since they involve fitting the same model repeatedly on
different subsets of data. These methods can be used to measure accuracy, such as finding standard errors
of estimates; for model selection, like choosing the level of complexity for a method or deciding between
different methods; and for model assessment, to ascertain how well the model performs. A major advan-

tage is that they do not make any distributional assumptions.

3.3.1 Cross-Validation

Cross-validation is a resampling method that can be used for model selection and model assessment. In
Section 3.1, it was recommended to split the data into three parts, a training set, a validation set and a test
set, provided there is sufficient data to do so. If there is insufficient data to warrant having a designated
validation set and test set, the training data can be split into parts to obtain a validation set. James et al.
(2013:176-178) describe the validation set approach which randomly splits the observations into two equal
parts, a training set and a validation set. The training observations are used to estimate the parameters of
the model and those estimates are used to make predictions on the validation observations. The estimated
test error for the validation set is used to assess the performance of the model. However, they show
that estimating the test error in this way can be highly variable. They repeat the process ten times, each
time randomly splitting the data into two equal parts, estimating the parameters on the training set and
predicting the validation set. They point out that the variation of the test error among the ten models is
large. The test error is very different each time, and highly depends on which observations are included
in each data set. Furthermore, since the model is fit on only a subset of the data, they suggest that the

estimated test error is an overestimate of the actual test error for the model fit on the full data set.

Repeatedly performing the process of splitting the data, estimating and predicting is the basis of Cv.
Each method splits the data in different ways and provides an estimate of PE. Hastie et al. (2009:241) assert
that CVv directly estimates the expected PE. Using CV avoids the problems incurred in the validation set

approach.

58



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Que® YUNIBESITHI YA PRETORIA

K-Fold Cross-Validation

K-Fold v repeatedly splits the data into K different parts, approximately equal in size, and uses one part
for predictions and the remaining parts for estimation. For each k, the k-th part is used for validation

and the other k — 1 parts are used for training.

Algorithm 3.3.1 K-fold cross-validation

1. Randomly split the data into K parts

2. Fork=1,2,...,K

(a) The training set includes all the observations except those in the k-th part. Fit the model to the

training set and denote it by f % (x).

(b) Use the model f~* (x) to make predictions on the k-th part of the data which includes ny. ob-

servations.

(c) Calculated the estimated test error for the k-th fold

P = L5 (- (1)
k i=1
3. Calculate the CV estimate of PE is the average
N 1 &~
CVk (f) = I > PE;. (3.3.)
k=1

Usually we choose K = 5 or K = 10. James et al. (2013:183-184) state that these values yield estimates
which are not excessively biased or excessively variable. The size of each training sampleis (K - 1) n/ K, so
as K increases, the model is fit on a larger data set and the bias is reduced. However, the variance increases
as K increases. The larger K is, the more the training sets overlap each other and the correlations increase
between the fitted models, and therefore between the PE k- Since CVk ( f ) is the mean of the PE k> i’s

variance is given by

K
Var[CVK (f)]:LZVar(I”Ek)+iZcov(1”Ej,l’)Ek). (33.2)
K> k=1 K2 jk
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So the variance of the estimate increases as the correlations between the PE increases. The choice of K
thus plays an important role in estimating the PE. Similar discussions about the bias and variance of K-fold
CV can be found in Clarke et al. (2009:593-594) and Hastie et al. (2009:242-243). James et al. (2013:182)
notice that the variability of the K-fold CV estimate of PE is much lower than that of the validation set
approach, there is still variation in how the data is split but not as much as when the data is split into two
equal parts. They also note that the K-fold CV estimates are subject to moderate bias, an improvement

over the validation set approach.

James et al. (2013:182-183) do simulation studies to examine how well K-fold CV estimates the true
PE for different levels of complexity of a model. They find that, although the estimates can sometimes be
biased and underestimate the true PE, they usually do a good job in identifying the minimum value of
the PE. Thus, K-fold CV may be more suited for model selection, where the minimum is of importance,

rather than for model assessment, where the actual value if of interest.

Breiman et al. (1984:Section 3.4.3) proposed the one standard error (1 SE) rule which they use for prun-
ing classification and regression trees. Suppose we use CV for model selection and CVk is plotted against
model complexity. There is often a steep initial decrease in the curve, followed by a long flat tail and then
possibly an increase. The minimum CV often lies somewhere on the long flat tail and can be unstable
with slight up and down fluctuations. We can estimate the variance of each CVk using equation (3.3.2),
then the 1 SE rule selects the smallest model for which C Vi lies within one standard error of the minimum
CVk. The idea is to stabilize the selection and promote parsimony without losing accuracy. Hastie et al.

(2009:244) recommend using the 1SE rule for subset selection.

Leave One Out Cross-Validation

leave one out cross-validation (LOOCV) is a special case of K-fold Cv with K = n. For k = 1,2,...,n,
we remove the k-th observation (5 o yk) from the data set and fit the model /% (x) on the remaining
n — 1 observations. The model is then used to predict the k-th observation and the estimated test error is

calculated as PE;, = (yk - f‘k (gk))z. The LOOCYV estimate of the PE is

i (- F (=)’ (33.3)
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James et al. (2013:179-180) point out some advantages of this method over the validation set approach.
Since each model is fitted on n—1 observations, nearly the entire data set, LOOCV will not overestimate the
test error like the validation set approach and the estimate will be approximately unbiased. Furthermore,
since there is no randomness in data splits, LOOCV will always yield the same results if repeated multiple

times.

Another consideration is that LOOCV can be computationally expensive if # is large or if the model
requires extensive calculation since the model has to be fit n times. If this is the case, K-fold CV could
be more feasible since the model is fitted only K times. Although, for a least squares fit, the following
formula can be used to obtain the LOOCV estimate of the PE (see James et al. (2013:180)),

2
w18 yi-f(x
Vn(f)=—2( S ’)) , (3.3.4)
nia = hii
where 7; is the i-th least squares fitted values and h;; is the i-th diagonal element of the projection matrix

H in (2.1.8). The values h;; are called leverages, they reveal the extent to which an observation y; effects

it own fit ;. They can also be used to identify outlying x; observations (see Draper & Smith (1998:207)).

Generalized Cross-Validation

generalized cross-validation (GCV) is an approximation to LOOCV. For any linear fitting method where

we have f (x) =¥ = Sy, under squared-error loss the GCV is given by (see Hastie ef al. (2009:244-245)),

n

GCV (f) = %i(l_ tr(é)‘/') ) (3.3.5)

since s;; # Y1y sii/n = tr(S)/n. We saw in (3.1.9) that tr (S) is the effective degrees of freedom in the

model. Thus, for a least squares fit the GCV is

A RSSP n n )
cVv = = RSS, =
) n(l-p/n)’ (n-p? " n-p

Clarke et al. (2009:591-592) show that GCV can be seen as a weighted LOOCV. Furthermore, they show
that both methods are asymptotically equivalent to Mallows’ C, and AIC. The GCV is also known as the

prediction sum of squares statistic (PRESS), see Miller (2002:143-146).
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Other Cross-Validation Methods

Delete-d CV removes d observations from the data and holds them out as a validation set. The model
is fitted on the remaining n — d observations and then used to predict the validation set. A major dis-
advantage is its computational load. When d = 1, it is identical to LOOCV. The method is mentioned in
Clarke et al. (2009:590) who provide references. Clarke et al. (2009:598-599) also mention Monte Carlo

CV (MCCV), Bayesian CV and median CV.

3.3.2 Bootstrap

The bootstrap is a resampling method that is used to assess accuracy. It can be used to find standard errors
of an estimate when the distribution of the estimate is unknown. It can also be used to estimate prediction

accuracy for model assessment.

Standard Errors

Suppose the training observations are denoted by ¢, = (gi, y,-) for i = 1,2,...,n. The training set can
then be denoted by T = (5,;2, .. ,gn). A bootstrap sample T* = (gl*b,gb, ... ,;;b) is a sample of
size n drawn randomly from the training set by sampling with replacement. It can be interpreted as a
random sample drawn from F, the empirical distribution of T. The distribution F is an estimate of the
probability distribution F of T. It is a discrete distribution that puts a probability of 1/n on each of the
observations ¢, for i = 1,2, ..., n. We can estimate any function of the probability distribution by using the
empirical distribution. Suppose we would like to determine the standard errors of an estimate § = f (x)
which is given by SEf ( i ) The ideal bootstrap estimate of SEr ( i ) uses the empirical distribution instead
of the unknown probability distribution to produce SEp ( Q*) The sample standard deviation of the

A% B

bootstrap replications ( 0 *1, QA*Z, ...,0 ) is a consistent estimate of SE ( Q* ) The following algorithm

demonstrates the process.

Algorithm 3.3.2 Bootstrap standard errors
1. Forb=1,2,...,B

(a) Draw an independent bootstrap sample T* = (;f“b, gb, e, f‘l’)

n
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(b) Calculate the estimate using the bootstrap sample to obtain the bootstrap estimate

0" = F(x)

2. Calculate the sample mean of bootstrap estimates

G-

@ |

o
=0
3. A consistent estimate of the standard errors of 0 is given by

— V 1 B Axb - \2
SEp=+| —— D (8" -6
? B—IbZI(_ )

Efron & Tibshirani (1993:52) suggest that the number of replications needed to provide a good es-
timate of SEp (Q) could be as little as B = 50 and seldomly exceeds B = 200. See Efron & Tibshirani

(1993:45-56,105-117) for more information on the bootstrap.

Prediction Error

A simple approach for using the bootstrap to estimate PE is to let the training sample act as the test sample.
Draw B bootstrap samples from the training data. For b = 1,2, ..., B, estimate the model f *b (g*b ) from
the b-th bootstrap sample, then use the model to predict the training observations and obtain an estimate
of the PE

PE, =

> (- ()"

i=1

S|~

The simple bootstrap estimate is then the average of these B estimates
— 1 & -
PEjoot = — > PE,,.
B b=1

So the training set is being used for predictions. But each model is fitted on a bootstrap sample which
is sampled with replacement from the training set. So the data sets being used for estimation and pre-
diction both contain some of the same observations. Thus this is not a good estimate of PE, it tends to

underestimate the true PE and promote overfitted models.
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Efron & Tibshirani (1993:247-252) suggest a more refined bootstrap estimate by estimating the opti-
mism and adding it to the training error. In the simple bootstrap approach, for b = 1,2, ..., B, compute
the error of the fitted model. That is, the error when the model estimated from the b-th bootstrap sample
is used to predict the b-th bootstrap sample itself. We can view this as the training error for the b-th

bootstrap sample,

T = L3 (it ()

i=1
Because the model is predicted on the exact same observations used for estimation, TE; should be lower
than PE;. An estimate of the optimism for the b-th bootstrap sample is then given by PE; — TE;,. To

obtain an estimate of the expected optimism, we take the average over the B bootstrap samples,
1 & —
w=— PE, - TEy;.
3 bZl {PE, - TE,}

If TE = RSS/n is the training error from the original training sample, then the refined bootstrap estimate
of PE is given by

ﬁrboot = TE + d)

Efron & Tibshirani (1993:252-254) and Hastie et al. (2009:251) discuss an alternative approach. Sim-
ilar to LOOCYV, it involves predicting each observation in the training sample using only the bootstrap
samples which do not contain that observation. Suppose B~ is the set that indexes which bootstrap sam-

ples do not contain the i-th observation and B_; is the number of these bootstrap samples. Then the

leave-one-out bootstrap estimate is given by

Although it does not overfit, it is biased due to the size of the training set, resulting in an estimate that is
usually larger than the true PE. When drawing a bootstrap sample of size n, at each draw, an observation
from the training set has probability 1/n of being selected and probability 1 — 1/n of not being selected.
Since each draw is independent, the probability that the i-th observation does not appear in the b-th

bootstrap sample is

Pt ¢ {T)) = H (1-1/n) = (1= 1/n)",
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where {T*b} is the set of observations included in the b-th bootstrap sample. Using the following defi-

nition of the exponential function,
X n
exp (x) = lim (1+ —) ,
n—oo n

we can approximate this probability by exp (1) = 0.368. So, the probability that the i-th observation

appears at least once in the b-th bootstrap sample is

Pt e{T}) =1-P(1; ¢ {1""})
=1-(1-1/n)"
~1—exp(-1)

=0.632.

Efron & Tibshirani (1993:252-254) make use of this probability and define an adjusted estimate of the
optimism as

(632 — 0632 (ﬁ(l) - TE).

The .632 estimate of the PE is then

PE™ - TE 4 ()
- TE +0.632 (ﬁE“) - TE)
- 0.368 TE +0.632 PE"".
This adjusted estimate lowers the value of PE ®and is roughly unbiased for the true PE. However, this
estimate does not work well in overfit situations (Hastie ef al. (2009:251-252)). By estimating the rate of

2)

overfitting, a further alternative for improving PE (3 can be derived (see Efron & Tibshirani (1997)).
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Chapter 4

LASSO Methods

The LASSO is explored in this chapter, with an introductory look at its penalty function in Section 4.1.1.
To further understand how the penalty operates, the orthogonal design is examined. A closed form so-
lution can be obtained in orthogonal designs and such functions are known as thresholding functions.
Section 4.1.2 compares the LASSO thresholding (soft-thresholding), with that of ridge regression and sub-
set selection (hard thresholding). Further insight can be gained by exploring the geometry of the LASSO
in the two predictor case. Section 4.1.3 looks at the norm balls formed by penalties constructed with
£,-norms and shows how the LASSO is able to perform variable selection in contrast to ridge regression.
The efficiency history of algorithms for computing the LASSO and an overview of those currently available
are given in Section 4.1.4. Suggestions and approximations for finding the standard errors of LASSO esti-
mates are discussed in Section 4.1.5, followed by a look at the consistency and asymptotic properties of
the LASSO. Section 4.1.6 concludes the exploration of the LASSO with an approximation of the DF and ways
to select tuning parameter. Methods for controlling the bias of the LASSO and improving on its selection
consistency are covered in Section 4.2. The relaxed LASSO algorithm and the adaptive LASSO are discussed
in Section 4.2.1 and Section 4.2.2, respectively. Further modifications of the LASSO to incorporate differ-
ent structure between the predictors are presented in Section 4.3, including the fused LASSO for ordered
predictors (Section 4.3.1) and LASSO methods for including grouped variables (Section 4.3.2). Chapter 4
by no means provides an exhaustive look at all the methods and adaptations available today. The research

in this field has been explosive since the LASSOs introduction in 1996.

4.1 The LASSO

4.1.1 Estimation

The least angle selection and shrinkage operator (LASSO) was introduced by Tibshirani (1996). The for-

mulation is similar to ridge regression,

66



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Que#® YUNIBESITHI YA PRETORIA

&' = argmin |v - Za|? subjectto |af, < ¢, (4.1.1)

@
where t > 0. The difference is that the LASSO constraint uses the #; norm | « ||, whereas the ridge constraint
uses the squared €, norm ||a||*. As with ridge regression, the problem 4.1.1 is equivalent to a penalized
regression, in this case

&' = argmin |v - Za|* + A |a,, (4.1.2)

@

where A > 0 is selected so that |||, = t. The LASSO penalty function,

p
Pp(a)=Alal, =18, (4.13)
j=1

is convex and is always positive. So both RSS and the penalty function are minimized and it is clear that
the penalty function will be be a minimum when ay, a3, ..., a, are all close to zero. Thus, the LASSO
also shrinks the parameter estimates towards zero. However, the LASSO penalty is non-differentiable at
zero and it has the effect of setting some parameter estimates exactly to zero. Hence, the LASSO fits a
subset of variables, thereby performing variable selection as well as shrinkage. When A = 0 the penalty
has no effect and &~ = &, the LSE, but when A — oo, the null model is obtained &* = 0. A convenience
of the LASSO is that the tuning parameters are bounded. Osborne et al. (2000b) show that &" = 0 for all
A2 Anax = H ZTV” o = Max; |ijV| so that a search for the optimal value of A can commence on the interval
(0, Amax )- The constrained problem can also provide a closed range of tuning parameters to consider. Let
to = ||&|,, the &; norm of the LSE, then & is obtained whenever ¢ > f, and more shrinkage is applied as
t — 0 with the null model occurring at ¢ = 0. So we can search for the optimal ¢ on the interval (0, ¢,), or
more conveniently, we can parameterize the LASSO by a tuning parameter s = t/fy € (0,1). Note that the

relationship between A and ¢ is not strictly one-to-one because of this behaviour. Table 4.1.1 summarizes

the many-to-one relationship of these parameters at the boundaries of the LASSO path.

Boundary Constraint Parameter Penalty Parameter
&f'=0 Null model t=0 A2 HZTVHOO
al =& Least squares model t>|al, A=0

Table (4.1.1) Tuning parameters at the LASSO path boundaries. For the null model, t = 0 for
many values of A and for the least squares model, A = 0 for many values of t.
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aj ifocj>0
‘(Xj‘: 0 if(XjZO
—j ifocj<0

The subgradient of Py, (&) for aj > 0is A and is -\ for a; < 0 so that the subdifferential is given by A@
where
1 if aj > 0
@jel [-11] ifa;=0 . (4.1.4)
-1 if aj < 0

So the LASSO shrinks all parameters at a constant rate since @; is constant for all j and does not depend

T

on a. Note that @; = sign (a;) and we have that ||, = @”a.

4.1.2 Orthogonal Design

To compare the effect of the LASSOs shrinkage and selection with the effects of traditional methods, it is
useful to look at an orthogonal design where a closed form solution can be obtained. When the predictors

are mutually orthogonal, we have that

1. 1ij:Oforallj:1,2,...,p,and

2. ijxk =0forall j+k

Then, XTX is the diagonal matrix

n 17x 17x, n 0 0
xTX = 17x xlTxl xlTxp _ 0 xlTxl -0
lTxp xlTxp xgxp o 0o - x;xp
Thus,
1/n 0 0
-1 0 1/x{ 0
(x"X) frix N E
T
0 0 1/x,%,
so the LSEs are given by
T
N Xy A 1
j - 2
Bj= Tx. with var (ﬂ]) = xTx‘O ,
i i
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for j = 1,2,..., p. Thus, in the orthogonal design, ;i does not depend on any predictors other than X;;

and remains unchanged if we set 5 = 0 for any j # k. Furthermore, Seber & Lee (2003:52) show that
Ty o p2.T
RSS (E) =V v- Z;ﬁjxj Xj,
i

so that RSS (E) increases by exactly /;ix,{xk when ﬁk =0.
When the predictors are orthogonal and standardized then the design is orthonormal, since we have
1. 17z;=0forall j=1,2,...,p,and
2. zJTzk =0forall j # k,and
3. zjzj=1

Hence, Z is an orthonormal matrix with ZTZ = I. This can also be seen by noting that

1 ap) rlp 1 0 --- 0
20 T I B I B
rpl rpz ]. 0 0 ].

since the correlation between two orthogonal vectors is zero, rik = 0. Therefore the standardized LSEs are,

&=Z"vor Qj = ijv

with

Var(écj) = ¢?.

See Draper & Smith (1998:165-167) or Seber & Lee (2003:51-53) for more information on orthogonal de-

signs.
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Since ZTZ:IandQ:ZTV, we can write RSS as

RSS () = v - Za®

=vlv- ZQTZTV + QTZTZQ

=vIz'Zv-2a"4+ala
T

a-20"a+a’
2
af”.

[41
Thus, minimizing the penalized RSS is equivalent to minimizing

=4

&

h (a) =

| =

&—af*+ Py (),
for any penalty function P) (|a|) of a depending on A.

(4.15)
Using the LASSO penalty, the objective function is
12 X P
hy (a) = 5 > (& —0;) + A% o)

j= J=1

L1
:Z[— (ocJ aj)2+/1‘cx]‘] (4.1.6)
L2
Since 4.1.6 is additively separable,
p
hy (@) = hi(aj),
=1
we have that
0

d

“n - .
aOCj L(Q) d(Xj L(“])

to «; for j =1,2,.

so that minimizing 4.1.6 with respect to « is equivalent to p component-wise minimizations with respect
..» p. Because of the —a;&; term in the objective function, we choose «; to have the
same sign as &; to preserve the formation of the problem.
1. Suppose that &; > 0, then forj=1,2,.

, p we must minimize

(4.1.7)
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since |ocj‘ = aj when a; > 0. The derivative of (4.1.7) is

h'L(ocj)=0cj—écj+/\=ocj—(écj—)t).

(a) If ‘&j‘ < A then — (&j - /1) > 0 so that hj (ocj) > 0 for all a; > 0. Thus (4.1.7) is strictly
increasing for all &; > 0 and &JL =0.

(b) If|&;| > A/ then — (64 = )t) < 0 and setting h} (oc j) = 0 gives the solution

&
& = a;- A =sign (&;) (|4 - 1). (4.1.8)

J

2. Similarly, for &; < 0 we must minimize

1,, . 1,
hr (ocj) = E“j —ajaj+ Eaj - Aaj, (4.1.9)
since |ocj‘ = —aj when «; < 0. The derivative of (4.1.9) is

hi(aj)=aj—dj-A=a;—(&j+1).

(a) If |&;] < A then — (&j + /\) < 0 so that h} (ocj) < 0 for all &; < 0. Thus (4.1.9) is strictly

A

decreasing for all a; < 0 and a]L =0.

(b) If|&;| > A then — (& i+ )L) > 0 and setting h} (a j) = 0 gives the solution

aj

& =dj+A=—(-a;- 1) =sign(a;) (|&;]-1). (4.1.10)

Now, we have the solution in the common form (4.1.8) and (4.1.10) for |&;| > A. We can incorporate

the solution for |éc j| < A by considering only the positive part of (|0c j| - /1),

aj = sign (&;) (|a;[ = 2) 8 (|aj] > A) = sign (&) (|&] - A), . (4.1.11)
where
6(a€A)={ z) EZZj and (a)+={ g gzzg . (4.1.12)
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The solution (4.1.11) can also be written as

&j—/\ if&j>)&
S(&;1)=14 0 if |4 <A, (4.113)
&j+ A ifd;>-A

which is known as the soft thresholding rule.

Subset selection can be viewed in a similar manner to ridge regression and the LASSO. The problem

can be stated as finding a subset of d < p parameter estimates which minimizes RSS,

p
&5 = argmin |v - Za|* subject to 36 (aj#0) < d, (4.1.14)
o

j=1
It is clear from the constraint Z§=15 (a i#* 0) that the process is discrete. The problem is equivalent to the
penalized regression
) A2
&' = argmin v - Za|* + > el (4.115)

@

where the penalty function contains the so-called €y-"norm" (She (2009)),

)LZ )L2 p
Pss () = = [afy = = > 8 (aj #0) (4.1.16)

2 24
and A > 0 is chosen so that 21;;18 (oc i #* O) = d is the number of nonzero parameters. With o known,
AIC and BIC correspond to this penalty with A2/2 = 20%/n and A*/2 = In(n) 02, respectively (see

Bithlmann & van de Geer (2011:20)). Using (4.1.5), we need to minimize the following objective func-

tion for orthogonal designs,

2

A
hss (0(]'): (5(]'—0(]')2*-?5(0(]':#0).

o=

If aj = 0 then hgs (0) = f If aj # 0 then hgg ((xj) = (&j - ocj)2 + A?/2 and the minimum is obtained

1
2

a
when «; = &; with hgg (&j) = A%/2. Thus, a; is the solution if

hss (&) < hss (0)
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and otherwise the solution is 0. Therefore,

~SS N

Q> = &;0 (|ocj| > /\).
This is also known as the hard thresholding rule,

j>/\

. & if |&
H(OC]‘,/\)={ / él

0 if |&

The ridge estimator is given in (2.3.5) as
&t = (27z+ 1) 2T,

So for the orthogonal design we have &% = (1+ 1) & or

(4.1.17)

Donoho & Johnstone (1994) proposed using the functions (4.1.13) and (4.1.17) to denoise the esti-

mates obtained when using wavelet transforms for function estimation. The estimates obtained in the

orthogonal design can hence be viewed as thresholding functions. Table 4.1.2 summarizes the penalty

functions and thresholding functions for subset selection, ridge regression and the LASSO. The penalty

functions and thresholding functions for each method are shown in Figures 4.1.1 and 4.1.2, revealing how

they shrink the LSEs when A = 2. Subset selection does not perform any shrinkage and discretely sets

parameters to zero. Conversely, ridge regression does not set any parameters to zero and the shrinkage

is proportional to the size of the LSEs. The LASSO is a compromise between the two traditional methods,

setting some parameters to zero and shrinking others, although the shrinkage is constant and does not

depend on the size of the LSEs.

73



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Que#® YUNIBESITHI YA PRETORIA

Method Penalty Function Thresholding Function
Subset Selection AZ(?(ocj #O) &ﬁ(‘&j‘ >)L)
Ridge regression Ay ocjz. aj/(1+A)

LASSO AY |a| sign (&;) (|&j] - 1),

Table (4.1.2)  Penalty and thresholding functions for subset selection, ridge regression and LASSO

Subset Selection A =2 Ridge Regression A =2 LASSOA=2

(a) (b) (©)

Figure (4.1.1)  Penalty functions with A = 2 for (a) subset selection, (b) ridge regression and (c)
LASSO. The LASSO penalty is non-differentiable at zero.

Subset Selection A =2 a Ridge Regression A =2 A LASSOA=2

(a) (b) (c)

Figure (4.1.2) Thresholding functions with A = 2 for (a) subset selection, which is discrete with
a jump to zero between & € [-1, 1], (b) ridge regression, which shrinks estimates proportional
to their size, and (c) the LASSO, which sets estimates to zero and applies constant shrinkage to
nonzero estimates.
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4.1.3 Geometry

To understand why the LASSO is able to perform variable selection, it is helpful to look at the geometric

interpretation. The RSS can be written as

RSS () = |v - Za|?

= |(v-2&) - (Za-Z&)|*

= [(v-24) -Z(a-&)|

= |v-z&|* -2(a-&)" 2" (v-Z&) + (a-&)" 2"Z (a-&)

=RSS (&) + (a-a) Z'Z(a-&).

since, from the normal equations,

Z" (v-Z&) = 0.

Thus,
RSS () = (a-&)" 2" Z (a-&) (4.118)

up to an additive constant. So, RSS is a p-dimensional hypersurface in RP*! space known as a quadric

surface.

Consider the 3-dimensional case where p = 2. Then,

777 - R = 1 m
1811 1

with determinant

1z"z|=1-r,

and inverse

(27z)" - [ : ‘;12].

1-r5 [ -m
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Furthermore, viv =Y, (y; - 7 )2 = syy and

T
ZTV=[ ZITV ]

:[ Yi(xin - %) (yi - 7)/ /s ]
Yi(xia—%2) (yi =)/ /o2
:[ "y\/Syy ]

"29\/Syy

where 1y, = ¥; (xi1 = %1) (yi = J)/ \/S1+/5,, is the sample correlation between X; and Y, and similarly

12y is the sample correlation between X; and Y. Then the standardized LSEs are

&=(z"z)" 2"

alw Tl

B 1- 1’122 -T2 1 29+/Syy
_ 1 My/Syy = M22y+/Syy
11y [ T2y\/Syy = Tatiy/Syy
That is,
R Tiy~/Syy — 12129 /S
by = SN (4.1.19)
1-r1p5
and
. 1 Syy — 2N N
Gy = NIV (4.1.20)
1-715
The RSS can be written as,
RSS (0(1, (X2)
= QT (ZTZ) a - ZQTZTV +vly
1 r o Ty /S
=[0¢1 062] 12 ! —2[a1 ocz] UV2yy +Syy
m 1 oy "2y/Syy
= (x12 + 2rpo o + oc% = 211y /Syy @1 — 212\ /Sy, 02 + Syy. (4.1.21)

This is a quadratic equation in three variables and defines a quadric surface in R®. We can graph this
surface with a; on the x-axis, a, on the y-axis and RSS (ay, &) on the z-axis. To determine the shape
of the surface we look at the intersections that the surface makes with planes that are parallel to the

coordinate axes. These curves are called the traces of the surface and are quadratic equations in two
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variables called conic sections. Section A.4 contains details about conic sections used here.

Any plane parallel to the xz-plane is described by the equation a; = k , where k is a constant. Setting

a; = k in (4.1.21), we obtain the vertical traces,

as +2a; (krlz - rzy\/sy_y) + (k2 - 2kr1y\/sy_y+ syy) —~RSS =0.

This is a quadratic equation in terms of &, and RSS. The equation can be written as 0TAQ, where 8" =
(2, RSS,1) and by (A.4.2),

1 0 kria =12\ /55y
A=|o0 0 -1/2 ,

k7’12 —2y\/Syy —1/2 k2 - Zki’ly, /Syy + Syy
with [A] = =1/4 # 0, so the conic section is non-degenerate for all a,. From (A.4.3), the discriminant is
given by

A:‘ ’zO,

1 0
0 0
so these traces are parabolas for all a. Since a3 > 0, the parabolas open upwards and the turning point
is a minimum. By setting a; = k in (4.1.21), similar conclusions can be drawn about the vertical traces

which are parallel to the yz-plane - they are always parabolas which open upward.

Setting RSS (&, az) = k, we obtain the horizontal traces of the surface. These curves are also called
the contour lines of the function, each one is a curve along which the function has a constant value k. The

contours of RSS are given by the equation

oc12 + 200,11 + cx% = 20071y /Syy — 202129\ /Syy + (syy - k) =0.
The equation can be as QTAQ, where QT = (a2, a2,1) and by (A.4.2),

1 12 —T1y\/Syy
A= 12 1 —1’2),1 /Syy ,
—Tiy/Syy  ~Tap/Syy Syy —k
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with

|A| = (syy - k) +2r1211y72ySyy — rlzysyy - rgysyy - r122 (syy - k)

= (syy - k) (1 - rlzz) —Syy (rlzy + rg}, - 2r12r1yr2y) .

If 1, = 1then

|A| = =5y, (rlzy + rgy - 2r1yr2y)

2
= "Syy (rly - rZy)

=0,
since r1y = 12, when rip = 1. If rp = 1 then

|A| = =5, (rlzy + r%y + 2r1yr2y)

= "Syy (’ly + 72y)2

:0’

since r1, = —12, when r1; = —1. Thus, the conic will be degenerate when X; and X are perfectly correlated
(positively or negatively), so that |r;| = 1. When || € [0,1), the conic is non-degenrate and from (A.4.3),

the discriminant is given by
1 12

A:
12 1

=1-rp=12"Z|.

Since |2 € [0,1) we have that A > 0 so that the contours are ellipses. The minimum value is at the center
of the ellipses and the function gains height as the ellipses get larger. The center of the contours is given

by (A.4.4) and turn out to be the LSEs:

( Tiy/Syy = T12T2y~/Syy T2y+/Syy — T12T1y+/Syy )

-, 2
1 e 1 "12

= (&, 43) from (4.119) and (4.1.20).
The angle that the axes of the contours makes with the coordinate axes is determined by (A.4.5),
1-1
cot29=—=0
27’12
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An angle that satisfies cot 20 = 0 is 26 = + 7/ 2 so that the contour axes are at 8 = + 77/ 4 = £45° from the

coordinate axes.

Since the surface has parabolic vertical traces and elliptical horizontal traces, RSS («;, a;) defined
by the equation (4.1.21) describes an elliptic paraboloid in R® with the minimum turning point at the
least squares solution. Solving the constrained problem, we seek the minimum point on the RSS quadric
surface that lies within the feasible region described by the constraint. Figure 4.1.3 shows the contours
of RSS for a linear model with two predictors, where the correlation between the predictors is set to
rz = 0.75 in the left panels and r;, = —0.75 in the right panels. The contours in red are values of the
constraint, ||« for ridge regression and || &/, for the LASSO. The lines are drawn at levels of the constraint
where the £;-norm of the constrained parameters is a fraction, in F = {0.2,0.3,...,0.9}, of the £4-norm
of the LSEs. That is, for ridge regression the value of the constraint surface at each contour line is such
that |a|?/

&|* € F. Similarly for the LASSO, the contour lines represent values of the constraint at which

s = |a|,/|&], € F. The black dot in the center is the minimum point of the RSS function, the LSEs. The
red triangles on each contour line of the constraint indicate where the constrained estimate would lie if
that value of the constraint is used to estimate the model. For the LASSO, the estimates corresponding to

the fractions 0.2, 0.3 and 0.4 lie on the x-axis, effectively setting &, = 0.

The penalty functions of ridge regression and the LASSO are both comprised of some £;-norm. £4-
norms can be generalized to form a functional space known as £;-space and when combined with a
vector space forms a normed vector space. In R?, a norm ball, or £4-ball with radius r and center ¢ € R?
is convex and is given by {g eR? |Hg -, < r} (see Boyd & Vandenberghe (2004:30-31)). The ridge and
LASSO constraints are therefore norm balls with ¢ = 0 and radius r = \/7 and r = ¢, respectively. The
LASSO norm ball has sharp corners at each point { aeRP ‘oc,- =0, a4 = |f] } If RSS touches the LASSO at
one of the sharp corners where «; = 0 then that estimate is set to zero. Since the ridge norm ball is curved,
it is unlikely that any estimates will be set to zero. The concept illustrated in Figure 4.1.3 can therefore
be generalized to higher dimensions. RSS is the quadric surface described by equation (4.1.18) and the

constraint region is an £,-ball, both in R”. The #; and ¢, balls are shown in Figure 4.1.4 in R? and R’
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Figure (4.1.3)  RSS contours and constraint regions with p = 2 for (a)-(b) ridge regression and
(c)-(d) LAssO with correlations of 0.75 (left) and -0.75 (right) between the two predictors. If t is
chosen such that s < 0.4 then the minimum value of Rss that satisfies the constraint occurs at a
corner of the constraint region so that &% = 0.

@ (b) () (d)

Figure (4.1.4) Norm balls in R* and R? for (a)-(b) ridge regression and (c)-(d) LAsso. As the
number of variables increases, the £, norm ball has more sharp corners so that more estimates
are likely to be set to zero.

80



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Que#® YUNIBESITHI YA PRETORIA

4.1.4 Computation

A number of algorithms now exist to solve the LASSO. Tibshirani (1996) proposed solving the prob-
lem using quadratic programming or the least squares with linear inequality constraints (LSI) algorithm.
Efron et al. (2004) discovered that the path of the LASSO is piecewise linear and recognized a similarity be-
tween the least angle regression (LAR) algorithm and the LASSO. While quadratic programming requires
operations of the order O (n2?), the LAR algorithm has the order of computation O (np min (n, p)).
When n > p, the computational complexity is O (n pz) which is the same as calculating the least squares
estimate using the QR-decomposition (see Hastie et al. (2009:93)). Further computational efficiency is
achieved by Friedman et al. (2007), who use the soft thresholding rule in a coordinate descent algorithm
for the LASSO, requiring computations of order O (np). These are the major advances for computing the

LASSO and are discussed below.

Quadratic Programming and LSI

Tibshirani (1996) proposed two algorithms to solve the LASSO problem. The ¢; norm of & can be written

in the form

>

p p
el = 3 fo] = 3 sign () ;= @
j=1 j=1

IR

where the elements of @ are given by (4.1.4). The difficulty with this formulation is that @ depends on
the unknown parameters «;. Alternatively, we could view the LASSO constraint as a system of inequalities
considering all the possible signs of . That is, @« < t1, where the o x p matrix @ has rows in the form

(£, #1,..., £1). Then we can write the problem as

&l = argmin |v - Za|? subject to @a < f1. (4.1.22)

3

This can easily be converted to the LSI problem which is stated as
minimize |Za —v|? subject to Ga > h,

where G is any o x p matrix and h is any o x1 vector. The problem is then converted into a form suitable for
least distance programming (LDP) by using the SVD or QR-decomposition and is eventually solved by the
nonnegative least squares (NNLS) algorithm, see Lawson & Hanson (1974:158-173) for details. However,

this leads to o = 2 inequality constraints since the sign of each of the p parameters is either 1 or -1, so
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the problem quickly becomes infeasible as p increases. Tibshirani (1996) noted that only some of the
inequality constraints may be necessary and proposed an algorithm in which the constraints are used
sequentially until convergence is reached. He uses the signs of the LSE as an initial ® and makes use of the
LSI algorithm to compute the LASSO solution. While the solution is greater than ¢, the signs of the LASSO
solution are added to @ and the process is continued until convergence. A drawback of this algorithm is

that the LSE is required to get started.

The LASSO problem is also recognized as a quadratic programming problem. Since
RSS(a) = |v-Za|* = 72" Za - 2vTZa - v7,

the problem is equivalent to the quadratic programming problem which is stated as

1

minimize EQTZTZQ —vIZa-vlv subject to Ga < h,
where G is any 0 x p matrix, h is any 0 x 1 vector and ZT Z is a symmetric positive semidefinite matrix (see
Boyd & Vandenberghe (2004:152-153)). An alternative algorithm proposed by Tibshirani (1996) views the
LASSO constraint via non-negative parameters and employs quadratic programming to solve the problem.
Suppose that «; = oc;“ -aj, where

v oo ifaj>0 da- - 0 ifa; >0
% { 0 ifaj<0 MY T —a; ifaj<0
for j = 1,2,..., p. These parameters are thus constrained to be non-negative, oc;? > 0 and «; > 0 for

j=12,..., pand the LASSO constraint becomes Z?:l oc;-r + Zle a; <t The LASSO problem can then be

written as
&* = argmin |v - Z*a*| subject to Aa* <b,
g*
where
+ -1
z2-[z -z],0"=| % |,A=| 77 |andb- 0zp (4.1.23)
%4 L) ¢

and &JL = écj* — &; . The problem then has 2p variables and 2p +1 constraints and converges at a faster rate
than the first algorithm. By solving the LASSO dual problem, Osborne et al. (2000b) developed a more
efficient quadratic programming algorithm for computing the LASSO which can be used when p > n.

Gong & Zhang (2011) use a projected Newton method to solve the dual problem.
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Least Angle Regression

Efron et al. (2004) found that the solution path of the LASSO is piecewise linear and proposed a path
following algorithm called LAR to find the entire path. When solving the LASSO problem, we usually
compute an estimator &" (1) for many values of A and perform a search for the best one. We know
that A attains its minimum at A¢ = 0 and its maximum at Ay_; = HZTVHOO = max; ‘ijv‘. Let A €
{do <Ay <+ < Apo1 < Apm|Ado = 0, Ap1 = oo} be the values of A at which new predictors enter the model.
Then the active set of estimates A = { j ‘& i(Ak) £ 0 } remains unchanged on each interval [ A4, Ax,;] and

it can be shown that

&) =a" (M) + 1, (A= M)

for A € [Aj,Ak1], 0 € kK < M —1and 7, > 0 (see equation (B.3.5)). Hence, & (A) is linear on the
interval [Ay, Ax,1] and if we can identify the A4 then we can compute the entire solution path using linear
interpolation.

LAR proceeds in a fashion similar to forward selection (Section 2.2.3), beginning with the null model
and adding one variable to the model at each step. However, LAR is less greedy and only adds a fraction
of each coefficient to the model before moving on. It is based on examining the correlations between the
predictors and the residual from the previous step. Beginning with the null model, the residual vector is
the response. So at the first step, the variable most correlated with the response is added to the active set.
The estimator is then moved in the direction of the least squares coefficient that is obtained when regress-
ing the residuals on the active set. The estimator continues to move in that direction until another variable
becomes equally correlated with the residual, that is, the residual bisects the angle between them. That
variable is then added to the active set. The estimator moves in the direction of their joint least squares
coeflicient with the new residual until another variable becomes equally correlated with the residual. The
residual is then the vector that has the smallest equal angle with all the predictors in the active set - this
is where the names least angle regression comes from. The process continues in this way until the least
squares model is reached in the final step. Thus, LAR is another method which performs shrinkage and

selection. The formulas to update the estimates for each step are provided in the algorithm below.

Algorithm 4.1.1 Least angle regression

Assume that z),7,, . . ., 2, are linearly independent.

1. Initialize & = 0, then the fitted model is jio = 0 and the correlations between the predictors and the

83



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Rty

residual are ¢, = Z"v.

2. Fork=1,2,...,min(n-1,p):

(a) Find the largest correlation, pj = max; ‘ék)j‘ and determine the active set Ay = {] : ‘ék,j‘ = pk}
(b) Determine the signs of the correlations s; = sign (ék, j) and form the matrix Z 4, with columns
sjzj for j € Ag.

(¢) Calculate

=

ax = (i (ZA24) ") * andw g, = ai (25,24) Ny,

Then
Uy, = Z-Akw.Ak
is a unit vector that has equal angles with all the columns in Z 4, such that ZikuAk = arl g,

and HUAkHZ =1 Let

b= ZTuAk.

i. Ifrank (ZikZAk) = |Ag| then ¢ = py/ay

ii. Else if rank (Z}:lkZAk) < | Ag| then

¢ = min® {ﬁk —Ckj Pr+ ék,j}
jeA; ak—b]’ ak+bj

where min® means that only the positive elements are considered for the minimum.

(d) Update the estimates, fitted model and the correlations between the predictors and the residual,
Ay =8, +CWa

bk = fli1 + Gug,
C = z' (V - ZTéAk) = gy — 6.
Efron et al. (2004) shows that the LAR algorithm can be modified to fit forward stagewise regression

(mentioned in Section 2.2.5) and the LASSO. A connection between LASSO and LAR can be made by looking

at the KKT optimality conditions of the LASSO, see Section B.3. For the LASSO, equation (B.3.4) shows that
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the active variables satisfy

ij (v-Za) = sign (a;) \.

Efron et al. (2004) show this with a geometrical approach. At any step of the LAR algorithm, the active

variables have equal maximum correlation with the residuals. Denote the correlations at this step by
Z' (v-Za)=c
and the maximum correlation by
maxlc < p

then

ij (v—Za) = sign (cj) p for je A.

So if sign ((xj) = sign (cj) = sj then A = p. To enforce this sign restriction in the LAR algorithm, a
predictor can be removed from the active set if it changes sign. Efron et al. (2004) suggest the following

modification to solve the LASSO problem:
Algorithm 4.1.2 LAR-LASSO
1. Apply LAR algorithm up to step 2c(ii).
2. Step 2c(iii) added to LAR: Calculate

.= 7 - int .
Gj forje Aandg 1}2‘111 {si}-

SiWj
(a) IfGj > G then go to step 2d.
(b) Elseif j < Gj then remove j from the active set and compute the next direction without it,
@Ak = QAH + 5&,4,3
.Ak = Ak,1 - _]
By inspection of Algorithm 4.1.1, we see that LAR is a descent algorithm to optimize ji = Z& with
the search direction determined by the unit equiangular vector u and the step length by ¢. Efron et al.
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(2004) explain that LAR requires O ( pP+n pz) computations when p < n, which is the same order of
computation when fitting least squares via the Cholesky decomposition. The LASSO modification can
cost up to an additional O ( pz) operations for every variable that must be dropped. When p > n, LAR
stops after n —1 variables are in the model (n —1 because of the centering) with a cost of O (n3 ) However,
Rosset & Zhu (2007) generalize the LAR algorithm for LASSO (LAR-LASSO) algorithm for use with other
"almost quadratic” loss functions and the ¢; penalty. They state that the number of steps used on average
is M = O (min (n, p)) so that the overall computational expense of the algorithm is O (np min (n, p)).
A related method is presented by Osborne et al. (2000a), an homotopy algorithm which also follows the
piecewise linear path of the LASSO (see Nocedal & Wright (1999:304-310) for information about homotopy
methods). Their algorithm is closely related to the LAR-LASSO algorithm, although it is somewhat indirect

and lacks the transparency of LAR.

Coordinate Descent

The coordinate descent algorithm can be described as the steepest descent algorithm in the ¢, norm (see
Boyd & Vandenberghe (2004:475-484), a summary of descent methods is provided in Definition A.3.5).
The problem is given by

minimize / (&),

where [ () is convex and twice differentiable. The search direction is

Aa - L&)
- E)ocj
where
. ol (a
j= argmax |——|.
i 1%

Thus, at each step of the algorithm we update only the coordinate of & corresponding to the coordinate
of the gradient for which ’Vl () j‘ = |VI(a)|l- Selectively updating the coordinates in this way is a
greedy version of coordinate descent. An alternative is to cycle through the coordinates and update each

of them in turn.

The problem is an unconstrained minimization so we can use coordinate descent to solve the La-
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grangian problem (4.1.2), which is equivalent to minimizing

1
(@) =3 V- iz + A% |aj]. (4.1.24)

Although I («) is convex, it is not differentiable. However, coordinate descent can still be applied to a

function

f(@) =g(a)+X;hi(aj), (4.1.25)

where g (&) is convex and differentiable and A; (oc j) are convex but not necessarily differentiable. This
is true because the nondifferentiable part }’; h; («;) is additively separable. The first order condition for

convex functions is

fla)-f(a)>vf(a) (a-a)

and & is optimal if V f (&)" (a - &) = 0. For f in the form (4.1.25), we have

fle)~f(&)>veg(&)" (a-&)+ ;[ (a)) - hj ()]
=% [ vVe (@) (o &)+ hj (@) =y (&)]

Vv
=}

Convergence of coordinate descent algorithms applied to functions such as (4.1.25) is proved by Tseng

(2001). Thus, we can apply coordinate descent to (4.1.24) since the LASSO penalty is separable, |af, =

i el

If we fit a univariate model, that is, j = 1 in (4.1.24), then
1 2
Hag) = 5 [v=ajz|+ Ao

and similarly to the orthogonal design (Section 4.1.2), a closed form solution can be obtained. When

aj > 0 then
I (aj) =0
BN —ij (v—cszj) +A=0

< aj= 2'v - ) since zT

j ]Z]=1
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Since a; > 0, we must havezIv-1>0o0rzlv> A Similarly, suppose «; < 0, then

J J

I'(aj) =0
PEN —ij (v—ocjzj) -A=0

T : T, _
= oc]—zjv+/lsmcezjz]—1,

T

I'y—-A<0orz ;v < —A. The solution is therefore the soft thresholding rule

but «j <0, so we must have Z;

&JL = sign ((xj) (‘z]Tv‘ - )L)+ =S (z]-TV, A). (4.1.26)

Note that ijV is the univariate LSE so that the solution (4.1.26) is identical to Equation (4.1.11). Hence,
if we use this rule to update the coordinates then we are making the assumption that the predictors are

orthogonal.

To use coordinate descent, we need to include all the predictors in the model but when we update the

j-th coordinate, the other k # j coordinates are held fixed. The objective function (4.1.24) is written as

) = % [v-aszi - Z—jﬁ_jHZ M|+ e (4.127)

>
1

where Z_; is the predictor matrix excluding the j-th variable and a_; is the parameter vector excluding

the j-th parameter and is held fixed. Then

(@) = =2 (v- a2 = Zja_) + sign (o)
= ocjijzj - ij (V - Z—jﬁ_,-) + sign (a;) A

=aj-z] (V_ Z—fﬂ—j) +sign (aj) A

=aj— z]-Tr,j + sign (ocj) A

wherer_;j =v—Z_;a_; is the residual vector excluding the j-th variable. By the same logic as above, the

solution to (4.1.27) is therefore the soft thresholding rule,

Y. — Qf . T o= —_ T .
ocj—31gn(oc]) (’zj r_J| /1)+ —S(zj l‘_],)t).
Note that ijr_ j is the univariate LSE when we regress r_; on z;.
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Friedman et al. (2007) used this result to develop a pathwise cyclical coordinate descent algorithm for
the LASSO. At each iteration, the algorithm cycles through the variables for j = 1,2,..., p, incrementing
the j-th estimate by &; while the others are held fixed. The algorithm is applied to a sequence of A values,
A > Ay > -+ > Ay, using each solution as a warm start for the next problem. The algorithm is outlined

below:

Algorithm 4.1.3 Pathwise coordinate descent

1. Start with an initial estimate &°), possibly the univariate estimates (4.1.26).

2. Fori=1,2,...,M: Set k = 1. Until |r|* converges, repeat:

(a) Forj=12,...,p:

i. Calculater=v—-7Za
» s _ o xG=l) Ty
ii. Updateoc]. —S(oc]. +zjr,)u,)
iii. k=k+1
(b) On convergence, &} = & is the estimate corresponding to A;.Reset & = &+ and go back to step

2.

Coordinate descent methods provide a massive improvement in the computational efficiency of the
LASSO. The idea was first suggested by Fu (1998) who called it a shooting algorithm. Daubechies (2004)
revisited the problem with an algorithm known as iterative shrinkage thresholding algorithm (ISTA).
Beck & Teboulle (2009) improves the convergence rate with the fast iterative shrinkage thresholding algo-
rithm (FISTA). These algorithms did not receive much attention until the contribution by Friedman et al.
(2007). He also derived the thresholding functions for using coordinate descent for the nonnegative
garrote, elastic net, group LASSO and fused LASSO, among other methods not mentioned in this paper.
Wu & Lange (2008) compare a greedy coordinate descent algorithm with the cyclic version, as well as
with LAR-LASSO. Their numerical studies show that the cyclic version has faster convergence than the
greedy version for squared error loss. They also suggest that both methods are more robust and faster
than LAR-LASSO. She (2009) discuss a class of thresholding-based iterative selection procedures (TISP.
Bradley et al. (2011) propose a parallel coordinate descent algorithm which they call ShotGun (as opposed

to shooting).
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Other algorithms

These are the major advances of computational efficiency in the history of the LASSO but there are many
more algorithms available. Grandvalet (1998) use the EM algorithm. Zhao & Yu (2007) propose a boost-
ing algorithm which approximates the path of the LASSO using forward and backward steps. A boosting
algorithm was also proposed by Bithlmann & Yu (2006), who use information criteria, including AIC,
BIC, final prediction error (FPE) and MDL, as a stopping criterion. Schmidt et al. (2007) propose two al-
gorithms, one based on a smooth approximation of the LASSO penalty, the other a gradient projection
method. Wang & Leng (2007) use a least squares approximation (LSA). Park & Hastie (2007) compute
the LASSO path using the predictor-corrector convex optimization method. Schmidt et al. (2009) provide
an empirical study comparing a number of algorithms, including cyclical coordinate descent, steepest
descent, sub-gradient descent, EM algorithm, grafting, log-barrier method, interior-point method, se-
quential quadratic programming, some smooth approximation methods, projection methods and other
descent methods. Furthermore, the LASSO is a special case of every shrinkage method so that algorithms

developed to solve these methods may also be used to compute the LASSO estimate.

4.1.5 Properties of LASSO Estimates
Standard Errors

Unfortunately the LASSO does not have an explicit solution like ridge regression since the LASSO penalty is
non-differentiable at zero. A consequence is that the standard errors of the estimates and the predictions
are not readily obtainable. One approach is to estimated the standard errors using the bootstrap by se-
lecting the best tuning parameter for each bootstrap sample. Tibshirani (1996) states that holding ¢ fixed
during bootstrapping is equivalent to the subset selection situation where the best subset is first selected

and then least squares standard errors for that subset are used.

Tibshirani (1996) also proposed an approximation formula for standard errors based on ridge regres-

sion. The LASSO penalty can be written ‘ocj’ =y ocjz-/ ‘ocj‘ = gTW’g, where W = diag (‘ocj‘). Now,

1 ifOCj>0
W‘g:(xj/‘ocj‘:gz 0 ifaj=0
-1 ifaj<0

90



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Rty

from (4.1.4). So, the subdifferential of the LASSO Lagrangian (4.1.2) is given by

2T (v-Za) + 1@ (4.1.28)

=-2" (v-Za) + \W™a.

Thus, if & is a solution to (4.1.2), then we must have

0=-2"v+Z"Z& + \W~ &

< (2"2+2W )a=2"v (4.1.29)
o &= (ZTZ2+ W) ZTy,
and the covariance matrix can be approximated by
var (&) » 6> (272 + W) 27Z(2" 2+ W)™ (4.1.30)

However, zero estimates will have approximated variance of zero.

Osborne et al. (2000b) provide an improved approximation for which zero estimates have positive
standard errors. As above, the subdifferential of the LASSO Lagrangian (4.1.2) is given by (4.1.28). Thus, if

& is a solution to (4.1.2), then we must have

0=-Z"¢+ 1o, (4.1.31)
where f = v - Z&. Now @7 & = | &, so that
<Try~
r'Z
1L 28 (4.1.32)
lelly
satisfies (4.1.31),
Ao =2"F

o raTa=(2"%)" &

o A-i174/ |d],.
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Also | @], =1, so that (4.1.31) yields

Ao =ZT¥

= al. = |27,

< Aal. = |2",

>

< A= HZTi‘

and consequently, we can write
@ = ik (4.1.33)
VAL h
Again, from (4.1.31) we have
0=-2"v+Z"Zd + \@
o Z'v=72"7Zi+ @
v oo LT(#")Za
< LvV=LZi+ —r— from (4.1.32) and (4.1.33)
1Z7%] oo N1l
< Z'v=(2"2+W)a
o &=(2"2+W)Z7,

Z" (#")Z

1Z7¥] o [ &

where W = and rank (W) = 1. Note that,

1

T
Ir
ZTZ+W:ZT In+% V4
1Z7%] . [l ],

so that rank (ZTZ + W) = rank (Z) = rank (ZTZ). Therefore, if ZTZ has full rank then (ZTZ + W) is

invertible. The variance can be approximated by
var (&) ~ 6% (2'2+ W) 272(2" 2+ W)™ (4.1.34)

Although their approximation might be an improvement over the one by Tibshirani (1996), they note that
the estimates may be far from Gaussian so that standard errors are perhaps not an appropriate measure

of uncertainty.

However, Lockhart et al. (2014) have succeeded in developing a significance test for coefficients as
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they enter the LASSO path. Consider using the LAR-LASSO algorithm. At the beginning of the k-th step,

the active set is given by Ax. Suppose that the j-th variable enters next at 1, so that
AL AL .
& (M) =& (M) +Swa,

where Ay, = Ag U {j}. Let, Qik (Ak41) be the solution at Ay, using only the active set Ay,

i, ) = angmin [v-Za,a |+ e o
YAy

The full effect of the j-th variable on the fit is therefore given by
Za" (M) - Z.Akéilk (A1) -
To assess the importance of the j-th variable in the model Ay, they define the covariance test statistic
Te = (v 28" (Agr) = V' Za &y, (M) [0

and they show that, under the null hypothesis that all the relevant variable are in the model

Hy: A 2D,
the distribution of T} is asymptotically the standard exponential distribution,

Tk 4 Ex p(1).

Hence, based on this distribution, a p-value can be calculated at each step of the algorithm. These p-values
can then be used to decide when to stop adding variables to the model. That is, the hypothesis tests relate
only to a step in the path of the LASSO.

Near Minimax Optimality

In the orthogonal design, Donoho & Johnstone (1994) proved the near-minimax optimality of the LASSO.

Section 4.1.2 revealed that the loss function is given by |& — a||* for orthogonal designs, so that the risk
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function is given by

R(&,a)=E|a-af?,

which we recognize as the MSE. Consider
(56]‘ =aj+0¢€j with €j~ N(O,l) ,

note that var (éc j) = o for orthogonal designs. Suppose that we select a subset of the &; using a diagonal
linear projection pd; with y € {0,1}. If 4 = 0 then the risk is cx]z. and if y = 1 then the risk is 0%. Hence,
the ideal risk is R (ideal) = min (cx]z., 02) so that the ideal projection includes those «; which are greater
than the noise level, y = § (‘a j‘ > 0). Donoho & Johnstone (1994) introduced the universal threshold

A* = 04/21n (n) and showed that the soft thresholding function i = sign (& j) (‘& j‘ - )L)+ yields the risk
Rs (&%, &) <2Inp (R (ideal) + 0°).

They show that

inf sup Rs (&7, )

————— ~ 21
& 1+ R(ideal) n(n)

so that the estimator is near minimax optimal because the ideal risk is achieved up to a factor of at
most 2In (n), a sharp minimax bound. They also showed that the hard thresholding function f}, =

écj8 (‘&j‘ > a)tl), yields the risk
Ry (&%, a) < A; (R (ideal) + o)

where (1-1)In (In(p)) <A?-2In(p) < o (In(p)) for some I > 0. This shows that the LASSO and subset

selection have the same asymptotic performance for orthogonal designs.

Persistence

Greenshtein & Ritov (2004) showed that, in high dimensional settings p > n, in particular p(n) =

O (n”) with a > 1 so that p increases with n, the LASSO is consistent for prediction. Consider the predic-
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tion error

P (1 (x.8)) - £ (v~ (x38))
= Er(y-T0.X58))

= ZTZFZ’

where X is random, F is the distribution of (X, Y), v = (—1, B ) and Xr has typical element Ep (X ij)

for j,k=0,1,..., pwith Xo = Y. Suppose that f (X,[)’*) is the ideal predictor,

B* = arg;ninPEF (f (X,[_?))

Let F be the empirical distribution of (X, Y) and

where X has typical element }.7 X;; X;/n for j,k=0,1,..., p. They show that, if one of the following

regularity conditions hold:

1. The variances of X;X; are bounded and their moment generating functions have bounded third

order derivatives in the neighbourhood of 0, or
2. Ep (Yz) <C andP(‘Xj’ < L) =1for j=1,2,..., p for finite constants C and L.

Then,

én = argmin PE; (f (X,/i)))
{81]8) <em}

with

t(n)=o ((n/ln n)1/4)
is a persistent sequence of procedures, such that

p

PE; (f(x.8,)) - PEr (£ (X.87)) >0 (4.1.35)
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They call this property persistence. If F is Gaussian, they relax the order of the constraint to ¢ (n) =
0 (\/n/l—nn) In practice, the persistence rate t (n) is not known and they suggest testing estimators
resulting from different constraints on a test set. A result of persistence is that if the condition on ¢ (n)
holds, then there is no harm in using the LASSO to search through the entire set of predictors. That is,
prior screening of a smaller subset of variables will not significantly improve the LASSO, it is an effective
method to find the optimal predictors in high dimensions. Under additional assumptions, they show
that procedures like subset selection, which select a subset of size k (7) variables are persistent if k (n) =
0 (m) Greenshtein (2006) extend the results to more general loss functions. They show that, under

the assumptions:
L f (X,é) = (y - Z‘;lejﬁj) is bounded and uniformly continuous in Z*;:lXj[J’j, uniformly in y,

2. Xjis bounded,

Xj‘ <M for j=1,2,..., p for afinite constants M,
3. f* has k (n) = o (n/Inn) non-zero elements (sparsity rate), and

4. HE*H is bounded,

then

>

- argmin  PE;(f(X,B)) (4.1.36)
{81l <&}

is a persistent sequence of procedures, such that (4.1.35) holds. Furthermore, (4.1.36) is persistent even
without the assumption on the sparsity rate - a property they call self consistency. They demonstrate
that ridge regression, or any bridge estimates with g > 1, are not persistent and that there is not much
improvement when using bridge estimates with g € [0, 1). Further studies on the persistence of the LASSO

are provided by Bunea et al. (2007) and Bartlett et al. (2012).

Biithlmann & van de Geer (2011:13-14,23-24,101-108) give a similar result for fixed designs when p >

n, assuming that the model is exactly the linear model with true parameter vector «,
v=7Zx+¢,
and the errors are Gaussian

£~ N(O,O'ZI).
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In a finite sense, they prove that if

A=+/26% (2 +2Inp)/n,

for some estimate of o2 and t > 0, then
2[z(& - @)/ n<31]al,

with probability

1-2exp(-t*/2) - P (6 <0).

Asymptotically, under the assumptions on sparsity,

lal, = o (v/n/Inp) (4137)

and the shrinkage parameter,

A=A, x\/logp/n, (4.1.38)

it holds that the LASSO is consistent for prediction,
MSE[f(Z,8%)] =0, (1) asn — oo,
where

MSE[f(z,4a%)] = (&t —g)TZ (b, - a)

. 2
= |z (&; - )]/ n.

with 2 = Z7Z / n. Although consistency is established, they show that the rate of convergence is slow,

|2 (&~ a)[*/ n = 0y (laly Vinp/n), (41.39)

so that prediction consistency is attained if ||, << y/n/In p. An oracle inequality improves the conver-

gence rate considerably. An additional assumption is necessary, called the compatibility condition. Let
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D = {jla; # 0} be the true active set of variables of size |D| = d. The compatibility constant is given by

da's
v2 (M, D) = min{g—%

QD”1

lapel, < M|ap ||1}, (4.1.40)

where M > 1. For A as above we require M = 3 and A must be adjusted accordingly for any change of M.
The compatibility condition is satisfied for the set D if v, (M, D) > 0. In practice, D is not known but if
its size d is known then the condition can be checked for all subsets S c {1,2,..., p} with |S| = d. Under

the assumptions the compatibility condition, an oracle inequality is given by

|z(a" -a)I*/

The inequality shows the bound on prediction error,

il —af| < 4r?d/ v, (4.1.41)

(& - )/ n < 002
and asymptotically gives the convergence rate
|2 (&% - )|/ n = 0, (v2dInp/n), (4.1.42)

which is optimal up to the In p factor (and the compatibility constant v?) since using least squares with
the correct subset would have the rate O (d/n). They remark that the situation can be generalized for
non-Gaussian errors and extend the results to the case when the true model is not exactly linear (pages

108-114) and the case when the predictors are random (pages 150-156).

Estimation Consistency

Knight & Fu (2000) study the asymptotic properties of bridges estimates for fixed designs where p does

not vary with », under the mild regularity conditions,

1

fad At
n i<isn

n

1
Z - ¥ and — max x! x; - 0. (4.1.43)
i=1

S

They showed that, for the LASSO,

1. If 2 is nonsingular and A,,/n — A > 0 (i.e. A, = 0 (1)), then &" is consistent, &" £ argmin V; (u),
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where

Viu) = [(u-a)" = (u-a) + do Jul,].

. If T is nonsingular and 1,,//n = 19 > 0 (ie. A, = O (\/ﬁ)), then QL is asymptotically normal,

Vn (gﬁ ~a) 4 argmin V, (u), where
P
Vo (1) = —2u"W+uTSu + A Z [uj sign ((xj) 8(ocj * 0) + ‘uj‘ 5(ocj = 0)]
j=1
with W ~ N (0,0%%).

. Suppose X, is nearly singular but tends to a singular matrix ¥, and assume that a, (£, - £) - D,

where D is nonsingular and a,, is a sequence tending to co0. If A,/ \/n/a, — Ao > 0, (i.e. A, = 03/n)

then (\/n/a,,) (&% - a) 4 argmin { V3 (u)|Zu = 0}, where

p
Vs (1) = —2u" W+ u Dy + A Z [uj sign (ocj) é (ocj # 0) + ’uj| ) ((xj = 0)]
=1

with W ~ N (0, var (W)) and var (W) is such that var (u"W) = u"Du > 0 for all u > 0 which

satisfies Zu = 0. Thus the rate of convergence is slower than when X is nonsingular

Bithlmann & van de Geer (2011:14-17,135-137) show that the LASSO is consistent for estimation in the

high dimensional setting with p > n. Under the assumptions above on sparsity (4.1.37), the shrinkage

parameter (4.1.38) and the compatibility condition (4.1.40),

at- QH1 . 0,

and following from (4.1.41), a bound on the ¢, error is

it - ol < 4rd/ v}

so that the rate of convergence is

HQL —ng =0, (vc_zd\/lnp/n).
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For the usual ¢, error, a stronger assumption is necessary, called the restricted eigenvalue condition. Let
U be any set such that D c U with [U| = u > d. The set U \ D = U n D¢ is the relative complement of U
with respect to D, that is, the elements that are in the set &/ but not in the set D. The restricted eigenvalue

is given by

T
z
v(M,D,u) :min{g %
g5

aeR(M,D,U),U>D, |U|= u}, (4.1.44)

where

R (012.4) = {lapl, < Ml o < i )

with M > 1 and min;qp ‘ocj| = o0 ifUd = D. If v(M,D,u) > 0, then the restricted eigenvalue condi-
tion is satisfied. The condition is stricter than the compatibility condition and it holds that v (M, D) <
vc (M, D, u) for all u > d. Note that the restricted eigenvalue condition is related to a lower bound on
the eigenvalues of %, since

emin (2) |a” < & Za < emax (2) |2,

where enin (£) and epax () are the smallest and largest eigenvalues of 2, respectively. Recall (from Sec-
tion 2.1.7) that eigenvalues of X that are close to zero are indicative of high levels of collinearity. See
Bithlmann & van de Geer (2011:156-177) and Bickel et al. (2009) for more information about compatibil-

ity and restricted eigenvalue conditions. Under the restricted eigenvalue condition,

A 4
i —af, >0,

and the rate of convergence is

a* —g”z =0, (vfzx/dlnp/n).

A direct consequence is that the LASSO can be used for variable screening, identification of the im-

portant variables. Denote the important variables, those with large effects, by
D .
D= {jllaj| > D},

for some D > 0. With A,, < \/log p/n, asymptotic results are obtained under different assumptions:

at —QHI <a,=0 (d\/lnp/n) so that

Dn>an)—>1.

 Under the compatibility condition,

lim P (D (As) > D"

n—oo
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 Under the restricted eigenvalue condition,

limP(ﬁ(An) > DPr

n—>oo

Dn>bn) -1

o If DP» = D, then the beta-min condition described below holds and

limP(D(1)2D) > 1 (4.1.45)
n—>oo
Variable screening is used purely to reduce the dimension of the problem and is performed prior
to a variable selection and/or estimation method. Other methods for variable screening are sure inde-
pendence screening (SIS) proposed by Fan & Lv (2008), safe feature elimination (SAFE) by Ghaoui et al.

(2012), and the strong rules discussed in Tibshirani et al. (2012).

Variable Selection Consistency

Using the LASSO for variable selection, we can use the LAR-LASSO algorithm to compute all LASSO models

of different sizes over the path of A « [0,

ZTVHOO]' Let the set of LASSO subsets be denoted by L =
{De W[k =0,1,..., M}, where Dy (A) = {j[at (1) # 0},

the active set is unchanged between steps, L contains all the possible subsets that can be selected by the

Dy (A)‘ =kand M = O (min (n, p)). Since

LASSO so that there are a total of ‘a = O (min (n, p)) models to consider. Comparison with Table 2.2.1
shows that variable selection with the LASSO is far more efficient than any of the subset selection methods.
The question is whether the correct subset D is contained in L and if so, how do we select the value of A

to identify it. The problems we encounter when using the LASSO for variable selection are:

1. The shrinkage parameter A must be larger for selection than prediction.
2. Small nonzero parameters cannot be detected consistently.

3. High correlations between predictors leads to poor selection performance.

Leng et al. (2006) showed that the LASSO is generally not consistent for variable selection when A is
chosen for prediction accuracy. Meinshausen & Bithlmann (2006) proved a similar result for p = O (n%)
with a > 1. Their work is in the context of neighbourhood selection for Gaussian graphical models but
can be interpreted as variable selection for linear regression with Gaussian variables. They show that

consistent neighbourhood selection with the LASSO is possible (under a number of conditions) if A is
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chosen to be larger than the prediction optimal value. That is, A, should decay at a slower rate than

0 (\/ﬁ ) given by Knight & Fu (2000). Corresponding with the results above, the shrinkage parameter

should satisfy

An > \/logp/n

A lower bound on the nonzero parameters is necessary to overcome the LASSOs inability to detect
small variables. Bithlmann & van de Geer (2011:21,24) call such a restriction the beta-min condition,

which must satisfy

min = min |atj| > v™2\/dInp/n (4.1.46)
]E

The condition is discussed further in Bithlmann & van de Geer (2011:187-188) where they relate it to the
signal to noise ratio and the minimal eigenvalue of Xy;.

A very strict condition, known as the irrepresentable condition, is needed to address the correlations
between predictors. Coincidentally, a number of researchers independently discovered similar results:

the LASSO is selection consistent,

limP(D(1,) =D) =1, (4.1.47)
n—o00o
if and (almost) only if
|22y sign (ap)|| . <1-efore>0, (4.1.48)

where 2 = ZTZ/n is partitioned as

™
Il

Zu 2p
2 Iy
so that

o Xy is the d x d nonsingular matrix with elements (2 jk)j reD?

%y is the (p — d) x d matrix with elements (ij)].w keD’

Y1 is the d x (p — d) matrix =1

2y isthe (p—d) x (p — d) matrix with elements (ij)j kD"

Meinshausen & Bithlmann (2006) proposed the neighbourhood stability condition which is equiv-
alent to (4.1.48) and showed that the condition cannot be relaxed. Zou (2006) proved that it is a nec-

essary condition for selection consistency. Yuan & Lin (2007) showed that it is necessary and sufficient
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for the LASSO to be path consistent, a term they use to describe simultaneous consistence in estimation
and in variable selection. Zhao & Yu (2006) coined the term irrepresentable condition and showed that
it is almost necessary and sufficient for sign consistency. With sign consistency, the signs of the nonzero
estimates should match the signs of true parameters in addition to distinguishing them from the zero

parameters. Let
1 if oj > 0
sign,, (ocj) =4 -1 ifa;<0
0 if aj= 0

then sign consistency implies

lim P (sign, (& (1,)) = sign, (@) =1

Note that the irrepresentable condition is similar to applying a constraint on the regression coefficients

obtained when regressing the irrelevant parameters on the relevant ones,

[=3%n], = |(2h20) " Zh2p:| <1-e

oo

In other words, the relevant variables should not be too highly correlated with the irrelevant ones. Usu-
ally, a restriction on the minimum eigenvalues of ZIT)ZD, emin (Z11), is also necessary so that the level of

collinearity among the relevant variables is not too high.
Some examples where the irrepresentable condition holds are provided by Zhao & Yu (2006):

» Constant positive correlation: £j; = 1for j = 1,2,...,pand Zj = p for j # k, where 0 < p <

1/(1+ cd) for any ¢ > 0.

» Bounded correlation: Xj; =1for j=1,2,..., pand X, = p for j # k, where |p| < ¢ /(2d - 1) for any

0<c<l.

s Power decay correlation: X i = pli=k for j,k =1,2,..., p, where |p| < L.

Block designs: Consider designs such as
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where o = ( Oy s & k) with o i corresponding to block A ;. The strong irrepresentable condition

holds if there is a common € such that the strong irrepresentable condition holds for all Ajand « ;.
« Orthogonal designs: = = I,
 General designs where d =1

« General designs where p = 2

Wainwright (2009) calls condition (4.1.48) mutual incoherence. He provides results for sparse models,
|D| = d < p, with a general scaling on 1, p and d, where p = p (n) and d = d (n) are allowed to grow as

the number of observations grow. For sign consistency,
lim P (Signo (& (An)) = sign, (g)) =1-4exp (_C”Ai) Y
n—>o00

for some ¢ > 0, the following conditions are sufficient:

L HZZlZﬁl sign (ED)HOO <1l-eforee(0,1]

2. emin (Z11) > cmin for some cpin > 0

3. An > 2\/20%Inp/n
4. Omin > g(Ay) = Ay HZI—IIHOO +40M,/\/Cmin
Consequences of these conditions on estimation are:

o limP(D(Ay) cD)=1-4exp(-cinA?) > 1

n—oo
o |ép—apl, <g(An)

o Assuming that |Zy]|,, = O (1) and choosing A, = O (x/lnp/n)it follows that

0 (An/d) = 0 (\/dInp/n)

ap _QDHZ =

These results tie in nicely with the results presented above by Bithimann & van de Geer (2011). This
is because the irrepresentable condition implies the restricted eigenvalue condition so that under con-
ditions above, the LASSO achieves consistent selection and consistent estimation. Further details about

the irrepresentable condition and how it relates to the restricted eigenvalue conditions can be found in
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Bithlmann & van de Geer (2011:189-203). The results obtained by Zhao & Yu (2006) are a special case
where the scaling of (n, p,d) is such that p is exponentially larger than n. With p = O (exp (n*)) and
d = O (n“), the shrinkage parameter and beta-min conditions are A2 = 1/n!"% and a2, = 1/n'"®
with 0 < ¢ < ¢ <land 0 < ¢3 < ¢4 < ¢z — ¢ so that consistency is achieved with probability
1 - exp (—cn®) — 1. Wainwright (2009) remarks that the sparsity constraint is very strong in this case

since d/p ~ n“ exp (-n*) disappears quickly. He shows further that sign consistency is not achieved, in

particular

P (sign, (& (1,)) = sign, (@) <1/2,

if either

1. the irrepresentable condition is violated,

22121_11 sign (ED)HOO =1+eforec(0,1],0r

2. (Xj € (0,

hj (/\n)’) for any j € D where hj(1,) = /lnngZﬁI sign (ap) and ¢; is the j-th coordinate

vector.

Thus, the irrepresentable condition is necessary for sign consistency. Furthermore, the matrix Xy
must be well conditioned so that none of the elements in %;! are too large and o, must not decay
faster than A,,. Wainwright (2009) extends these results for random Gaussian predictors and provides
a threshold for the number of observations, depending on the scaling of the parameters (p, d), that are
sufficient for consistent selection with the LASSO. For further insights concerning LASSO selection, see

Zhang & Huang (2008), Candes & Plan (2009) and Meinshausen & Yu (2009).

Summary

In orthogonal designs, the LASSO thresholding function is near minimax optimal. More generally, when
the true model is sparse and the tuning parameter is selected to minimize the squared error loss, the
LASSO displays impressive properties for estimation and prediction. It has superior prediction perfor-
mance, even when p > n, and although convergence may be slow, an oracle inequality can be established
under the weak compatibility condition to improve the convergence rate. For fixed p, parameters are es-
timated consistently and achieve asymptotic normality. Under the slightly stronger restricted eigenvalue
condition, the estimates are also consistent when p > n and p grows with n. If additionally there are no
small nonzero parameters, the beta-min condition is satisfied and the LASSO can be utilized for variable

screening. However, variable selection with the LASSO requires more restrictive conditions. If the tuning
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parameter is selected to be larger than the prediction optimal value, consistent selection is attained only
under both the beta-min condition and the irrepresentable condition. Bithlmann & van de Geer (2011:24)

provide a convenient summary of the conditions required for different purposes of the LASSO, it is shown

in Table 4.1.3.
Purpose Conditions
Design Parameters
Prediction, slow (4.1.39) None None
Prediction, fast (4.1.42) Compatibility (4.1.40) None
Variable screening (4.1.45)  Restricted eigenvalue (4.1.44) Beta-min (4.1.46)
Variable selection (4.1.47) Irrepresentable (4.1.48) Beta-min (4.1.46)

Table (4.1.3) Conditions for consistency when using the LASSO for different purposes

4.1.6 Model Selection

The performance of the LASSO relies heavily on the choice of tuning parameter to select the optimal model.
For prediction purposes, the squared error loss is minimized using either cross-validation methods or
information criteria. A drawback of using information criteria is that the model DF must be known.
However, recent studies have shown surprisingly that the LASSO uses DF equal to the number of nonzero
parameters in the model. Selection of the tuning parameter for variable selection is more difficult since
the prediction optimal value is inconsistent for selection. Recent advances have been made to stabilize

the selection and usually entail some form of resampling, like multiple sample splitting or bootstrapping.

Prediction

When using the LASSO for prediction, the tuning parameter can be found using K-fold cross-validation.
For each K the model is estimated at each value of the tuning parameter and then used to predict the
hold out sample. The value of the tuning parameter yielding the lowest CV error is selected as the best
one and the final model is fitted using that value. Cross-validation can be performed by optimizing
over either A, t or s, the latter providing a convenient choice since it must lie on the interval [0, 1].
Homrighausen & McDonald (2013) show that the LASSO is persistent when k-fold cross-validation is used

for selection of the tuning parameter and Homrighausen & Mcdonald (2014) show persistence for LOOCV.

Cross-validation can become computationally expensive depending on the dimension of the data and
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the algorithm used to find the LASSO solution. As an alternative, GCV or information criteria can be used.
The difficulty therein lies in determining the DF. The LASSO estimate is nonlinear and cannot be written
as a linear combination of the response, hence (3.1.10) can’t be used. Tibshirani (1996) approximated the

DF by making use of the linear approximation (4.1.29). Then
df (fi) str[z(272+ W) Z"]

and he suggested using GCV along with this approximation. He also proposes an approximation based
on Stein’s unbiased risk estimation (SURE), which assumes normality. See Seber & Lee (2003:420-422) for
information about Stein shrinkage and Tibshirani (1996) for the approximation. The estimate (3.1.9) is
actually based on SURE theory, and is used in further studies concerning DF. Efron et al. (2004) used the
theory to find the DF of the LASSO and showed that the C,, statistic using this DF is an unbiased estimate of
the prediction error. For LAR they show that, at the k-th step, the DF is approximated by the step number
k. However, the LAR-LASSO algorithm can have more steps than the number of variables. Interestingly, it

turns out that the DF is well approximated by the number of nonzero predictors in the model,

df (fr) ~E[D ().

Although a price is paid in DF for the adaptive fitting of the LASSO, the DF that are saved due to shrinking
the estimates appears to balances out. Zou et al. (2007) developed the theory further and conclude that
the number of nonzero predictors is an unbiased and consistent estimate of the DF. They use the estimate
df ( fL) to construct the statistics Cj, AIC and BIC. Furthermore, they prove that the optimal value of A
is one of the transition points in the LASSO path. That is, at one of the LAR steps when a new variable joins
the active set. These results only hold if the predictor matrix has full column rank. Tibshirani & Taylor
(2012) and Dossal et al. (2013) generalized the result (independently) so that the full rank assumption is
not needed. Their estimates can therefore be used when p > n, even when the LASSO solution might not

be unique. Tibshirani & Taylor (2012) prove that the DF is given by the rank of the active predictors,

4f (1) = E[rank (25)].
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The result by Dossal et al. (2013) is similar,

>

df (fi) = E|D* (1)

where D* (1) = { jla; # 0} and &” is a solution such that Z5, has full rank. They show that D* (1) is
the minimum size of all active sets of LASSO solutions. Since each of these studies are based on SURE, the

response is assumed to be Gaussian.

Selection

Use of the LASSO for variable selection requires a larger shrinkage parameter. Cross-validation does not
lead to consistent selection. The 1 SE rule might improve selection performance but there is no theoretical

justification for its use with the LASSO.

Wang et al. (2009) constructed a modified BIC criterion,

R 1
BIC - 1In (63) + D] “ ¢,
n
where 62 = |v - Zpa,|’ / n and C, > 0 is a positive constant. The ordinary BIC is obtained when

C, = L. They prove that it is consistent for model selection for fixed p and when p grows with n. However,
BICp cannot be used when p > 1 since 63 becomes 0 and In ((712)) is undefined. They use the value of
Cy = In(In p) in their studies where p varies with n. Chand (2012) show that C, = \/n / p leads to con-
sistent selection. A more general information criterion is proposed by Fan & Tang (2013), the generalized

information criteria GIC, which can be used when p > n.

Sun et al. (2013) propose selecting the tuning parameter by variable selection stability. They make use
of the kappa coeflicient, which measures the agreement between two independent sets,

P (obs) — P (chance)

k(AL A) = P (chance)

where the relative observed agreement is

1
P (obs) = ; [| A N As| + |A] N AS]
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and the probability of chance agreement is

2

1
p (chance) = ; |:|./41 N A2| + |.A1 n A;H [lAl N A2| + |Af N A2|:|

1 Cc Cc Cc c Cc Cc
+ ? [l A 0 AS| + AT 0 AS[ T [JAT N As| + [AT n A

The coefficient lies on the interval k € [-1,1], k = —1 for complete disagreement and x = 1 for complete
agreement between the two sets. By applying the same model to two different data sets, two active sets are
obtained for the same model and the agreement between them can be measured by the kappa coefficient.
The set of variables chosen by a particular method should not vary much for samples drawn from the
same population. Thus, the kappa coeflicient can be used as a measure of variable selection performance
and the tuning parameter can be selected by maximizing the kappa coeflicient. Suppose the training
observations are denoted by ¢; = (g i y,-) fori=1,2,...,n, then the training set can then be denoted by

T= (5, Y ,;n). They propose the procedure below.

Algorithm 4.1.4 Variable selection stability

1. Forb=1,2,...,B:

(a) Randomly split the training data into two equally sized samples T;*® = ( t b, 29 b,

T;b — (t*b tx—b . )551)

Zm+1° Zm+2°

t*b) and

>=m

(b) Calculate the LASSO path for each sample L;® = {D;® (A¢)} and L3° = {D3 (M)}

(c) Fork =1,2,...M: Calculate the variable selection stability
§0 (M) = (D" (M), D3° (M)
2. Fork =1,2,...M: Calculate the average variable selection stability
, L e
S =5 2287 (M)
b=1
3. Calculate

Smax = max {§ (Ag)}
Ak
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and select the optimal A for variable selection as the one obtaining the upper 1—0,, percentile of §* (A1)

$(A) >1-60 }

A

Smax

A= min{/\k

Sun et al. (2013) recommend using a small value of lim,,_,c 6, — 0 and remark that their studies were
performed using 6, = 0.1. However, they state that, while 0,, varies in a certain range, it has little effect on
the selection performance. They prove that the method leads to consistent variable selection for fixed p
and when p is allowed to grow with n. Fang et al. (2013) propose combining the performance of variable

selection and prediction by a criterion they call prediction and stability selection (PASS),

B
2k (D (). D3P (W)
b=1

PASS (1) =
>CV (2, 23" )
b=1

Hence, the criterion is the ratio of the average kappa coefficient to the cross-validation error. They also

show that this criterion is consistent.

Roberts & Nowak (2014) propose the percentile-lasso, a method that repeatedly performs K-fold
cross-validation. The idea is to stabilize the variability due to different fold allocations. K-fold CV is
applied for M repetitions and the 0-th percentile of the vector (;\1, Ao A M) is used as the shrinkage
parameter. They find that M > 10 is necessary but suggest using M = 100 if an efficient algorithm is used
to compute the LASSO. They further suggest using 6 = 0.95 or alternatively, for a range of 6, find the
subset obtained by the LASSO with A = A () and fit the model using least squares.  is then selected as
the value corresponding to the re-estimated model with the lowest error. They show by simulations that
the number of true nonzero parameters selected decreases by a negligible amount, while the number of

false inclusions and the variability of the model size d is greatly reduced.

Bithlmann & van de Geer (2011:339-385) discuss two methods of variable selection using the LASSO
that do not directly choose a value of the tuning parameter for model selection. The first is stability
selection which was introduced by Meinshausen & Bithlmann (2010). Subsampling or bootstrapping is
used for the selection of variables. Instead of selecting the model for a value of A, the selected model is
chosen such that the probability of its selection over the subsamples exceeds some threshold value. They

remark that the selection is more stable with this approach and that the error rate of false positives is
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controlled. However, a rather strong assumption, called the exchangeability condition, is required for its

application. The second method requires weaker assumptions and was proposed by Meinshausen (2009).
The data is repeatedly split into two samples of roughly equal size. The LASSO is used to select the variables
with the first sample. The chosen subset is then estimated using least squares on the second sample and
the p-values are recorded for each active variable (corrected for multiple testing) and set to one for each
inactive variables. After the multi sample splitting, the p-values for each variable are aggregated based
on quantiles. Variables can then be selected for the final model if their aggregated p-values exceed a

pre-determined threshold.

4.2 Two-stage LASSO Methods

The LASSO shrinkage is constant - small parameters are set to zero but the other parameters are shrunk at
a constant rate regardless of their size. As a result, large parameters can be overshrunk which causes the
bias of the LASSO estimate to increase. A problem with the LASSO is that it relies on the use of one tuning
parameter for both selection and estimation. Selecting the tuning parameter with cross-validation or
information criteria yields a model that is optimal for prediction. The value of the shrinkage parameter A
is often small in this case and too many variables are included in the model. Using the 1 SE rule with cross-
validation can improve the variable selection properties of the LASSO. In this case, the value of A is usually
much larger so that more variables are set to zero. However, the larger A also shrinks the other parameters
more and the large bias results in poor prediction accuracy. Although the LASSO overfits the model when
a prediction-optimal value of A is used, the resulting model contains the true subset of variables with a
high probability. This is suggestive of using the LASSO in a two-stage design which utilizes more than one

tuning parameter.

4.2.1 Relaxed LASSO

Meinshausen (2007) proposed the relaxed LASSO as a two-stage design to control the bias. The motivation
was to find a method with low computational complexity and good asymptotic properties in a high-
dimensional setting where p > n. The LASSO, ridge regression and subset selection are special cases of

bridge estimators suggested by Frank & Friedman (1993),

&° = argmin |v-Zaf* + A al), (4.2.1)

@
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for A > 0 and y > 0. The idea is to use two tuning parameters where A controls the amount of shrinkage
and y controls the rotation of the estimates with respect to the coordinate axes. Fu (1998) developed an
algorithm to solve for bridge estimates with y > 1 using a modified Newton-Raphson method. The bridge
penalty,

Py (a) = A al? = A (8 (@) (422)

includes the following special cases by using different £,-norms:

o (a) = Z‘;’:lﬁ (ocj # 0) corresponds to subset selection

o 01(a)= Zﬁ.}:l ’(x j| corresponds to the LASSO penalty

o« {r(a)= (Zleajz-)% corresponds to the ridge penalty

The study by Knight & Fu (2000) on the limiting distributions of bridge estimates shows that when
y > 1, the amount of shrinkage increases as the size of the parameter increases so that the bias of large pa-
rameters will be very high. In contrast, they showed that nonzero parameters, including large parameters,
are estimated without bias while zero parameters are shrunk to zero when y < 1. In the high dimensional
setting convergence rates are much faster when y < 1. With y > 1, convergence is slow as p increases.
Meinshausen (2007) shows that for the LASSO (y = 1), the rate of convergence is also slow and with a
constant rate of shrinkage, large parameters are still biased to a degree. Therefore, a procedure such as
bridge estimation with y < 1is desired. However, these procedures lack the low computational complexity
experienced when y > 1 since the calculations involve minimizing a concave penalty function, which can

be difficult especially when p > n.

Meinshausen (2007) shows that the relaxed LASSO achieves low bias, fast convergence and low com-
putational expense. Let D = { j: &JL # 0} be the nonzero subset variables obtained by the LASSO estimate,

then the relaxed LASSO is given by

g = argmin |v-Zpap[" + ¢2 lal;, (423)
)

where A > 0 is the shrinkage parameter, ¢ € (0,1] is the relaxation parameter and Q%LE = 0. The penalty

function

Prp(a) = ¢pA |, (4.2.4)
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is convex and is identical to the LASSO penalty except for the factor ¢ which decreases, or relaxes, the

amount of shrinkage applied by A. In this case, the shrinkage parameter A controls variable selection
in the first stage and the relaxation parameter ¢ controls estimation in the second stage by relaxing the
amount of shrinkage. When ¢ = 1, the shrinkage is not relaxed and the LASSO estimate is obtained. The
smaller ¢ is, the less shrinkage is applied. As a result, the relaxed LASSO often selects sparser models
than the LASSO and can yield better prediction accuracy. The case when ¢ = 0 is defined as the limit
when ¢ — 0 and corresponds to the LAR algorithm used with least squares (LAR-OLS) hybrid method in
which estimation is carried out using least squares. Meinshausen (2007) proves that the relaxed LASSO
outperforms both the LAR-OLS hybrid and the LASSO. Furthermore, they show that variable selection
is consistent when choosing the tuning parameters by optimizing for prediction. The relaxed LASSO is

shown to have the following asymptotic properties:

1. For known values of (1, ¢), the convergence rate is fast and independent of p

inf MSE (fre (2)) = Oy (1/n).

2. Selection of (A, ¢) by K-fold cv:

(a) The convergence is near the optimal rate with known (A, ¢),
MSE (fRL (g)) =0, (In (n)? /n)

(b) Consistent variable selection (shown by simulations).

Computation of the relaxed LASSO is performed using a modification of the LAR-LASSO algorithm. The
basic idea is that the entire LASSO path is calculated first using LAR-LASSO. Then for each model produced
by LAR-LASSO, the LASSO is applied again (using LAR-LASSO), but this time using the relaxed penalty and
only the predictors in that particular model. In this way, the entire path of the relaxed LASSO is computed
and the optimal tuning parameters A and ¢ can be selected simultaneously using cross-validation. The
final algorithm interpolates the path from the initial LAR-LASSO fit to find the solutions at no extra cost.
However, if the extrapolations cross zero for a particular model then LAR-LASSO must be applied again
for that model. In the worst case, with all extrapolations crossing zero, the computational complexity

increases to the order O (np min (n, p)z).
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Algorithm 4.2.1 Relaxed LASSO

1. Compute all LASSO solutions using the LAR-LASSO algorithm and name them QIL, Qé, e, Q{; with cor-
responding shrinkage parameters Ay, A,, ..., A, and nonzero variables ﬁl,ﬁz, e ,ﬁ, , where 0 =
min (n, p).

2. Foreach k =1,2,...,0, compute the directions in which the solutions lie,
e = (&f — &%) [ (Mkor = Ai). Let & = & + Aiey.
. A . AL .
3. Ifanysign (oc;;j) # sign (ock’j)for] =L2,...,p
(a) compute all relaxed LASSO solutions using the LAR-LASSO algorithm with the subset of variables

Dy and varying the tuning parameter between 0 and ).

(b) Else interpolate the relaxed LASSO solutions between Qi_l (equivalent to ¢ = 1) and &; (equiv-

alent to ¢ = 0).

4.2.2 Adaptive LASSO

The adaptive LASSO proposed by Zou (2006) uses a positive weighting factors to directly control the bias

by shrink parameters by different amounts. The adaptive LASSO estimator is given by

P
&l = argmin |v - ZQHZ + AZWJ' “xf
o

& , (4.2.5)
j=1

where A > 0 is the shrinkage parameter w; > 0 are the weights. Adaptively selected weights are defined

T
AL Adnit
ast—1/|<xj

a parameter is inversely proportional to its size - large parameters are shrunk less and small parameters

, where { > 0 and écj’:”it is an initial estimate. Thus, the amount of shrinkage applied to

are shrunk more. The penalty function,
p
Pap () =1 wj|ajl (4.2.6)
=1

is convex and is the same as the LASSO penalty when w; = 1. Suppose that the true set of relevant variables

are the first d variables, D = {1,2,...,d} then

lZTZ:Z:[ Zn Zp ]’
n

2o 2
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where Xy, is the d x d covariance matrix of the relevant variables. Zou (2006) prove that the adaptive

LASSO has the following properties:

1. Near-minimax optimality

In the orthogonal design, the adaptive LASSO thresholding function (shown in Section 4.2.3) attains

the near minimax risk. If A* = (21n n)(HO/2 and o2 = 1 then
Rap (&%, a) < (2lnp+5+4(7") (R (ideal) + 1/\/47rln(n) )

2. Oracle properties
Suppose that éc;.”” isa \/n-consistent estimator, A,,//n - 0 and A, n(&D2 5 oo Alternatively, the
Ainit

condition can be relaxed so that & ; is an a,-consistent estimator, A, = o (\/ﬁ ) and oci)tnn — 00,

Then the adaptive LASSO is

(a) consistent for variable selection, lim P (5;1 = D) =1

n—o00o

(b) asymptotically normal, \/n ( @%L - QD) 4N (Q, 0221‘11).

See Huang et al. (2008) and Lin et al. (2009) for properties of the adaptive LASSO in high dimensional

settings.

The adaptive LASSO can be stated as a LASSO problem and solved using the LAR-LASSO algorithm at no

extra cost.
Algorithm 4.2.2 Adaptive LASSO
1. Let Z" be the matrix with columns z; = zj/wjforj=1,2,...,p

2. Solve the LASSO problem &* = argmin |v - Z*a|” + A | &/,

3

3. Compute the adaptive LASSO solution &}“L =& /Wjforj=12,...,p.

For a given value of {, the LAR-LASSO algorithm fits the entire path and cross-validation can be used
to select the best value of (. This can be repeated over a grid of { values and the one giving the minimum
CV error is used. Zou (2006) recommends using the LSE to calculate the adaptive weights. In the presence
of collinearity or if the design matrix does not have full rank, he recommends using the best fitting ridge

regression estimate.
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Qian & Yang (2013) propose a method called standard error adjusted LASSO (SEA-LASSO) to improve
the performance when using the LSE as an initial estimate in the presence of collinearity. Let 51,52, ...,5)
be the standard errors of the LSEs, then the weights are calculated as w; = s;/ ocf They note that when
% is ill-conditioned, the LSE can be poor, with true nonzero parameters having estimates far from zero.
Since these estimates are not as small as they should be, the weights in the adaptive LASSO will not be
sufficiently large and the estimates will not be penalized enough. Such estimates are unstable and usually
present with inflated variances due to collinearity. Thus they suggest that multiplying the weights by the
standard errors of the estimates will improve the regularization, if the model is sparse. Furthermore,
they show that SEA-LASSO has the same theoretical properties of the adaptive LASSO. If the model is not
sparse, they propose a two-stage method called NSEA-LASSO. These methods are recommended when the

condition number is large, in particular «, (£) > 10.

Bithlmann & van de Geer (2011:25) suggest using the LASSO estimate as an initial estimate when p > n
and calculating the weights with { = 1. The LASSO is applied in the first and second stage, each time

selecting the shrinkage parameter A for optimal prediction.
Algorithm 4.2.3 Adaptive LASSO with LASSO initial estimate
1. Calculate the LASSO solution &" selecting A by CV for optimal prediction and let D = { j: dJL # 0}

2. Calculate the adaptive LASSO solution with &%LC =0and

&t = argmin [v-Zgap| +1*Y |chi-|)
L%5] ]65 “j

again selecting A* by CV for optimal prediction.

Applying the LASSO again in a second stage can simultaneously reduce the number of irrelevant vari-
ables included in the first stage and estimate the nonzero parameters with less bias. The computational
burden of cross-validation is eased by sequentially optimizing over a single parameter instead of optimiz-
ing over two parameters simultaneously. If LAR-LASSO is used in both steps, the computational cost is of
order O (n pmin (n, p)z) when simultaneously optimizing over two parameters. In contrast, the cost is

of order O (2np min (n, p)) when optimizing twice over one parameter.

Bithlmann & van de Geer (2011:30) discuss a further generalization of the idea by applying the LASSO

in multiple stages.
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Algorithm 4.2.4 Multi-stage adaptive LASSO

1. Initialize the weights W](.O) =1for j =1,2,..., p and initialize the set of nonzero parameters 5(0) =
{j:1,2,...,p}
2. Fork=12,...,K:
(a) Calculate the multi-stage adaptive LASSO estimate as QIKICL =0and

(k-1)

, (4.2.7)

2
R NG
%Dy || T A® Z Wi s

= argmin Hv -Z5
D) J€D(k-1)

D)
selecting Ay for optimal prediction.
(b) Update the set of nonzero parameters 5(k) = {j : &;‘“ * 0}

(c) Update the weights w](") =1/ |&§.\4L|forj € ﬁ(k)

The sparsity increases at each step of the multi-stage LASSO. Since the shrinkage parameters are se-
lected sequentially, the computational complexity is of the order O (Knp min (#, p)) if LAR-LASSO is used
at each step. Bithlmann & van de Geer (2011:32-33) state that the multi-stage adaptive LASSO is an approx-
imation to the concave bridge estimates with 0 < y < 1. Furthermore, they relate the computation of the

multi-stage LASSO to that of SCAD using iterative local linear approximations.

Nonnegative Garrote

Around the same time that the LASSO was proposed, Breiman (1995) proposed the nonnegative garrote
as a stable, scale invariant method which could be used as an alternative to variable selection methods
and ridge regression. This method does not standardize the data but instead scales each least squares
estimate directly by a nonnegative constant. Let é = ( ﬁl, ﬁl, cees ﬁp)T be the least squares estimate. The

nonnegative garrote estimate is given by

ENG = (61/331, Czﬁza yeees CPﬁP)T >

T. ) . .
where ¢ = (cl, Coyens cp) is the solution to the penalized regression

P
V= cifixj

J=1

argmin
C

>
+A> ¢, (4.2.8)
j=1
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where A > 0 is the shrinkage parameter and ¢; > 0 for j = 1,2,..., p. A different amount of shrinkage
is placed on each least squares estimate. Small least squares estimates, which are possibly redundant, are
shrunk more than large ones. Like the LASSO, the problem can be written as a quadratic programming
problem (see Seber & Lee (2003:426)). Breiman (1995) adapted the NNLS algorithm of Lawson & Hanson
(1974:158-173) to solve the problem. He recognized that NNLS handled the nonnegative constraint ¢ > 0
and incorporated a barrier method to include the constraint Zﬁ’zlc i < 7. A drawback of the nonnegative
garrote is its dependence on the LSEs. In situations where the LSEs perform poorly, the nonnegative garrote
will likely suffer the same consequences. Furthermore, the nonnegative garrote cannot be used when
p > n because of its reliance on the LSEs. Yuan & Lin (2007) propose generalizing the problem to use the
estimates from other methods, such as ridge regression, the LASSO or the elastic net, as initial estimates in
the nonnegative garrote. They show that, similar to the LASSO, the entire path of the nonnegative garrote
solution is piecewise-linear. Furthermore, they provide an efficient algorithm for computing this path,

which alleviates any problems that the procedure might have regarding computational cost.

Zou (2006) shows that the adaptive LASSO is similar to the nonnegative garrote when y = 1 and &j.””

are the least squares estimates. In this case, the adaptive LASSO minimizes

[v - Sajzs|” + 15, |a|
= v - Sajz|* + AL |ajl/ |4

= v - Sejaz]* + A% |¢;

>

which is similar to the nonnegative garrote since &?’ ¢ = ¢j&;. Zou (2006) states that when adding the

constraint a;j&; > 0, the problems are equivalent.

4.2.3 Orthogonal Design

Using Equation (4.1.5), closed form estimates can be obtained for the two-stage methods under an or-
thogonal design. These estimates are called thresholding functions and are summarized in Table 4.2.1,

along with penalty functions for each method.

The penalty and thresholding functions for bridge estimates are depicted in Figure 4.2.1. When y > 2,
the penalty function is convex and the thresholding function shrinks parameters proportional to their

size. As y increases beyond 2, large parameters are biased more towards zero and small parameters not
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Method Penalty Function Thresholding Function
Bridge Estimates AY o) écj—sign(ocj)/ly|ocj‘y_l
Relaxed LASSO AP ‘(xj sign (&) (’écj| ~¢1)5(|a;| > 1)
Adaptive LASSO AZ|ocj| &jC sign(écj) (‘écj|—)t écj(

Table (4.2.1) Penalty and thresholding functions for bridge estimates and two-stage methods

shrunk. When 1 < y < 2, the penalty function is still convex but we see the discontinuity at zero for y = 1.
The thresholding function shows that large parameters are shrunk slightly less and small parameters are
only set to zero when y = 1. When 0 < y < 1, the penalty function is concave and the shrinkage of
the thresholding function is inversely proportional to the size of the parameters. Here, with A = 4 and

y =0.25 or y = 0.5, large parameters remain fairly untouched by the shrinkage.

Bridge Estimates: Concave with y(1(0, 1)

Bridge Estimates: Convex with y [1[2, o) P Bridge Estimates: Convex with y [ [1, 2] Pe
f T ' = i =

! ]

| i !
| : i

|

1

|

1

|
1
1
1

Bridge Estimates: Convex with y 1 [2, ) o Bridge Estimates: Convex with y 1 [1, 2]
&

(d) (e) (f)

Figure (4.2.1)  Penalty functions (a)-(c) and thresholding functions (d)-(f) for bridge estimates
at various values of A and y. The penalty functions are convex when y > 1 and discontinuous
at zero when y < 1. When the penalty function is discontinuous, the thresholding function sets
parameters to zero. The shrinkage of nonzero estimates is proportional to their size when y > 1,
inversely proportional when y < 1 and constant when y = 1.
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The functions for the relaxed LASSO and adaptive LASSO are shown in Figure 4.2.2. The adaptive LASSO

penalty appears to be convex and when & = 0.5, it is very similar to the bridge penalty with y = 0.5. The
relaxed LASSO is convex for all ¢ € (0,1). The thresholding function of the relaxed LASSO is similar to
the LASSO threshold but it is clear that less shrinking is applied. The adaptive LASSO threshold seems to
mimic the behaviour of concave bridge penalties quite well, large parameters are shrunk very little and

small parameters are shrunk slightly less than the bridge penalties.
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Figure (4.2.2)  Penalty and thresholding functions for (a)-(b) relaxed LAssO and (c)-(d) adaptive
LASSO. The ordinary LASSO is depicted by the solid black line. The shrinkage mimics the concave
bridge penalties in Figure 4.2.1 and the bias is reduced.
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4.2.4 Other Methods for Controlling Bias

The LAR-OLS hybrid is discussed by Efron et al. (2004). In this procedure the LAR algorithm is used solely
for selection purposes. The solution path is calculated and after identifying the optimal model, least
squares is used to estimate it. Bithlmann & van de Geer (2011:33) propose a similar strategy to the LAR-OLS
hybrid method. Using CV to select the prediction optimal value of A, the LASSO estimate &" is obtained.

A thresholding rule is then applied to select all estimates that are greater than some ¢ > 0,

R

athresh _ AR
&' —oc~8( j

J J

>1).

Least squares is then used to fit the model using the subset of variables D = { j: éc]t.h’“h # O}. Cross-
validation is used to select the best thresholding parameter ¢ by calculating the LSE for different D which
result from varying ;. While the method is similar to LAR-OLS hybrid, it includes an addition threshold-
ing stage which improves the performance. In fact, Bithlmann & van de Geer (2011:210-215) show that

thresholding the LASSO has similar properties to the adaptive LASSO for prediction and variable selection.

Zhang & Huang (2008) discuss using an initial estimate which is ¢..-consistent and then applying
either the adaptive LASSO, the nonnegative garrote or hard thresholding to obtain the final estimate. They
show that these estimates are consistent for variable selection and estimation even in ill-conditioned de-

signs.

4.3 Modified LASSO Methods

The LASSO must be modified in order to incorporate different structures among the predictor variables.
Clarke et al. (2009:606) and Hastie et al. (2009:661) point out that when a group of highly correlated
variables is present, the LASSO tends to randomly select one of them in order to deal with collinearity.
Tibshirani et al. (2005) proposed the fused LASSO to handle predictors that can be ordered in a meaning-
ful way. A number of modifications have been developed to handle groups of variables. The group LASSO
methods are designed to overcome this by considering whole groups for inclusion in the model instead of
individual variables. Some of these methods are discussed briefly in Section 4.3.2. The group LASSO devel-
oped by Yuan & Lin (2006) using a quadratic norm in the penalty function to produce sparsity between
groups and not within groups. Zhao et al. (2009) generalize the method with CAP, where groups may

be overlapped and can be specified in such a way as to preserve hierarchy. Huang et al. (2009) proposed

121



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Que#® YUNIBESITHI YA PRETORIA

another generalization called the group bridge which performs selection at the group level and within

groups.

4.3.1 Fused LASSO

Tibshirani et al. (2005) proposed the fused LASSO for ordered predictors. They provide two examples
when this situation occurs. The first is protein mass spectroscopy in which the intensity is observed for
many time-of-flight values j for each blood serum i. Here the predictors are ordered a priori by time-of-
flight values. The second example is gene expression data from a microarray. In this case the ordering of
the variables is unknown and must be estimated from the data. Correlated genes can be placed next to

each other after estimating their order using, for example, a clustering algorithm.
The fused LASSO estimate is given by

P P
&t = argmin ||v - Za|* subject to > |ocj‘ <tand ) ‘ocj - (xj_l‘ <u, (4.31)

@ j=1 j=2

where ¢t > 0 and u > 0 are tuning parameters. The ¢;-norm imposed on the difference between adjacent
parameters encourages nearby variables to have similar coeflicients, while the LASSO penalty promotes
sparsity between the coeflicients. When the order of the predictors is unknown, the constraint on the

differences can be modified as

2l = e | <ws
]

where k (j) is the the variable closest to the j-th variable in terms of some similarity measure such as a

distance function or correlation index. The problem can be written in the Lagrangian form

)4
afl = arg min Hv—ZgH2+/\ (4 +1//Z|ocj—ocj_1‘ .
o .

@ j=2

Two approaches are suggested for computing the solution. First, quadratic programming can be used
by including nonnegative variables as in (4.1.23). Let 6; = 1and 0; = aj — &y for j > 1, then the nonneg-

ative variables oc;-r, a > 0 and 9;, 9} > 0 are introduced such that «; = oc}r - and 0; = 9; - 9]7. The
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problem is then equivalent to

minimize 3 |v - Za|?

+_

subjectto  a;j = a;

oc]Tforj:I,Z,...,p
0j=0;-0;forj=12,....p
a},a;,@},@]20,forj:1,2,...,p
Zf:l(oc;”ra]f

)
21 (6] +67) <u

which includes 6p constraints and p variables. Let L be a p x p matrix with elements l;; = 1, [;1; = -1

and [;; = 0, then 6 = La. The equality constraints can then be written as

—g -
“+
L 0o o -I Ip]—_ [g]
g =
L I, I, 0 0 [ . 0
| 0 ]
and the inequality constraints can be written as
(-1, 0 0o o | [0 ]
0 -1, 0 0 ot 0
0 0 -I, 0 a | o
0 0 o0 -L|[|lo ] |o
T T -
11l o0 o 0 t
o o 1 1 u

where 1] is a vector of 1s with the first element set to zero since 6; = 1. In the second approach, they set

Z* = ZL7}, fit the LASSO model using LAR-LASSO to obtain &* and then compute &% = &*L".

Tibshirani & Taylor (2011) extended the idea of enforcing structural or geometrical constraints and

proposed the generalized LASSO,

&' = argmin v - Za|* + 1|Da]). (432)
o

Some special cases of the generalized LASSO are listed here.
e LASSO: D =1
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o 1-dimensional fused LASSO: X =1,

-1 1 0 0
0o -1 1 O
D =
(n-1)xn 0 0 -1 1
o 2-dimensional fused LASSO: X = I,each row of D is given by D; = (0,0,...,-1,...,1,...0,) The

2d-fused LASSO penalty is A 3 xep ‘(xj - ock‘. Hence the -1 entries in D; correspond to the j-th

variable and the 1 entries correspond to the k-th variable.
o Linear trend filtering: X = I,

-1 2 -1 0
0o -1 2 -1

D =
(n—-1)xn O 0 -1 2

« Wavelet smoothing: X = I, D = WT where the columns of W are orthogonal wavelet basis.

4.3.2 Group LASSO

Group LASSO methods are an extension of the LASSO method to select known groups of variables called
factors. Examples where factors would be of interest include dummy variables, polynomial functions,
nonparametric basis functions and genes in the same molecular pathway. Categorical variables can be
included in the linear model by deriving dummy variables which correspond to the levels of the variable.
If the categorical variable is a good predictor, we would usually want to include all levels in the model.
When there is no significant difference between two levels, the usual approach would be to combine
levels together rather than exclude them. To capture any curvature in the data, polynomial terms and
interactions can be included in the linear model. If a polynomial term or interaction is included in the
model, we would usually include any associated lower order terms to maintain hierarchy and facilitate
interpretation. Preserving hierarchical order helps to prevent shifts in the data from reparameterizing
the model. Similarly, we might like to include groups of nonparametric basis functions or groups of
genes. The levels or terms in these factors are often highly correlated. The variables in each group have a
combined effect on the response variable and relate to one measured variable, so we would like to either

include or exclude the whole group instead of the individual derived variables.
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The group LASSO was first introduced by Bakin (1999) and later developed by Yuan & Lin (2006).
Consider fitting a linear model including g groups. Let G, G, ..., G, denote the subset of variables in
each group and let the number of variables in the k-th group be |G| = pi, where py + py + - + pg = p.

Then we have the linear model

g
v=) Zgag +¢ (4.3.3)
k=1
The usual linear model where individual variables are considered occurs when p; = py = =+ = p, = 1.

For the group LASSO, the response variable and predictors are all centered to have mean 0 and each group
is orthonormalized so that ng Zg, =1, for k = 1,2,...,g. Applying the LASSO directly to (4.3.3) is
problematic. The selected model often includes too many groups since it is based on the effects that
individual variables have on the response instead of the effects that the groups have. The model will also
depend on how the groups are othonormalized and may include different subsets of factors if any of the
groups are reparameterized. The group LASSO extends the LASSO method to handle effects at the group
level and is invariable to the parameterization of the groups.Bakin (1999) defines the group LASSO estimate
as

&% = argmin

3

g
V- Zzgk ng

2 g
A3 e , (4.3.4)
S aal,

1
Q; ggk‘ is the Qg-quadratic
2

norm where Qy is a symmetric positive definite matrix (see Boyd & Vandenberghe (2004:635) for more

where A > 0 is the shrinkage parameter and Hggk HQk = (ngQngk)% = ‘

about quadratic norms). Yuan & Lin (2006) choose Q; = piI,, so that the penalty function is

g g
Por (@) =AY piag, |, = A0 pr/ad g, - (4.3.5)
k=1 k=1

When pj = 1, the penalty function is the same as the LASSO penalty since H(ng H = \/(xiék = |06gk ‘ When
Pk > 1, the penalty function is similar to the ridge regression penalty. The group LASSO promotes sparsity
between groups but not within groups. Yuan & Lin (2006) extends the LAR algorithm to handle groups
of variables but they show that the group LASSO is not necessarily piecewise linear. Furthermore, they
modify the LAR algorithm to calculate the group estimator for the nonnegative garrote, which guaranteed

to be piecewise linear. To solve (4.3.4), they use an extension of the shooting algorithm by Fu (1998).

Zhao et al. (2009) proposed CAP as a more generalized method to incorporate grouped variables into
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the design. The CAP estimator is given

&¢ = argmin

@

Y
>

(4.3.6)

2 g
13 lag

g
V- Zngggk
k=1

where A > 0 is the shrinkage parameter, y > 1and g4 > 1forall k = 1,2,..., g control the grouping.
The €,-norm is the overall norm and controls the relationship between the groups, whereas the £,, -norm
controls the relationship between the variables in the k-th group. The CAP penalty includes a composition

of £;-norms,
y

pe(@) =116, (e (55 =4l | (437)

and can almost be seen as a two-stage penalty, first applying shrinkage between the variables in each
group and then applying shrinkage among the groups. The flexible penalty allows for different penalties
on each group so that the norm most appropriate for the structure in a specific group can applied just
to that group. When y = 1 and g; = 2 for all k, the group LASSO is obtained. When y = 1, the bridge
parameter is not strictly necessary since norms are always positive. However, viewing the penalty in
this light does help to interpret why sparsity is promoted at the group level - the LASSO is being applied
between groups. The bridge parameter y controls the directions in which we believe the true parameters
are aligned with respect to the coordinate axes. Table 4.3.1 summarizes the directions that are favoured
for different intervals of y. Sparse solutions only occur for y < 1, when the estimates are likely to lie on the
axes. The estimates move further away from the axes as y increases and their sizes get closer together. The
£4-norm balls in Figure 4.3.1 illustrate the concept visually - the point of intersection with RSS is mostly
likely to occur wherever there are sharp points or edges on the norm ball. The norm balls are for values

of y, from left to right, y = 0.5,1,1.5, 2, 3, .

y Interval Favoured Direction

[0,1] on the axes
(1,2) close to the axes
2 none
(2,00) along diagonals

Table (4.3.1) Directions favoured by bridge estimates. Estimates are set to zero when they lie on
the axes and are equally sized when they lie along the diagonals
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Figure (4.3.1) Norm balls for bridge estimates in R? (top) and R? (bottom). From left to right,
y =0.5,1(LASS0), 1.5, 2 (ridge), 3 and oo. The first two figures on the left have protruding points on
the axes which encourage sparsity among the estimates. The last two figures on the right have
protruding points on the diagonals which encourage equality of estimates.

Zhao et al. (2009) consider y = 1and g; > 1 for all k. Hence, sparsity is encouraged between groups
but not within groups so that complete groups are considered for selection. In particular, they suggest
setting qx = oo for all k, thus promoting equally sized coefficients within groups. It is noted that the
different group sizes are irrelevant and have no effect on selection or estimation. Zhao et al. (2009) also
outline a way of performing hierarchical selection by defining the groups so that they are nested and
overlapping. They provide path algorithms to solve the general case gj > 1, the case when g = co (which

is more efficient), and the overlapping group case.

Huang et al. (2009) proposed a similar idea to CAP, called the group bridge. However, they allow for
selection not only between groups but also within groups simultaneously. This is called bi-level selection,

if a group is selected, variables within that group can be discarded. The group bridge is given by

2

4°® = argmin

@

f , (4.3.8)

g g
v-2Zgag, | +A Y c]ag,|
k=1 k=1

where A > 0 is the shrinkage parameter. The c; are constants that can be used to adjust for different sizes

of the groups and a suggested value is ¢ oc p}c_y. The bridge parameter y € (0,1) is applied to the #; norm
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of each group, resulting in the concave penalty function

g
PGB (g) :/\ZC’C Hggkuf. (4.3.9)
k=1

The penalty function is the ordinary bridge penalty when p; = 1. When y = 1, the LASSO penalty is
obtained. Here, the LASSO is used as the within group penalty and the bridge parameter is used as the

overall penalty.

4.3.3 Geometry

The norm balls shown in Figure 4.3.2 clarify how the group norms and overall norms affect the param-
eters. The parameters on the x and y axes correspond to a group of two predictors, while the parameter
on the z axis corresponds to an individual predictor, or a group of size 1. Thus, in these plots, the group

norms act horizontally within the group and the overall norm acts vertically between the groups.

(a) (b) (©)

Figure (4.3.2) Norm balls for (a) group LASsO, (b) CAP, and (c) group bridge penalties in R>. The
parameters on the x and y axes are in a group of size two and the parameter on the z axis
corresponds to an individual variable (group of size 1). Each norm ball promotes sparsity between
groups. The group LASSO includes entire groups, CAP encourages equality of parameters within
each group and the group bridge allows for sparsity within groups.

In each case, sparsity is induced between groups - by the sharp points of the ¢, norm for CAP and
group LASSO, or by the concave £,-norm with y € (0, 1) for group bridge. However, only the group bridge
penalty allows for sparsity within groups where the ¢; norm has its sharp points on the axes. Although
the CAP penalty has sharp points on the x y-plane, these are the corners of the £, -norm lying along the
diagonals of each quadrant and not on the axes. Rather than setting any estimates within the group to

zero, they are encouraged to be equally sized. The group LASSO has the curved ¢, norm acting within
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groups, where no direction is favoured and the possibility of sparsity is very low.

The fused LASSO penalty is a combination of two ¢; penalties, one on the parameters and one on the
difference between adjacent parameters. Thus, the norm balls for the fused LASSO are shown in Figure 5.1.2

(in R? and R?) for comparison with those of the combined penalties.

4.3.4 Hierarchy

The hierarchy principal is to include any main effects that are associated with higher order effects. Statis-
ticians argue that hierarchical structure is necessary to avoid any reparameterization of the model if the
data shifts location. As a simple example, consider fitting a model including a squared term and its main
effect,

Y = Bo+ fiX* + o X (4.3.10)

or fitting the model excluding the main effect,
Y = Bo + B X2 (4.3.11)
Suppose that X were to shift in location, say to X + a. Then model (4.3.10) is unaffected by the change,

Y =Bo+pBi(X+a)+pB(X+a)
= (Bo + @i+ apy) + fiX*+ (B2 +2aB) X

= ﬁg + ﬁle + ﬁ;X
However, this is not the case for model (4.3.11),

Y:[30+ﬂ1(X+a)2
= (ﬁ() + a2/31) + [31X2 + 2a‘81X

= By + fi X%+ B X.

The main effect thus reappears when the data shifts and predictions using model (4.3.11) will not include
a parameter for it. Geometrically, removal of the X term means that the quadratic curve is symmetric
about x = 0 and has its turning point at x = 0. Similarly, if X and X3 are included in the model then

X1 X, should also be included. Omitting the X; X, term assumes that the quadric surface is aligned with
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the coordinate axis and any rotation of the surface will reintroduce the term. See Faraway (2005:130-131).

As mentioned above, the CAP estimator (4.3.6) can be used to enforce hierarchy by creating over-
lapping groups in a specific way. Alternatively, Bien et al. (2013) focus on a two-way interaction model,

including pairwise interactions between variables,

Y=o+, XiBj+ % Z 0 XX +&. (4.3.12)
j j#k

The response vector y is centered to form the vector v. The n x p predictor matrix X is first centered

and scaled to produce the matrix Z;. The n x p (p — 1) matrix Z, is calculated with columns Z;Z; for

j # k and the columns of Z, are then centered. The p x 1 parameter vector corresponding to Z; is & and

the p x p parameter matrix corresponding to Z, is ® with ®;; = 0 and O = @. Let Z = [Z},Z,] and

o7 = (gT,Vec )" /2) The problem is then given by

A
A . 2
& = argmin |v-Z8]" + Alaf, + 7 O],

o

subject to ol = o,

0, <aj| for j=1,2,...,p

where @], = .« ‘ij’ and @ is the j-th row (or column) of ®. Ifé)jk # 0 then H®J’H1 >0and @[, >0

so that &, & # 0. Thus, hierarchy is maintained by design.
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Chapter 5

Other Shrinkage Methods

This chapter provides a brief look at other shrinkage methods currently available. The EN(Section 5.1.1)
and OSCAR (Section 5.1.2) combine the LASSO penalty with the £, norm and €., norm, respectively. These
penalties are capable of including groups of correlated predictors in the model. Finally, the concave penal-
ties of SCAD (Section 5.2.1) and MCP (Section 5.2.2) are mentioned. These penalties produce nearly un-
biased estimates which are consistent and efficient, despite being concave and non-differentiable and are

the key focus of many researchers today.

5.1 Combined Penalties

Ridge regression often outperforms the LASSO when there are high pairwise correlations between groups
of predictors. In this situation, the LASSO tends to randomly select only one of the predictors in the
group. For predictive purposes that is often satisfactory, but there may be instances when identifying
the whole group is of importance. Zou & Hastie (2005) uncovered the reason behind the grouping effect
of ridge regression and found a way to combine the ridge and LASSO penalties without overshrinking
parameters. The result is the elastic net (EN), which is capable of including groups of correlated variables
while promoting sparsity. Bondell & Reich (2008) proposed a similar idea, OSCAR, which combines the
LASSO penalty with a pairwise max norm. The result is a penalty function which allows multiple groups
of differing magnitudes to be identified. These combined penalties were later modified to have the oracle

property: the adaptive EN by Zou & Zhang (2009) and PACS by Sharma et al. (2013).

The EN is also an attractive method to use when there are many relevant predictors in the high di-
mensional setting with p > n. Osborne ef al. (2000b) show that the LASSO selects at most min (7, p)
variables, so that when p > 7 it cannot select more than n variables. In contrast, the EN can potentially

select all p variables.
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5.1.1 Elastic Net

The elastic net (EN) was introduced by Zou & Hastie (2005) as a combination of ridge regression and the

LASSO. The naive EN estimator is given by

&N = argmin |v - Za|* subjectto (1-v) |af, + v |a]’ <7, (5.1.1)

a

where 7 > 0 is the tuning parameter controlling the size of the constraint and ¢ € (0,1) controls the
weighting of the ¢; and ¢, norms. When y = 0, the constraint becomes the LASSO and when y = 1it
becomes the ridge regression constraint. Like the LASSO, the constraint is non-differentiable at 0 and it has
the ability to produce sparse solutions by setting parameter estimates exactly to zero. Like ridge regression,
the constraint is strictly convex for all ¢ > 0. Zou & Hastie (2005) state that the strict convexity allows
the EN to include groups of highly correlated predictors if their effects are equal in size. In the extreme
case when the predictors are exactly identical, their parameter estimates will be identical. The LASSO
constraint is convex, but not strictly convex. Thus, the LASSO does not have this grouping effect and in the
case of identical predictors it will not have a unique solution. Problem (5.1.1) is equivalent to the penalized

regression,

&V = argmin v - Za|* + A{(1-y) |af, + v ]’}
o

= argmin [v - Zaf* + A |a, + A2 o], (51.2)
«

where y = A,/ (A1 + A;) and A = A; + A5, with A; > 0 and setting A, > 0 ensures strict convexity. So the
penalty function is

Pe () = M [y + Az e (5.1.3)

In this form we see that the ridge penalty can be obtained by setting A; = 0 and the LASSO penalty is

obtained by setting A, = 0.
The naive EN can be written as a LASSO problem and solved in the same fashion. Let

. 1

z [ Z ] and v* [ v ] (5.1.4)
= — v = R 1
(np)xp 1+ Ay | V AZIp (n+p)x1 0
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and let A* = Al/\/l + A, and a* = +/1+ Ao Then

& = argmin |v* - Z*a* > + A |a’], (515)
a*

is the solution of the augmented problem. The equivalence of (5.1.2) and (5.1.5) can easily be verified by

substitution,

‘ *

2o P+ A ]
Z
1+
I e,

el

2

1+/\2Q1

+ Ml

= v~ Zal* + [Vaaa| + b lal,

2 2
= [v=2Za]" + Az ] + A [ af,-

The naive EN solution is then

*

NE_ _ &
+A

&

—
(38}

Note the similarity of the augmented matrices (5.1.4) with the augmented ridge problem (2.3.8). The naive

EN differs only by the factor of 1 /x/1+ 1, in the Z* matrix. The augmented matrix Z* has # + p rows and

rank (Z*) = p so the naive EN could potentially include all p variables in the model, even when p > n.

Zou & Hastie (2005) realized that the naive EN appears to double the amount of shrinkage, which

inflates the bias without any further reduction in variance. The problem is that both the ridge and LASSO

penalties attempt to shrink the estimates. Using (2.3.7), the form of the ridge estimate with shrinkage

parameter A, is

1 2 .
1+/12 1+/12
T -1 T 1 2 1 72_p T
(2"z2+2,0) Z ve—| R | zly,
+ A2 : : :
LT S |
1+A2 1+/12

Zou & Hastie (2005) suggest that decorrelation, shrinking the correlations by 1/ (1+ A,), is the cause of

the grouping effect in ridge regression. However, they argue that the direct shrinkage factor of 1/ (1+ ;) is

not needed by the EN since the LASSO shrinkage effectively controls the variance in addition to promoting
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sparsity. The corrected EN estimate is therefore scaled to undo the extra shrinkage,

&F = (1+ 1) aNF = \/1+ 1,4%.
A further motivation for the correction factor is seen from the orthogonal design. In this case,

aNE = sign (‘3‘1‘) (“3‘1“ - A1)+.
J (1+A2)

For large LSEs, the naive EN threshold has substantial bias. Applying the correction factor (1+ A;), the
EN threshold is identical to the LASSO threshold and achieves near minimax optimality. Figure 5.1.1 the
penalty function and thresholding function for the naive elastic net. The penalty function is convex but

the thresholding has very large bias, shrinking parameters nearly as much as ridge regression.

P Naive Elastic Net . Naive Elastic Net

|
[
aian
TN
ggee
=553
o w
A
=59s
LLiL

ecee

() (b)

Figure (5.1.1)  Penalty and thresholding functions for the naive EN. The LASSO is represented
by the thick black curve and ridge regression by the thin black curve. Except that the naive EN
penalty is discontinuous at zero when y < 1, the functions look similar to the bridge functions in
Figure 4.2.1 with y € [1,2]. Large estimates are subject to larger shrinkage than the LAssO. After
applying the correction factor, the EN thresholding function is identical to the LASSO.

The EN estimate is thus given by

¢f = argmin (1+4,) {|v—Za|* + Ay |af, + A2 || *}

= argmin «
a

T(ZTZ+)L21

T
T A, )@—ZV Za+h el (5.1.6)
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where the LASSO is obtained by setting A, = 0. So the EN can be seen as stabilizing the LASSO. The pa-

rameter A; controls the amount of shrinkage and selection whereas the A, parameter controls the amount

grouping.

As with the LASSO, the EN can be solved efficiently by using a modification of the LAR algorithm,
LAR-EN, to calculate the entire solution path for fixed A,. However, the EN has two tuning parameters
(A1, A2) which must be estimated. For a grid of 1, values, the algorithm provides the entire solution path
for each A,. Then A; can be selected using K-fold cross-validation and the value of A, giving the lowest
cross-validation error is selected. The computational cost increases with p but is still manageable even
when p > n, although early stopping rules can be used to lessen the computational load. Since & oc &*

from the augmented LASSO problem, we could also parameterize the EN by (A,, t) or (A;,s), where ¢t is

&

the ¢; norm of the coefficients and s = ¢/t, = ||&" Hl/ 1

Adaptive Elastic Net

The adaptive LASSO and the EN improve the LASSO in different ways. The adaptive LASSO controls the bias
by shrinking larger parameters less, while the EN handles collinearity by incorporating the ridge penalty.
The EN can be also extended to shrink parameters by different amounts. The adaptive EN is a combination

of the adaptive LASSO and the EN and enjoys the good properties of both methods. It is given by

“ =

p
aAE = argmin (1+ ;) {Hv - ZQHZ + Awaj ‘(xj‘ + A ||g||2} , (5.1.7)

where w; > 0 are weights. Setting A; = 0 we obtain the ridge penalty and setting 1, = 0 we obtain the
adaptive LASSO penalty. Zou & Zhang (2009) suggest fitting the EN model to obtain &% and calculating

the weights as
) ¢

where &f +0.LetD = { j: &f # 0}, then the adaptive EN estimates can be calculated as Q‘%}f =0and

= (1/ |aj

GAE = argmin (1+A;) HV_ZﬁﬂfD‘HZ +ATZWJ'
! =

s ajf + Az ap| -
a jeD

The same tuning parameter A, can be used for the EN and adaptive EN since it has the same contribution in

both methods but A; and A" are likely to differ. We can obtain the solution by using the LAR-EN algorithm.
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*_

i =1 [wjfor je D. Then we can formulate the problem as

Let Z% be the matrix with columns z

2
>

a* = argmin HV - Z%QﬁHZ + A H%Hl + A2 Hﬁﬁ‘
a

and écfE =(1+1;) ocj*/ wjfor j=1,2,..., p. See Zou & Zhang (2009) for details.

Friedman (2012) proposed the generalized elastic net penalty,

p
Pop (@) =) In((1-y)|aj| +v),

Jj=1

where 0 < y < 1. The penalty is concave and approaches the LASSO as ¥ — 1 and approaches subset
selection as ¥ — 0. So this penalty provides a bridge between subset selection and the LASSO, while
the elastic net provides a bridge between the LASSO and ridge regression. Together the elastic net family
encompass the same range of penalties as bridge estimates. However, it is shown that the elastic net

penalties are more stable than bridge penalties.

5.1.2 OSCAR

The octagonal shrinkage and clustering algorithm for regression (OSCAR) penalty was introduced by
Bondell & Reich (2008). It is similar to the EN since it is also a combination of two norms, but in this

case, the ¢;-norm and the pairwise ¢..-norm of the parameters. The estimate is given by

P
4% = argmin |[v - Za|* subject to > o]+ v max {|a;
j<k

a j=1

o} <7, (5.1.8)

where 7 > 0 controls the size of the constraint and y > 0 controls the extent of the pairwise £.-norm.
Similarly to the EN, the ¢; norm controls the variance and promotes sparsity, while the £.,-norm promotes
equality of parameter estimates. Thus, the OSCAR penalty is also capable of including groups of highly
correlated variables by setting the estimates of parameters within a group to be equal. The pairwise € -
norm is used instead of the overall £, -norm so that multiple groups of variables with different magnitudes
can be included, the latter would only allow one group with the largest magnitude to be included. The
OSCAR penalty also bears some resemblance to the fused LASSO, which imposes a pairwise ¢; norm in
combination with the regular ¢, norm. However, OSCAR considers any pairs of variables and not only

adjacent ones. The LASSO is obtained by setting v = 0, which results in sparsity but no grouping. Letting
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Y — oo results in the grouping effect without any sparsity. Problem (5.1.8) is equivalent to the penalized

regression

&% = argmin ||v—Zgz+A{||g||1+wZ max {|a
o j<k

: lockl}} (5.1.9)
}s

= argmin ||v—ZgH2 +M af, +)tzz max{‘ocj|,]ock
a j<k

where A > 0 and the penalty function is given by

Po () = At ], + A28oo (o, i) - (5.1.10)

The penalty function is convex and to solve the problem, Bondell & Reich (2008) use the 2p variables
corresponding to the nonnegative parameters oc;-r and & such that a; = ocj+ — «;. They also introduce
p (p—1) /2 variables ;. for the pairwise maxima for 1 < j < k < p. The problem can then be written as a
quadratic programming problem with ( P -3 p) /2 variables and p* + p + 1 linear constraints. Since the
quadratic programming is of order p?, it can be computationally expensive for large p. The problem is

stated as

2
c 1|lg_ P Nat = o~
minimize 2Hv Zj:lzj(“j “J')H
subject to Zﬁ.’:l (oc]* + 04]7) +y ekl < T
+ p— .
likzaf +a; for1<j<k<p
ljk>oc,t+a,:for1<j<k<p

aj 20, forall j=1,2,...,p

ocj’ >0forall j=1,2,...,p
Wu et al. (2009) proposed a similar penalty given by

Poo (a) = (1= ) af; + v 2]

which also includes features of sparsity and grouping. They show that the penalty is piecewise linear and

provide a homotopy algorithm for its solution.
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Sharma et al. (2013) generalize the OSCAR penalty by including weights on the ¢; norm. However, their

pairwise absolute clustering and sparsity (PACS) penalty includes weighted sums and differences of pairs

of coeflicients instead of the pairwise £..-norm. The estimate is given by
P

P
& = argmin |v-Za|*+ ) S wjlaj| + Y Wik(-) otk — o] + Y Wik(+) |otj + ot
a i1 j<k j<k

, (5.1.11)

where A > 0 is the tuning parameter and w;, wji(_) and wj(,) are nonnegative weights. Sharma et al.

(2013) show that OSCAR is a special case of PACS by noting that

1
okl = 2 (o = e + o + e}

max{‘aj

Then the OSCAR estimate is given by

>

. , L 1 1
4% = argmin |v-Za|*+ 1 O ol + = Q=) o —aj| + = (1= 9) D Jaj +
@ j=1 2 j<k 2 j<k

P -

where ¥ € [0,1]. They also point out that the ridge penalty can be formulated as 2(p—1) 3 1%

2 jsk [((x i— (xk)2 + ((x i+ ock)z]. Four different approaches for calculating the weights are discussed by
Sharma et al. (2013). In particular, the adaptive weights are given by #; = ‘&j‘_c, Wik(-) = |6ck - &j‘_( and
w ik(+) = ‘&k - j‘_( for { > 0, where & ; are any consistent estimates such as the LSEs. Sharma et al. (2013)
also develop a local quadratic approximations (LQA) algorithm to compute the solution more efficiently

than quadratic programming.

5.1.3 Geometry

Presented here are the norm balls for EN, OSCAR and the fused LASSO in Figure 5.1.2. The elastic net is
curved like ridge regression but has points on the axes due to its LASSO characteristic. The effect of the
curves meeting at a point on each axis is to bulge the curve outward along the diagonals of each quadrant.
Parameters are thus encouraged to fall either on a point and be set to zero, or near the diagonals and have
the same size as other parameters. Adjusting the y parameter lower yields sharper points and adjusting it
upward increases the curvature. The OSCAR norm ball is similar but, instead of having points only on the

axes, it has pointy edges in every direction. This allows for multiple groups of equally sized parameters
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within groups and different sized parameters between groups. The octagonal shape is the reason for its

name. The fused LASSO looks very similar to OSCAR in two dimensions since the pairwise £; norm acts
on adjacent parameters. The difference can be seen by examining the three dimensional ball. The fused
LASSO produces a rather strange looking surface with pointy edges along the x y-plane and the yz-plane

but flat LASSO-like diamonds along the xz-plane.

-

(a) () ()

(d) (e) (f)

Figure (5.1.2) Norm balls in R* and R? for (a),(d) elastic net, (b), (e) 0SCAR, and (c),(f) fused
LAsso, all with y = 0.5. Each norm ball promotes sparsity with protruding points on the axes
and encourages estimates of equal size with protruding points on the diagonals. 0SCAR allows
for multiple groups with different sized estimates between groups and fused LASSO sets estimates
equal only for adjacent variables.

5.2 Concave Penalties

Bridge penalties with 0 < y < 1are concave functions but they have the appeal of decreasing the amount of
shrinkage as the size of the parameter increases. Furthermore, Knight & Fu (2000) show that these penal-

ties have the oracle properties (Definition A.3.8). This is the idea behind the concave penalty functions,
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large parameters are penalized less so that the resulting estimates are nearly unbiased. In particular, this
is achieved by placing a constant bound on the penalty function. Fan & Li (2001) proposed SCAD, which
was the first shrinkage method having the oracle property. Although the adaptive LASSO is oracle, the bias
may decrease at a faster rate with SCAD. MCP, proposed by Zhang (2010), follows a similar approach but
penalizes smaller parameters less. Despite having concave penalties which are also non-differentiable at
zero, they both provide efficient algorithms for computing the solution, even in high dimensional settings

when p > n.

5.21 SCAD

The smoothly clipped absolute deviation (SCAD) estimate proposed by Fan & Li (2001) solves the penal-
ized regression

p
& = argmin |v-Za|* + > Ps(a;), (5.2.1)
a =

with penalty function

A |OCJ‘ if ‘(X]‘ < A

—(a? —28A | + A2
(]2(5—1; ) if A < || < €A (5.2.2)

(E+1)A%/2 if || > €1,

Ps (a;) =

where £ > 2 and A > 0 are tuning parameters. The penalty function Ps (oc j) is a symmetric quadratic
spline function with knots at A and &A. It applies a different amount of shrinkage to parameters based on
their size. For small parameters, the penalty is equal to the LASSO penalty and the shrinkage is constant.
While the LASSO penalty remains linear for all parameters, the SCAD penalty becomes quadratic for mod-
erately sized parameters and starts applying less shrinkage as the size of the parameter grows. For large
parameters the penalty is constant and little or no shrinkage is applied. Thus, the £ parameter effectively
controls the region in which parameters are almost unpenalized. As a result the SCAD estimate will have
less bias than the LASSO when there are large parameters in the model. The rate of shrinkage is clear when

examining the derivative of the penalty function,
sign (aj) A if |aj| <A

Pg (oc]-) =1 sign (aj) (f/\ - |ocj‘)/(f—1) if A < ‘ocj‘ <ér
0 if |aj > €.

140



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Que#® YUNIBESITHI YA PRETORIA

Since the penalty function is the LASSO penalty for |oc j‘ < A it is also non-differentiable at zero so that
SCAD produces sparse models. Fan & Li (2001) show that scad has the oracle properties and also provide

a sandwich formula for calculating standard errors.

A difficulty with SCAD is that the penalty function is concave, which complicates its computation. De-
spite the concavity, Fan & Li (2001) propose an algorithm using LQA to solve the problem. Zou & Li (2008)
developed an algorithm based on local linear approximation (LLA). Breheny & Huang (2011) developed
a coordinate descent algorithm to compute the SCAD solution. Clarke et al. (2009:611-615) discuss the
the LQA algorithm, along with three other algorithms which have been developed to calculate the SCAD
estimate. Cross-validation or GCV can be used to estimate the tuning parameters § and A. Although,
searching over a two-dimensional grid of values can easily become computationally expensive and they

recommend fixing & = 3.7 since they find it to be similar to GCV.

5.2.2 MCP

Zhang (2010) introduced the minimax concave penalty (MCP) which also has a concave penalty function.

The penalized regression takes the form

p
&M = argmin {V— Za| + ) Py (ocj)}, (5.2.3)

a j=1

and the penalty function is defined as

Pur () :{ Ao - aj./zf .if laj| < € 524
/2 i o) > EA,

where £ > 1 and A > 0 are tuning parameters. The LASSO penalty is obtained when { — oco. While
the limiting distributions of concave bridge penalties obtained by Knight & Fu (2000) show that large
parameters are estimated with less bias, they also show that small nonzero parameters are not estimated
consistently but are instead set to zero. The MCP attempts to correct the problem and applies less shrinkage
to smaller parameters. The penalty is thus a an improvement of the SCAD penalty, since the bias is slightly
lower and the accuracy of variable selection is improved. Its derivative is given by

, N A— sign(&j) |(xj|/£ if ‘(xj‘ <éA
Pia (07) = { 0 if |aj| > €A,
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and is also non-differentiable at zero so that parameters can be set to zero. Zhang (2010) propose the

penalized linear unbiased selection (PLUS) algorithm to find the solution and the coordinate descent al-

gorithm by Breheny & Huang (2011) also solves the MCP problem.

5.2.3 Orthogonal Design

The penalty and thresholding functions for SCAD and MCP are summarized in Table 5.2.1 and displayed in
Figure 5.2.1. Both penalty functions are convex and look almost identical. The shrinkage is also similar,
both penalties set small parameters to zero and leave large parameters untouched. Let’s call the region
in between the shrinkage region. The difference between the penalties is the rate at which parameters
in the shrinkage region are shrunk. The SCAD penalty has a steeper gradient than MCP so that smaller

parameters will be shrunk towards zero at a faster rate.

Method Penalty Function Thresholding Function
Moj| if o < A sign (&) (|a;) - A), if |a;] <22
SCAD —’(“12'*22(‘;)‘_'?;'”2) if A < Joj| < €M —(E_l)d’(}s_ii';(&")a if 21 < |&;] < €A
(E+1)A%/2 if |ay| > €1 & if |aj] > €A
- Ml = o /28 i faf <gn @D 15 <
EX?[2 if |aj] > €A & if | > &

Table (5.2.1) Penalty and thresholding functions for concave penalty methods
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SCADA=2,§=37 o SCADA=2,£=37

-0 M o s 10§

(a) (b)

MCPA=2,E=3 . MCPA=2,E=3
&

-10 - 0 s 10 g™

© (d)

Figure (5.2.1) Penalty and thresholding functions for (a)-(b) scAD and (c)-(d) mcp at the
recommend value of &, 3.7 for SCAD and 3 for MCP. Large parameters are not subject to shrinkage
so that the estimate is not biased. The functions look similar, but Mmcp shrinks smaller parameters
less than SCAD.
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Chapter 6
Simulation Studies

Simulation studies are performed to support the theory and identify scenarios in which the LASSO per-
forms well. Section 6.1 explains how the performance of each method is assessed. The LASSO is compared
with ridge regression and subset selection in Section 6.2. A study of the prediction accuracy along the
pathways of these methods are explored and it is shown how the bias variance trade-off influences the
quality of the final models. Furthermore, a number of information criteria are used to select the final
model and the performance in terms of prediction and selection is assessed. It is also shown how the DF
is heavily underestimated in the subset selection case when using the number of nonzero variables as an
approximation. The LASSO is shown to be a good competitor for both prediction and variable selection.

Section 6.3 studies the consistency of the LASSO and a number of other shrinkage methods.

6.1 Performance Measures

In the simulation studies below, regression models are estimated for each method over a grid of some
complexity measure 6. In some cases, the complexity parameter indexes the entire solution path from the
null model to the full least squares model. A set of coefficients E o and hence a set of models fg (X)=X E o
are estimated on the training sample for each method. Each study is repeated on N = 100 samples and
the best models fé (X), chosen using either CV or information criteria, are recorded for each sample.
Performance measures are calculated for each iteration of the process, producing a sample of size N of
each measure. Sample statistics can then be derived by analysing the distributions of these measures over

the N repetitions. The measures below were calculated to compare the performance of different methods.

6.1.1 Estimation Accuracy

To assess the accuracy of estimation, the parameter estimates of the best model ﬁ 5 are recorded for each

sample. The statistics below can be calculated to compare their efficiency.
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1. The mean of each estimate,

and their variances

2. The variance of each estimate,

4. The MSE of each estimate,

A

MSE (B;(0:)) = var (B; (6)) + Bias (B; (6:))°

By summing the statistics in 2-4, we obtain the total variance, bias and MSE, respectively. In particular,

the total MSE can be used to compare the overall efficiency of estimation.

6.1.2 Prediction Accuracy

Prediction accuracy is assessed by calculating the mean squared error of the predictions fé (X) for each

sample. There are a number of ways that this can be done.

1. Since the true parameter vector and covariance matrix of the predictor variables are known, we can

calculate the true MSE of prediction directly,

A N T .
MSE (f; (X)) = (B, - ) =(B,-8). (6.11)
The accuracy can then be assessed by calculating either,

(a) the sample mean of the MSEs and its standard error, which is the sample variance of the MSEs

divided by N, or
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(b) if the distribution is skewed, the sample median of the MSEs is a better statistic. The standard
error of the median is calculated using the bootstrap with B = 200 bootstrap replications.
Foreach b = 1,2,..., B, a sample of N MSEs is drawn, with replacement, and the median is
calculated each time. The sample standard deviation over the B medians is an estimate of its

standard error.

2. Alternatively, a test set can be used and the predictions fé (X¢) on this set are recorded for each
training sample. The statistics described in Section 6.1.1 for the parameter estimates, namely the
mean, bias, variance and MSE can be calculated in the same way for the predictions. This MSE

should be similar to that obtained using equation (6.1.1).

3. A further alternative is to use an estimate of the prediction error, such as,

(a) the testerror, TE (fé (X)) =y (yt,,- - fé (xt,,-))z/ m for a test sample of size m. The aver-

age over the 100 samples is equal to the expected prediction error, or
(b) the information criteria C,, AIC and BIC, or

(c) the cross-validation error.

Note that these methods include the irreducible error o2, that is, the estimate should be similar to
MSE ( fé (X )) + 0. Therefore, results are usually reported relative to 2. That is, for an estimate

of PE, PE, results are reported for PE ( fé (X)) / o’

6.1.3 Variable Selection

Variable selection can be assessed by looking at the estimated parameters which are included in the best

models. The measures below are useful for assessing selection performance.

1. An indicator of whether each estimate is included in the selected subset

2. The number of parameter estimates, further split by

(a) the number of correct or incorrect nonzero parameter estimates

(b) the number of correct or incorrect zero parameter estimates

3. Indicators of whether the true model is:
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(a) selected as the best subset,
(b) a subset of the selected variables, or

(c) contained in the solution path of the method. That is, the true model could be obtained by

selecting a different value of the complexity parameter 0.

The number of incorrect nonzero estimates corresponds to a type I error of the hypothesis Hy : f = 0
and the number of incorrect zero estimates corresponds to a type II error. The measures are all averaged
over the N samples. Since measures 3a - 3b, and the indicator in 1, record either a success or a failure, the
sum over the N samples has a binomial distribution and the average is an estimate of the probability of
success. That is, the probability of the method selecting the correct model is estimated by the proportion
of times the correct model is selected out of the N times the model is fitted. Similarly, we can estimate the
probability that the correct model is a subset of the selected model or if it lies in the solution path of the

method and the inclusion probability of each parameter can also be estimated.

6.2 Selection and Prediction

This simulation study analyses the selection and prediction performance of the LASSO in comparison with
the traditional methods. Model selection is also examined by comparing the performance when using the
information criteria and CV methods described in Sections 3.2 and 3.3 and some of the methods described

in Section 4.1.6.

6.2.1 Data

The data generating process is given by
Y = X3 + e where X ~ N (0,1) ands~N(O,02).

The predictor variables are related by a power decay correlation structure corr (X i» X j) = pli=1l, Since the
predictors have unit variance, the matrix of predictor observations are distributed as X ~N (0, 2) with
2= pli=1l. The true relationship between the response and the predictors is given by E (y) = X8 where

B =(3,15,0,0,2,0,0,0)". That s,

(X) =Y. X365
j=1
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and the correct model is given by

f(X) = Xaf1+ Xofa + X5fs.

This example was studied in the original LASSO paper by Tibshirani (1996) and appears in a number
of studies, including but not limited to Fan & Li (2001), Zou & Hastie (2005), Zou (2006), Yuan & Lin
(2007) and Bondell & Reich (2008), under various scenarios. In this study the sample size is n = 25,
quite a small sample affording about 3 observations for each parameter. The correlation is varied by
considering p € {0,0.5,0.9} to test the effect of collinearity. The effect of noise in the data is tested by
using o € {1, 3, 6}. Estimation, selection and prediction is carried out by generating N' = 100 samples from
this process. For the generated data, the average condition number of the predictor correlation matrix

and the average signal to noise ratio (SNR) are shown in Table 6.2.1. The condition number is given by

where e;(Z) are the eigenvalues of X, and the SNR, is given by

sw = OOk

When p = 0.9, the large condition number indicates that high levels of collinearity are present. The signal

to noise ratio is very low when ¢ = 6, making significant effects harder to find.

SNR

p k() o=1 0=3 o0=6

0 2.690 19.654 2.184  0.546
0.5 4.585 23213 2579  0.645
0.9 16.751 30.131  3.348  0.837

Table (6.2.1) Average condition number and sNR for generated data

6.2.2 Estimation and Model Selection

The model is estimated using forward selection, ridge regression and the LASSO. The LAR algorithm is used
for computation of the LASSO. Forward selection is indexed by the number of nonzero variables 6 = p,

ridge regression by the shrinkage parameter 6 = A, and the LASSO by the ¢, fraction, 6 = s = |«||, / [|&]; €
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[0,1], where & is the LSE. For every model selection procedure, the optimal tuning parameter is searched

for over a fixed grid of values. For comparison, least squares models and oracle least squares (that is, least

squares using only the true nonzero parameters) are also fitted.

Model selection is carried out using information criteria and CV on the training sample. An indepen-
dent validation sample, selected to be the same size as the training sample, is also used for comparison.
The model f (X) is used to predict the response for the observations in the validation set and the ex-
pected test error is estimated by ) ( Yy — fg (xv))2 / n. Suppose that the model with the lowest value
occurs at 0, then fé (X) is selected as the best model. The information criteria used were C,, (3.2.5), AIC
(3.2.13) and BIC (3.2.16). ¢V methods used include 5-fold Cv, 10-fold CV, LOOCV and GCV. All of these
methods attempt to estimate the expected test error. Thus, to see how well they perform, each model
is used to predict an independent test sample of size m = 200 and the test error ) ( Vi — fg (xt))2 [m is

recorded. The training error is also recorded to examine the extent of its optimism.

The expected test error is supposedly equal to the true PE. Since the data generating process is known,
we can verify this by comparing the average test error over the N samples with the true prediction error
given by PE = MSE + ¢, where MSE is calculated using equation (6.1.1). We can also show how the
prediction error is composed of the irreducible error, squared bias and variance by collecting the predicted
values fé (x¢) for each sample. Collecting these values for each value of model complexity, we can show
how these measures are related to complexity. The fitted model fé (x) on the training set is also collected
for each value of model complexity over the N samples in order to estimate the effective DF using equation

(3.1.9).

Criteria used for variable selection are also investigated. K-fold CV is applied with the 1 SE rule for K =
5,10. In addition, the modified BIC, percentile Cv and kappa selection methods discussed in Section 4.1.6
are applied. For both the percentile CV and kappa coefficient, 20 repetitions were used.

6.2.3 Results

Solution path

Figures 6.2.1, 6.2.2 and 6.2.3 show the prediction error, estimates thereof and its decomposition into the
squared bias, variance and o for forward selection, ridge regression and the LASSO, respectively for p =

0.5 and o = 3. The plots are all increasing with model complexity from left to right. Forward selection is
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indexed by the number of variables p. The LASSO models were fitted over a grid of s € [0,1] with a step

size 0.01. Ridge regression models were fitted over a grid of A € [0, 50] with step size of 0.2. The difficulty
with the selection of the ridge tuning parameter is that there is no upper bound since estimates are not set
exactly to zero. The plots for ridge regression are indexed by —In (1) so that model complexity is in the

same direction as the other methods. Of course, the least squares model at A = 0 is therefore not included.

FORWARD: 0=3,p=0.5 FORWARD: 0=3,p=0.5
7 8 7 8

— Train — Test
— Test o — PE

Prediction Error
Prediction Error

(a) (b)

FORWARD: 0=3, p=0.5 FORWARD: 0=3, p=0.5
. 7 8 ) s 7 8 0

- sqBias

- = Variance
— MSE Test

Prediction Error
Mean Squared Error

(0) (d)

Figure (6.2.1)  Prediction error for forward selection when o = 3 and p = 0.5. PE is plotted against
the number of variables p and the effective DF is shown on the top axes. The top panels show the
PE for each sample (light curves) and the average over the 100 samples (thick curves), with the test
error and training error in (a) and the test error and true PE in (b). Estimates of PE are shown in (c)
and (d) displays the decomposition of MSE into the squared bias and variance of the predictions,
where PE = MSE + ¢*

For each method, the training error and test error comparisons are shown in panel (a). The lighter

curves represent the error for each sample and the average is shown by the thicker curves. The variation
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in the lighter curves reveals that the training error has high variance at low model complexity and the

variance decreases as we fit the model harder. In contrast, the variability of the test error increases with
complexity. The average training error decreases steadily, while the test error begins to increase as we
start overfitting. The difference between the two thick curves shows the average optimism of the training
error. Similarly, panel (b) displays the test error and the true PE for each sample along with the averages.
To be clear, the true PE is calculated as described in point 1 of Section 6.1.2, where PE = MSE + ¢ and the
test error is calculated as described in point 3a. In each case, the curves are similar in terms of their values
and their shape. The average curves and the position of their minimum value are almost identical, with
the test error only slightly under estimating the PE. The instability of forward selection due to its discrete
nature can be seen by the high variability and wild behaviour of the PE. Ridge regression and the LASSO

display smooth curves with stabilized variance and less erratic behaviour.

Averages of PE estimates are shown in panel (¢). While some estimates may fail to accurately predict
the correct value PE, they mostly perform well in identifying the position of the minimum value. This
makes them well suited for model selection and generally a test set is preferred for model assessment. The
validation set usually provides an over estimate of PE but still manages to identify the minimum position
adequately. The C, and GCV are almost identical, they tend to under estimate PE and select a slightly
more complex model. AIC also showed similar results for the model selection since AIC o< Cp but
because of the scale difference its value does not approach the true PE so it is not shown. BIC often has
its minimum at a model with lower complexity and then increases dramatically as the model complexity
increases. LOOCV, 10-fold CV and 5-fold CV are very similar to each other. They perform exceptionally
well as estimates of PE, outperforming even the test error, and also excel in identifying the optimal model.
The performance, in terms of prediction and selection, for the best models chosen using each of these

criteria are shown in the next subsection.

The decomposition of PE is shown in panel (d). The solid red curve is the MSE, which is obtained
by adding the two dashed curves representing the squared bias and the variance of the predictions. The
values were calculated as described in point 2 of Section 6.1.2. The difference between the MSE in (d) and
the PE in (b) is an amount of about 0> = 9. This confirms that PE is composed of the irreducible error,
squared bias and variance. The plots show clearly that models with low complexity have high bias and

low variance, while more complex models have low bias and high variance.
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Figure (6.2.2)  Prediction error for ridge regression when o = 3 and p = 0.5. PE is plotted against
the —In(A) and the effective DF is shown on the top axes. The top panels show the Pt for each
sample (light curves) and the average over the 100 samples (thick curves), with the test error and
training error in (a) and the test error and true PE in (b). Estimates of PE are shown in (c) and (d)
displays the decomposition of MSE into the squared bias and variance of the predictions, where

PE = MSE + ¢?
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Figure (6.2.3)  Prediction error for LASSO when ¢ = 3 and p = 0.5. PE is plotted against s and the
effective DF is shown on the top axes. The top panels show the PE for each sample (light curves) and
the average over the 100 samples (thick curves), with the test error and training error in (a) and
the test error and true PE in (b). Estimates of PE are shown in (c) and (d) displays the decomposition
of MSE into the squared bias and variance of the predictions, where PE = MSE + ¢
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Here we see again that forward selection has larger variance than ridge regression or the LASSO. How-
ever, the estimation bias of ridge regression and the LASSO due to the constrained model space is clear,
with the bias increasing substantially as the constraint region is reduced. The LASSO has larger bias than
ridge regression because the radius of the constraint region is a lot smaller, |«], < [|*. Ridge regres-
sion also has lower bias since all the variables are retained in the model. While the LASSO drops variables
from the model, the prediction vs selection dilemma is clear - selecting a smaller model comes at the cost
of increased bias. Forward selection is only biased when the model is underfitted (that is, p = 1,2) and
displays no bias for the true model and any of the overfitted models. This makes sense since each model
is the best fitting least squares model of that size. However, more DF than a least squares fit have been
used to identify the best fitting models. The secondary x-axis is the average DF for each model, estimated
using the covariance formula (3.1.9). It appears that on average, about 2 to 3 DF are spent by the adaptive
search of forward selection. Figure 6.2.4 show the average DF in comparison with the number of nonzero
variables for forward selection and the LASSO when ¢ = 3 and p = 0.5. The number of nonzero variables
under estimates the DF for forward selection, while it is a close approximation of the DF of the LASSO. The
LASSO also performs an adaptive search, however, the DF saved by the shrinkage of estimates balances out

with the DF spent on the search.

FORWARD: 0=3,p=0.5 LASSO:0=3,p=0.5

- = Nonzero
—— df cov

- = Nonzero
= df cov

Degrees of Freedom
Degrees of Freedom

(a) (b)

Figure (6.2.4) Comparison of DF and the number of nonzero variables for (a) forward selection
and (b) the LAssO. The number of nonzero variables is a good approximation of the DF of the LASSO
but heavily under estimates the DF of forward selection.

Although the plots above are all shown for ¢ = 3 and p = 0.5, similar results were observed for each
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method, for all combinations of ¢ and p. The effects of increasing the noise and/or the correlation on the

bias and the variance of each method is shown in Table 6.2.2. The maximum variance and squared bias
over the solution path of each method is shown, where the null model and full model are not included.
The variance and squared bias of least squares and oracle least squares is shown for comparison. For all
methods, the variance increases with o but is little affected by increasing p. This verifies that the predic-
tions do not suffer from collinearity among the predictor variables. In particular, the full least squares
model has identical variance and squared bias for all p. The bias of the LASSO increases substantially as p

increases, while the bias of ridge regression decreases.

Variance Squared Bias

Method p c=1 o0=3 o0=6 o0=1 0=3 0=6

FORWARD 0 2.533 4.643 19.072 4944 4145 3.616
0.5 1.873 4750 18.868  6.403  5.191 3.171
0.9 2555 4.735 18.405 1.674 1.048  0.465

LASSO 0 0.509 4.700 18.890 14.098 14.022 13.985
0.5 0.510 4705 18.911 18.460 18.302 18.084
0.9 0746  4.739 18.981 35.446 34.658 33.254

RIDGE 0 0.546  4.627 18.512 6.790  6.719 6.620
0.5 0.501 4520 18.094 5.822 5.683 5.483
0.9 0.407 3.651 14.609 4.019 3.869  3.658

OLS 0 0.534 4.807 19.227  0.005 0.045 0.180
0.5 0534 4807 19.227  0.005 0.045 0.180
0.9 0534 4807 19.227 0.005 0.045 0.180

ORACLE 0 0.149 1.342  5.368  0.001 0.005  0.021
0.5 0.142 1.281 5.122 0.002  0.014 0.058
09 0171 1.536  6.146 0.002  0.021 0.084

Table(6.2.2) Maximum variance andsquared bias of predictions along the path of each method.
The null model and the full model (least squares) are excluded from the path of forward selection,
ridge regression and the LASSO. The variance and squared bias for least squares and oracle least
squares is shown for comparison.

For each method, the minimum MSE occurs at the best balance of bias and variance and indicates
which models should be selected. The models selected by ridge regression and the LASSO have lower
variance and slightly more bias than the best forward selection model. Table 6.2.3 shows the variance and
squared bias at the minimum MSE as ¢ and p are varied. Forward selection appears to have lower variance
when o = 1. As o increases, ridge regression and the LASSO tend to select models with lower complexity.

The increase in variance shifts the minimum MSE towards the larger bias where the DF is lower. The LASSOs
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increase in bias, as p increases, appears to have little effect on the selected model. Conversely, the DF for

forward selection increases as o or p are increased. The number of variables and DF at the minimum MSE

are shown in Table 6.2.4. The entire situation is seen clearly when presented graphically as in Figure 6.2.5.

Variance Squared Bias
p  Method c=1 0¢=3 o0=6 o0=1 0=3 0=6
FORWARD  0.149 3.255 12,570  0.001  0.090  1.093
LASSO 0.278 2142 4450 0.055 0.553  3.055
RIDGE 0.488 2.602 3.624  0.015 0.699  3.639
0.5 FORWARD 0.242  3.407 11927 0.004 0.035  0.597
LASSO 0.269 1.883  4.577 0.044 0.523  2.268
RIDGE 0.409 1.852 3301  0.044 0.659  2.442
0.9 FORWARD 0.347 2427 7.605 0.004 0.236  0.465
LASSO 0.387 2199 4385 0.016 0.160 0.783
RIDGE 0.274 1.033  2.342  0.063 0.497  1.322

Table (6.2.3) Variance and squared bias of predictions at the minimum MSE

Number Variables df

Method p c=1 0=3 0=6 o0=1 0=3 0=6

FORWARD 0 3.00 3.00 200 443 526 496
05 3.00 400 200 6.82 736 524
09 4.00 2.00 100 10.98 593 398

LASSO 0 570  5.50 4.16 6.87 547  3.63
05 570 5.26 4.13 9.21 5.69 3.82
09 6.65 560 392 1173 6.82 3.91

RIDGE 0 8.00 8.00 8.00 9.06 649 394
0.5 800 8.00 800 11.04 6.39 3.93
09 8.00 800 8.00 1.14 5.27 3.10

Table (6.2.4) Number of variables and estimated degrees of freedom at the minimum MSE

The average coefficient profiles and their probabilities of inclusion are shown in Figure 6.2.6 and Fig-
ure 6.2.7. From the coefficient profiles, we can see how ridge regression shrinks parameters proportionally
to their size. The LASSO shrinkage is constant, all parameters are shrunken equally, but additional bias is
introduced since they are shrunk all the way to zero. In this example, it is clear from the coefficient pro-
files which of the variables are important. In other situations, particularly when p > n, examining the
inclusion probabilities can clarify which variables should be included. Supposedly, selecting the variables

based on these probabilities can improve the variable selection properties of the LASSO.
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Figure (6.2.5) MSE, squared bias and variance as o and p are varied for (a) forward selection, (b)
ridge regression and (c) the LASsO
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Figure (6.2.6) Average coefficient profiles for forward selection, ridge regression and the LASSO
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Figure (6.2.7) Coefficient inclusion probabilities for forward selection and the LASSO
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Model Selection

Figures 6.2.8, 6.2.9, 6.2.10 show how each method performs when a particular Cv method or information
criterion is used to select the best model from the solution path. The box and whisker plots show the
distribution of the MSE of predictions. For forward selection and the LASSO, the probability of selecting
the correct model is shown simultaneously with the use of a colour scale, where darker shades indicate
higher probabilities. The figures are shown for ¢ = 3 and p = 0.5 and the discussion below describes how
results differ as o and p are varied.

RIDGE: 0=3,p=0.5

10

-

Mean Squared Error
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10 fold CV 1SE
5 fold CV

5 fold CV 1SE
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GCV

kappa

Loocv

mBIC

Valid

Figure (6.2.8) Model selection for ridge regression: MSE when using cv and information criteria

For each method, K-fold CV, LOOCV, GCV, AIC and C,, are all equivalent, with GCV, AIC and C,, almost
identical. Although the validation set approach has the best MSE with the lowest variation, these methods
offer a satisfactory alternative. They select the best model for prediction but do not do very well for
variable selection. For forward selection, using K-fold Cv with the 1 SE rule works particularly well when
the noise level is low, showing excellent variable selection and low PE. The percentile CV method and
kappa coeflicient also perform well in both aspects. The BIC is slightly more variable than these two
methods and has slightly lower selection accuracy, although it does seem less affected by the increase in
noise. For the LASSO, the BIC and the percentile CV method perform similarly, showing good prediction
accuracy and improved variable selection. The 1SE rule improves the variable selection further and the
kappa coeflicient even more so. However, the resulting models using these methods are very biased and

highly variable. The 1 SE rule appears to worsen as the noise is increased, while the kappa coefficient seems
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Figure (6.2.9) Model selection for forward selection: MSE and probability of selecting the correct
model when using cv and information criteria
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Figure (6.2.10) Model selection for the LASSO: MSE and probability of selecting the correct model
when using cv and information criteria
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more susceptible to increases in correlation. The modified BIC does not appear to offer any improvement.

Performance

Prediction

The performance of each method is examined when using either 5-fold CV or the kappa coefficient
for model selection. Table 6.2.5 shows the median MSE of predictions and the probability of selecting the
correct model for each method as ¢ and p are varied. Least squares and oracle least squares are included
for comparison. The accuracy of the median MSE is assessed by bootstrap standard errors, calculated
as described in Section 6.1.2. The MSE and probability of selecting the correct model is also presented

graphically in Figure 6.2.11 for 0 =3 and p = 0.5.

As expected, oracle least squares has the highest prediction accuracy in all scenarios, with the MSE
generally increasing slightly as o and p increase. The larger MSE and variance of least squares is due to
overfitting and it is clear that the predictions are not affected by collinearity. When using CV, the LASSO,
forward selection and ridge regression all have lower MSE than least squares in all scenarios except one,
the low noise orthogonal design, where ridge regression performs poorly. Forward selection performs
the best when ¢ = 1and p = 0, 0.5, with high prediction accuracy and good selection performance, but
suffers higher MSE and high variance in other scenarios, with variance larger than least squares in some
cases. The LASSO is a close competitor when o = 1, but really shines when ¢ = 3. In this case, it has high
prediction accuracy and selection performance nearly as good as forward selection. Also, for orthogonal
designs, the MSE for the LASSO does appear to be close to that of oracle least squares (near minimax
optimality). Ridge regression performs best in the high noise scenario when o = 6 and handles collinearity
superbly, outperforming other methods when p = 0.9 (except in the low noise case). Model selection
using the kappa coeflicient improves the performance of forward selection when o = 1,3, increasing
the probability of selecting the correct model and resulting in lower MSE as well as low variance which
is smaller than that of least squares. The LASSOs selection performance is remarkably improved when
using the kappa coefficient for o = 1, 3, such that it surpasses that of forward selection. However, the MSE
increases substantially due to large bias. The kappa coeflicient is not suitable for ridge regression, which

seems to have selected the full (least squares) model.
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o=1 =3 =6
p  Method Median MSE PCS  Median MSE PCS  Median MSE ~ PCS
5-fold CV
0 FORWARD 0.174 (0.022) 0.70 4.042 (0.549) 0.20 13.391 (1.265) 0.03
LASSO 0.320 (0.028) 0.21 2.817(0.362) 0.14 10.261(0.915) 0.04
RIDGE 0.489 (0.036) 0.00 3.554(0.301) 0.00  8.802 (0.461) 0.00
05 FORWARD 0.174 (0.022) 055 3.995(0.496) 0.22 10.893 (0.996) 0.05
LASSO 0.306 (0.026) 0.14 2.425(0.274) 0.16 7.804 (0.598) 0.06
RIDGE 0.405 (0.032) 0.00 2.857 (0.189) 0.00  7.523 (0.472) 0.00
0.9 FORWARD 0.336 (0.044) 0.30 3.542 (0.407) 0.03 7.613 (0.982) 0.00
LASSO 0.330 (0.022) 0.07 2127 (0.131) 0.08  5.818 (0.745) 0.04
RIDGE 0.334 (0.022) 0.00 1720 (0.104) 0.00 4.480 (0.448) 0.00
x Coeflicient
0 FORWARD 0.146 (0.019) 0.84 3.051 (0.249) 0.28 13.416 (1.350) 0.05
LASSO 2.307 (0.145) 0.84 6.204 (0.252) 0.32  8.654 (0.762) 0.04
RIDGE 0.474 (0.048) 0.00 4.266 (0.420) 0.00 17.062 (1.705) 0.00
0.5 FORWARD 0.136 (0.018) 0.78 2.986 (0.327) 0.20 13.220 (1.023) 0.02
LASSO 2.724 (0.140) 0.83 7.426 (0.333) 0.32 9.201 (0.399) 0.04
RIDGE 0.474 (0.047) 0.00 4.266 (0.412) 0.00 17.062 (1.642) 0.00
0.9 FORWARD 0.256 (0.031) 0.37 2.623(0.321) 0.03 10.696 (0.948) 0.00
LASSO 8.930 (0.599) 0.26 12.889 (1.013) 0.03  9.144 (1.379) 0.02
RIDGE 0.474 (0.045) 0.00 4.266 (0.418) 0.00 17.062 (1.666) 0.00
Least Squares

0 OLS 0.474 (0.045) 0 4.266 (0.447) 0 17.062 (1.756) 0
0.5 0.474 (0.046) 0 4.266(0.429) 0 17.062 (1.661) 0
0.9 0.474 (0.045) 0 4.266 (0.414) 0 17.062 (1.707) 0
0 Oracle 0.115 (0.014) 1 1.038 (0.117) 4.153 (0.485) 1
0.5 0.107 (0.010) 1 0.965 (0.087) 1 3.860 (0.350) 1
0.9 0.157 (0.017) 1 1.410 (0.152) 1 5.638 (0.544) 1

Table(6.2.5) Median MsE (with bootstrap standard errors) and probability of selecting the correct
subset when using cv and the kappa coefficient for model selection. Least squares and oracle
least squares are shown for comparison.
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Figure(6.2.11) Comparison of prediction and selection performance between different methods:
MSE and probability of selecting the correct model as o and p vary

Estimation

The variance and squared bias of the parameter estimates is shown in Table 6.2.6. The effect of
collinearity on the least squares estimates is seen clearly by the inflated variance. The LASSO, forward
selection and ridge regression estimates all have much lower variance than the LSEs when using either CV
or the kappa coeflicient. When using CV, forward selection has the lowest bias in all scenarios. It also has
the lowest variance when o = 1and p = 0, 0.5 but in other scenarios it is highly variable, compared to the
LASSO and ridge regression. The LASSO appears to have the lowest variance in most of these scenarios. It
also has highest bias in most of the scenarios, although the bias is still within an acceptable range. Us-
ing the kappa coeflicient with forward selection and the LASSO, in almost every scenario, the variance is

reduced and the bias is increased - the LASSOs bias increasing considerably.

Figures 6.2.12 and 6.2.13 examine the distributions of the parameter estimates. For each parameter,
a box and whisker plot depicts the range of the estimates value, along with a colour scale showing its
inclusion probability, for each method. Histograms with the normal probability density function are also
shown for each method. Results are shown for ¢ = 3 and p = 0.5. Every method includes f3;, the largest
parameter, with high probability (tending to 1). Forward selection and least squares have the largest vari-
ability. When using kappa, the LASSO over shrinks f3; so that it is biased toward zero. Examining the

histograms, each method displays a fairly normal distribution for ;. Only LASSO using CV includes f3,,
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P Method Variance SqBias Variance SqBias Variance Sq Bias

5-fold CV
0 FORWARD 0.249 0.002 4.616 0.155 15.100 0.666
LASSO 0.293 0.093 2.563 0.998 7.855 3.760
RIDGE 0.515 0.013 3.234 0.589 6.444 2.674
0.5 FORWARD 0.432 0.003 5.502 0.240 17.791 0.621
LASSO 0.437 0.062 2.792 0.751 8.210 2.517
RIDGE 0.713 0.039 3.551 0.619 9.062 1.911
0.9 FORWARD 3.121 0.060 21.092 1.211 56.139 2.388
LASSO 1.826 0.294 11.024 1.665 16.432 3.861
RIDGE 2.533 0.405 8.360 2.011 24.339 2.622

x Coeflicient

0 FORWARD 0.199 0.001 3.513 0.120 15.797 0.281
LASSO 0.374 2.204 1.100 5.167 5.192 5.234
RIDGE 0.538 0.005 4.844 0.048 19.376 0.192

0.5 FORWARD 0.233 0.002 5.583 0.251 22.198 0.362
LASSO 0.391 2.139 1.214 5.100 3.642 5.270
RIDGE 0.839 0.007 7.548 0.063  30.191 0.253

0.9 FORWARD 2.940 0.136 20.818 0.667  97.168 2.011
LASSO 1.678 5.546 2.865 7.221 16.175 5.338
RIDGE 4.454 0.035  40.088 0.312  160.352 1.246

Least Squares

0 OLS 0.538 0.005 4.844 0.048 19.376 0.191
0.5 0.839 0.007 7.548 0.063  30.191 0.253
0.9 4.454 0.035  40.088 0.312  160.352 1.246
0 Oracle 0.147 0.001 1.326 0.006 5.302 0.022
0.5 0.163 0.001 1.469 0.013 5.878 0.052
0.9 0.781 0.003 7.024 0.026  28.096 0.104

Table (6.2.6) Total variance and squared bias of parameter estimates when using cv and the
kappa coefficient for model selection
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the smallest nonzero parameter, with high probability. The inclusion probabilities are significantly lower

for forward selection and LASSO using kappa, and the histograms for these methods also display a sig-
nificant deviation from the normal distribution. Similarly to 3;, forward selection has large variance and
LASSO using kappa results with 3, biased towards zero. f35 is also included by LASSO using CV with high
probability. The inclusion probabilities are somewhat lower for forward selection and LASSO using kappa,
although slightly higher than for ,. These methods show the same behaviour as for the other nonzero
parameters, forward selection is highly variable and LASSO using kappa is heavily biased towards zero.
Neither forward selection nor the LASSO exhibit normal distributions for 5. While it is not clear from
the plots, LASSO using CV selects each of the zero parameters with probability of approximately 0.4; for-
ward selection using CV selects them with probability of approximately 0.2; and using kappa, both LASSO
and forward selection select them with low probability. The zero parameter estimates are not normally

distributed when using LASSO or forward selection.

Variable Selection

Figure 6.2.14 shows the variable selection performance of forward selection and the LASSO when ¢ =
3 and p = 0.5. The average number of nonzero parameter estimates that are included in the selected
models are shown in panel (a). The estimates that are correctly estimated as nonzero are coloured in
green and those incorrectly estimated as nonzero are coloured in red. The LASSO using CV always overfits
the model and usually includes more variables than the other methods. In this scenario, none of the
methods perform exceptionally well in terms of variable selection. When o = 1and p = 0, 0.5, all three
nonzero parameters are correctly estimated as nonzero for all methods, and the use of kappa yields the

lowest false inclusion rate.

Panel (b) displays the probabilities of selecting the correct model, including the correct model in the
selected subset of variables, and containing the correct model in the solution path. In this scenario, the
correct model is included in the selected subsets with high probability when using CV for the LASSO. The
same is true when o = 1. However, for o = 1, forward selection performs variable selection exceptionally
well, and surprisingly, the true model does lie in the local search path of forward selection with high
probability. Selection performance is very poor for the high noise scenarios when o = 6, but LASSO does

appear to perform slightly better than forward selection.
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Figure (6.2.12) Comparison of parameter estimates f3; — 34 between different methods: value of
estimates and their inclusion probabilities, along with histograms of their distributions for ¢ = 3
andp =0.5
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Figure (6.2.13) Comparison of parameter estimates f3s — 35 between different methods: value of
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Figure (6.2.14) Variable selection performance of forward selection and LAssO: the number of
nonzero parameters is shownin (a) and the probabilities of selecting the correct model, containing
the correct model and having the correct model in the solution path are shown in (b)

6.3 Oracle Procedures

This simulation study analyses the consistency, in terms of variable selection estimation and prediction,
of the LASSO, some two-stage LASSO methods and some of the other shrinkage methods. Small sample

results can be compared with the previous simulation study.

6.3.1 Data

The data generating process is similar to Section 6.2. The error variance is fixed at ¢ = 3 and the parameter
vector is given by 8 = (3,1.5,0,0,2,0,0, 0)". Consistency is tested by allowing the sample size to grow,
n € {25,50,75,...,500}. The correlation is fixed at p = 0.5 but, in order to examine the capability of each

method, different correlation structures are used:

« Power decay correlation, or AR(1) covariance structures, which will be denoted as AR: X ik = p|j k|
for j,k=1,2,...,p

+ Constant positive correlation, or compound symmetry, which will be denoted as CS: 2 ;; = 1 for

j=12,...,pand Xy =pforj+k
« A disturbed orthogonal design, which will be denoted as IR: Z; =1for j=1,2,...,pand Zj; = 0
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for j # k, except for Z;x = p, where j € D, the set of true nonzero parameters D = {1,2,5}, and

k € A for some set of parameters A c D¢. Here, the set is chosen as A = {3}.

According to Zhao & Yu (2006), the first two types of correlation satisfy the irrepresentable condition
in equation (4.1.48),

|22y sign (QD)H(><> <l-efore>0.

The third correlation structure is constructed to violate the condition. Assuming an orthogonal design for
the active set of variables (those indexed by D, we have 21‘11 =25 = I andsince i20 forallj=1,2,...,p,
the condition does not hold when |Zy]|,, > 1—efore > 0. Now, |2z, = HZQZDHW = ijZD such
that j = argmax; ’Z£2D|. Therefore, allowing one of the irrelevant predictor variables to have strong
correlations with all the variables in the active set will present a correlation structure dissatisfying the

irrepresentable condition.

N =100 training samples are simulated for each combination of # and the three correlation structures.
Figure 6.3.1 shows the average SNR and condition number of the correlation matrix for the generated data.
Both measures improve as the sample size increases and for all scenarios, the SNR and condition number

are within a suitable range.
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Figure (6.3.1)  Condition numbers and signal to noise ratio for the generated data

The average of the compatibility condition and the restricted eigenvalue condition are given in Ta-
ble 6.3.1 for the generated data. The compatibility condition holds in each case but the restricted eigen-

value condition does not hold for the IR correlation structure. The irrepresentable condition for the
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generated data is depicted in Figure 6.3.2. Panel (a) shows the maximum value of the irrepresentable con-

dition over the 100 samples. The probability that the condition is not satisfied is shown in panel (b), where

the bars have been overlayed instead of stacked. For the AR and CS correlation structures, the condition

does not hold when n <100, but with low probability. For instance, when n = 25, the probability of a false

irrepresentable condition is about 0.4 for CS structures and for AR structures the probability is under 0.2.

For the IR structure, the condition is not met with probability tending to 1 (as designed).

Condition

Correlation Structure

Compatibility ~Restricted Eigenvalue

AR 1.509
CS 2.041
IR 1.083

1.393
1.885
1.000

Table (6.3.1) Compatibility and restricted eigenvalue conditions for the generated data
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Irrepresentable condition for the generated data. The maximum value of the

condition over the 100 samples is shown in (a) and the probability that the condition does not
hold is shown in (b), where the bars have been overlayed rather than stacked.

6.3.2 Estimation and Model Selection

The model is estimated using least squares, oracle least squares with

f(X) = Xaf1 + Xafs + Xs5Ps,
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the LASSO, relaxed LASSO, adaptive LASSO, SEA-LASSO, two-stage LASSO (using LASSO initial estimates for

the adaptive LASSO), EN, adaptive EN, MCP and SCAD.

In each case, model selection is performed using 10-fold CV over a fixed grid of one tuning parameter
and, where applicable, the second tuning parameter is held fixed. For methods excluding the two-stage
LASSO and adaptive EN, which sequentially cross-validate over one tuning parameter, the kappa coefficient
with 20 repetitions is also used to select the tuning parameter. Table 6.3.2 shows the tuning parameters

that are considered in the study. For the LASSO and EN methods, the LAR algorithm was used with the

primary tuning parameter selected over a fixed grid of s = |«|, /[|&||; € [0,1] with increments of 0.01.
The relaxed LASSO is an exception, where the first p steps of the LAR algorithm is used instead. For the
concave penalties of SCAD and MCP, the coordinate descent method by Breheny & Huang (2011) is used
and the primary tuning parameter is selected over a grid of 100 A values, equally spaced on the logarithmic

scale.

Tuning Parameter

Method Primary Secondary
LASSO s€[0,1]

Relaxed LASSO LARstepe [L,p] ¢=0.3
Adaptive LASSO s€[0,1] (=1
SEA-LASSO s€[0,1] (=1
Two-stage LASSO s€[0,1]

EN S € [O, 1] /\2 =0.5
Adaptive EN s€[0,1] Ay =05
SCAD Ae e, e8] £=37
MCP Ae[et?, e8] £=3

Table (6.3.2) Tuning parameters used for model selection

The variable selection performance measures described in Section 6.1.3 are calculated to determine
selection consistency. Estimation consistency is tested by calculating the MSE of the parameter estimates
as detailed in Section 6.1.1. Furthermore, persistence is assessed by calculating MSE using equation (6.1.1),

along with its median and bootstrap standard errors.
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6.3.3 Results
Consistency

Figure 6.3.3 reveals which methods are path consistent for each correlation structure. A method is termed
path consistent if the correct model lies its solution path with probability tending to 1 as n — oco. The
AR and CS correlation structures are shown in panels (a) and (b), respectively, where it is clear that all
the methods are path consistent. In panel (c), we see that the LASSO is not path consistent when the
irrepresentable condition does not hold. The EN, adaptive EN and relaxed LASSO also do not appear to
be path consistent. However, it can only be said with certainty that they are not path consistent when
holding the secondary tuning parameter fixed at the chosen value. It is possible that they may perform

better when fixing the parameter at an alternative value or if it is chosen adaptively for each sample.

AR cs

Probability In Path
Probability In Path
7
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Probability In Path

S e AN
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n

(c)

Figure (6.3.3)  Probability that the correct model is in the solution path
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It is comforting to know that the correct solution exists within the path of a method but the question of

whether we are able to recover that solution still remains. For this study, the tuning parameter is selected
using either 10-fold CV or the kappa coefficient. The probability of selecting the correct model is shown
in Figure 6.3.4 for each correlation structure with the models selected by CV on the left and those selected

by the kappa coefficient on the right.

When using CV, only the adaptive EN, when applied to an AR correlation structure, appears to be
consistent for variable selection. However, the concave penalties of MCP and SCAD approach a high prob-
ability of 0.8 for each correlation structure. Furthermore, they appear to be strictly increasing so that, if
the sample size were to grow larger, they could indeed attain a probability of 1. The same argument could
hold for the adaptive EN and the CS design. The relaxed LASSO also appears to be increasing for AR and CS
designs, albeit at a slower rate. The LASSO and two-stage LASSO show no improvement in terms of variable
selection as » increases. The same can be said for the EN, adaptive LASSO and SEA-LASSO, although these

methods could possibly improve by adjusting the secondary tuning parameter.

Using the kappa coeflicient for model selection, all methods appear to be selection consistent under
AR and CS designs. However, when the irrepresentable condition is not met, only the adaptive LASSO,
SEA-LASSO, MCP and SCAD achieve consistent selection, while the LASSO, relaxed LASSO and EN fail hope-

lessly.

Although not shown here, it is worth noting that, for all correlation structures and whether CV or the
kappa coefficient are used, every method includes the correct model in the selected model with probability
tending to one. That is, the correct model is a subset of the chosen model, so that these methods can be
used for variable screening. The only exception is the adaptive EN, where the probability of including the
correct model is nearly identical to the probability of selecting the correct model - that is, the adaptive EN

does not overfit the model.

Figure 6.3.5 shows the MSE of the parameter estimates for each correlation structure when using CV
and the kappa coefficient for model selection. When using CV, the MSE tends to zero as n — oo, indicating
that the parameter estimates are consistent. The EN and adaptive EN are exceptions, although for AR and
CS designs, the EN might approach 0 with a larger sample size. When using the kappa coeflicient, only
the relaxed LASSO, adaptive LASSO and SEA-LASSO are consistent for estimation. When the irrepresentable

condition does not hold, the MSE of the MCP and SCAD estimates also appears to approach 0.
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Persistence, or consistent prediction, can be shown in a similar way by plotting the MSE of the predic-

tions against the sample size. The results are very similar to those obtained for estimation and the figures
are therefore omitted. For CV, the curves are almost identical to estimation, all methods appear to be
persistent except the EN and adaptive EN. Similar results are also seen when using the kappa coeflicient,

except that MCP appears to be persistent for any correlation design.

The kappa coefficient therefore appears to be an excellent model selection criteria for the adaptive
LASSO, SEA-LASSO and relaxed LASSO, yielding consistent prediction, estimation and variable selection
(except for relaxed LASSO and IR structures). The relaxed LASSO also appears to enjoy consistent predic-
tion, estimation and selection (except for IR designs), when using CV for model selection. MCP and SCAD
appear to perform better in all aspects when using CV for model selection. The EN methods do not achieve
consistence in all aspects using either CV or the kappa coeflicient and perhaps it would be worth investi-
gating the use of a different secondary tuning parameter. The LASSO achieves consistent estimation and
prediction when using CV and achieves consistent selection when using the kappa coefficient. Neither of

these two model selection criteria are capable of yielding all-round consistency for the LASSO.

Small Sample Results

The results shown below are for the AR correlation structure when n = 25 and the data is identical to
that in Section 6.2. Table 6.3.3 shows the total variance and squared bias of the parameter estimates when
using 5-fold CV and the kappa coeflicient for model selection. When using 10-fold CV, the variance of the
LASSO estimate is slightly higher and the bias slightly lower than when using 5-fold CV. It is clear that the
two-stage LASSO methods and the concave penalties control the bias better than the LASSO, they all have
lower bias than the LASSO regardless of whether CV or the kappa coefficient is used. Although they also
have higher variance than the LASSO, they all display lower variability than the least squares model. The
EN is the only method which has lower variance than the LASSO but its bias is also larger than the LASSO.

The adaptive EN performs very poorly, with large bias and large variance.

Figure 6.3.6 shows the distribution of the MSE of predictions and the median MSE along with bootstrap
standard errors are shown in Table 6.3.4. The probability of selecting the correct model is also shown in
both the figure and the table. The LASSO appears to be quite competitive in terms of prediction accuracy

when using CV, the median MSE is among the lowest and it has the lowest variance. The EN and relaxed
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10-fold CV x Coefficient

Method  Variance Squared Bias Variance Squared Bias

LASSO 3.243 0.5504 1.183 5.3504
RLASSO 3.683 0.3063 3.073 0.6085
ALASSO 4.592 0.3492 3.187 2.0228
SLASSO 4.710 0.3427 2.808 2.3222
TLASSO 3.980 0.3174

ENET 2.212 0.8164 1.368 3.4698
AENET 5.294 1.4086

MCP 5.673 0.2490 4.710 0.9512
SCAD 6.112 0.2021 3.232 2.8406

Full Oracle

OLS 7.548 0.06334 1.469 0.01287

Table (6.3.3) Variance and squared bias of parameter estimates

LASSO also perform very well in terms of prediction. While the adaptive EN has the highest probability
of selecting the correct model, there is no gain in fitting the smaller model since its median MSE and
its variance is larger than that of the least squares model. MCP and SCAD also perform no better than
least squares. Using the kappa coeflicient does increase the probability of selecting the correct model for
each method, but in most cases, the MSE and its variance are increased so that least squares is a more
attractive option. However, it does work remarkably well with the relaxed LASSO, not only improving its
variable selection performance but also the MSE, with only a slight increase in variance. The relaxed LASSO

outperforms forward selection in terms of prediction and selection.

10-fold CV x Coeflicient
Method  Median MSE PCS Median MSE PCS

LASSO 2.70(0.19) 0.4  7.94(0.39) 0.32
RLASSO  2.63(0.39) 0.27 2.52(0.55) 0.35
ALASSO  2.99(0.28) 0.20 4.43(0.42) 0.27
SLASSO  2.96 (0.46) 015 4.15(0.29) 0.27
TLASSO  2.84(0.33)  0.20

ENET 212(0.22)  0.05 4.63(0.42) 0.27

AENET  5.69(0.42) 0.3

MCP 3.77 (0.45) 0.15 4.00 (0.63) 0.18

SCAD 4.21(0.47) 0.17 6.63 (0.52) 0.27
Full Oracle

OLS 4266 (0.421) 0  0.965(0.081) 1

Table (6.3.4) Median MSE and probability of selecting the correct model
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Figure (6.3.6) MsE of predictions and probability of selecting the correct model

Figures 6.3.7 and 6.3.8 take a closer look at the variable selection performance of each method. The
LASSO and EN both include the correct model in the selected models with high probability. However,
they both tend to overfit the model (the EN more so than the LASSO), resulting in a large number of
false inclusions and a low probability of selecting the correct model. Except for the adaptive EN each
method overfits the model when using CV and underfits the model when using the kappa coefhicient.
MCP performs especially poor with this data, the true model lying in its solution path only about 40% of

the time. The relaxed LASSO performs the best in terms of selection.
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Figure (6.3.7) Variable selection performance: probability of selecting the correct model,
including the correct model and having the correct model in the solution path
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Chapter 7
Application

71 Data

An analysis is performed on the diabetes data set from Efron ef al. (2004) available in the R package 1ars
or at http://web.stanford.edu/~hastie/Papers/LARS. A study was conducted on 442 diabetes patients. Baseline
measurements were taken at the beginning of the study and a quantitative measure of disease progression
was recorded one year after the baseline. Ten baseline variables were recorded, including age, gender,
body mass index, average blood pressure, as well as six blood serum measurements. These variables are
used as predictor variables in a regression model with the measure of disease progression as the response
variable. The model can be useful in determining which factors promote the progression of the disease
as well as predicting disease progression for future patients using their baseline measurements. The data
is presented visually in Figure 71.1. The blood serum measurements appear to have moderate to high
correlations with each other. In particular, the variables tc, 1dl, tch and Itg form a group of variables
with high pairwise correlations, with substantial correlation between 1dl and tc. Of the remaining blood
serum measurements, hdl is very highly correlated with tch and moderately with Itg, and glu has moderate
correlations with all blood serum measurements. The average blood pressure, more formally the mean
arterial pressure (MAP) has moderate correlations with Itg and glu, and bmi with map, hdl, tch, Itg and
glu. Variables hdl and Itg are significantly different between males and females, while map and glu are
moderately related to age. Collinearity is definitely a problem with this data set, with a condition number
of the correlation matrix being 21.68. The response has the largest correlation with bmi, followed closely
by ltg, and has moderate correlations with map, hdl, tch and glu. All variables appear to be normally

distributed, apart from bmi and tch which appear to be right-tailed, or skewed to the left.
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7.2 Estimation, Model Selection and Prediction

The data is split roughly 75-25%, into a training set of size 332 and a test set of size 110 using simple
random sampling without replacement. The model is estimated on the training set using all the methods
examined in Chapter 6, including least squares, forward selection, ridge regression, the LASSO, relaxed

LASSO, adaptive LASSO, SEA-LASSO, two-stage LASSO, EN, adaptive EN, MCP and SCAD.

Model selection is performed by resampling data from the training set using 10-fold cross-validation,
simultaneously optimizing over two tuning parameters where relevant. The primary tuning parameter
(the shrinkage parameter) is selected in a similar fashion as in Chapter 6 for each method, except for the
LASSO, where A is now selected as one of the values at which new predictors enter the LAR-LASSO algorithm.
The values considered for the secondary tuning parameter, where necessary, are shown in Table 7.2.1. The
A, parameter for the adaptive EN is set to the value that is chosen by CV for the EN. As before, the primary
tuning parameters for the adaptive EN and the two-stage LASSO are chosen sequentially using Cv. For
all other methods, the model is also selected using the kappa coefficient, where the secondary tuning
parameter is fixed at its cross-validated value for easy comparison. Finally, the selected models are used
to predict the observations in the test set and the generalizability of each model is assessed via the test

€rror.

Tuning Parameter

Method Primary Secondary
Forward selection p€[1,10]

Ridge regression A €[0,50]

LASSO A€ [2,835]

Relaxed LASSO LAR step € [1,10] ¢ €{0,0.1,...,1}
Adaptive LASSO se[0,1] (€{0.5,1,2}
SEA-LASSO se[0,1] (€{0.5,1,2}
Two-stage LASSO se[0,1]

EN s€[0,1] 1, €{0.1,0.5,1,5,10}
Adaptive EN se[0,1] A =01

SCAD A€[0.0546] &£€{2.5,26,...,3.5}
MCP 1 €[0.05,46] £e{3,31,...,4)

Table (7.2.1) Tuning parameters considered for the diabetes data
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7.3 Results

Table 7.3.1 shows the values of the tuning parameters selected by Cv and the kappa coefficient for each
method. The tuning parameters chosen by CV in the initial round of the two-stage LASSO and the adaptive
EN are shown too. The initial models selected are similar to those selected by CV for the LASSO and EN,
respectively. Also included in the table is the ¢; fraction, the ratio of the £, norm of the parameter vector to
that of the least squares model. It is usually denoted by s but is not done so here in order to avoid confusion
with the tuning parameter s. Examining the ratios, we see that the LASSO and EN models chosen by cv

all shrink the size of the parameter vector by about 50% and they are shrunk even more when using the

kappa coeflicient.

Secondary Primary ¢, Fraction
Method Type cCv Type cv  Initial K cv K
FORWARD p 6.00 5.00 0.82 0.54
RIDGE A 20.80 0.00 0.56 1.00
LASSO A 20.61 112.03 051 0.33
RLASSO ¢ 0.30 LARstep  9.00 5.00 052 0.37
ALASSO ¢ 0.50 s 0.52 0.39 053 0.43
SLASSO { 0.50 s 0.32 0.12 0.50 0.29
TLASSO s 0.76  0.50 0.54
ENET As 0.1 s 0.8 0.52 048 0.31
AENET As 0.1 s 013 0.84 0.55
MCP ¢ 2.90 A 2.62 491 0.64 0.57
SCAD 3 3.70 A 1.98 491 0.64 0.50

Table (7.3.1) Tuning parameters selected for the diabetes data

The CV error curves are shown in Figure 7.3.1, including standard error bars, for the LASSO and the
EN. The position of the minimum CV error and the position of the CV error within 1SE of the minimum
are indicated by the dotted black lines on the plot. For each method, the model selected by the kappa
coefficient lies somewhere in between the model selected using the minimum and the model selected
using the 1SE rule. Also, for each method, the variance of the CV error is quite large and it could be

beneficial to use 5-fold CV instead.

The order in which variables are included in the forward selection and LAR algorithms is shown in
Table 7.3.2. In most cases, bmi is the first variable entered since it has the largest correlation with the

response. The adaptive LASSO scales the data by the squared size of the least squares coefficients. The least
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LASSO

CV Error

(a)

Figure (7.3.1)  cvcurves for the diabetes data

squares coeflicient of Itg is much larger than that of bmi and causes Itg to have a higher correlation with
the response. The SEA-LASSO also takes the standard errors of the least squares coefficients into account
so that bmi, which has a smaller standard error than Itg, remains the most correlated with the response.

The two-stage LASSO and adaptive EN begin with the subsets selected for the LASSO and EN, respectively,

ENET

CV Error

04

06

08 0 g

so that not all of the variables are considered in their paths.

(b)

Step  FORWARD LASSO ALASSO SLASSO TLASSO ENET AENET

1 bmi bmi Itg
2 Itg Itg bmi
3 tc map tc
4 map hdl 1dl
5 sex sex map
6 1dl 1dl sex
7 tch tc tch
8 hdl -1dl hdl
9 glu glu glu
10 age age age
11 tch

12 1dl

bmi
Itg
map
sex
tc
1d1
tch
glu
hdl
age

bmi
Itg
map
hdl
tc
sex

glu

bmi
Itg
map
tch
hdl
glu
age
tc
1d1

S€X

bmi
Itg
map
hdl
sex
1d1
tc
glu
tch

Table (7.3.2)  Order in which variables are included in the forward selection and LAR algorithms

The coefficient profiles for some of the methods are shown in Figure 7.3.2. The discrete nature of
forward selection can be seen by the dramatic changes in the active coefficient values whenever a new

predictor enters the model. For ridge regression, we see the proportional shrinkage, where larger coef-
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ficients are shrunk more than smaller ones. The least squares coefficients for tc and ltg are the largest

and it is these parameters that are shrunk the most. As seen before, the kappa coefficient does not work
well for ridge regression and selects the least squares model. The LASSO displays a more constant kind
of shrinkage across variables, allowing smaller parameters to be set to zero quickly. CV selects a value of
A =20.8 for the shrinkage parameter which is equivalent to an ¢, fraction of 0.51 and the model contains
7 parameters. We can expect this model to be overfitted but to include the true set of relevant predictors
with high probability. The kappa coeflicient selects a larger value of the shrinkage parameter, A = 112, in
order to set more coefficients equal to zero. The model only contains 4 parameters and has an ¢; fraction
of 0.33. The kappa coefficient selects the same model for the EN as the LASSO. The models are similar
when using CV, except that the EN also included 1dl - probably because it has high pairwise correlations
with tc and ltg. Comparing the path of the LASSO and adaptive LASSO, it is clear that the adaptive LASSO
applies a different amount of shrinkage to each parameter. The path for the SEA-LASSO looks similar to the
adaptive LASSO and is not shown. The path for MCP is also shown, the large parameters of Itg and bmi are
not shrunk as much as in the LASSO and the small parameters of age and glu are not set to zero as quickly.

The SCAD path is similar to MCP and CV selects exactly the same model for both.

The standardized coeflicients are shown in Table 7.3.3 for least squares and the LASSO models selected
by Cv and kappa. The standard errors and p-values are shown for least squares. The variables sex, bmi,
map, tc and ltg are significant at the 5% level. The standard errors are shown for the LASSOmodels, cal-
culated using the approximations given by Tibshirani (1996) and Osborne ef al. (2000b). The standard
errors using the Osborne approximation are quite similar to the least squares standard errors. The Tib-
shirani standard errors are substantially lower than least squares for variables tc, 1dl, hdl and ltg. Which
are correct is debatable and it would have been beneficial to include bootstrap standard errors for com-
parison. However, from the simulation studies it was seen that the LASSO estimates had lower variance

than the least squares estimates.

The standardized coefficients for all methods are shown in Table 7.3.4 for model selection by 10-fold
CV and in Table 7.3.5 for model selection using the kappa coefficient. Ridge regression is excluded from
the discussion of variable selection since it retains all of the variables. The variables that have a significant
effect in the least squares mode (sex, bmi, map, tc, Itg) are indicated with bold headers. When using CV,
all models include these variables except the adaptive EN, where tc is not included. In addition to these

variables, hdl is included for all methods except forward selection. LASSO, SEA-LASSO and EN include glu;
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age sex bmi  map tc 1dl hdl  tch ltg glu

Least Squares

Est 24 =237 580 266 -941 531 172 185 821 49
SE 60 62 67 66 410 329 210 158 170 66
p-value 0.732 0.001 0.000 0.000 0.046 0.166 0.474 0.313 0.000 0.539

LASSO using 10-fold cv

Est 0 -179 590 245  -181 0 -175 0 553 34
SE Tibs 59 53 62 57 52 102 67 123 73 34
SE Osb 60 60 65 64 400 327 206 158 168 66

LASSO using the k coefficient

Est 0 0 573 151 0 0 -109 0 407 0
SE Tib 59 60 50 31 145 158 14 94 49 65
SE Osb 60 53 66 62 406 335 212 160 167 66

Table (7.3.3) Standardized parameter estimates (Est) and standard error estimates (SE) for least
squares and the LASSO. For the LASSO, the standard errors are calculated using both the Tibshirani
approximation (SE Tib) and the Osborne approximation (SE Osb).

forward selection, EN and adaptive EN include 1dl; and only adaptive LASSO includes tch. When using
kappa, four models include the least squares significant predictors, forward selection, adaptive LASSO,
SCAD and MCP, although adaptive LASSO and SCAD also select hdl. The other four methods, LASSO, relaxed

LASSO, SEA-LASSO and EN all select the model including only bmi, map, hdl and Itg. The exception here is

SEA-LASSO, which does not select hdl.

age sex bmi map tc Ildl  hdl tch 1Itg glu TestError

FORWARD 0 -222 587 276 -750 460 0 0 812 0 2968
RIDGE 29 =212 563 256 -162 -77 159 105 490 66 2916
LASSO 0 -179 590 245 -181 0 -175 0 553 34 2934
RLASSO 0 -183 59 257 -188 0 -180 0 569 0 2951
ALASSO 0 -172 608 248 -227 0 -130 31 592 0 2980
SLASSO 0 -168 620 253 -160 0 -130 0 555 7 2950
TLASSO 0 -202 604 268 -216 0 181 0 59 0 2970
ENET 0 -137 592 245 -28 -70 222 0 476 46 2880
AENET 0 -196 668 278 0 -131 -266 0 540 0 2947
MCP 0 -247 694 315 -258 0 -217 0 702 0 3077
SCAD 0 -247 6% 315 -258 0 -217 0 702 0 3077

Table (7.3.4) Standardized coefficients selected when using cv

Figure 7.3.3 shows the test error when using the selected models to make predictions on the observa-

tions in the test data set. The least squares test error is 2954 and is indicated by the dashed horizontal line
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age sex bmi map tc Idl hdl tch Itg glu TestError
FORWARD 0 -155 652 263 -292 0 0 0 682 0 3126
RIDGE 24 -237 580 266 -941 531 172 185 821 49 2951
LASSO 0 0 573 151 0 0 -109 0 407 0 3043
RLASSO 0 0 609 203 0 0 -162 0 443 0 2958
ALASSO 0 -48 627 169 -168 0 -49 0 578 0 3067
SLASSO 0 0 679 133 0 0 0 0 289 0 3307
ENET 0 0 548 143 0 0 -98 0 392 0 3077
MCP 0 -65 782 228 -306 O 0 0 782 0 3289
SCAD 0 -6 86 15 -192 0 -4 0 74 O 3309

Table (7.3.5) Standardized coefficients selected when using kappa

in the figure. The test error for each method is also shown in Tables 7.3.4 and 7.3.5. When using CV the fol-
lowing methods have lower test error than least squares: ridge, LASSO, relaxed LASSO, SEA-LASSO, adaptive

EN. Only ridge regression has lower test error than least squares when using the kappa coefficient.

| |
o
FWD

35‘00

cv

I kappa
---- oLs

SCAD

3000

2500

2000

Test Error

1000 1500

50

MCP

RIDGE LASSO RLASSO ALASSO SLASSO TLASSO ENET AENET

Figure (7.3.3) Test error when using cv and kappa

I would recommend using the LASSO model chosen by Cv. Other than ridge regression and the EN,
it has the lowest test error and should yield a more accurate prediction of disease progression than least
squares. Although ridge regression and EN have lower test error, the LASSO produces a sparser model and
helps to narrow down the risk factors associated with the progression of diabetes. Furthermore, the LASSO
model should contain the correct model with high probability so we can be confident that an important

risk factor has not been falsely excluded.
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Chapter 8

Conclusion

The LASSO and related methods provide an elegant class of methods which simultaneously perform vari-
able selection and estimation with superb performance when the underlying model is sparse. Each LASSO
model is delivered with an interesting geometrical interpretation and its entire pathway can be produced
which aids in the interpretability of a data set. With state of the art algorithms for efficient computation
and model selection procedures, the LASSO can be applied to high dimensional data with ease. The LASSO
is shown to have excellent prediction accuracy, consistent estimation and is suitable for variable selection
under certain conditions. Since the predictions are not sensitive to collinearity, weaker conditions are
necessary for persistence than for consistent variable selection. Where these conditions are not met, one
of the two-stage LASSO methods or concave penalties can be used. Modified LASSO methods or combined

penalties allow for more flexibility by incorporating different structures between predictor variables.

The hexagonal operator for regression with shrinkage and equality selection (HORSES) is a modified
LASSO method by Jang et al. (2013) which is not mentioned above. Similar to the fused LASSO, it is a
combination of two ¢; penalties. However, the second penalty is applied to all the pairwise differences
of the coeflicients instead of only the adjacent ones. The result is a hexagonal shaped penalty function
which has a natural grouping effect such as the effect experienced with the combined penalties. Two
other combined penalties also worth noting are Mnet proposed by Huang et al. (2010) and the sparse
Laplacian shrinkage (SLS) estimator proposed by Huang et al. (2011). The former is a combination of the

ridge and MCP penalties, while the latter combines the MCP penalty with a Laplacian quadratic penalty.

There are a number of group penalties, not mentioned above, which can be employed. The con-
cave penalties have been adapted to perform bi-level selection. Wang et al. (2007) proposed the group
SCAD, Breheny & Huang (2009) proposed the group MCP and Breheny & Huang (2014) developed de-
scent algorithms for their solutions. Other bi-level selection procedures include the sparse-group LASSO

(Simon et al. (2013)) and the group exponential lasso (Breheny (2014)). For comparisons of group penal-
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ties, see Yang (2011) and Huang et al. (2012). Also worth mentioning, is the hierarchical group-lasso pro-

posed by Lim & Hastie (2014) which handles interactions in the group LASSO.

The LASSO has also been modified for other purposes than to incorporate different structures between
the predictors. He (2011) proposed a model which can incorporate prior information into the LASSO
by using a set of linear constraints. The model proposed by Li (2012) utilizes a mean-shift to allow for

simultaneous outlier detection and variable selection with the LASSO.

The LASSO can also be applied outside the scope of the general linear model. Turlach et al. (2005)
provide an extension of the LASSO to multiple response regression. The LASSO has also been extended to
generalized linear models (GLMs), where the errors follow a distribution from the exponential family and
the linear model is related to the response via a link function. GLMs are discussed by Tibshirani (1996),
who provides an example using logistic regression (binomial distribution). Zhao (2008) also discusses
using the LASSO for logistic regression. Park & Hastie (2007) and Friedman et al. (2010) propose path
algorithms for the solution path of ¢; regularized GLMs. An extension to survival models is covered by
Tibshirani (1997), who uses the LASSO for the Cox proportional hazards model. Wang et al. (2007) extends
LASSO to least absolute deviations (LAD) estimation, where the parameters are estimated using the ¢; loss
function. Gaussian graphical models using the LASSO are discussed by Meinshausen & Bithlmann (2006),

Witten et al. (2011) and Mazumder & Hastie (2012).

There are also some extensions of the LASSO for nonparametric methods, including regression splines
(Osborne et al. (1998), Rosset & Zhu (2007)), the support vector machine (SVM) and kernel smoothers
(Roth (2004)), and wavelet analysis (Donoho & Johnstone (1994), Donoho (1995), Antoniadis (1997),
Donoho & Johnstone (1998), Sardy et al. (1999)). Furthermore, Sun (1999) discusses using the LASSO for

neural networks.

The LASSO solution has an alternative interpretation as the Bayesian posterior mode with double-
exponential (Laplace) priors on the regression parameters (Tibshirani (1996)). Park & Casella (2008) dis-
cuss the Bayesian LASSO and derive Bayesian interval estimates. Armagan & Zaretzki (2010), Kyung et al.

(2010) and Lykou & Ntzoufras (2012) also approach the problem from a Bayesian perspective.

Further developments may still be necessary before these methods have mainstream appeal. Few

advances have been made concerning statistical inferences for the models produced. Better standard
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errors of LASSO estimates and derivation of confidence intervals remain a topic for further research. The

significance test described by Lockhart et al. (2014) is a step in the right direction but can only be used as
a stopping rule for the LAR-LASSO algorithm. Testing the overall significance of a predictor, the goodness

of fit of the model and methods for multiple testing still need to be uncovered.
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Appendix A
Definitions and Theorems

A.1 Vectors and Matrices

Definition A.1.1 £;-norm

The £4-norm of a p x 1 vector a is given by

1

£ (@)= al, - (ilaj\q)q,
j=1
where q > 1, and has the following properties:
L |af,>0forallac R? (nonnegative)
2 af, =0 < a = 0 (definite)
3. |lsal, = Isl|al, for all a € R?,s € R (homogenous)
4. |a+b|,<|al,+|&l, forall a,b € R? (subadditive)

Gentle (2007:16-18) or Boyd & Vandenberghe (2004:633-637) can be consulted for more information

about norms. Some notes:

« The ¢, norm corresponds to the usual Euclidean norm and the subscript is normally omitted.

o The max norm, also called the Chebyshev norm, is given by

“p|}-

teo (@) = lim [, = max{jai].]aal, ...

|al, is a measure of length or size, |a — b, is a measure of distance.

e When g €[0,1)

192



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Rty

- |al, is homogeneous but it is not subadditive.

- |a ||Z is subadditive but it is not homogeneous.

Definition A.1.2 Generalized inverse

A generalized inverse of an n x p matrix A is defined as the p x n matrix A~ such that
A=AAA

A~ is not unique, unless A is square and has full rank then A~ = A™%.

See Searle (1971:1-7) for a discussion and for methods of computing the generalized inverse.

Theorem A.1.1 Generalized inverse of Gramian matrix

The generalized inverse of a Gramian matrix, (ATA)_, has all of the following properties:
TAV ). T
L ((A A) ) is also a generalized inverse of A" A
2. (ATA)_ AT is a generalized inverse of A
- T —
3. A (ATA) A is invariant to the choice of (ATA)
T - T, . . T -
4. A (A A) A is always symmetric regardless of the choice of (A A)

See Searle (1971:20) for a proof of the theorem.

Definition A.1.3 Moore-Penrose inverse

The Moore-Penrose inverse is a generalized inverse of A that satisfies all of the following conditions:
1L A=AAA
2. AT =ATAA

3. (AAT)T = AA-
4. (A AT =A"A

The Moore-Penrose inverse exists for any matrix. It is unique and will be denoted by A*
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See Searle (1971:16-18) or Gentle (2007:102-103) for a proof of the existence and uniqueness of the

Moore-Penrose inverse.

Definition A.1.4 Four fundamental subspaces of a matrix

The four fundamental subspaces of an n x p matrix A with rank (A) = r are:

1. The column space, also known as the image or range, is the subspace spanned by the columns of A and

is given by
C(A)={aeR":Ab=aforallbeR’}

The set of linearly independent columns of A is a basis for the column space of A and dim (C (A)) = r.

. The row space is the subspace spanned by the rows of A and is the column space of AT,
C(AT) ={beR’: ATa=bforallac R"}

The set of linearly independent rows of A is a basis for the row space of A and dim (C (AT)) =r.

. The null space, also known as the kernel, is given by
N (A)={beRF:Ab=0}

The dimension of N (A) is called the nullity of A and is given by dim (N (A)) = p —r.

. The left null space, also known as the cokernel, is the null space of AT
N(AT) :{aeR” :ATa:Q}

and dim (N (AT)) =n-r.

These definitions can be found in any text on linear algebra, see Messer (1994:245-254) or Strang

(2006:115-121). The left null space of A is the orthogonal complement of the column space of A which is
denoted by C* (A) = N (AT).
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Theorem A.1.2 Expectation of quadratic forms

Let v be an n x 1 vector and let A be an n x n symmetric matrix. If E (v) = p and var (v) = X then
E (VTAV) =tr (AZ) + uTAp.

See Searle (1971:55) or Seber & Lee (2003:9) for a proof.

Theorem A.1.3 Inverse of a partitioned matrix

A nonsingular matrix A partitioned as

A A
A [ 1 12] )
Ay Ay

where Ay and Ay are nonsingular, has inverse

A71 _ |:A1_11 + B12B£21B21 —B12B2_21:|

-B;,By B,
_ [ c;! -C;'Cp ]

-CuC' A5 +CuCi'Cp)’
where

By = Ay — AnAjlAp,

B = Aj'Ap,

By = AyAj
and

Ci = Ay - ApAyAy,
Ci = ApAjy),

Cy = ApAy.

The result is given in Seber & Lee (2003:466) and can easily be proved by showing that AA™' = 1.
Gentle (2007:101) provides a similar result for nonsingular matrices and Searle (1971:27) provides a result

specifically for symmetric matrices.
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Definition A.1.5 Singular value decomposition (SVD)

If Ais an n x p matrix with rank (A) = r, it has the SVD
A=UDV’,

where U is an n x n orthogonal matrix, V is a p x p orthogonal matrix and D is an n x p diagonal matrix
(with min (n, p) diagonal elements and zeroes elsewhere). The nonnegative diagonal elements of D are the

singular values of A, withdy > dy > -+~ > d, > 0. Ifany r < min (n, p) then d, 1 = dyyp = -+ = Amin(n,p) = 0

D=Dy0)
0 o0

where D, = diag (dy,d; ..., d,). The columns of U span the column space of A and the columns of V span

and

the row space of A.

See Gentle (2007:127-128). The above representation always holds but alternative representations are

given as follows:

o If n > pthen Uis an n x p matrix with orthogonal columns and D is a p x p diagonal matrix,

o If n < pthen Visa p x n matrix with orthogonal columns and D is a p x p diagonal matrix.

Definition A.1.6 Spectral decomposition

If the p x p matrix A is symmetric, it has the spectral decomposition
A=VEV',

where E is a diagonal matrix whose diagonal elements are the eigenvalues of A and the columns of V are the

eigenvectors of A that are chosen to be orthonormal so that VVT = VIV = L.

« Using the svD, ATA = VDUTUDVT = VD?VT. But ATA is symmetric and has the spectral de-

composition above. Thus E = D?, the eigenvalues of ATA are the squared singular values of A,
ei (ATA) =d? (A) < d; (A) = \/e; (ATA).

o Similarly, if A is a symmetric matrix then d; (A) = |e; (A)].
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Definition A.1.7 QR decomposition

If Ais an n x p matrix, it has the QR decomposition
A=QR

1. Ifn = pthen Q is an n x n orthogonal matrix and R is an n x n upper triangular matrix,

2. Ifn > p then Qis an n x n orthogonal matrix and R is the n x pmatrix (R, O)T where Ry isa p x p

upper triangular matrix,

3. Ifn < pthen Q=(Q1,Q;) and R = (Ry,Ry) where Qq is an n x p matrix with orthogonal columns

and Ry is a p x p upper triangular matrix. In this case, A = Q/R;.

See Gentle (2007:188-189).

A.2 Estimators

Definition A.2.1 Estimable functions
Consider the linear model y = Xp+¢ with E (¢) = 0 and var (&) = o*L A linear function of B given by

a T/_3 is estimable if any of these equivalent conditions hold:
L QTE =E (tTy) for any vector t
2. a = X"t for any vector t
3. aeC (XT)
When X has full column rank, a T[_? is estimable for any a € RP*L,

See Searle (1971:180-188) or Shao (1999:148-150) for more details.

Definition A.2.2 Best linear unbiased estimator (BLUE)

A linear estimate cTy is the BLUE of a’ 8 if it is unbiased and has the lowest variance among all linear

unbiased estimates. That is, both these conditions are satisfied:

1 E (cTy) =a’B
2. var (cTy) < var (dTy) for any other unbiased linear estimate d'y.
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Theorem A.2.1 Gauss-Markov Theorem
Consider the linear model y = XpB+e with E (&) = 0 and var (¢) = 0’1 Ing[_? is an estimable function

then the LSE a’ p is the BLUE of a” B.

See Gentle (2007:234-235), Seber & Lee (2003:42-43) or Shao (1999:155) for a proof.

Definition A.2.3 Uniformly minimum variance unbiased estimator (UM VUE)
An estimate g (y) is the UMVUE of a” B if it is unbiased and has the lowest variance among all unbiased

estimates. That is, both these conditions are satisfied:

L E(g(y)=a"p

2. var (g (y)) < var (h(y)) for any other unbiased estimate h (y).

See Spanos (1989:232-244), Shao (1999:127-139) or Casella & Berger (2002:334-348) for more infor-

mation about unbiased estimates.

Theorem A.2.2 Properties of LSEs under normality

Consider the linear model y = XB+¢ with ¢ ~ N (0, 021).

L IngE is an estimable function then the LSE QT[_% is the UMVUE ongE.
2. Ifrank (X) = r then 6> = RSS ([)’)/ (n - r) is the UMVUE of ¢

See Shao (1999:152-154) for a proof.

Definition A.2.4 Sampling properties of an estimator
A sample estimate of a parameter 0 calculated from observed data a is given by 0 (a). The estimator is
a function of the random variable A and is given by O (A). The estimator is denoted in short by 0 and has

the following finite sample properties:

1. The bias of the estimator is B (9) =E (9) -0
2. The variance of the estimator is var (9) =E [6 -E (9)]2
3. The MSE of an estimator is MSE (9) =E (9 - 9)2 = var (0) +B (9)2
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See Casella & Berger (2002:330). A way to decompose the MSE into the squared bias and variance of

the estimate is shown in Section B.1.1.

Theorem A.2.3 Cramér-Rao lower bound
The variance of any estimate of 0 is bound by the Cramér-Rao lower bound, which is given by
2
[GE O] _[+8O)

CRO=Z1® = L@

where I, (0) = E [a_ae InL (6)]2 is called the Fisher information of the sample and L () is the likelihood

function. That is, var (0) > CR (0) for all estimates 6.

See Spanos (1989:237-241), Shao (1999:135-138) and Casella & Berger (2002:335-338) for a proof and

more information. Some notes:
« By the definition of bias, E (6) =0+B (6) so that %E (0)=1+B'(0).
o Since MSE (8) = var (6) +B (9)2, the MSE is bounded by MSE (9) > CR(0) + B(6)>.

 Anunbiased estimator is said to be fully efficient of its variance equals the Cramér-Rao lower bound

which is simplified to I,, (6) . Such an estimator is also the UMVUE.

Definition A.2.5 Convergence of random variables

Suppose A, = Ay, Az, ..., Ay, is a sequence of random variables.

1. The sequence converges to A in probability, denoted by A, LA if lim P (|A, — A| <€) =1or equiv-
n—>oo

alently lim P (|A, — A| > €) = 0 for every ¢ > 0.
n—oo

e
2. The sequence converges to A in €4, or in q-th moment, denoted by A, S A

if im E (|A, — A7) = 0 for q > 0.
n—0oo

3. The sequence converges to A almost surely, denoted by A, > A, if P ( lim A, = A) =1

n—oo

d
4. The sequence converges to A in distribution, denoted by A, — A, if lim F4, (a) = Fa (a) for all a
n—>o00o

where the cumulative distribution function Fa (a) = P (A < a) is continuous.

See Casella & Berger (2002:232-245) or Shao (1999:38-41) for more information about convergence.
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Definition A.2.6 Order of a sequence

Suppose A, is a sequence of random variables, b, and c,, are two sequences of real numbers and d,, is a

sequence of positive real numbers.

L]

Cn

L The sequence by, is at most of order c,, denoted by b, = O (c,), if lim = < € for some € > 0.
n—>oo

2. The sequence by, is of smaller order than c,,, denoted by b, = 0 (c,), if lim ?—" =0.
n—oo tn

3. The sequence A, is at most of order d,, in probability, denoted by A, = O, (d,), 1)“;—: £ a, for some

sequence a, = O (1).
4. The sequence A, is of smaller order than d,, in probability, denoted by A, = 0, (d,), if‘;—: £o.

See Spanos (1989:195-198) and Shao (1999:42).

Definition A.2.7 Asymptotic properties of an estimator
Suppose 0, = 0 (A}, A, ..., A,) is a sequence of estimators. The estimator § has the following asymp-

totic properties:
1. Asymptotic accuracy:

(a) An estimator is consistent zf@n LS 0
A0
(b) An estimator is £4-consistent if 6, 20.
(c) An estimator is strongly consistent if 6, > 6

(d) Anestimator is a,-consistent if a,, ‘97, - 9‘ = O, (1), where a,, is a sequence of positive constants.

2. Asymptotic normality:
an estimator is asymptotically normal zf\/ﬁ(en -0) 4N (O,V;il‘ (9)), where var (0) > 0 is the

asymptotic variance of 0.

3. Asymptotic efficience:
an asymptotically normal estimator is asymptotically efficient if var (0) = I (8) ", where I, (6) =
lim (%In (0)) That is, the asymptotic variance, var (§) = lim Var(én) equals the limit of the

Cramér-Rao lower bound.
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4. Asymptotic bias:

an estimator is asymptotically unbiased if var (Gn) =0 (1/n) and lim \/n (Gn -9)=0.
n—oo
A note on (1b), the following are equivalent:
. A 2
o 0is ¢, consistent (for g = 2) if lim E (|9n - 9‘ ) =0.
« The estimator is consistent in MSE since MSE (6,,) =E (|9n - 6‘2) .
The same is true for (1a):

« 0 is consistent if lim P (‘Gn - 9‘ > e) =0.

n—oo

o The estimator is consistent in MSE since P (‘9,, -0 ‘ 2 e) <E (Hn - 0)2 / €2 by Chebyshev’s inequal-
2

ity (see Shao (1999:51)) and MSE (6,,) = E (6, - 0)
Since MSE (Hn) = var (6,1) +B (én)z, 6 is consistent in MSE if both

o lim Var(é,,) =0and

n—>oo

. limB(6,)=0.

n—oo

See Spanos (1989:244-247), Shao (1999:102-109) or Casella & Berger (2002:467-473) for more infor-

mation.

Definition A.2.8 Coefficient of determination

The coefficient of determination is given by

R2 > (Ji _)’)2

> (yi-y)

R? measures the proportion of the total variation in v that is explained by the model Y and its range is

0 < R? < 1. It can also be written as

o ZOig)t | RsS(B)
= 2 - Ty
X(yi-y) vy

See Draper & Smith (1998:33). Seber & Lee (2003:110-112) show that R? = corr (Y, Y) andwhen p =1

for a straight line fit then R? = corr (X, Y).
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A.3 Optimization
Definition A.3.1 Convex functions

1. Ais a convex set if the line segment between any two points in a A also lies in A. That is, for all

a,be Aandce(0,1),
ca+(l1-c)be A

2. fisaconvex function if its domain is a convex set, say A, and the line segment between any two points

on the function lies above the function. That is, for all a,b € A and c € (0,1),
flea+(1-c)b)<cf(a)+(1-¢)f(b).
3. f is a strictly convex function if for all a,b € A and c € (0,1),
flea+(1-c)b)<cf(a)+(1-c)f(b).

See Boyd & Vandenberghe (2004:23-25,67-68) for more information.

Definition A.3.2 First and second order conditions

L If f is differentiable then f is convex if and only if the domain of f is the convex set A and for all
a,beA
f&)>f(a)+Vf(a) (b-a).

For strict convexity, strict inequality is required, f (b) > f (a) + Vf (a)” (b - a).

2. If f is twice differentiable then f is convex if and only if the domain of f is the convex set A and for

all a € A, V*f (a) is positive semidefinite. For strict convexity, V> f (a) must be positive definite.

See Boyd & Vandenberghe (2004:69-71) for more information.
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Definition A.3.3 Optimization terminology
For any optimization problem
minimize f (0)
subjectto  g;(0)<0,i=1,2,...,1 (A3.1)
hi(0)=0,j=12,...,],

1. The domain of the problem is the set of points A for which the objective function f and all the constraint

functions g and h are satisfied.

2. A point 0 € A is feasible if it satisfies all the constraints g; (6) < 0,h;(8) = 0Vi, j. The set of all

feasible points is called the feasible set F.
3. If0 € F and g; (8) = 0 then the inequality constraint g; (8) < 0 is active.
4. If0 € F and g; (0) < 0 then the inequality constraint g; (8) < 0 is inactive.
5. The optimal value of the problem is opt = inf { f (8)| g (6) <0, h; (8) = 0V1, j}.
6. 0 is an optimal point if § € F and f (Q) = opt. This is also known as the globally optimal point.
7. 0 is sub-optimal if § € F and f (Q) = opt + € for some € > 0.
8. Qis locally optimal if § € F and
£(8) = inf { £ (8)]gi (6,) < 0.;(8,) = 0.]18, - 0] < eV, j and some ¢ > 0}.

See Boyd & Vandenberghe (2004:127-129) for more information. The problem (A.3.1) is the standard
form of the optimization problem. Boyd & Vandenberghe (2004:129-135) discuss problems that are equiv-
alent to (A.3.1), including maximization, change of variables, function transformations, slack variables,
eliminating or introducing equality constraints, sequentially optimizing over some variables, including

the objective function as a constraint and including a constraint implicitly in the objective function.

Definition A.3.4 Convex optimization
Iff,g.,...,g areconvex and hy, ..., hy are affine then the optimization problem (A.3.1) is convex and

the following hold:

1. Any locally optimal point is also globally optimal.
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2. Q is optimal if and only 1fQ eFandVf (Q)T (Q—Q) >0forallfeF.

3. For unconstrained problems, a necessary and sufficient condition for 8 to be optimal is V f ( i ) =0.

See Boyd & Vandenberghe (2004:136-144) for more information about convex optimization.

Definition A.3.5 Descent method

A descent method solves the optimization problem
minimize f (9),

where f is convex and twice differentiable. The algorithm can be used if there is no closed form for the

necessary and sufficient optimality condition

vf(0)=0.

A general descent algorithm produces a minimizing sequence by iteratively updating

gk _ g(k) (k) Ag(k)

where AG) is the search direction and s) > 0 is the step length. The search direction is chosen so that f

descends,

f (Q(kﬂ)) < f (Q(k))

unless HVf (Q(k))H < € for small € > 0 so that 0" is optimal. Since convexity implies that f (0) > f (Q)

when V f ( Q)T ( 0 - Q) > 0, the search direction must satisfy
0)" Ag®)
vf (Q ) ABYY <.

See Boyd & Vandenberghe (2004:463-484) for more information about descent methods.
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Given a starting point 0, the algorithm repeatedly performs the following steps until convergence

of the gradient:
1. Find the search direction AQ

« Gradient descent: A, = -V f (0)

o Normalized steepest descent: A, ; = argmin, {Vf 6)" v| [v] < 1} for any norm |-||. Thus,
A@,,., extends 6 by the greatest distance in the direction of —V f (8) while remaining in the

unit ball of |-|.

o Steepest descent: AB; = AB,.; |V f(0)], where ||-|, is the dual norm which is given by

lall, = sup {|a"b]| |] <1} such that |a] ], > a’b
2. Line search - find s which minimizes f along {6 + tAs| > 0}

o Exact: s = argming f (6 + tA0)

« Backtracking: s = sb while f (6 + sA8) > f (0) +asVf (8)" AB, where a € (0,0.5), b € (0,1)

and we begin with s =1
3. Update 0, = 0 +sA0

Note that for any £,-norm, the dual norm is the £,-norm where 1/q + 1/r = 1. The ¢; norm is the
dual norm of the ¢..-norm and conversely, the -norm is the dual norm of the ¢, norm. For more

information, see Boyd & Vandenberghe (2004:637).

Definition A.3.6 Karush-Kuhn-Tucker conditions

For any optimization problem (A.3.1), the Lagrangian function is given by
I J

(O, 0) = £(0) + Y migi (8) + . ujhy (6).
i=1 j=1

where n; and u; are called dual variables or Lagrange multipliers. If f, g1, ..., g1, h1, . . ., hy are differentiable

then the following conditions are necessary for § and ( 7, ﬁ) to be optimal:

Lgi(0)<0i=12,..,1
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4. V1(8,7,4) = Vf (0) + £1 73V &i (8) + £, 47 (8) =0,

These are called the Karush-Kuhn-Tucker (KKT) conditions. If the problem is convex then the KKT con-

ditions are also sufficient for optimality.
See Boyd & Vandenberghe (2004:243-244) for further details.

Definition A.3.7 Minimax optimality

An estimator 0, is minimax optimal for 0 if it minimizes the maximum MSE. That is, for all 0,
supMSE (Ql) < supMSE (Qz)
0 0

In other words, a minimax estimator performs the best possible in the worst case. See Rao (1973:341)

and Shao (1999:223).

Definition A.3.8 Oracle properties
Suppose the true regression parameters & include a set of important effects indexed by D = { jraj# 0}.

Then o = (QD,QDC)T = (QA,Q)T and the true model is given by

V,' = Z Z,‘j(Xj + &;.
jeA

Furthermore, suppose that var (ap,) = X. An oracle variable selection method for linear models is able to:

1. Select the correct parameters consistently, that is, lim P (ﬁn = ’D) =1

n—>oo

2. Estimate the nonzero parameters efficiently, that is, \/n (& 4 — & 4) 4N (0,%).

See Fan & Li (2001) and Zou (2006) for more information.
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A4 Geometry

Definition A.4.1 Conic sections
Conic sections are surfaces defined by the intersections of a quadric surface with the coordinate planes.

A conic section in two variables 60, and 0, has the general form

a6 +2b6,0, + c03 +2d0) +2e0, + f = 0. (A.4.1)

The equation can be written as a quadratic form

07A0 =0,
where 87 = (61, 6,,1) and
a b d
A=| b ¢ e (A.4.2)
d e f

If|A| = 0 then the conic section is degenerate, otherwise it is not degenerate. The top 2 x 2 partition of A can

be used to write the equation as

b [ 6
[ 6 @][Z C][el]+2dx+2ev+f:0.

The determinant of this partition is known as the discriminant,

a b

- =ac- b (A.4.3)

A =

The shape of the conic section is determined by the discriminant. In the non-degenrate case:

o if A =0 then the conic is a parabola,
o if A > 0 then the conic is an ellipse,

o if A <0 then the conic is an hyperbola.

The center of the conic is the point where the gradient of the quadratic form is zero, and is given by

(A.4.4)

(be—cd bd—ae)

bl
ac-b% ac-0b?
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If b # 0, then the axes of the conic section are not parallel to the coordinate axes. The angle 9 that the axes

of the conic section makes with the coordinate axes can be found by rotating the system to eliminate the

b6,0,-term and is determined by
a-c

t29 = .
CO 2b

(A.4.5)

More information about quadric surfaces and conic sections can be found in Siceloff et al. (1922) or

any text on analytic geometry.
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Appendix B
Calculations

B.1 Estimation and Prediction Accuracy

B.1.1 Mean Squared Error

The MSE of an estimator /3 is a measure of how well it estimates the true  and is given by MSE ( ﬁ) =

E (ﬁ —ﬁ)z. We can write
B-B=[B-E(B)]-[E(B)-H].

Squaring both sides gives

(B-p)’
=[B-E(B)) +[E(B)-B) —2[A-E(B)][E(B) - B).

and taking expectations gives

so that

Thus the MSE of an estimate is a trade-off between its variance and its bias.
R R R 2
The result can easily be generalized for a vector of estimates . We have MSE ( ﬁ) =E H B - ﬁH . We
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p-p=[p-£(8)]-[2(8)-8].

Taking squared norms on both sides gives

&~

8- @) e (8) -8 -2[6-£(B)] [£()-8].

and taking expectations gives

so that

mse (B) - & 8-
~Eg-£ (@) [ (2)- 4]

. A\ (2 R
where E H B-E ( B ) H is the total variance of 8. We can show this by noting that
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Thus,

B.1.2 Prediction Error
Individual Observation

Suppose we would like to predict a new response at a new observation (x,, yo), where y, has the same
probability structure as the elements of y: E (y9) = f(x,), var(yo) = o* and cov (yo,y;) = 0. The

expected PE of the predictor f (x,) is a measure of how well it predicts the new response and is given by

PE (f (x0)) =E [yo —f(go)]z. We can write

yo—f (x4) = [yo— E(0)] - [f (x9) = E (30)]
= [y - E(30)] - [f (x0) - f (x0)].

since E () = f (x,). Squaring both sides gives

[vo-F ()]
= o E (o) P+ [f (x0) - £ (o))~ 2130~ E(po)]" [ (%) - £ (x0)]

and taking expectations gives

Elyo-E(y0)]" [f (x0) - f (x)]
=[E(y0) - E(y)]" [E(f (x)) - f (x9)] = 0,
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so that

PE(f (x0)) = E[30 - f (x0)]
= Elyo—E(30) P+ E[f (xo) - f (x0)]’
=var (yo) + MSE (f (%))

= 0>+ MSE (f(go))

Thus, the PE is also a trade-off between the variance and bias but it includes an additional irreducible

variance o? to account for the variation in the data.

Similarly, if we would like to predict m new observations, (50’1, yo,1) , (50)2, yo,z) e (Eo,m’ yo,m),

then the PE is given by PE (f (Xo)) =E||yo - f (XO)HZ. We can write

vo- f (Xo) = [yo— E (yo)] - [E (y0) - f (X0)]
= [yo - E(y0)] - [f (Xo) - f (X0)].,

since E (yo) = f (Xo). Taking squared norms on both sides gives

[vo - F (Xo)]
= lyo - E (yo)|* + If (Xo) —Jﬁ(Xo)H2 +2[yo - E (yo)]" [f (Xo) —f(Xo)])

and taking expectations gives

Elyo - E(yo)]" [f (Xo0) - f (Xo)]
= [E(y0) - E(yo)]" [f (Xo) - E(f (X0))] = 0,
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so that

PE(f (Xo)) = Eyo - f (Xo)|*
“Elyo-E (y0) P+ E [ £ (Xo) - (%)
tr [var (y0)] + MSE (f (X))

ma? + iMSE (fAﬁo,i)

i=1

[0 + MSE (fxm)]

M= 'Z'M§

PE (f£01)

I
—

since

E|lyo - E (o)

=E[(Y0— (Yo))T(YO‘E(YO))]
E{tr[(yo E(y0))" (yo - E(Y‘)))]}
E{tr[(yo (v0)) (yo - E(YO))T]}
= {E[(0 - £ (30) (o~ E(0))]}

= tr[var (yo)].

B.1.3 Optimism

The expected optimism of the training sample is given by w = [PEm ( f (x))] [TE ( f(x ))] Th

in-sample error is

S Ey, (- f (2,))'-

i=1

:I»—'

PE;, (f (x)) =

We can write

I
el
=

=

|
~
/_\
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—

|
—
~
—
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Squaring both sides gives

[)’o,i —f(ﬁi)]z
= (o= £ @)+ [f () - F )] 2[00 = £ ()] [F () - £ ()]

Taking expectations over y, gives

Ey, [0~ f ()] [F (x;) - £ (x,)]
= [Eyy (y0.0) — Eyy (o))" [f (21) ~ £ (x)] = 0,

since Ey, (yo,i) = f(gi). Thus,

Ey, [yo, —f(ﬁi)]z
= Ey, [y0,i ~ Ey, ()’O,i)]z +[f(x) - f (ﬁi)]z
=var (yo,) + [ f (x;) —f(ﬁi)]z’

so that

EyEy, [yo.i —f(ﬁi)]z
=var(y,) +E [f (x;) _f(ﬁi)]z
=var (yo,i) + MSE (f (51))

= 0%+ MSE(f (x,))-

The training error is

(ri-f(x))"

|~

TE(f )= 3]

We can write

yi—f(x)=Di-f(x)]-1f (=) -E(f (=)] - [E(f (=) - f (x)]-
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Squaring both sides gives

Since E (y;) = f (L’)’ taking expectations gives

E [yi _f(ﬁi)] [E (f (&)) _f(ﬁi)]
=[E(i) -EO)I[E(f (x;) - f ()] =0
and
E[f (x;) - E(f (2:)][E(f (x) - f (2)]
=[E(f(x) - E(f @D]E( (2) - f (x)] =0
so that

Elyi-f(x)]

=E[yi—-EG0P+E[f () - E(F ()] +E[E(f () - £ ()]
—2E[yi-E(y)1[f () - E(f (x:))]

=var () +var (f (x;)) + B(f (x,))” - 2cov (31, f ()
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Thus,
w=E[PE;y, (f (x))]-E[TE(f (x))]

By (0= 7 (50)) = 1 S By (= ()
> (0% + MSE (f (x,))]
> [0+ MSE (f (x,)) - 2¢0v (3 f (x,))]

cov (7.0 ().

I |- :l»—‘ I |~

1 20 209 11

Il
—

B.2 Overfitting and Underfitting

B.2.1 Overfitting
Estimation

Suppose that the true model includes only the predictors Xj, X, ..., Xy, so that ET = (EYT), QT). Let
X = (Xp,Xp:), where D = {j:0,1,...,d} and D° = {j:d+1,...,p} so that Xp is the first d + 1
columns of X (d predictors plus the intercept) and Xp« is the last p — d columns of X. Assume that both

Xp and Xp« have full column rank. Similarly, partition 8 T ( [_3;, [_3; ) Thus the true model is given by

E(y) = f™(X) = Xpp,. (B.2.1)

atrue T atrue T T
Then the estimate of the true model ( B ) = (( ED ) ,0 ) has MSE

The following is an examination of results mentioned in Seber & Lee (2003:230-231). Suppose we

overfit the model by including the predictors X1, X5, ..., X,

f(X)= Xl_§ = XD/_§D + Xpe ED (B.2.2)
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We have

XTX=[ XIXp  XEXpe ]

XL Xp XL .Xp

and we can invert this matrix using Theorem A.1.3 to obtain

(xx)" - [(ngp)‘1 +BM B’ —BM‘1:|

-M BT M1
where
B = (X5Xp)  X5Xpe (B2.3)
and
M = X5 Xpe - Xb. {Xp (XpXp) " X5} Xp.
De D¢ De ‘D DND D D¢
= XE. Xpe - Xh.HpXp:
=XL. (1-Hp) Xp
=ETE,
where
-1
Hp = Xp (XpXp) Xp
and

E = (I1- Hp) Xp-.
(Notice that B is the estimate obtained when regressing Xp: on Xp, E is the residual matrix and M is the
minimum RSS from that regression). Thus, the LSEs are

B=(x"x)"x"y

_[(x5xp)” +BM BT -BM7'|[ XLy |
-M'BT M || XLy
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That is,

EDE _ M_IXITDCY 3 M_IBTX%Y (B.2.4)
=M x5y - MXE, {XD (X5Xp) ™ XzT)} y
=M X5y - M'XL. Hpy
ML, (1-Hp)y (B.2.5)

- (B"E) 'E"y

and

"' XLy + BM'B XLy - BM X,y

' Xpy-B(M'Xp.y - M'B"XLy)

- X%y - B[_%DC from (B.2.4) (B.2.6)

The expected values of the estimates are

E(B,,) = E[M"XL. (1-Hp)y]
=M'Xp. (I-Hp)E(y)
=M'XL. (1-Hp) Xpp,, from (B.2.1)

=0since (I-Hp)Xp=0 (B.2.7)

and

E(B,)=E((XbXp) 'Xby-Bf, )
(X5Xp) " X5E (y) - BE (ED)

(XpXp) " XHXpf, - 0 from (B.2.1) and (B.2.7)

= ED, (B.2.8)
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and the variance-covariance matrix of the estimates is
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var (ﬁ) =¢? (XTX)71

_ [(X7T3Xp_2v[1;rBliM‘1BT —;Ml‘l] ' (B.2.9)
So the MSE 0f/_§ is
ME (§) = e [var (8)] + £ (8) -]
—tr [aDC (XTX)_I] + (I_SD,Q)T - (EDaQ)T "
= o (tr (XEXp) ) + tr (BMBT) + tr (M) (B.2.10)

=var (Bti’lw) +

o’ tr [Xfy (XD (xgxp)’pc X%) Xpe (Xpe (I-Hp) XDC)’I] +

o tr[(Xpe (1- HD)XDC)‘I]

> MSE ().

Prediction

The prediction of a new response yg at x,, = (ﬁo,p’ &o,pc) using the overfitted model is
R A T & T
fxg) =x,p= EO,DED + ﬁo,DCEDc
with

E(f (x0)) = E(s14)
- &({DE (ép) + E()T,DcE (évc)

= &?’DED from (B.2.8) and (B.2.7),
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B(f (x0)) = E(f (x0)) = S (x0)

= &)T,DED - xg, pPB,, from (B.2.1)

-0
- B (Jf-true (ﬁo))
and
var (f (x,))
v (x1§)
ol (x7X) 5,
X2Xp) " + BM'BT —BM'][ x
= o? [ goT’D &{DC ] [( D D—ZVIIBT M- :| [ K_(i’DDc ] from (B.2.9)
=0 [x3p (XbXp) " 201 + 20 pBM B x, 1
_&{DEM_IBT&o,D - &{DBM_IEO,DC + EaDcM_IEO,Df]
=} T
=’ (XpXp) xop+ 0" (B xgp—20p) M (B x5~ x0 )
= azgg’p (X%XD)_1 Xop + o’d"Md
= var (ftrue (&0)) + UszM_ld
> var (fm’e (Eo)) ,
where

d=B"x)p—x)pe (B.2.11)

So the expected PE is,

PE (f (x,)) = 0* + MSE (f (x,))
= o var (f (x0)) + B (f (x0))’
= 0%+ o*x! p (X5Xp)  xyp +02d M A (B.2.12)
= PE (/"™ (x,)) +0*d"M'd

> PE (ftrue (EO)) )
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In contrast to Section B.2.1, suppose that the true model is given by

E(y) = f" (X) = Xpp + Xp:f,, (B.2.13)

whereD={j:0,1,...,d} and D = {j:d +1,..., p}, and the model is underfitted using only d predic-

tors,

f(X) = Xpp

AT AT
The LSE isé = (ED,QT) where

with

and

B, = (XbXp) " Xpy

E(B,) = (XbXp) XEE (y)

(X5Xp) ' Xp (Xp,, + Xpe., ) from (B.2.13)

(XpXp) " XpXpp s+ (XbXp)  XEXpep,,

= [_31) + BEDC from (B.2.3) (B.2.14)

var (ﬁp) = o° (XlT)XD)_l . (B.2.15)

Equation (B.2.14) shows that the estimate is biased. Comparing equations (B.2.9) and (B.2.15) shows that

var (E) < var (étme). The MSE is

MSE (B) = tr[var ()] + | (B) ‘EHZ

See Draper & Smith (1998:235-241) and Seber & Lee (2003:228-230) for more information.
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Prediction

The bias of the prediction at a new observation x,, = (Eo,’D’ Eo,Df) is

B(f(x0))=E(f (x0)) - £ (x,)
= xp (B, +BBs.) ~ (5008, * ipebyy.)
- (BTﬁo,D - ﬁo,Dc)T B

= éT[_EDC from (B.2.11)

and the variance is

var (f (x,)) = var (ﬁngéD)

=0 2&{@ (XITDXD ) B X0,D>

so that the expected PE is

PE(f (x)) = 0” + MSE (£ (x,))
= o% +var (f (ﬁo)) +B (f (ﬁo))z

=0’ +0’x) p (X£XD)_1 Xop + (dTépc)z '

B.3 LASSO and LAR

Write «; = oc;r -, where oc;T, aj > 0 such that

Cifa; >0 Oifa; >0
af = (x]_l %i and o = ! 'cx] ) (B.3.1)
J 0ifa; <0 ] —ajifa;j <0

ocj+ - oc]T| =y (oc;-r + ocj’) and we must solve

Then the LASSO constraint becomes Y |oc j‘ =y

minimize ||v—Zg||2

subject to Zj(ocj*+(x;)<t
J— + .—
(xj<0for]—1,2,...,p
—a; <Oforj=12,...,p
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The Lagrangian of the problem is given by

I(«) =RSS(a)+AY (oc;-r +a; - t) - YAja; - YA

and the KKT optimality conditions are (by Definition A.3.6):

L Zj(a;mj‘—t)so,—a;,—ajfsov]':l,z,...,p

+ 31— :
2. LALAT209j=1,2,...,p

30 @ A% (a) +aj-t) =0,
(b) ~Afaf=0,j=12....p
(c) —/\JTocj_:O,j:LZ,...,p
4. (a) %l(g)zVRSS(g)j+A—/\}':O
J

(b) 521(a)=-VRSS (a);+A=-A; =0
]

The conditions imply that

VRSS (a);+A-A7 =0 bycond 4a

< -VRSS(a);=A-A!

< -VRSS(a);<A by cond. 2
and
~VRSS(a);+A-A; =0 bycond. 4b
< VRSS(a);=1-41;
< VRSS(a);<A by cond. 2,
hence,

|[VRSS (@), < 2.

A Suppose that A = 0. Then VRSS (a); = 0V.

B Suppose that A > 0 and «; > 0. Then

+
1 af >0byeq. B3.1
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2 a; =0byeq. B31

3 Aj =0by cond. 3b and point 2a

4 VRSS(a); = -1 <0byeq. B3.2and point 2
C Suppose that A > 0 and a; < 0. Then

+ _
lLaf=0 by eq. B.3.1
2 a;>0 by eq. B.3.1
3 A; = 0Dy cond. 3c and point 3b

4 VRSS(a); = 1> 0byeq. B3.3and point 3c

Therefore, for any active predictor with « i #0, we have that

-A ifOCj >0
VRSS (); =
Aif aj < 0
and since VRSS (a); = —ij (v-Za),
z]T (v-Za) = sign (a;) \. (B.3.4)

So A is related to the correlation between the j-th predictor and the residuals by equation (B.3.4).

Suppose that A (1) = { j: &JL (1) # 0} is the active set of variables and .4 (1) does not change on
the interval A € [Ag, A;]. The estimates for the non-active set are zero, &4 (1) = 0 VA € [Ag, 1;]. Let

@; = sign ((xf (A)) For the active set, we have from equation (B.3.4) that

Z2h (v-2a" (1)) = d 41
< 7l (v- Z Yy (1)) = & 4A since e (M) =0
< ZLZ485 (V) =Zhv-d 40
< ay ()= (Z}:lZA)f1 (ZLv-d 4A) if ZLZ7 is positive definite

< dy (M) =84 M)+
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where & 4 (1) = (Z};lZA)_1 Z',v is the LSE for the active set and 7 = (ZEZA)_I @ 4. If the active set is

unchanged on 1 € [Ag, A1 ], then the LSEs are identical for all A € [19, A;],

b (1) = dy (ho)
< & (M) + A =a"(ho) + horg (B.3.5)

= &' () =d"(h)-(A-20)n.

Thus, &" (1) is linear as A ranges from A to A,.

225



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Rty

Appendix C
R Packages

C.1 Subset Selection Methods

The linear regression model can be estimated via least squares in R using the 1m function. The summary.1m
method includes the measures o, R* and adjusted R?. The extractalc function can be used to obtain
the AIC (equivalent to C, for linear models) and BIC. There are a number of R functions available for

performing subset selection. Some of these functions are described below and summarized in Table C.1.1.

The path of forward selection and backward elimination can be followed manually by applying the
add1 and drop1 functions, respectively, to an 1m object and examining the RSS values for each variable. The
desired variable can then be added or removed from the model using the update function. The step function
performs these procedures automatically by repeatedly using add1 or drop1 and chooses the best model
based on either AIC or BIC. Similar functions are available in the mass package, namely addterm, dropterm

and stepAIC.

The regsubsets function in the 1eaps package also performs forward selection and backward elimina-
tion. In addition, it can apply an exhaustive search using a branch and bound algorithm called leaps where
it returns the nbest models for each size of subsets. Although the function only provides the variable sub-
sets and does not estimate parameters, the estimates and their covariance matrix can be computed using

the coef and vcov functions. The measures RSS, R?, adjusted R?, AIC and BIC are provided for each subset.

The bestglm package also makes use of the leaps algorithm when fitting linear models, it provides
the best subsets of each size and chooses the best model based on some criteria. The selection criteria
available for selecting the best model are AIC and various forms of BIC including BIC, BIC, and BIC,.
In addition, various forms of CV can be used including LOOCYV, delete-d CV, K-fold CV and adjusted
K-fold CV. When K-fold CV is used, the standard errors of the CV estimates are also provided so the 1 SE

rule can be used. See McLeod & Xu (2010) for a detailed description of the selection criteria.
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The glmulti package is also available for subset selection. It can perform an exhaustive search and also

includes a genetic algorithm which can handle larger numbers of variables more efficiently. The selection
criteria available for choosing the best model are AIC, the small-sample corrected version AICc, other

variants QAIC and QAICc, and BIC. See Calcagno & de Mazancourt (2010) for more details.

The subselect package offers subset selection methods by using one of four different algorithms for
selecting the best subsets: an adaptation of the leaps algorithm, a simulated annealing algorithm, a ge-
netic algorithm and a modified local search algorithm. A number of coefficients corresponding to test
statistics are available as selection criteria, in particular, the Wald statistic is used for linear models. See

Cadima et al. (2012) for further details.

Package Function Methods Selection Criteria
stats add1 Forward selection AIC
drop1 Backward elimination BIC
MASS addterm Forward selection AIC
dropterm Backward elimination BIC
leaps regsubsets Forward selection adjusted R?
Backward elimination AIC
Leaps algorithm BIC
bestglm bestglm Forward selection AlIC
Backward elimination BIC, BIC,, BIC,
Leaps algorithm LOOCYV, delete-d CV
K-fold CV, adjusted K-fold CV
glmulti glmulti Leaps algorithm AIC, AIC,
Exhaustive screening QAIC, QAIC,
Genetic algorithm BIC
subselect eleaps Adapted leaps algorithm Wald statistic
genetic Genetic algorithm
anneal Simulated annealing algorithm
improve Modified local search algorithm

Table (C.1.1) Subset selection methods in R

C.2 Shrinkage Methods

R packages are also available for shrinkage methods. Some of these functions are described below and

summarized in Table C.2.1. The mass package has a function to perform ridge regression, 1m.ridge. The
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tuning parameter is specified by A and the GCV statistic for each value of A is output.

The 1asso2 package is based on Osborne et al. (2000b). The 11ce function fits the ¢; constrained linear
model using their algorithm on the LASSO and its dual. The package also contains functions to calculate
the deviance (which is RSS for linear models), the GCV and the covariance matrix of the coefficients.
The summary.11ce function calculates standard errors of the coefficients as shown in Equation (4.1.34). The
tuning parameter is given by f from the constrained problem. Alternatively, s = t /f, can be used, where ¢,
is the €; norm of the least squares estimates. This is beneficial when selecting the tuning parameter since
the range is closed, s € [0, 1]. The entire path of the LASSO can be computed by specifying a sequence from

0 to 1, producing a 11celist object and a plot.1l1celist method is available to plot this path.

The 1ars package fits the entire LASSO solution simultaneously for all values of s via the LAR algorithm
by Efron et al. (2004). The 1ars function fits the LASSO piecewise linear path without specifying the tuning
parameter. The plot.lars method can plot the path against either s or the effective degrees of freedom.
The summary. 1ars function gives the RSS and C, statistic at each step in the path. A plot of the C,, statistic
can also be drawn with the plot.1ars method. The package provides a function for performing K-fold Cv
which can be used to select the optimal tuning parameter, in this case, s. The cv.1ars function calculates
standard errors of the CV estimates so that the 1 SE rule can be used to choose 5. When using a 1ars object
to make predictions or estimate coefficients with predict.lars, the tuning parameter can be specified by

either s, t, or A.

The glmpath function in the glmpath package also computes the path of the LASSO and is based on the
predictor-corrector algorithm by Park & Hastie (2007). The tuning parameter is not specified when fitting
the path, as with the 1ars function. The output of the function provides, for each step of the algorithm,
the degrees of freedom, the tuning parameter A, the deviance, AIC and BIC. The plot.glmpath method
can plot the coefficient paths, AIC or BIC against either t or A. Either of these two tuning parameters
can be used in the cv.glmpath function, to select the optimal value via K-fold CV, and in the predict. glmpath
function. In cv.glmpath, they are specified as a fraction of the maximum (corresponding to least squares)

but in predict.glmpath you can choose whether to specify them as a fraction or not.

The enet function in the elasticnet package is based on the LAR algorithm for elastic net (LAR-EN),
discussed in Zou & Hastie (2005). The 1ambda argument to the function is the tuning parameter A, corre-

sponding to the ridge penalty, setting 1ambda=o fits the LASSO model, otherwise the EN is fitted. Like the 1ars
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function, the tuning parameter for the LASSO penalty is not specified to fit the path. The plot.enet method

plots the coefficient paths against either s, ¢, or the LASSO tuning parameter A;. Either of these three pa-
rameters can be used in predict.enet to make predictions or estimate coefficients. The cv.enet function
can also compute the K-fold CV estimates and standard errors for values of either s, t or A;. When fitting

the EN, the value of ¢ is still interpreted as the ¢; norm of the coefficients.

The penalized package fits combinations of the ¢; and ¢, penalties with arguments lambda1 and lambda2
for the tuning parameters, respectively. Therefore it is capable of fitting ridge regression, LASSO and EN
models. Altenatively, by specifying fused1=TRUE, the fused LASSO can be fitted where 1ambda2 is then used for
the penalty on the differences of parameters. The package includes functions for fitting the model, plots,

predictions and CV.

The EN model can also be fit using the glmnet package. The glmnet function fits the path of the EN using
the cyclical coordinate descent algorithm by Friedman et al. (2010). The LASSO and ridge regression mod-
els can also be fit using this function. The alpha argument controls which penalty function is used: when
alpha=0 the ridge penalty is used, when alpha=1 the LASSO penalty is used and the EN penalty is obtained
when alpha is between 0 and 1. The tuning parameter is given by A from the Lagrangian form of the prob-
lem and it is best to supply a sequence so that prior estimates are ued for the warm start. The plot.glmnet
method plots the coefficient paths against either ¢, In (1), or the percentage of deviance explained by the
model. The package also provides functions to calculate the deviance and to perform K-fold Cv. The
cv.glmnet function includes standard errors for the CV estimates, it also specifies which value of A corre-
sponds to the minimum CV and the largest value of A such that the CV lies within one standard error of
the minimum. These values are also indicated in the plot produced by the plot.cv.glmet method, which
graphs the CV curve along with its standard errors against In (A). The cv.glmnet function does not vali-
date the alpha parameter. To do so, the folds need to be prespecified and used repeatedly in cv.glmet for

different values of alpha.

The ncvreg package is based on Breheny & Huang (2011) and contains functions to apply the concave
penalty functions of SCAD and MCP. The ncvreg function fits the path using a coordinate descent algorithm.
It can also fit the LASSO model and has an argument alpha to include an optional ridge penalty. When
alpha=1no ridge penalty is added. A ridge regression would correspond to alpha=e but this is not supported,

alpha can be set close to zero. Functions are available for K-fold CV, prediction, estimating coefficents and
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plotting. In all functions, the tuning parameter is specified by A and the second parameter has default 3.7

for SCAD and 3 otherwise. The plot.ncvreg method shades the nonconvex region.

The 1qa package was developed by Ulbricht (2010) as part of his PhD Thesis. The 1qa function uses
a modified LQA algorithm and can be used for a specified value of the tuning parameter A. Among the
methods we have discussed, the following penalty functions can be used: ridge, LASSO, bridge, adaptive
LASSO, fused LASSO, EN, OSCAR and SCAD. Other penalty functions available are the weighted fusion and
a number of correlation based penalties developed in his Thesis. There is a function corresponding to
each penalty function which creates an object of class penalty to be used in 1qa. The cv.1qa function can be
used to choose the optimal value for the tuning parameter A by searching over a grid of values. Penalty
functions parameterized with multiple tuning parameters are supported, up to 3 tuning parameters can
be validated simultaneously. A validation set can be supplied for this purpose, otherwise K-fold CV is
performed. A number of loss functions can be used for validation: RSS, AIC, BIC, GCV and deviance
(which is just RSS for linear models). The function returns the optimal tuning parameter as well as the
1qa model using the optimal tuning parameter. A cv.nng function is available for the nonnegative garrote
model. There is also a plot.1qa function which plots the coefficient path against a tuning parameter. For
multiple tuning parameters, fixed values must be supplied for all tuning parameters except the one being

plotted against. A pedict.lqa function is also available for predicting new data.

Other packages for penalized regression include relaxo and relaxnet, which implement the relaxed
LASSO, sealasso performs the SEA-LASSO, genlasso has functions for the generalized LASSO, grplasso is avail-
able for the group LASSO and scL for the sparse-group LASSO, hierNet implements the hierarchical LASSO
and glinternet the hierarchical group-LASSO. The PLUS algorithm for MCP is provided in the plus package.
The grpreg package is based on the descent algorithms by Breheny & Huang (2014) and implements a num-
ber of group penalties including the group LASSO, group bridge, group MCP, group SCAD and the group
exponential lasso. Furthermore, variable screening with SIS can be performed using the s1s package. The
kappa coefficient and PASS methods, for selecting the tuning parameter for variable selection purposes,
can be applied using the pass package. The covTest package performs the significance test discussed by
Lockhart et al. (2014). Other packages which can be consulted include 1assoshooting, lassogrp and parcor.

For Gaussian graphical models, see glasso .
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Package Function Methods Selection Criteria Tuning Parameter
MASS Im.ridge  Ridge regression GCV A
lasso2 llce LASSO RSS, GCV s, t
lars lars LASSO RSS, Cp s
K-fold CV
glmpath glmpath LASSO RSS, AIC, BIC s, A
K-fold CV
elasticnet enet LASSO RSS, C, s, t, A
EN K-fold CV
penalized  penalized  Ridge regression K-fold CV A
LASSO
EN
Fused LASSO
glmnet glmnet Ridge regression RSS A
LASSO K-fold CV
EN
ncvreg ncvreg LASSO RSS A
SCAD K-fold CV
MCP
1qa 1ga Ridge regression K-fold CV A

Nonnegative Garrote

LASSO
Adaptive LASSO
Bridge

EN

OSCAR

SCAD

Validation set
GCV
RSS, AIC, BIC

Table (C.2.1) Shrinkage methods in R
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