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Abstract

LASSO - Simultaneous shrinkage and selection via the ℓ1 norm

by Lisa-Ann Kirkland

Two major purposes of regression models are explanation and prediction of scienti�c phenomena.

Explanation is obtained by producing interpretable models through variable selection, while prediction

accuracy is optimised by balancing the bias and variance of predictions. �is dissertation explores the

LASSO, a shrinkage method that simultaneously performs selection and estimation, yielding interpretable

models with high prediction accuracy. By penalizing the regressionmodel, the variance is substantially re-

duced and sparsity is promoted by using the ℓ1 norm. It o�en outperforms traditional methods like subset

selection and ridge regression, each focusing either on variable selection or prediction, respectively. �e

LASSO has favourable statistical properties and can also be applied to high dimensional data. Applied in

two-stage procedures, the bias is controlled to achieve consistency for both prediction and selection. Con-

cave penalties reduce the bias more e�ectively by applying di�erent penalty functions over �xed ranges of

each coe�cient’s size. Adaptations of the LASSO penalty allow incorporating di�erent structures between

predictors, such as ordering predictors in a meaningful way or including known groups of predictors like

dummy variables or polynomials. Penalties combining the ℓ1 norm with other norms allow the identi�-

cation of unknown groups of correlated variables. Overall the LASSO provides an elegant foundation for

a class of methods which improves the way that sparse regression problems are solved.

Keywords: lasso, lars, shrinkage, regularization, variable selection, high-dimensional data,

sparsity, oracle property, prediction accuracy, model selection, linear regression
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Chapter 1

Introduction

Statistical models are formulated to solve speci�c problems. �e regression model expresses the relation-

ship between the response variable, Y , and the predictor variables, X, with a systematic component and

an additive random component,

Y = f (X; β) + ε.

It is assumed that Y is subject to the error ε and that X and ε are independent. �at is, the predictor

variables may be �xed variables or they may be random variables measured without error. In the latter

case, the regression is conditional on the observed values of X. �e error, or noise, is assumed to contain

any deviations from the deterministic relationship Y = f (X; β), including measurement errors in Y and

any unmeasured variables that have an e�ect on Y . �erefore, it is considered as a random variable and

we assume that E (ε) = 0 so that the regression function is

E (Y) = f (X; β) .

�e regression function thus attempts to estimate the mean of the response variable using the informa-

tion contained by the predictor variables. When the relationship between the predictor variables and the

response variable is approximately linear, the regression function is

f (X; β) = β0 + β1X1 + β2X2 +⋯ + βpXp,

where β0 is an intercept term and p is the number of predictor variables. �e estimate,

f̂ (X; β) = β̂0 + β̂1X1 + β̂2X2 +⋯ + β̂pXp,

1



is calculated using a sample of n observations and can be used to predict the response variable at future

values of the predictor variables.

�equality of the estimate o�en depends on two critical aspects: prediction accuracy, which is a trade-

o� between the bias and the variance of the estimate, andmodel interpretability. Least squares estimation

provides a simple approach to solve the linear regression model by minimizing the squared error loss, or

residual sum of squares (RSS),

RSS (β) = (y − f (X; β))2 .

�e least squares estimate (LSE) is unbiased and has the lowest variance, and consequently the best pre-

diction accuracy, among all linear unbiased estimates. When n ≫ p then this variance will be small and

the prediction accuracy will be satisfactory. However, when p is near n, the LSE can be highly variable

and result in poor prediction accuracy. Furthermore, least squares cannot be used when p > n since the

estimate is not unique and the variability is in�nite. Collinearity and over�tting can also in�ate the vari-

ance of the LSE. Removing irrelevant predictors that have little e�ect on the response produces a more

interpretable model and can signi�cantly improve the estimate. However, it is highly unlikely that least

squares will set any of the parameter estimates to zero. In any of these situations, a biased estimate may

perform better than the LSE provided that the bias is small and the reduction in variance is substantial.

Traditional methods to overcome these drawbacks of least squares include subset selection methods

and ridge regression. �ey produce biased estimates and can be used when p is near n or p > n . How-

ever, they address only one of the aspects while falling short on the other. Subset selection methods focus

on model interpretability. A subset of size d < p relevant variables are identi�ed and the model is es-

timated using least squares, essentially setting the parameter estimates of the remaining p − d variables

to zero. However, since the process is discrete, the estimate can be very unstable and sensitive to small

perturbations in the data, o�en yielding low prediction accuracy. In contrast, ridge regression (proposed

by Hoerl & KennardHoerl & Kennard (19701970)) focuses on stabilizing the variance to give greater prediction accuracy. A

constraint is placed on the size of the parameters so that the estimates are shrunk towards zero. �is is

equivalent to minimizing the penalized RSS,

RSS (β) + Pλ (∣β∣) ,

where λ > 0 is called the tuning parameter (also called the decay, shrinkage, regularization or penalty
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parameter) and Pλ (β) is the penalty function which depends on λ. When λ = 0 the least squares estimate

is obtained and the amount of shrinkage increases as λ increases. �e ridge penalty is the squared ℓ2 norm

of the parameters and is di�erentiable at zero. �us, ridge regression does not set any parameter estimates

exactly to zero and produces a less interpretable model.

TibshiraniTibshirani (19961996) proposed the least angle selection and shrinkage operator (LASSO) as a method

which could provide interpretable models with high prediction accuracy. It is thought to contain the best

of both the traditional approaches, shrinking estimates of the relevant variables to control the variance

and setting estimates of the irrelevant variables to zero to yield interpretability. �e LASSO is similar to

ridge regression, it minimizes the penalized RSS, but the penalty is the ℓ1 norm of the parameters. �e

LASSO has the ability to set parameter estimates to zero since its penalty function is non-di�erentiable

at zero. Although the non-di�erentiable nature of the problem prevents us from establishing an explicit

expression for the estimate and its standard error, the LASSO solution path is piecewise-linear and e�cient

algorithms have been developed to compute the entire path, from the null model up to the least squares

�t (if p < n), and standard errors can be calculated using either the bootstrap or approximations.

Subset selectionmethods, ridge regression and the LASSO are part of a general class of estimates, called

bridge estimates, with penalty function

Pλ (β) = λ (ℓγ (β))γ ,

where the ℓγ-norm is given by

ℓγ (β) = ∥β∥
γ
=
⎛
⎝

p
∑
j=1

∣β j∣
γ⎞
⎠

1
γ

.

�e idea was suggested by Frank & FriedmanFrank & Friedman (19931993) as a paradigm for understanding subset selection

and ridge regression. �e ℓ0-norm can be interpreted as the number of nonzero parameters and corre-

sponds to the subset selection methods. �ey noted that it would be bene�cial to estimate the parameters

λ and γ simultaneously to widen the choice of possible models but did not develop the method any fur-

ther. �e parameter λ controls the size of the parameters and the γ parameter determines the directions

in which the parameters are aligned with respect to the coordinate axes. Estimates are only likely to occur

on the axes when γ ∈ [0, 1] and in this case parameters are set to zero. �e problem is discrete when γ = 0

and the penalty function is concave when γ ∈ (0, 1), making γ = 1 (LASSO) an attractive choice for the

ℓγ-norm. Knight & FuKnight & Fu (20002000) showed that bridge estimates are consistent and have asymptotic normal
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distributions.

�e LASSO estimate relies strongly on the choice of the tuning parameter, which can be estimated

using cross-validation (CV). For lower computational expense, information criteria and generalized cross-

validation (GCV) can also be utilized by using an approximation of the e�ective degrees of freedom and

an estimate of the error variance. Both approaches select the λwhichminimizes the prediction error (PE).

Greenshtein & RitovGreenshtein & Ritov (20042004) show that the LASSO is consistent for prediction, a property which they call

persistence. While the LASSO performs shrinkage and selection, it can fail to be optimal in both aspects

with the use of only one tuning parameter. If we could choose λ so that the correct model is selected,

its value would have to be large in order to shrink parameter estimates exactly to zero. But large values

of λ tend to overshrink large parameters so the estimate can su�er large bias and thus poor prediction

accuracy. On the other hand, if λ is chosen for optimal prediction (which is the usual case), its value

will be smaller and it tends to over�t the model by including irrelevant variables. Although, it has been

shown that all the relevant variables are included with high probability. �is suggests using the LASSO in

a two-stage procedure, performing selection in one stage and estimation in another.

MeinshausenMeinshausen (20072007) proposed the relaxed LASSO to control the bias of the LASSO. Firstly, the entire

path of the LASSO is computed. �e LASSO is then applied to each model in the path with a smaller tuning

parameter ϕλ, where ϕ ∈ (0, 1], to obtain the entire path of the relaxed LASSO. �e tuning parameter

λ in the �rst step performs variable selection. In the second step, the tuning parameter ϕ relaxes the

penalty so that the parameters are estimated with less bias. �e tuning parameters ϕ and λ are chosen

simultaneously using CV. He shows that the choice of tuning parameters for optimal prediction also

yields consistent selection. Another two-stage procedure is the adaptive LASSO proposed by ZouZou (20062006).

He controls the bias by scaling each parameter in the penalty function with di�erent weight factors. �e

weights depend on an initial estimate and are chosen adaptively. �e amount of shrinkage applied to

each parameter is inversely proportional to the size of its initial estimate so that the parameter estimates

of relevant variables remain large and those of irrelevant variables are shrunk to zero. As with the relaxed

LASSO, good selection properties are achieved using a prediction-optimal tuning parameter. In addition,

he showed that provided the initial estimate is consistent for estimation, the adaptive LASSO has the oracle

property. An oracle procedure estimates the parameters with e�cience that is asymptotic to using least

squares with the correct subset of variables, as if the correct model were known in advance. For the initial

estimate, he proposed using the LSE when p < n and no collinearity is present, and the ridge estimate
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otherwise. Around the same time that TibshiraniTibshirani (19961996) proposed the LASSO, the nonnegative garrote was

proposed by BreimanBreiman (19951995). �e goal of the nonnegative garrote is the same as for the LASSO, but the LSE

is scaled directly by nonnegative constants. Although themethod is o�en criticized for its dependence on

the LSE, ZouZou (20062006) showed that the nonnegative garrote is equivalent to the adaptive LASSO (when the LSE

is used as the initial estimate) and thus also enjoys oracle properties. Yuan & LinYuan & Lin (20072007) also generalized

the nonnegative garrote to use estimates from ridge regression, the LASSO or the elastic net (EN) instead

of the LSE and showed promising results.

�e LASSO has also been modi�ed to incorporate di�erent structures among the predictor variables.

Tibshirani et al.Tibshirani et al. (20052005) proposed the fused LASSO to handle predictor variables that can be ordered in

some meaningful way, where parameters are similar for predictors that are near to each other. An ad-

ditional LASSO penalty is imposed on the di�erence between adjacent parameters to encourage similar

estimates for nearby variables. For handling known groups of predictors, such as a categorical variable

coded as a group of dummy variables or a set of basis functions for polynomial or nonparametric compo-

nents, the group LASSO was proposed, �rst by BakinBakin (19991999) and developed further by Yuan & LinYuan & Lin (20062006).

Each group of predictors, also called factors, corresponds to one observed variable so that variable se-

lection should consider the importance of factors rather than the derived variables within them. �e

penalty function is the sum of the ℓ2 norms of each group, weighted by the size of the group (the number

of variables within it). An ungrouped variable is just a group of size 1 and the penalty reduces to the LASSO

penalty but for groups including two or more variables it is similar to the ridge penalty. �us the group

LASSO promotes sparsity between groups but not within groups. Zhao et al.Zhao et al. (20092009) proposed composite

absolute penalties (CAP), a generalization of the group LASSO to use any ℓqk -norm for the k-th group with

qk > 1 instead of the ℓ2 norm. In particular, they focus on using the ℓ∞-norm,

ℓ∞ (β) = lim
q→∞ ∥β∥

q
= max{∣β1∣ , ∣β2∣ , . . . , ∣βp∣} ,

which encourages estimates within the group to be equally sized. �ey further generalize to combine the

group norms with the ℓγ-norm instead of the sum. �e ℓγ-norm is called the overall norm and controls

the relationship between groups, while the group ℓqk -norm controls how variables within each group are

related. Using γ = 1 ensures sparsity between groups. Besides performing group selection, they allow

overlapping groups to be de�ned and describe how to use them to enforce hierarchical information. If

higher order e�ects are included in the model, it is usually desirable to include any main e�ects involved
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so that the model is shi� invariant. Huang et al.Huang et al. (20092009) proposed a similar idea, called the group bridge,

which uses the ℓ1-normas the groupnormand the ℓγ-normwith 0 < γ < 1 as the overall norm. �epenalty

performs variable selection at the group level and within groups, so that if a group is included, estimates

for variables within that group may be set to zero. �ey show that the method has oracle properties for

group selection.

Predictor variables can also occur in unknown groups with high pairwise correlations between vari-

ables in the group and it may be desirable to select all the variable in the group. When variables are highly

correlated, the LASSO tends to randomly pick one of the variables and discard the rest. Ridge regression

o�en outperforms the LASSO in terms of prediction when collinearity is present. While the LASSO penalty

is convex, the ridge penalty is strictly convex (in fact, all bridge penalties with γ > 1 are). �e strict con-

vexity encourages a grouping e�ect but these penalties do not promote sparsity. Zou & HastieZou & Hastie (20052005)

proposed the EN as a combination of ridge regression and the LASSO. �e ridge penalty performs decor-

relation while the LASSO penalty performs both shrinkage and selection. �e EN also performs very well

with high-dimensional data, when p≫ n. �e LASSO selects at most min (n, p) variables so that no more

than n variables can be selected for high dimensional data. In contrast, the EN can potentially select all

p variables. Zou & ZhangZou & Zhang (20092009) extended the EN as a two-stage procedure, the adaptive EN. �ey com-

bine the ridge penalty with the adaptive LASSO penalty and suggest using the EN estimate to calculate the

weights. �ey showed that the adaptive EN has the oracle property. Bondell & ReichBondell & Reich (20082008) proposed a

similar method called octagonal shrinkage and clustering algorithm for regression (OSCAR). �e penalty

function is a combination of the LASSO penalty and an ℓ∞-norm on pairs of parameters. �e motivation

is similar to the EN but the ℓ∞-norm sets estimates exactly equal for highly correlated variables that have

a similar e�ect on the response. �e method thus performs supervised variable clustering automatically

as part of the estimation procedure. Sharma et al.Sharma et al. (20132013) recently proposed pairwise absolute clustering

and sparsity (PACS) as a generalization of both OSCAR and the EN. �e penalty consists of an adaptive

LASSO penalty and weighted penalties on the sums and di�erences of pairs of parameters. �ey pose four

alternatives for calculating the weights. In particular, they show that the method has the oracle property

when using data adaptive weights.

Fan & LiFan & Li (20012001) were the �rst to propose a shrinkage method with the oracle properties, smoothly

clipped absolute deviation (SCAD). �ey realize that a good selection procedure requires a penalty func-

tion that is continuous to ensure stability, discontinuous at zero to enable sparsity and bounded by a
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constant to control bias. �ey achieve this with a penalty function that is concave and applies a di�erent

penalty over three regions based on the size of the parameters. Another concave penalty is minimax con-

cave penalty (MCP) proposed by ZhangZhang (20102010) who shows that themethod has superior selection accuracy

over SCAD.

Overall, shrinkage methods provide a convenient way to simultaneously select variables and estimate

parameters. Modi�cations of the LASSO method and other shrinkage methods have been developed to

overcome any shortcomings with the LASSO. Note that the LASSO is a special case in every method so that

the LASSO estimate can be calculated using any of the methods. Unfortunately, no method works well

in every situation and prior information should be used to match the problem at hand to the relevant

procedure - see the "no free lunch" theorems by Wolpert & MacreadyWolpert & Macready (19971997).

�e organization of this paper is as follows. Chapter 22 examines the relevant aspects of the traditional

methods available for linear regression prior to the development ofmodern shrinkagemethods, including

least squares, subset selection and ridge regression. Methods like subset selection and ridge regression

produce a set of models which vary with complexity and we need some way to choose between them.

Methods for model selection are discussed in Chapter 33, where most of them are focussed on selecting

the best model for prediction. Chapter 44 explores the LASSO in detail, including an examination of the

penalty function; methods for computing the parameter estimates and their standard errors; the statisti-

cal properties of the LASSO; and model selection methods. �e chapter further explores two-stage LASSO

methods for controlling the bias and modi�ed LASSO methods which allow for di�erent structures be-

tween variables. Other shrinkage methods utilizing combined penalties and concave penalties are brie�y

discussed in Chapter 55. Appendices containing some background theory and calculations are provided

in Appendix AA and Appendix BB.

Comprehensive simulation studies are presented in Chapter 66 to support the theory and identify sce-

narios in which the LASSO performs well. An application of the LASSO and other shrinkage methods is

presented in Chapter 77, in which the data collected for a study of possible factors in�uencing the pro-

gression of diabetes is analysed. Some R packages that are available for �tting these models are given in

Appendix CC, and the R code used to produce the �gures, simulations and application can be downloaded

at http://www.filedropper.com/rcodehttp://www.filedropper.com/rcode. Concluding remarks and recommendations for further research are

given in Chapter 88.
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Chapter 2

Least Squares and Traditional Methods

�is chapter provides an overview of least squares estimation and the traditional methods of subset selec-

tion and ridge regression. Least squares provides the framework on which every other method is based

and is the topic of Section 2.12.1. �e basics of estimation for both the full rank and rank de�cient cases

are covered in Section 2.1.12.1.1. Properties of the LSE are given in Section 2.1.22.1.2, while properties of the least

squares predictor are given in Section 2.1.32.1.3. Section 2.1.42.1.4 deals with centering and scaling the data, which

will be necessary for the shrinkage methods, and provides formulae for converting back to the original

location and scale. Section 2.1.52.1.5 is a brief overview of the drawbacks faced when using least squares with a

large number of variables. Over�tting and collinearity are identi�ed as the two main causes of instability

and their e�ect on the variance is shown in Section 2.1.62.1.6 and Section 2.1.72.1.7, respectively. �e remaining two

sections of Chapter 22 look at the traditional methods available for overcoming these two problems in least

squares. Subset selection methods are useful for preventing over�tting and some well known methods

are discussed brie�y in Section 2.22.2, including all possible subsets (Section 2.2.22.2.2), forward selection (Sec-

tion 2.2.32.2.3) and backward elimination (Section 2.2.42.2.4), while some less known methods and modi�cations

are mentioned in Section 2.2.52.2.5. Ridge regression was designed to combat collinearity and is discussed in

Section 2.32.3. Since ridge regression is part of the class of shrinkage methods, it is a�orded a closer exami-

nation. A formulation of the problem and its estimation is discussed in Section 2.3.12.3.1, while Section 2.3.22.3.2

shows how collinearity is eliminated during estimation. �e ridge estimates are then compared to least

squares estimates, showing how they are shrunk in Section 2.3.32.3.3 and the e�ect of shrinkage on the their

properties in Section 2.3.42.3.4. Lastly, Section 2.3.52.3.5 provides some recommendations for selecting the ridge

shrinkage parameter.
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2.1 Least Squares

2.1.1 Estimation

�e linear regression model assumes that the regression function is linear in the parameters, that is

f (X) = β0 + β1X1 + β2X2 +⋯ + βpXp

= β0 +
p
∑
j=1

X jβ j,

where β0 is a constant term representing the intercept. �e predictor variables can consist of quantitative

variables, nonlinear transformations, polynomials or interactions between them, or qualitative variables

that are coded as dummy variables.

In order to estimate the parameters of the linear regressionmodel, a set of training data is collected. A

sample of n observations (x1, y1) , (x2, y2) , . . . , (xn , yn) should be drawn randomly and independently

from the population, where x i = (1, xi1, xi2, . . . , xip) are realizations of the predictor variables (including

1 for the intercept) and yi is a realization of the response variable for the i-th case. �e model can then

be written as

yi = β0 +
n
∑
i=1

p
∑
j=1

xi jβ j + εi for i = 1, 2, . . . , n.

Let

y
n×1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
⋮
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, X
n×(p+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
⋮ ⋮ ⋮ ⋱ ⋮
1 xn1 xn2 . . . xnp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, β
(p+1)×1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β0
β1
⋮

βp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and ε
n×1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
⋮

εn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where the �rst column of X will have subscript j = 0 so that x0 = 1n and each column x j corresponds to

the observations of the j-th predictor variable X j. �en the regression function is

f (x i) = xTi β (2.1.1)

and the model can be written in the matrix form

y = Xβ + ε. (2.1.2)

�ere are a number ofmethods available to estimate the parameters in equation (2.1.22.1.2). �e parameter
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estimates β̂, are usually found by optimizing some objective function. Least squares estimation is themost

common estimationmethod used for linear regression because of its simplicity and the good properties it

has without any distributional assumptions. �e only assumptions made are that the random errors have

zero expectation, constant variance and are uncorrelated with each other. However, a further assumption

ofGaussian errors improves its properties and is necessary formaking any inferences on themodel. Under

the assumption of normality, the random errors are independent.

Least Squares Assumptions:

1. E (ε) = 0 and var (ε) = σ2I

2. optionally, ε ∼ N (0, σ2I)

�e objective function in least squares is the residual sum of squares (RSS),

RSS (β0, β1, . . . , βp) =
n
∑
i=1

ε2i =
n
∑
i=1

⎛
⎝
yi − β0 −

p
∑
j=1

xi jβ j
⎞
⎠

2

,

or in matrix form

RSS (β) = εT ε

= (y −Xβ)
T
(y −Xβ)

= (ℓ2 (y −Xβ))
2

= ∥y −Xβ∥
2
, (2.1.3)

where ℓ2 (⋅) is the ℓ2 norm (see De�nition A.1.1A.1.1). �e least squares estimate (LSE) is the minimizer of RSS,

that is

β̂ = argmin
β

∥y −Xβ∥
2
. (2.1.4)

Di�erentiating with respect to β, we have the gradient

∇RSS (β) = −2XT (y −Xβ)

and the Hessian

∇2RSS (β) = 2XTX.
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�ematrix XTX, known as the Gramian matrix of X, is always nonnegative de�nite. �us, the Hessian is

nonnegative de�nite for all β and RSS (β) is a convex function (De�nition A.3.2A.3.2). By De�nition A.3.4A.3.4, β̂

is optimal if ∇RSS (β̂) = 0,

XT (y −Xβ̂) = 0. (2.1.5)

�is leads to a system of linear equations known as the normal equations,

XTXβ̂ = XTy.

If X has full column rank then XTX has full rank since rank (XTX) = rank (X) = p + 1. �us, the

Hessian is positive de�nite for all β. �is means that RSS (β) is a strictly convex function and β̂ is a

unique global minimum. Consequently, XTX is nonsingular so that the LSE of β is given by

β̂ = (XTX)−1XTy. (2.1.6)

If rank (X) < p + 1 then XTX is rank de�cient and the Hessian is positive semide�nite for all β. �is

occurs when the predictors are not linearly independent or when p > n since rank (X) ⩽ min (n, p + 1).

In this case RSS (β) is a convex function and all stationary points are global minimums. Since XTX is

singular, a solution to the normal equations is given by

β̂ = (XTX)−XTy,

where (XTX)− is any generalized inverse of XTX. However, the solution is not unique since the gener-

alized inverse of a matrix is not unique. In particular, the solution with minimum ℓ2 norm is obtained

when using the unique pseudoinverse or Moore-Penrose inverse. See GentleGentle (20072007:227-228) for a proof.

�is solution is given by

β̂ = X+y.

De�nitions of the generalized inverse and Moore-Penrose inverse are given in De�nition A.1.2A.1.2 and Def-

inition A.1.3A.1.3. Seber & LeeSeber & Lee (20032003:470) show that β̂ = X−y is a solution to the normal equations for any

generalized inverse of X that satis�es conditions (11) and (33) in De�nition A.1.3A.1.3. Since β̂ is not unique,

these solutions are not estimators for β. However, if a is in the row space of X then aTβ is an estimable

function (see De�nition A.2.1A.2.1) and aT β̂ is a unique estimator of aTβ, it is invariant to the choice of β̂.
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�e �tted model is a linear combination of the response vector y,

f̂ (X) = Xβ̂= Hy, (2.1.7)

where

H = X (XTX)−XT . (2.1.8)

Note that (XTX)− = (XTX)−1 when X has full column rank. Let rank (X) = r. It is easy to show that

H is a symmetric idempotent matrix and rank (H) = r. �e properties in �eorem A.1.1A.1.1 can be used in

the rank de�cient case, see SearleSearle (19711971:20-21) for details. It can also be shown that H is invariant to the

choice of (XTX)−.

Geometrically, the regression function f (X) = Xβ is a vector in Rn and lies in the column space of

X denoted by C (X). See De�nition A.1.4A.1.4 for a de�nition of the four fundamental subspaces of a matrix.

Least squares attempts to �nd β̂ so that the vector f̂ (X) = Xβ̂ ∈ C (X) is the closest to the vector y. �e

distance between y andXβ̂ will be a minimumwhen (y −Xβ̂) ⊥ C (X). SoH is an orthogonal projection

matrix that projects the response vector y onto C (X) to produce Xβ̂. �e complementary projection

matrix ofH is given by I −H and projects y onto the null space of XT , or C� (X), to produce the residual

vector (y −Xβ̂), which can clearly be seen by equation (2.1.52.1.5). RSS (β̂) = ∥y −Xβ̂∥
2
measures the length

of this vector, or the orthogonal distance between y and the subspace spanned by the columns of X.

In Rr+1, the regression function f̂ (X) = Xβ̂ is an r-dimensional hyperplane and each residual vector,

yi −x i β̂, is a vector going from the hyperplane to the point yi . Least squares �nds β̂ so that the sum of the

squared residuals isminimized. �is β̂ is the point inRr+1whereRSS (β), an r-dimensional hypersurface,

attains its minimum.

�e minimum RSS is given by

RSS (β̂) = ∥y −Xβ̂∥
2
= ∥(I −H) y∥2 = yT (I −H) y, (2.1.9)
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since I −H is symmetric and idempotent. Its expected value is

E [RSS (β̂)]

= E [yT (I −H) y]

= tr [(I −H) var (y)] + E (y)T (I −H) E (y) by�eorem A.1.2A.1.2

= σ2 tr (I −H) + (Xβ)
T
(I −H)Xβ since E (ε) = 0 and var (ε) = σ2I

= σ2 tr (I −H) since (I −H)X = 0

= σ2 rank (I −H) since I −H is idempotent

= σ2 (n − r) .

�is leads to the LSE of the error variance

σ̂2 =
RSS (β̂)
n − r

. (2.1.10)

2.1.2 Properties of Least Squares Estimates

When X has full column rank, the LSE β̂ has all of the following properties:

1. β̂ is unique and linear in the response vector y.

2. β̂ is unbiased, E (β̂) = β.

3. var (β̂) = σ2 (XTX)−1.

�e mean squared error (MSE) measures the accuracy of an estimate and is the sum of its variance

and squared bias. Here, MSE (β̂) = E ∥β̂ − β∥
2
= tr [var (β̂)] + ∥E (β̂) − β∥

2
= ∑p

j=0 var (β̂ j) (see Sec-

tion B.1.1B.1.1). So MSE is just the total variance when the estimate is unbiased. By comparing the MSE of an

estimate to that of another estimate, we can get an idea of its e�ciency relative to the other estimate. If

MSE (θ̂1) < MSE (θ̂2) then θ̂1 is a relatively more e�cient estimate of θ than θ̂2 (see SpanosSpanos (19891989:234-

237) for a discussion).

For any estimable function aTβ, the LSE aT β̂ has all of the following properties:

1. aT β̂ is a linear combination of y.
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2. aT β̂ is unbiased, E (aT β̂) = aTβ.

3. var (aT β̂) = σ2aT (XTX)− a.

4. aT β̂ is the best linear unbiased estimator (BLUE) of aTβ (see De�nition A.2.2A.2.2 and�eorem A.2.1A.2.1).

Since aT β̂ has the lowest variance among linear unbiased estimates, it also has the lowest MSE. It

follows that aT β̂ is relatively more e�cient than any other linear unbiased estimate.

5. aT β̂ is the uniformly minimum variance unbiased estimator (UMVUE) aTβ if ε ∼ N (0, σ2I) (see

De�nition A.2.3A.2.3 and �eorem A.2.2A.2.2 (11)). Under normality aT β̂ has the lowest variance (and thus

lowest MSE) among all unbiased estimates, not just linear estimates. In this case, var (aT β̂) equals

the Cramér-Rao lower bound CR (aTβ) = In (aTβ)
−1
(�eorem A.2.3A.2.3) and is fully e�cient. �e

Fisher information In (aTβ) involves di�erentiating the likelihood function and can be related to

maximum likelihood estimation.

Note that when X is rank de�cient, both aT β̂ and var (aT β̂) are invariant to the choices of β̂ or

(XTX)− . ShaoShao (19991999:159-161) shows that, under certain conditions and without assuming normality, the

LSE aT β̂ also has the following asymptotic properties (see De�nition A.2.7A.2.7):

1. aT β̂ is consistent in MSE, aT β̂
n
ℓ2→ β.

2. asymptotic normality, aT (β̂
n
− β)/

√
var (aT β̂) d→ N (0, 1).

�e LSE σ̂2 has all the following properties:

1. σ̂2 is unbiased, E (σ̂2) = σ2.

2. σ̂2 is the UMVUE of σ2 if ε ∼ N (0, σ2I) (see �eorem A.2.2A.2.2 (22)).

Under the assumption of normality the distribution of β̂, and hence aT β̂, can easily be obtained.

Similarly, the distribution and variance of σ̂2 can easily be derived. Inferences about the LSEs can then be

drawn by making use of the their distributional properties. �is is beyond the scope of this paper and

the interested reader is referred to Seber & LeeSeber & Lee (20032003:47-49) or SearleSearle (19711971:99-130,174-180) for a more

thorough explanation.
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Maximum likelihood estimation is another method that can be used to estimate the linear regression

model. �e objective function is the likelihood function which, under the assumption of normality, is

given by

L (β, σ2∣ε) = (2πσ2)−
n
2 exp(− εT ε

2σ2
)

= (2πσ2)−
n
2 exp

⎛
⎜
⎝
−
RSS (β)
2σ2

⎞
⎟
⎠

(2.1.11)

Unlike with least squares, the maximum likelihood estimate (MLE) of β and σ2 are found simultaneously

by maximizing the likelihood,

(β̃, σ̃2) = argmax
(β,σ 2)

L (β, σ2∣ε) ,

or equivalently, minimizing the negative log-likelihood,

− ln L (β, σ2∣ε) = 1
2

⎡⎢⎢⎢⎢⎢⎣
n ln (2π) + n ln (σ2) +

RSS (β)
σ2

⎤⎥⎥⎥⎥⎥⎦
.

It is easily shown that the MLE of β is equal to the LSE,

β̃ = (XTX)−1XTy = β̂.

�us, when the errors are Gaussian, β̂ also enjoys the desirable properties of MLEs. Under certain regu-

larity conditions, MLEs have the following asymptotic properties:

1. Consistency, β̂
n

p
→ β.

2. Asymptotic normality,
√
n (β̂

n
− β) d→ N (0,V (β)).

3. Asymptotic e�ciency, V (θ) = lim
n→∞ ( 1n In (θ)).

See De�nition A.2.7A.2.7 for an explanation of these properties. �e MLE of the error variance is given by

σ̃2 =
RSS (β̂)

n
.

Note that theMLE of σ2 is biased and its variance only attains the Cramér-Rao lower bound asymptotically,

see Seber & LeeSeber & Lee (20032003:49-50). When usingmaximum likelihood estimation, the deviance is a statistic that
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is similar to RSS for least squares estimation and is given by

D (β) = −2 ln L (β, σ2∣ε) (2.1.12)

and the minimum deviance is

D (β̂) = n ln (2πσ̃2) +
RSS (β̂)

σ̃2
. (2.1.13)

For more information about MLEs and the regularity conditions necessary, SpanosSpanos (19891989:267-281) or

Casella & BergerCasella & Berger (20022002:470,472,516) can be consulted.

2.1.3 Prediction

Once we’ve estimated the regression parameters, we can formulate the predictor used to predict a new

response at a new observation x0,

y0 = f (x0) + ε0.

Assume that y0 has the same probability structure as the elements of y. �at is, E (y0) = f (x0), var (y0) =

σ2 and cov (y0, y) = 0. �en the predictor is given by

f̂ (x0) = xT0 β̂

and

var ( f̂ (x0)) = var (xT0 β̂) = σ2xT0 (XTX)−1 x0.

�e expected prediction error (PE) is ameasure of howwell the estimatedmodel predicts the new response

and is given by

PE ( f̂ (x0)) = E (y0 − f̂ (x0))
2 = σ2 +MSE ( f̂ (x0)) .

�e predictor f̂ (x0) can be seen as an estimator of E (y0). �e expected PE consists of the MSE of this

estimator and includes var (y0) = σ2 to account for the variation in the newdata. Notice that f̂ (x0) = xT0 β̂

is a linear function of y and is estimable if x0 is in the row space of X (see De�nition A.2.1A.2.1). �us, the

least squares predictor has all the properties of linear unbiased estimates as discussed in Section 2.1.22.1.2. In

particular, it is the BLUE.
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2.1.4 Centering and Invariance to Scale

Centering the data shi�s the location of the data and only a�ects the estimation of the intercept, which

gives the location at which the regression hyperplane crosses the y-axis. �e intercept can be interpreted

as the expected value of the response when all the predictors are set to zero. When the predictors are

centered at their means, the interpretation changes to having the predictors set at their average values.

While this may be meaningful for interpretation in some situations, it is generally not necessary to center

the data since least squares performs a natural centering of the data during estimation.

�e parameter estimates corresponding to the predictor variables are not a�ected by centering. Since

they provide the gradients or slopes of the regression hyperplane, a shi� in location has no in�uence

on them. However, they are a�ected when the scale of the data is changed. If a predictor is scaled by a

constant, the LSEs will be scaled by the inverse of that constant. �is can be helpful for interpretation,

changing the scale of a predictor with a large order of magnitude can make the estimate more readable.

Scaling the data can also improve the accuracy of calculations when the scale of di�erent predictors vary

by a large order ofmagnitude. In some situations it is desirable to scale the data so that all of the predictors

are on the same scale. In particular, this is necessary when using shrinkage methods. �erefore, this

section examines the e�ects that centered and scaled data have on the estimates. In general, least squares

is scale invariant and does not bene�t from a change in location or scale.

Centered Data

Suppose we �t the model using the original variables. Assume X has full column rank so that (XTX)−1

exists. Let X = (1n ,XA), whereA = { j ∶ 1, 2, . . . , p} so that XA is the last p columns of X, to separate the

intercept vector from the predictors. �en

XTX = [ 1T1 1TXA
XT
A1 XT

AXA
] = [ n nx̄T

nx̄ XT
AXA

] ,

where x̄ = (x̄1, x̄2, . . . , x̄p)
T is a vector of the columnmeans x̄ j = n−1∑n

i=1 xi j. �e partitioned matrix can

be inverted using�eorem A.1.3A.1.3. It turns out that

(XTX)−1 =
⎡⎢⎢⎢⎢⎣

1
n + x̄T (CTC)−1 x̄ −x̄T (CTC)−1

−(CTC)−1 x̄ (CTC)−1
⎤⎥⎥⎥⎥⎦
,
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where C is the centered predictor matrix with typical element ci j = xi j − x̄ j. �e LSEs are given by

β̂ = (XTX)−1XTy

=
⎡⎢⎢⎢⎢⎣

1
n + x̄T (CTC)−1 x̄ −x̄T (CTC)−1

−(CTC)−1 x̄ (CTC)−1
⎤⎥⎥⎥⎥⎦
[ nȳ
XT
Ay

] ,

which leads to

β̂0 = ȳ − x̄T β̂
p

(2.1.14)

and

β̂A = (CTC)−1 (XT
p y − nȳx̄) , (2.1.15)

where β̂A = (β̂1, β̂2, . . . , β̂p)
T
with

var (β̂0) =
σ2

n
+ σ2x̄T (CTC)−1 x̄, (2.1.16)

cov (β̂0, β̂A) = −σ2 (CTC)−1 x̄, (2.1.17)

var (β̂A) = σ2 (CTC)−1 .

Since CTy has typical element

∑n
i=1 (xi j − x̄ j) yi = ∑i (xi jyi − x̄ jyi)

= ∑ixi jyi − x̄ j∑i yi

= ∑ixi jyi − nyx̄ j,

we have that XT
Ay − nȳx̄ = CTy in Equation (2.1.152.1.15). �us

β̂A = (CTC)−1CTy, (2.1.18)

which is the LSEwhen estimating the model using the centered predictor matrix. �is shows how the data

is naturally centered as a result of estimation. See SearleSearle (19711971:83-86) for a derivation of this result.

Suppose now that we estimate the model using the centered matrix C. �e above shows that β̂A =

(β̂1, β̂2, . . . , β̂p) remained unchanged, but what happens to the intercept? We are �tting the same model
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that has just been reparameterized,

ŷi = β̂0 + xi1β̂1 +⋯ + xip β̂p

= (β̂0 + x̄1β̂1 +⋯ + x̄p β̂p) + (xi1 − x̄1) β̂1 +⋯ + (xip − x̄p) β̂p

= β̂′0 + ci1β̂1 +⋯ + cip β̂p.

Here it is clear that β̂A are unchanged but the intercept is now estimated by

β̂′0 = β̂0 + x̄1β̂1 +⋯ + x̄p β̂p

= β̂0 + x̄T β̂A = ȳ from (2.1.142.1.14).

More formally, we have that∑n
i=1 ci j = ∑n

i=1 (xi j − x̄ j) = 0 so that 1TC = 0. �en the LSE, is given by

[ β̂′0
β̂A

] = [[ 1T

CT ] [ 1 C ]]
−1

[ 1T

CT ] y

= [ 1T1 1TC
CT1 CTC ]

−1
[ 1Ty
CTy ]

= [ n 0T

0 CTC ]
−1

[ nȳ
CTy ]

= [
ȳ

(CTC)−1CTy
] (2.1.19)

and

var (β̂′0) =
σ2

n
, (2.1.20)

cov (β̂′0, β̂A) = 0, (2.1.21)

var (β̂A) = σ2 (CTC)−1 . (2.1.22)

�us, the intercept term is always estimated by ȳ with constant variance σ2/n and is uncorrelated with

the other estimates. �is suggests �tting a reparameterized model,

v = CβA + ε, (2.1.23)

where v is the centered response vector with vi = yi − ȳ. In this form, the model does not explicitly
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estimate the intercept term, which can be convenient. �us,

v̂i = ci1β̂1 +⋯ + cip β̂p.

Note that if S = CTC so that S has typical element s jk = cTj ck = ∑n
i=1 (xi j − x̄ j) (xik − x̄k) for j, k =

1, 2, . . . , p, then 1
n−1S is the sample variance-covariance matrix of the predictors.

Centered and Scaled Data

Suppose now that the data is standardized. Let Z be the centered and scaled predictor matrix with typical

element zi j = ci j /√s j j = (xi j − x̄ j)/
√
∑n

i=1 (xi j − x̄ j)
2 . Consequently, ∑n

i=1 z2i j = zTj z j = 1 so that the

columns ofZhave unit ℓ2 normand all the predictors are nowon the same scale. Note also that∑n
i=1 zi j = 0

so that 1TZ = 0. �erefore, equations (2.1.192.1.19) to (2.1.222.1.22) hold, withC replaced by Z. By the same argument

as above, we can �t the reparameterized model,

v = Zα + ε. (2.1.24)

We have,

v̂i = ci1β̂1 +⋯ + cip β̂p

= (ci1 /
√
s11 )

√
s11β̂1 +⋯ + (ci1 /

√
s11 )

√
spp β̂p

= zi1α̂1 +⋯ + zipα̂p.

So the standardized estimates are given by

α̂ = (ZTZ)−1 ZTv, (2.1.25)

with

α̂ j =
√
s j j β̂ j.

�is form of the standardized estimates shows that least squares is scale invariant. If any predictor is

scaled by some constant, say k, then its regression coe�cient will be scaled by 1/k so that β̂ jX j always
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remains unchanged. LetD = diag (1/√s j j ), then Z = CD so that

var (α̂) = σ2 (ZTZ)−1

= σ2 (DCTCD)−1

= σ2D−2 (CTC)−1

= diag (s j j) var(β̂
p
) .

�us,

var (α̂ j) = s j j var (β̂ j) , (2.1.26)

cov (α̂ j , α̂k) =
√
s j jskk cov (β̂ j , β̂k) . (2.1.27)

Note that R = ZTZ is the sample correlation matrix of the predictors since it has typical element

r jk = zTj zk

= ∑n
i=1 (xi j − x̄ j) (xik − x̄k)√

∑n
i=1 (xi j − x̄ j)

2
√
∑n

i=1 (xik − x̄k)2

=
1

n−1 ∑
n
i=1 (xi j − x̄ j) (xik − x̄k)√

1
n−1 ∑

n
i=1 (xi j − x̄ j)

2
√

1
n−1 ∑

n
i=1 (xik − x̄k)2

=
cov (X j , Xk)√
var (X j)

√
var (Xk)

= ρ̂ jk ,

where ρ jk is the correlation between X j and Xk .

Inference and Prediction

Centering and scaling the data does not have an e�ect on the regression function f̂ (X) or on RSS (β̂).

Inspection of the projectionmatrixH = X (XTX)−1XT indicates that it is not a�ected by any scalar change

made toX. It can easily be veri�ed using the partitioned matrices above thatH remains unchanged when

substituting X with either one of (1,Xp), (1,C) or (1,Z). It follows that f̂ (X) = Hy and RSS (β̂) =

yT (I −H) y are also una�ected by any of these changes. �us, RSS always attains the same minimum and

σ̂2 remains unchanged.
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If any inferences are to be made on the model or the model is used for prediction, it is best to convert

back to the original location and scale. Equations (2.1.142.1.14), (2.1.162.1.16) and (2.1.172.1.17) can be used to correct for the

intercept, while equations (2.1.252.1.25), (2.1.262.1.26) and (2.1.272.1.27) can be used to convert back to the original scale.

For more information on centering and scaling the data, (Draper & SmithDraper & Smith, 19981998:371-375) or Seber & LeeSeber & Lee

(20032003:69-72) can be consulted

2.1.5 Large Number of Variables

When there is a large number of variables the model may be very di�cult to interpret. If explanation

is the primary goal of the analysis then the analyst is challenged to �nd the most parsimonious model

which �ts the data well. �e time and cost of including predictor variables can also play an important

role. If observations for a predictor variable are expensive to collect, or di�cult to measure, then it may

be preferable to use other predictors that could explain its e�ect on the response.

Least squares depends largely on the sample size in relation to the number of variables. When n ≫ p

then it is likely to estimate the parameters accurately and e�ciently. When n < p, as seen in Section 2.1.12.1.1,

the XTX matrix is singular and generalized inverses must be utilized. If the purpose of the regression

is explanation then least squares cannot be used since β cannot be estimated uniquely. However, Sec-

tion 2.1.32.1.3 shows that least squares can still be used e�ectively for prediction purposes, provided that the

new observations lie in the row space of X. When n > p but the sample size is inadequate, LSEs are likely

to su�er from high variance. �e variation of the estimates and the predictions are both proportionally

dependent on (XTX)−1 and σ2. When p is near n, the XTX matrix can become ill-conditioned and its

inversion will be very unstable with extremely large elements in (XTX)−1. Another di�culty is that σ2 is

o�en unknown and is estimated by σ̂2 = RSS (β̂) / (n − p − 1). As p approaches n, (n − p − 1) becomes

smaller and σ̂2 can become very large. When n = p + 1 exactly, then there are no residual degrees of

freedom and σ̂2 is unde�ned.

�ere are at least two other causes of high variance in LSEs: over�tting and collinearity. Over�tting

can invalidate the model by including toomany irrelevant variables which are not related to the response.

If the model starts to explain the noise in the training data then it will not generalize well to new obser-

vations. In contrast, collinearity can weaken the model by including too many relevant variables. If there

are many variables that are highly correlated with the response, they could contain similar information

and exhibit high pairwise correlations between themselves. Sections 2.1.62.1.6 and 2.1.72.1.7 look at why these sit-
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uations in�ate the variance. �e risk of encountering them is higher when there are a large number of

predictors available.

2.1.6 Over�tting

�e regression function attempts to estimate the population average of the response variable via the deter-

ministic relationship between the response and the predictors. When toomany predictors are included in

the model the regression function starts adapting to the speci�c training sample. It is possible to include

enough predictors so that the model �ts the training sample perfectly. However, such models are likely

to be �tting the noise in the data and as a result, the model will perform poorly on any other data set

because it does not represent the relationship inherent in the population. Including too many predictors

in the model is called over�tting. �e e�ect of over�tting is to increase the variances of the estimates and

predictions.

Estimation

Suppose that the true model includes only d predictors. Without loss of generality, assume that these

are the �rst d + 1 columns of X (d predictors plus the intercept). �us, X = (XD ,XDc), where D =

{ j ∶ 0, 1, . . . , d} and βT = (βT
D , β

T
Dc) = (βT

D , 0
T). �us the true model is given by

E (y) = f true (X) = XDβD.

Suppose we over�t the model by including all p predictors,

f̂ (X) = Xβ̂ = XD β̂D +XDc β̂Dc .

Expressions for the estimates, their expected values and variances are derived in Section B.2.1B.2.1. It is shown

that,

E (β̂D) = βD,

E (β̂Dc) = 0,
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and

var (β̂D) = σ2 (XT
DXD)

−1 + BM−1BT ,

var (β̂Dc) = σ2M−1,

where

B = (XT
DXD)

−1
XT
DXDc

is the estimate obtained when regressing XDc on XD and

M = XT
Dc (I −HD)XDc

is the minimum RSS from that regression.

�us, when over�tting the model, β̂D is an unbiased estimate of βD but its variance is in�ated by an

amount of σ2 tr (BM−1BT). Although β̂Dc has zero expectation, its presence in the model further in�ates

the total variance of the model by σ2 tr (M−1). Since there is no bias and the variance is increased, the

MSE will always be larger when the model is over�tted.

Prediction

When using the over�tted model to predict a new response y0 at x0 = (x0,D , x0,Dc) , it is shown in Sec-

tion B.2.1B.2.1 that

E ( f̂ (x0)) = xT0,DβD

so that the bias is

B ( f̂ (x0)) = 0 = B ( f̂ true (x0))

and the variance is

var ( f̂ (x0)) = σ2xT0,D (XT
DXD)

−1 x0,D + σ2dTM−1d

= var ( f̂ true (x0)) + σ2dTM−1d,

where

d = BTx0,D − x0,Dc .
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�us, the predictor of the true model and the predictor of the over�tted model are both unbiased. But

the variance of the over�tted predictor is larger, so the expected PE when over�tting will always be larger.

2.1.7 Collinearity

When using least squares, problems arise when the X matrix does have full rank but is ill-conditioned

so that the XTXmatrix is nearly singular. �e problem is usually due to some of the columns of X being

highly correlated so that they are nearly linear dependent or collinear. Geometrically, collinearity occurs

when a column vector x j is nearly parallel to a subspace spanned by a set of other column vectors, or the

angle between them is small (see GentleGentle (20072007:202)). �e e�ect of collinearity is to in�ate the variances

of the parameter estimates.

Estimation

Supposed that we �t the standardized model (2.1.242.1.24). Let p = 2, then

ZTZ = R = [ 1 r12
r12 1 ] ,

where r12 is the sample correlation between X1 and X2. �en

(ZTZ)−1 = R−1 = 1
1 − r212

[ 1 −r12
−r12 1 ] .

So the variances of the estimates are given by var (α̂) = σ2 (ZTZ)−1, or

var (α̂1) = var (α̂2) =
σ2

1 − r212
.

�us, it is clear that the variances of the parameter estimates depend only on σ2 and the correlation

between the two variables. If the two variables are very highly correlated with r212 close to 1 then the

estimates will have very large variances.

Consider the straight line regression of X1 on X2 then, r212 = R21 , where R21 is the coe�cient of deter-

mination (see De�nition A.2.8A.2.8) and measures how well the variation in X1 is explained by X2. �e same
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is true for the regression of X2 on X1, r12 = R22. �erefore,

var (α̂1) =
σ2

1 − R21
and var (α̂2) =

σ2

1 − R22
.

However, r212 = R21 = R22 only holds for a straight line regression. Seber & LeeSeber & Lee (20032003:252-254) show that

this result can be generalized for all p variables. By partitioning the correlation matrix R to isolate the

correlations between the j-th variable and the other variables, the diagonal elements ofR−1 can be related

to R2j , the coe�cient of determination when regressing z j on the other columns of Z. �us, they show

that

var (α̂ j) =
σ2

1 − R2j
,

where 1/(1 − R2j) are the diagonal elements of R−1,

1 − R2j = ∥(I −H− j j) z j∥
2

and H− j j is the projection matrix onto C (Z− j), the column space of the matrix Z with the j-th column

removed.

Geometrically, 1 − R2j = ∥(I −H− j j) z j∥
2 measures the orthogonal distance between z j and the sub-

space spanned by all the other columns ofZ. �e smaller this orthogonal distance is, the smaller the angle

between them and X j is likely to be nearly collinear to the other variables. �is idea can be used as a way

to detect collinearity. For the j-th predictor, the variance in�ation factor (VIF) is

VIF j =
1

1 − R2j
.

Since R j is a measure of the relationship between X j and the remaining variables, VIF j measures how

much σ2 /s j j is in�ated by that relationship. Now, 0 ⩽ R2j ⩽ 1 and R2j = 0 when z j is orthogonal to

the other columns of Z because then r j = zTj Z− j = 0. �us, the minimum value of VIF j is 1 when X j

is uncorrelated with all the other predictor variables. Very large values of VIF j can indicate that X j is

nearly collinear with the other variables. Since the VIFs are the diagonal elements of R−1, we can detect

collinearity by examining the eigenvalues and eigenvectors of R. Consider the spectral decomposition of

R (see De�nition A.1.6A.1.6),

R = VEVT ,
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where V is an orthogonal matrix and E is a diagonal matrix. �e columns of V are orthonormal eigen-

vectors of R and the diagonal elements of E are the eigenvalues of R, denoted by e j. �en

R−1 = VE−1VT

= Vdiag( 1
e j

)VT

= Vdiag
⎛
⎝
1
d2j

⎞
⎠
VT , (2.1.28)

since the eigenvalues of R = ZTZ are the squared singular values of Z, denoted by d2j . �us,

VIF j = (R−1) j j =
p
∑
k=1

v2jk
e j
,

where (R−1) j j denotes the j-th diagonal element of R. So any eigenvalue e j of the correlation matrix

that is close to zero could lead to large VIFs and indicates the presence of collinearity. See Seber & LeeSeber & Lee

(20032003:255) or see Draper & SmithDraper & Smith (19981998:375-378) for more information.

More generally, any ill-conditioning of the X matrix with rank (X) = r can be determined by its

spectral condition number,

κ2 (X) =
max d j (X)
min d j (X) , (2.1.29)

where d j (X) > 0 are the singular values of X for j = 1, 2, . . . , r. If X has full rank then the condition

number can also be speci�ed as

κ2 (X) =
¿
ÁÁÀmax e j (XTX)
min e j (XTX) ,

where e j (XTX) > 0 are the eigenvalues ofXTX. IfX has orthonormal columns then its condition number

is 1. It will be in�nite when X is rank de�cient and very large when X is ill-conditioned, or nearly rank

de�cient. Note that κ2 (XTX) = [κ2 (X)]2. See GentleGentle (20072007:129-131,203-206) for more information

about condition numbers and matrix norms. Seber & LeeSeber & Lee (20032003:256-260) show how changes in the data

can a�ect the parameter estimates. Small changes in the observed data shouldn’t cause a big change in

the estimates, provided that the condition number of X is not too large, so that the regression is stable.

�e condition number of the correlation matrix can be examined as a �rst step in detecting collinearity.
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Seber & LeeSeber & Lee (20032003:315-319) show that

κ2 (R) ⩾ 1
min e j (R) ⩾ VIF j for all j. (2.1.30)

�us, if the condition number of the correlation matrix is small then none of its eigenvalues would be

too small and none of the VIFs will be large, so there shouldn’t be any collinearity present. However,

because small changes in the original data could cause large changes in the centered and scaled matrix,

they suggest rather examining the matrix which is scaled but not centered. �e condition number can

also be used to determine the accuracy of the estimates, see GentleGentle (20072007:218-219) for details.

Prediction

If we use the parameter estimates to predict a new response at x0,

f̂ (x0) = xT0 β̂

then the variance of the prediction is

var ( f̂ (x0)) = σ2xT0 (XTX)−1 x0.

�us the variance depends on (XTX)−1 and it appears that they will su�er from collinearity, resulting

in unstable predictions. However, Seber & LeeSeber & Lee (20032003:261) assert that the predictions are not a�ected by

collinearity. �ey consider predicting the new response using the centered model (2.1.232.1.23) ,

f̂ (x0) = ȳ + (x0 − x̄)T β̂A,

whereA = { j∣ j = 1, 2, . . . , p}. �en the variance is

var ( f̂ (x0)) = var ( ȳ) + (x0 − x̄)T var (β̂A) (x0 − x̄) + 2 cov ( ȳ, β̂A)

= 1
n

σ2 + σ2 (x0 − x̄)T S−1 (x0 − x̄)

= σ2 [ 1
n
+ (x0 − x̄)T S−1 (x0 − x̄)] ,
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since cov ( ȳ, β̂A) = 0. �erefore predictions made at points that are close to the average observed val-

ues will have small variances regardless of any collinearity present. For outlying points far from x̄, the

predictions will have large variances, although they argue that making predictions outside the range of

observed data is generally discouraged.

2.2 Subset Selection Methods

2.2.1 Estimation

LSEs have the desirable properties of Section 2.1.22.1.2, provided that the model f (X) has been speci�ed cor-

rectly. Subset selection methods attempt to �nd the correct subset of the available predictors for the

model speci�cation. Once the subset is identi�ed, the model is �tted using least squares. Assume that the

true model is linear and has the form

Y = β0 + X1β1 + X2β2 +⋯ + Xpβp + ε.

�e problem of selecting a subset of d < p predictors can be interpreted as �nding the p−d predictors that

are not related to the response and setting their parameters to zero. Without loss of generality, suppose

that the �rst d variables are selected. GentleGentle (20072007:347) notes that the parameter estimates in the model

yi =
d
∑
i=1

xiβi + εi

are the same as the parameter estimates in the model

ŷi =
d
∑
i=1

xiβi + εi ,

where ŷi are the �tted values from the model including all p variables. �us, �tting a subset of variables is

equivalent to approximating the least squares predictions. Subset selection could be helpful in addressing

some of the problems with least squares, it eases interpretation and provides a direct way to prevent

over�tting. Furthermore, the forward selection method discussed below can be used when p > n.

�e LSEs obtained for a subset of variables will be biased. Suppose we estimate a subset D̂ of size d̂.

Section B.2.2B.2.2 derives the properties of the LSEwhen themodel is under�tted. Suppose that the truemodel
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is given by

E (y) = f true (X) = XD̂βD̂ +XD̂c βD̂c ,

where D̂ = { j ∶ 0, 1, . . . , d̂} and the model is under�tted using only d̂ predictors,

f̂ (X) = XD̂βD̂.

�e LSE is β̂
T = (β̂

T
D̂ , 0

T), with

E (β̂D̂) = βD̂ + BβD̂c

and

var (β̂D̂) = σ2 (XT
D̂XD̂)

−1
.

So, it is clear that the estimate is biased. MillerMiller (20022002:3-6) interprets BβD̂c as the bias in the �rst d̂ + 1

estimates resulting from the omission of the last p − d̂ variables, and calls it appropriately the omission

bias. Although the estimate is biased, var (β̂) ⩽ var (β̂
true) and the MSE is given by

MSE (β̂) = σ2 tr ((XT
D̂XD̂)

−1) + βT
D̂c (B

TB + I) βD̂c .

Comparison with the true MSE,

MSE (β̂
true) = σ2 (tr (XT

D̂XD̂)
−1) + tr (BM−1BT) + tr (M−1)

shows that the biased estimator may be more e�cient if

βT
D̂c (B

TB + I) βD̂c < tr (BM
−1BT) + tr (M−1) .

Similarly, the predictions are biased but have reduced variance. �e bias of the prediction at a new

observation x0 = (x0,D̂ , x0,D̂c) is

B ( f̂ (x0)) = dTβD̂c

and the variance is

var ( f̂ (x0)) = σ2xT0,D̂ (XT
D̂XD̂)

−1 x0,D̂,
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so that the expected PE is

PE ( f̂ (x0)) = σ2 + σ2xT0,D̂ (XT
D̂XD̂)

−1 x0,D̂ + (dTβD̂c)
2
.

Comparison with the true PE,

PE ( f̂ true (x0)) = σ2 + σ2xT0,D̂ (XT
D̂XD̂)

−1 x0,D̂ + σ2dTM−1d

shows that the biased predictor has smaller expected PE when (dTβD̂c)
2
< σ2dTM−1d. Seber & LeeSeber & Lee

(20032003:398) show that this will be the case when βT
D̂cMβD̂c < σ2.

Any discussion of the LSEs above is under the premise that the model f (X) is chosen a priori. Besides

omission bias, subset selection will also su�er from selection bias unless independent data sets are used

for model selection and estimation. Since the variables are selected adaptively (using the response) the

selection bias will be high. All possible subsets su�ers from very large bias since a large number of mod-

els are considered. Little is known about the properties of the parameters when subset selection methods

are used, but it is clear that the e�ective degrees of freedom for the model is larger than the number of

parameters in themodel because of the adaptive selection (see page 3.13.1 for a discussion). �e subset selec-

tion methods are not oracle estimators (see De�nition A.3.8A.3.8). �ey are not consistent because the greedy

searches o�en select a local minimum. Further evidence of their inconsistency is due to instability, re-

moving one observation from the training data could result in a completely di�erent sequence of models.

�e estimation is ine�cient due to their discrete nature, since parameters are either included or forced to

zero, a particular parameter estimate can vary dramatically depending on which covariates are excluded.

2.2.2 All Possible Subsets

�e all possible subsets procedure involves �tting every possible model including an intercept term and

any number of predictor variables. If there are p = 2 predictor variables available then the following
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models would be �tted:

Y = β0 + ε

Y = β0 + β1X1 + ε

Y = β0 + β2X2 + ε

Y = β0 + β1X1 + β2X2 + ε

Each predictor variable is either included or excluded so that, if there are p available predictor variables,

then there are a total of 2p possible models. �us, an exhaustive search is performed so that the method is

capable of �nding the globally optimal subset of variables. However, it can quickly become too expensive

computationally. Table 2.2.12.2.1 below shows that this methods quickly becomes unfeasible as p is increased,

with over a thousand possible models when p = 10, over 1 million when p = 20, and over 1 billion when

p = 30!

Predictor Variables All Possible Subsets Forward / Backward

2 4 4
4 16 11
6 64 22
8 256 37
10 1,024 56
12 4,096 79
14 16,384 106
16 65,536 137
18 262,144 172
20 1,048,576 211
30 1,073,741,824 466

Table (2.2.1) Number of models considered in subset selection methods. All possible subsets
quickly becomes infeasible, while forward selection and backward elimination require far less
computation.

Algorithm 2.2.12.2.1, from James et al.James et al. (20132013:205), describes the all possible subsets procedure. First the

null model, including only the intercept, is �tted. For each subset size k = 1, 2, . . . , p all (pk) possible

models are �tted and the best one is selected. �is leads to a set of p+ 1 models, including the null model.

�e best of these models is selected using one of the information criteria in Section 3.23.2 or CV which is

discussed in Section 3.3.13.3.1. See Draper & SmithDraper & Smith (19981998:329-334) for more information.
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Algorithm 2.2.1 All possible subsets

1. Fit the null model including only the intercept D̂0

2. For k = 1, 2, . . . , p:

(a) Fit all (pk) possible subsets of size k

(b) Select the subset of size k which has the smallest RSS and call it D̂k

3. Using some selection criteria, select the best subset D̂d̂ among D̂0, D̂1, . . . , D̂p

Seber & LeeSeber & Lee (20032003:439-442) discuss algorithms for computing all possible subsets and show that the

calculations can be reduced by 50% using sums of squares and cross-product matrices. Although, the

use of these matrices can be inaccurate if there are high correlations between the predictors. Instead,

orthogonal matrix reductions, such as the QR-decomposition (see De�nition A.1.7A.1.7), can be used for

updating models to add or delete variables (see Seber & LeeSeber & Lee (20032003:446-447)). MillerMiller (20022002:11-36) and

Lawson & HansonLawson & Hanson (19741974) also discuss e�cient algorithms for performing least squares.

A way to further reduce computation is to only consider the c best models of each size, for some

constant c. Clarke et al.Clarke et al. (20092009:572-573) discuss two variations of branch and bound optimization meth-

ods which eliminate subsets of variables in an e�cient way. �e computation for one of these methods,

the leaps and bounds procedure, is described in Seber & LeeSeber & Lee (20032003:442-446). MillerMiller (20022002:48-54) also

discusses algorithms and computational issues for these selection algorithms.

2.2.3 Forward Selection

�e forward selection method begins with the null model, including only the intercept term so that

E (y) = ȳ, and selects variables for inclusion one by one. Once a variable is included, it is retained in

all further subsets. MillerMiller (20022002:39-40) describes the process with regards to the RSS. �e variable that

produces the smallest RSS is selected �rst. At each subsequent step, the variable selected is that which

minimizes the RSS when added to the variables previously selected. �e process continues until all the

variables are included or until satisfying some stopping rule. He also relates the process to a compar-

ison of correlations. If the variables have been centered, then the �rst variable selected has the largest

correlation with the response. Each subsequent variable selected has the largest partial correlation with
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the response, given the variables previously selected. James et al.James et al. (20132013:207-208) describe the procedure,

shown in Algorithm 2.2.22.2.2, to continue until all the variables are added and then to use some selection cri-

teria to decide upon the best model. �is could be more bene�cial because there are p + 1 models which

can be examined instead of just the �nal model produced by a stopping rule. �eir algorithm is shown

below. It involves �tting 1 + p (p + 1)/ 2 models, which is far more e�cient than all possible subsets, see

Table 2.2.12.2.1.

Algorithm 2.2.2 Forward selection

1. Fit the null model including only the intercept D̂0

2. For k = 0, 2, . . . , p − 1

(a) Fit all p − k subsets of size k + 1 which add one variable to subset D̂k

(b) Select the subset of size k + 1 which has the smallest RSS and call it D̂k+1

3. Using some selection criteria, select the best subset D̂d̂ among D̂0, D̂1, . . . , D̂p

Alternatively, the process has been described as performing a sequence of hypothesis tests. A version

of the procedure where F-tests are used to decide which variable to include is described in Seber & LeeSeber & Lee

(20032003:414). At each step, the variable which produces the largest value of the F-statistic is included if the

statistic exceeds a speci�ed value, say Fin. If no such variable is found then the procedure stops. Fin can

be a speci�ed value or it can be calculated as the critical value for the F-distribution corresponding to a

signi�cance level α. A drawback with this formulation is that the F-tests performed are not strictly valid

since the F-statistics do not meet the necessary distributional requirements. Suppose we are at a single

stage in the algorithmwe want to test whether a variable should be added. �e F-test assumes that, under

the null hypothesis, the current model is the true model with normal residuals that are independently

and identically distributed. If one of the remaining variables is chosen randomly then the F-statistic will

follow the F-distribution. However, since the F-statistic selected for testing is the maximum among a set

of statistics which are correlated, the statistic will not follow an F-distribution. �us it seems arbitrary

to choose values Fin and Fout with any meaning. Attempts have been made to correct this problem, see

Draper & SmithDraper & Smith (19981998:343), MillerMiller (20022002:43-44) and Seber & LeeSeber & Lee (20032003:419), but there is no uncompli-

cated solution.
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An advantage of using forward selection, as pointed out in Hastie et al.Hastie et al. (20092009:59), is that it can be

performed even when p ≫ n. Since we begin with the null model, the process can continue while n > k.

However, there is no guarantee that the best subset of variables will be found with forward selection. �e

procedure follows a greedy algorithm, once a variable is chosen it cannot be reversed. Since variables are

never discarded, all models of size 1, 2, . . . , k − 1 are nested within the model of size k. It is possible that,

when comparing the best �tting models of two di�erent sizes, only some of the variables are present in

both. MillerMiller (20022002:67-69) shows an example where the best �tting model of size 3 does not contain any

of the variables that are in the best �tting model of size 2. Furthermore, forward selection is not likely

to include any groups of variables. MillerMiller (20022002:41) provides an example where a linear combination of

variables, (X1 − X2), is an excellent predictor of the response but X1 and X2 are both poor predictors

on their own. Since forward selection includes one variable at a time, it will o�en fail to include both

variables. Essentially, the algorithm performs optimization locally. At each step, variables are considered

that improve the current state of the model. �erefore, it is possible that the best �tting model could be

completely overlooked by forward selection.

2.2.4 Backward Elimination

Backward elimination follows the same principal as forward selection but in reverse order. �e method

begins by including all the variables and at each step the variable is removed which produces the smallest

residual sum of squares a�er its deletion. �e process continues until all the variables are removed or until

satisfying some stopping rule. James et al.James et al. (20132013:208-209) provide theAlgorithm 2.2.32.2.3 below for backward

elimination, simply as the reverse of forward selection, again considering a total of 1+ p (p + 1)/ 2models.

Algorithm 2.2.3 Backward selection

1. Fit the full model including all the variables D̂p

2. For k = p, p − 1, . . . , 1

(a) Fit all k subsets of size k − 1 which removes one variable from subset D̂k

(b) Select the subset of size k − 1 which has the smallest RSS and call it D̂k−1

3. Using some selection criteria, select the best subset D̂d̂ among D̂0, D̂1, . . . , D̂p
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Since backward elimination begins with the full model, it cannot be used when p > n unless some

unsupervised screening is utilized to obtain a smaller subset of variables to start with. However, backward

elimination could be susceptible to similar drawbacks as least squares in the presence of collinearity. As

with forward selection, the algorithm is greedy and searches are local so that the true model may be

overlooked entirely. Although, MillerMiller (20022002:45) states that backward elimination would tend to keep

groups of variables in the model. See Draper & SmithDraper & Smith (19981998:339-341), MillerMiller (20022002:44-45), Seber & LeeSeber & Lee

(20032003:416,418) and Clarke et al.Clarke et al. (20092009:574) for more information.

2.2.5 Other Subset Selection Methods

Stepwise regression, or Efroymson’s algorithm, is a combination of forward selection and backward elim-

ination. At each step, variables can be entered or removed, thereby overcoming the greedy aspect of the

forward and backward procedures. However, the algorithm proceeds by performing a series of hypoth-

esis tests and its use is strongly discouraged for same the reasons mentioned on page 3434. �e method is

discussed in Draper & SmithDraper & Smith (19981998:335-338), MillerMiller (20022002:42-43) and Seber & LeeSeber & Lee (20032003:418-419).

Hastie et al.Hastie et al. (20092009:60) describe a procedure called forward stagewise regression. �e procedure is

carried out on centered variables and starts with the null model. At each step, the variable which has

the highest correlation with the residuals is found. �e residuals are then regressed on this variable and

its coe�cient in the model is incremented by that regression coe�cient. �e process continues in that

manner until none of the variables are correlated with the residuals. When n > p, the �nal model is the

least squares model and it can take very many steps to reach it.

MillerMiller (20022002:46-48,54-47) discusses variations of the forward and backward procedures described

above. He talks about sequential replacement algorithms which can be used in conjunction with one of

the procedures. Once a number of variables are included in the model, a search is made to see if replacing

any of the variables will lead to a reduction in RSS. �e process continues until RSS cannot be reduced

any further. He also discusses the possibility of considering pairs of variables for inclusion or exclusion

instead of individual variables. Lastly, he mentions an untried method whereby variables are placed into

smaller groups and all possible subsets is performed on each group. �e groups would have to de�ned

so that the RSS for variables in di�erent groups are additive. �is situation occurs when the variables are

orthogonal. He does provide another case when this condition is met, but ultimately leaves the problem

for further research.
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2.3 Ridge Regression

2.3.1 Estimation

Ridge regression, proposed by Hoerl & KennardHoerl & Kennard (19701970), is the oldest and most well known shrinkage

method. A constraint is placed on the size of the parameters which has the e�ect of shrinking them to-

wards zero. Since the constraint is focused on the size of the parameters, it is important that predictors are

on the same scale to allow them equal consideration. Ridge regression is not scale invariant, a parameter

estimate can change drastically if the scale of the predictor is changed and can be also be a�ected by the

scale of other predictors. �erefore, the data is standardized before estimation. �e ridge estimator is

given by

α̂R = argmin
α

∥v − Zα∥2 subject to ∥α∥2 ⩽ τ, (2.3.1)

where τ > 0 and RSS (α) = ∥v − Zα∥2. �e constrained problem is equivalent to the penalizing the RSS,

α̂R = argmin
α

∥v − Zα∥2 + λ ∥α∥2 , (2.3.2)

where λ ⩾ 0 is chosen so that ∥α̂R∥2 = τ. �is can be shown by looking at the Karush-Kuhn-Tucker (KKT)

optimality conditions (see De�nition A.3.6A.3.6). Suppose that α̂R is the optimal solution for problem (2.3.22.3.2),

then

∇∥v − Zα̂R∥2 + λ∇∥α̂R∥2 = 0. (2.3.3)

For problem (2.3.12.3.1), the KKT conditions imply that α∗ and λ∗ are optimal if:

1. ∥α∗∥2 − τ ⩽ 0,

2. λ∗ ⩾ 0,

3. λ∗ (∥α∗∥2 − τ) = 0, and

4. ∇∥v − Zα∗∥2 + λ∗∇(∥α∗∥2 − τ) = ∇∥v − Zα∗∥2 + λ∗∇∥α∗∥2 = 0.

Let ∥α̂R∥2 = τ. If we set α∗ = α̂R then conditions (11) and (33) are met. If we also set λ∗ = λ then

condition (44) is met because of equation (2.3.32.3.3). �erefore, problems (2.3.12.3.1) and (2.3.22.3.2) are equivalent

when λ ⩾ 0 (22) and ∥α̂R∥2 = τ since they have the same solution.
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�e ridge penalty function is

PR (α) = λ ∥α∥2 = λαTα = λ
p
∑
j=1

α2j . (2.3.4)

We have that P′R (α) = 2λα and P′′R (α) = 2λ ⩾ 0. �us, the ridge penalty is di�erentiable and is strictly

convex when λ > 0 for all α. Since both RSS (α) and PR (α) are both positive quantities, each of them is

minimized and it is clear that PR (α)will be aminimumwhen α1, α2, . . . , αp are all close to zero. λ is called

the shrinkage parameter and it controls the amount of shrinkage. A set of estimates can be produced, one

for each value of λ, and we can follow the path of each parameter estimate as λ increases. If we set λ = 0,

we would obtain the least squares estimates and the penalty would have no e�ect. As λ →∞, the e�ect of

the penalty increases and α̂R → 0. Note also that the gradient P′R (α) ∝ α so that the shrinkage applied

by ridge regression is proportional to the parameters.

Since the penalty function is di�erentiable, ridge regression can be solved explicitly. Setting the partial

derivatives of (2.3.22.3.2) to zero, we have

∇(RSS (α) + PR
λ (∣α∣)) = 0

⇔ ∇{(v − Zα)T (v − Zα) + λαTα} = 0

⇔ −2ZT (v − Zα) + 2λα = 0

⇔ ZTZα+λα = ZTv

⇔ (ZTZ+λIp) α = ZTv.

�us, the ridge regression estimator is

α̂R = (ZTZ + λI)−1 ZTv. (2.3.5)

with variance

var (α̂R) = σ2 (ZTZ + λI)−1 ZTZ (ZTZ + λI)−1 . (2.3.6)

2.3.2 Collinearity

Ridge regression corrects any problems with the correlation matrix, R = ZTZ. Adding the positive con-

stant λ to each diagonal element of R has the following e�ect:
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• If R is singular, (R + λI) is nonsingular. �erefore, Z is not required to have full column rank and

a unique estimator can be found when p > n.

• IfR is nonsingular but is ill-conditioned, (R + λI) is not ill-conditioned. �erefore, ridge regression

overcomes any problems with collinearity.

Elaborating on the second point, GentleGentle (20072007:206) states that, when R has full rank, the condition

number of (R + λI) is lower than the condition number of R since

max (d j + λ)
min (d j + λ)

<
max (d j)
min (d j)

,

where λ > 0 and here, d j = d j (R), the singular values of R. See equations (2.1.292.1.29) and (2.1.302.1.30). �is can

easily be con�rmed. Since R has full rank, the singular values are all positive. Suppose that d1 ⩾ d2 ⩾ ⋯ ⩾

dp > 0, then we can write
d1 + λ
dp + λ

< d1
dp

⇔ (d1 + λ) dp < d1 (dp + λ)

⇔ d1dp + λdp < d1dp + d1λ

⇔ λdp < λd1

⇔ dp < d1.

More directly, we have that

(R + λI)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + λ r12 ⋯ r1p
r12 1 + λ ⋯ r2p
⋮ ⋮ ⋱ ⋮
r1p r2p ⋯ 1 + λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1 + λ)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 r12
1+λ ⋯ r1p

1+λ
r12
1+λ 1 ⋯ r2p

1+λ
⋮ ⋮ ⋱ ⋮
r1p
1+λ

r2p
1+λ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

= 1
1 + λ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 r12
1+λ ⋯ r1p

1+λ
r12
1+λ 1 ⋯ r2p

1+λ
⋮ ⋮ ⋱ ⋮
r1p
1+λ

r2p
1+λ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

. (2.3.7)

�us, ridge regression shrinks each of the correlations by a factor of 1/ (1 + λ), an operation called decor-

relation by Zou & HastieZou & Hastie (20052005). In addition, a direct shrinkage factor of 1/ (1 + λ) is applied to control
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the variance.

Another way to deal with collinearity is to collect additional data. Seber & LeeSeber & Lee (20032003:322) point out

that ridge regression can be interpreted as the least squares solution if the data is augmented with addi-

tional observations (
√

λIp , 0). Let

α̂R = argmin
α

∥v∗−Z∗α∥2 ,

where

Z∗
(n+p)×p

= [ Z√
λIp

] and v∗
(n+p)×1

= [ v
0 ] . (2.3.8)

�en the ridge estimate is obtained by applying least squares,

α̂R = (Z∗TZ∗)−1 Z∗Tv∗

= [[ ZT √
λI ] [ Z√

λI ]]
−1

[ ZT √
λI ] [ v

0 ]

= (ZTZ + λI)−1 ZTv.

2.3.3 Shrinkage

It is useful to compare ridge regression with least squares to examine how ridge regression shrinks the

estimates and the e�ect that shrinkage has on the properties of the estimates. Assume that Z has full

column rank so that the LSEs exists. We can write the ridge estimate as

α̂R = (ZTZ + λI)−1 ZTv

= [ZTZ + λ (ZTZ) (ZTZ)−1]
−1
ZTv

= {(ZTZ) [I + λ (ZTZ)−1]}
−1
ZTv

= [I + λ (ZTZ)−1]
−1

(ZTZ)−1 ZTv

= [I + λ (ZTZ)−1]
−1

α̂ = Bλ α̂, (2.3.9)

where Bλ = [I + λ (ZTZ)−1]
−1
and α̂ are the least squares estimates.
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Consider the singular value decomposition (SVD) of Z (see De�nition A.1.5A.1.5),

Z = UDVT ,

where D is a p × p diagonal matrix, U is an n × p matrix with orthogonal columns and V is a p × p

orthogonal matrix. �e diagonal elements of D are the singular values of Z, with d1 ⩾ d2 ⩾ ⋯ ⩾ dp > 0.

�e columns of U span C (Z) and the columns of V span C (ZT). �en,

R = ZTZ = VD2VT .

So,

Bλ = [I + λ (ZTZ)−1]
−1

= [VVT + λ (VD2VT)−1]
−1
since VVT = I

= [VVT + λVD−2VT]−1 since VT = V−1

= [V (I + λD−2)VT]−1

= V (I + λD−2)−1VT since VT = V−1

= Vdiag
⎛
⎝

1
1 + λ/d2j

⎞
⎠
VT

= Vdiag
⎛
⎝

d2j
d2j + λ

⎞
⎠
VT

and α̂R is given by

α̂R = Bλ α̂ = Vdiag
⎛
⎝

d2j
d2j + λ

⎞
⎠
VT α̂

It is clear that:

1. When λ = 0, d2j /(d2j + λ) = 1

2. When λ > 0, d2j < d2j + λ so that d2j /(d2j + λ) ∈ (0, 1)

(a) d2j /(d2j + λ) → 0 as λ →∞, and

(b) d2j /(d2j + λ) → 0 as d2j → 0.

With these results we can make some deductions about the form of shrinkage in ridge regression.
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Since V is an orthonormal basis for C (ZT), VT α̂ are the coordinates of α̂ with respect to the basis V

and are a�ected by a factor of d2j /(d2j + λ) . Points (11) and (22) above verify that the LSEs are not a�ected

when λ = 0 and are shrunk towards zero when λ > 0, while (2a2a) clari�es that the amount of shrinkage

increases as λ increases. Point (2b2b) states that the shrinkage a�ects the coordinates corresponding to the

smaller singular values more. Now, p j = Zv j are the principal components of X and each p j accounts

for a proportion of the sample variance of X. From the SVD we have that Zv j = u jd j so that var (p j) =

d2j /n. Since d1 ⩾ ⋯ ⩾ dp, the �rst principal component p1 has the largest sample variance, p2 the second

largest, and so forth until the last pp which has the minimum variance. �us, since the columns of U

span the column space of Z, the small singular values of Z correspond to directions of C (Z) that have low

variance. �at is, those predictor variables whose observations are have no spread. It is these coordinates

that experience the most shrinkage. See Hastie et al.Hastie et al. (20092009:66-67,79) and Seber & LeeSeber & Lee (20032003:325-326) for

information about principal components.

2.3.4 Properties of Ridge Estimates

If we assume the linear model is correct, E (v) = Zα, then α̂R is biased since

E (α̂R) = E (Bλ α̂)

= BλE (α̂)

= Bλα

= Vdiag
⎛
⎝

d2j
d2j + λ

⎞
⎠
VTα.

Hastie et al.Hastie et al. (20092009:224-225) refer to this bias as estimation bias because the model is estimated in a re-

stricted model space. �e variance-covariance matrix of α̂ in terms of the SVD is (also seen from (2.1.282.1.28)),

var (α̂) = σ2 (ZTZ)−1

= σ2 (VD2VT)−1

= σ2VD−2VT since VT = V−1

= σ2Vdiag
⎛
⎝
1
d2j

⎞
⎠
VT ,
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so that

var (α̂R) = var (Bλ α̂)

= Bλ var (α̂)BT
λ

= V (I + λD−2)−1VT (σ2VD−2VT)V (I + λD−2)−1VT

= σ2V (I + λD−2)−2D−2VT since VTV = I

= σ2Vdiag
⎛
⎜⎜
⎝

1

d2j (1 + λ/d2j )
2

⎞
⎟⎟
⎠
VT

= σ2Vdiag
⎛
⎜⎜
⎝

d2j

(d2j + λ)
2

⎞
⎟⎟
⎠
VT

�us the ridge estimates have much lower variance than the least squares estimates for λ > 0. For small

singular values or large values of λ, the decrease in the variances of the ridge estimates are extreme.

Draper & SmithDraper & Smith (19981998:396-397) show that there is a value of λ for which MSE (α̂R) < MSE (α̂) and

Seber & LeeSeber & Lee (20032003:322-323) show that if λ is su�ciently small thenMSE (α̂R)will decrease as λ increases.

However, �nding the value of λ that minimizes MSE (α̂R) depends on the unknown parameters α and

σ2.

As with least squares, the �tted model is a linear combination of the response,

Zα̂R = Z (ZTZ + λI)−1 ZTv = Hλv,

whereHλ = Z (ZTZ + λI)−1 ZT . �e e�ective degrees of freedom for the model (see (3.1.103.1.10)) is therefore,

d f = tr (Hλ) = tr [Z (ZTZ + λI)−1 ZT]

= tr [UDVT (VD2VT + λVVT)−1VDUT ] since VVT = I

= tr{UDVT [V (D2 + λI)VT]−1VDUT}

= tr [UD2 (D2 + λI)−1UT] since VT = V−1 and VTV = I

= tr [UTUD2 (D2 + λI)−1]

=
p
∑
j=1

d2j
d2j + λ

since UTU = I.
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�us the degrees of freedom for the model decreases as λ increases. For a least squares �t the degrees of

freedom is equal to the number of parameters, p + 1.

2.3.5 Model Selection

Ridge regression requires little computational e�ort. James et al.James et al. (20132013:219) state that �nding the ridge

estimates simultaneously for all λ requires almost the same amount of computation as using least squares.

One di�culty is the selection of the tuning parameter but many suggestions are available in the literature.

Draper & SmithDraper & Smith (19981998:388-389) and Seber & LeeSeber & Lee (20032003:324) discuss the ridge trace, a plot of each α̂R
j

against λ - the original authors suggested using the plot to determine at which value of λ the parameters

are stabilized. Draper & SmithDraper & Smith (19981998:390-391) andMillerMiller (20022002:59) provide some formulae for calculating

the optimal value of λ and also discuss using an iterative ridge regression algorithm for this purpose.

Seber & LeeSeber & Lee (20032003:424) recommend using resampling methods to determine which value of λ to use.

Ridge regression provides an attractive method which can be used to �t the linear regression model

when p > n or when there is collinearity present. Although the parameter estimates are shrunk to-

wards zero, they are unable to attain the value of zero exactly and no variable selection is performed.

Draper & SmithDraper & Smith (19981998:391) explain how one could use ridge regression for variable selection purposes.

�e process involves performing ridge regression in two stages together with some kind of thresholding

rule. For the �rst stage, the model is estimated and the optimal value for λ is selected. A�er inspection

of the estimates, any estimates that are smaller than some pre-speci�ed value, or threshold, are removed

from the model. �e model is then estimated using ridge regression again in a second stage where these

parameters have been removed . For further details about ridge regression, seeDraper & SmithDraper & Smith (19981998:387-

400), Seber & LeeSeber & Lee (20032003:321-324,423-425) or Hastie et al.Hastie et al. (20092009:61-68).

44



Chapter 3

Model Selection

Subset selection methods and ridge regression both produce a set of models with varying complexity

from which a best-�tting model must be selected. �is chapter focuses on methods that are available

for performing model selection, which are usually based on prediction error (PE). Section 3.13.1 examines

the composition of PE and its relation to model complexity. Models with low complexity have high bias

and models that are too complex have high variance. �e model selected has the best balance of bias

and variance, the one with minimum PE. However, we cannot calculate PE directly since we usually do

not know the true model function. If enough data is available then model selection can be carried out

using a validation data set. In the absence of extra data, we need to estimate PE using the training data.

Although the training error is an over optimistic estimate of PE, the optimism of the training error can

be estimated. Section 3.23.2 looks at some information criteria which adjust the training error to form a

better estimate of PE. If Gaussian errors are assumed then methods that penalize the likelihood function

can also be used. Alternatively, Section 3.33.3 explains how PE can be estimated by resampling data from the

training set using CV(Section 3.3.13.3.1) or bootstrapping (Section 3.3.23.3.2). Choosing the best model for variable

selection is slightly more di�cult. �e Bayesian information criterion (BIC) in Section 3.23.2 is consistent for

variable selection and the one-standard-error rule mentioned in Section 3.3.13.3.1 can be also used to select

more parsimonious models.

3.1 Prediction Error

Prediction error (PE) provides us with a measure of how well a predictive model performs so that we

can assess the quality of the model. It also aids in model selection since it allows us to make comparisons

among di�erent models. Hastie et al.Hastie et al. (20092009:222) provide some guidelines on how to use the available data

e�ectively when choosing and assessing amodel. When there is su�cient data, they recommend splitting

the data into three parts:
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1. 50% training sample for estimating the models,

2. 25% validation sample for model selection,

3. 25% test sample for assessing the accuracy of the �nal model.

When the observations available are too few to allow for such a split of the data, they suggest using in-

formation criteria or resamplingmethods for themodel selection step. PEwas introduced in Section 2.1.32.1.3.

�is section takes a closer look at PE and how it relates to model complexity, particularly when used for

model selection.

Suppose that our predictive model f̂ (X) is estimated from a set of training data given by T =

{(x1, y1) , (x2, y2) , . . . , (xn , yn)} that is drawn randomly from the population. �e training error of the

model is the average loss over the training sample. For squared error loss,

TE ( f̂ (x)) = 1
n

n
∑
i=1

(yi − f̂ (x i))
2 =

RSS (β̂)
n

. (3.1.1)

�e test error is the PE over an independent test sample. Hastie et al.Hastie et al. (20092009:220) provide these de�nitions

for PE. Using a speci�c training sample T , the test error, or extra-sample error, is

PET ( f̂ (x0)) = E [(y0 − f̂ (x0))
2∣ T ] . (3.1.2)

�e training set in this conditional expectation is �xed. (X0,Y0) is a new observation from the joint

distribution of X and Y , and the expectation is over this distribution. �e expected test error, or expected

PE averages the randomness in the training data,

PE ( f̂ (x0)) = ET E [(y0 − f̂ (x0))
2∣ T ] = E [PET ( f̂ (x0))] . (3.1.3)

Section B.1.2B.1.2 shows that the expected PE can be divided into three components,

PE ( f̂ (x0)) = E [y0 − f̂ (x0)]
2

= E [y0 − E (y0)]2 + E [ f̂ (x0) − f (x0)]
2

= var (y0) + E [ f̂ (x0) − E ( f̂ (x0))]
2 + [E ( f̂ (x0)) − f (x0)]

2

= σ2 + var ( f̂ (x0)) + B ( f̂ (x0))
2
. (3.1.4)
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�e �rst term var (y0) = σ2 is unavoidable, it is the variance of the new response around the true mean

f (x0). Hastie et al.Hastie et al. (20092009:223) calls it the irreducible error since our estimate of f (x0) is unable to change

it. �e second term is the variance of f̂ (x0) around its mean and the third term is the squared bias

of f̂ (x0), the squared di�erence between the mean of f̂ (x0) and the true mean f (x0). Hastie et al.Hastie et al.

(20092009:224) split the average squared bias further,

E [B ( f̂ (x0))
2] = E [E ( f̂ (x0)) − f (x0)]

2

= E [ f (x0) − xT0 β̂∗]
2
+ E [xT0 β̂∗−E ( f̂ (x0))]

2

= Ave [Model Bias]2 +Ave [Estimation Bias]2 , (3.1.5)

where they call β̂∗ the "best-�tting linear approximation to f ", de�ned by

β̂∗ = argminβ
E ( f (X) − XTβ)

2
.

�e model bias is the di�erence between the true model and the best-�tting linear approximation. �is

bias is irreducible unless a larger class of linear models, including transformations and interactions, is

considered (see Hastie et al.Hastie et al. (20092009:224)). �e estimation bias is the di�erence between the best-�tting

linear approximation and the average model estimate E ( f̂ (x0)).

For a least squares �t, model complexity is controlled by p, the number of variables in the model.

We can denote the model by f̂p (x) = xT β̂
p
with residual sum of squares RSSp. If the model is too

complex, the model starts to �t the noise in the training data - over�tting occurs and the model will be

too variable. However, if the model is under�tted then it will be very biased. In both cases, the model

will not generalize well to new data. �e training error is given by RSSp/ n and is over optimistic since

RSSp always decreases as p is increased. �us, training error is unable to detect over�tting. To asses

the predictive power of the model, we need to look at the test error. �e test error accounts for model

complexity and starts to increase as we begin over�tting. �e minimum test error enables us to choose

the correct balance of bias and variance. �e bias and variance are the last two terms in (3.1.43.1.4) and can be

controlled by choosing di�erent values of p. Generally, the model has high bias and low variance when

p is small. As p increases, the bias decreases and the variance increases. Least squares does not have any

estimation bias since E ( f̂p (x0)) = E (xT0 β̂
p
) = xT0 β̂∗.

47



For a ridge �t, model complexity is controlled by the parameter λ. We can denote the model by

f̂λ (x) = xT β̂
λ
, where β̂

λ
is the vector of restricted estimates. �e situation is similar and the last two

terms in (3.1.43.1.4) and can be controlled by choosing di�erent values of λ. �e model has low bias and high

variance when λ is small. As λ increases, the bias increases and the variance decreases. �e only di�erence

is that the ridge model has additional estimation bias since E ( f̂λ (x0)) = E (xT0 β̂
λ
) ≠ xT0 β̂∗.

Figure 3.1.13.1.1 demonstrates these concepts for the LASSO using 100 training samples of size 60 each.

�ere were 45 predictor variables, of which 15 were relevant. Model complexity is indexed by the fraction

of the ℓ1 norm, s = ∥β̂
L∥
1
/∥β̂∥

1
, where the null model occurs at 0 and the LSE at 1. Figure 3.1.1a3.1.1a shows

how the training error is an optimistic estimate of the test error. �e light curves represent the extra-

sample error in equation (3.1.23.1.2) and the thick curves are the averages given by equation (3.1.33.1.3). �e large

test error near 0 is due to high bias and the variation in the test error increases as we approach 1. �e

trade-o� between the bias and variance is seen clearly in Figure 3.1.1b3.1.1b. �e squared bias steadily decreases

and the variance increases as the complexity is increased, while the minimumMSE (marked with a point)

provides the best balance between them.
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Figure (3.1.1) Prediction error and model complexity: (a)(a) the training error and test error for
100 training samples of size 60, the average error is indicated by the thick solid lines; and (b)(b) the
composition of prediction error - the variance, squared bias andMSE for the simulated data.

Assume we have a sample ofm test observations (x0,1, y0,1) , (x0,2, y0,2) , . . . , (x0,m , y0,m) drawn ran-

domly and independently from the same population as the training data. Let the test data be given by

yT0
1×m

= (y0,1, y0,2, . . . , y0,m) and XT
0

(p+1)×m
= (x0,1, x0,2, . . . , x0,m). .Assume that y0 has the same probability
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structure as y. �at is, E (y0) = f (X0), var (y0) = σ2I and y0 is independent of y. �en the expected PE

is (see Section B.1.2B.1.2),

PE ( f̂p (X0)) = mσ2 +MSE ( f̂p (X0)) .

Since the MSE is the major part of the expected PE, results are o�en reported for the MSE of the test data

set (y0,X0). For the linear model f (X0) = X0β, we have

MSE ( f̂ (X0)) = EX0 ,Y0 [(X0β̂ −X0β)
T
(X0β̂ −X0β)]

= E (β̂
T
XT
0X0β̂ − βTXT

0X0β̂+βTXT
0X0β−β̂

T
XT
0X0β)

= E [(β̂−β)
T
XT
0X0β̂ − (β̂−β)

T
XT
0X0β]

= E [(β̂−β)
T
XT
0X0 (β̂−β)]

= (β̂−β)
T
E (XT

0X0) (β̂−β) .

If we assume E (X) = 0 then E (XT
0X0) = XT

0X0/ n, is the population variance-covariance matrix of X0.

In practice, the true form of the model is unknown. �e expected test error cannot be evaluated di-

rectly andmust be estimated. �e training error TE is an underestimate of the test error PET . Hastie et al.Hastie et al.

(20092009:228) also call PET the extra-sample error since the observations of the predictor variables di�er

from the training observations. Conversely, they de�ne the in-sample error as the error when new re-

sponse values y0 are observed at each of the training observations of the predictor variables. For squared

error loss,

PEin ( f̂ (x)) =
1
n

n
∑
i=1

E [(y0,i − f̂ (x i))
2∣ T ] . (3.1.6)

Hastie et al.Hastie et al. (20092009:228-229) de�ne optimism as the di�erence between the training error and the in-

sample error. Furthermore, they have the expected optimism, where the average is over the response

values of the training sample (the parameters in the training set are �xed),

ω ( f̂ (x)) = E (PEin ( f̂ (x))) − E (TE ( f̂ (x)))

= 2
n

n
∑
i=1
cov (yi , f̂ (x i)) . (3.1.7)
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See Section B.1.3B.1.3 for a proof. For a linear model where f̂ (X) = Hy,

cov (yi , f̂ (x i))

= cov
⎛
⎝
yi ,

n
∑
j=1

hi jy j
⎞
⎠

= hii var (yi) +∑
i≠ j

hi j cov (yi , y j)

= hiiσ2 since var (yi) = σ2 and cov (yi , y j) = 0

and therefore,

ω ( f̂ (x)) = 2
n

n
∑
i=1
cov (yi , f̂ (x i))

= 2
n

σ2
n
∑
i=1

hii

= 2
n

σ2 tr (H) . (3.1.8)

�is leads to general de�nition for the e�ective degrees of freedom (DF) of a �tted model f̂ (x). For any

adaptively �tted model with additive error, Y = f (X) + ε, where var (ε) = σ2, the e�ective DF is given by

d f = 1
σ2

n
∑
i=1
cov (yi , f̂ (x i)) (3.1.9)

As we �t the model to the data using the response, the covariance between the response and the �tted

model increases - the harder we �t, the larger the covariance. For a linear model f̂ (X) = Hy we have

d f = tr (H) . (3.1.10)

For least squares estimation the DF is the number of estimated parameters in the model, d f = p + 1, the

number of variables plus the intercept. For maximum likelihood estimation, the DF is also de�ned as the

number of estimated parameters in the model and in this case, d f = p + 2 since σ2 is also estimated. If

a subset of d variables is �tted using least squares then d f = d + 1 if the subset D is speci�ed a priori.

However, if subset selection is used to �nd the best subset D̂ of size d̂, the search for the optimal subset

uses extra DF so that d f > d̂ + 1. In this case, (3.1.93.1.9) can be estimated by simulation. See Hastie et al.Hastie et al.
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(20092009:77-79,232-233) for a discussion. �e expected in-sample error is therefore given by

E [PEin ( f̂ (x))] = E [TE ( f̂ (x))] + 2d f
n

σ2. (3.1.11)

For a least squares �t the in-sample error is (see Hastie et al.Hastie et al. (20092009:224) or Seber & LeeSeber & Lee (20032003:394-

397)),

PEin ( f̂ (x)) =
1
n

n
∑
i=1

PE ( f̂ (x i))

= σ2 + 1
n

n
∑
i=1
var ( f̂ (x i)) +

1
n

n
∑
i=1

[E ( f̂ (x i)) − f (x i)]
2
from (3.1.43.1.4)

= σ2 + p + 1
n

σ2 + 1
n

n
∑
i=1

[E ( f̂ (x i)) − f (x i)]
2
.

since

n
∑
i=1
var ( f̂ (x i)) = tr [var ( f̂ (X))]

= tr [var (Hy)] from (2.1.72.1.7)

= σ2 tr (H) = (p + 1) σ2

if X has full column rank. �e in-sample error is therefore directly related to the number of variables p.

However, f (xi)must be known to calculate it. �e expected optimism is given by

ω ( f̂ (x)) = 2
n

σ2 tr (H) = 2 (p + 1)
n

σ2.

So for least squares, the expected optimism increases as p increases, and decreases as the number of train-

ing observations n increases. Adding the expected optimism to the training error provides an estimate of

the in-sample error,

P̂E in ( f̂ (x)) = TE ( f̂ (x)) + ω ( f̂ (x))

= 1
n

n
∑
i=1

(yi − f̂ (x i))
2 + 2 (p + 1)

n
σ2

=
RSS (β̂)

n
+ 2 (p + 1)

n
σ2.
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In summary, prediction error provides a useful measure to assess the predictive performance of a

model. Since PE is related to model complexity, it can be used for model selection to select the best

balance of bias and variance. However, the expected PE cannot be calculated directly because it depends

on the true form of the model f (X) which is usually unknown. PE can be estimated by estimating the

expected optimism and adding it to the training error. Although this leads to an estimate of the in-sample

error, where the observations coincide with the training sample, Hastie et al.Hastie et al. (20092009:230) assert that it can

be used e�ectively for model selection. Some of the information criteria in Section 3.23.2 are estimates of

the expected in-sample error. �e resampling methods in Section 3.33.3 estimate the PE, or expected extra-

sample error, directly.

3.2 Information Criteria

Information criteria are used to make comparisons between models for the purpose of model selection.

To select the best model of size d ⩽ p, the selected criterion is calculated for models of size k = 1, 2, . . . , p

and the model corresponding to the best value is selected. �e RSS and R2 measures cannot be used

to compare models of di�erent sizes because they always improve when more variables are added to the

model. �e estimated error variance s2 and the adjusted R2 account for model complexity by adjusting

these measures with the DF. Mallow’s Cp works in a similar way and is also an estimate of the expected

in-sample error (see 3.1.63.1.6). If the errors are Gaussian, nested models can be compared using F-statistics

or the likelihood ratio test. �ese test will not be discussed here, the interested reader is referred to

SearleSearle (19711971:124-125), Seber & LeeSeber & Lee (20032003:98-102) and Johnson &WichernJohnson &Wichern (20072007:219-220). For non-nested

models, measures that penalize the likelihood, likeAkaike information criterion (AIC) and BIC can be used

when the errors are Gaussian.

An advantage of information criteria is that they have considerably less computational expense than

resampling methods - once the models are estimated, it is simply a matter of evaluating an expression

for each model. However, there are some drawbacks. Although the criteria are de�ned by the number of

variables in the model, this is only strictly correct for least squares or maximum likelihood estimation.

Note that for s2k , R̄
2
k and Ck we use k+ 1 for the k predictors plus the intercept. When using the maximum

likelihood, σ̃2 is another estimable parameter andwe use k+2 to account for it, except when σ2 is assumed

known in (3.2.123.2.12) and (3.2.133.2.13). �e correct adjustment is thus for the e�ective DF . Now, DF is not always

easy to specify. For a linear �t such as y = Hy, equation (3.1.103.1.10) can be used. However, for a nonlinear �t or
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if the parameters are chosen adaptively, the equation does not hold and DF can be estimated by simulation

using (3.1.93.1.9). Alternatively, Hastie et al.Hastie et al. (20092009:237-241) discuss the Vapnik–Chervonenkis Dimension,

which is a generalization of (3.1.93.1.9). Another di�culty is that σ2 is needed to calculate each criterion and a

model that is roughly correct is necessary to estimate σ̂2. �e criteria that penalize the likelihood function

have the further disadvantage of relying strongly on distributional properties.

s2 and Adjusted R2

Let RSSk = RSS (β̂
k
), the minimum RSS for a least squares model containing k predictors. Since least

squares seeks to minimize RSS it can be used as a measure of how well the model �ts. However, the RSS

decreases as more variables are added to the model and should only be used to compare di�erent models

of the same size k. To compare models of di�erent sizes, RSSk can be adjusted by the residual DF to arrive

at the estimated residual variance,

s2k =
RSSk

n − k − 1 . (3.2.1)

Let s̄2 (k) be the average of the s2k for all models of size k. Draper & SmithDraper & Smith (19981998:331) suggest that s2

starts to stabilize and approach the true error variance σ2 as the model is being more andmore over�tted.

�us, a plot of s̄2 (k) against k should reveal an approximate σ2 and the ideal number of variables k. �ey

assert that such a plot is most informative when there is a large number of variables and a large number

of observations, speci�cally p > 10 and 5p ⩽ n ⩽ 10p.

�e coe�cient of determination,

R2k = 1 −
RSSk

∑(yi − ȳ)2
(3.2.2)

is also a well known measure for assessing least squares models. Similarly to RSS, the value of R2 always

increases as more variables are included in the model. �e adjusted R2 can be used to compare models of

di�erent sizes and and is given by

R̄2k = 1 −
RSSk/ (n − k − 1)
∑(yi − ȳ)2/ (n − 1)

, (3.2.3)

where both RSS and∑(yi − ȳ)2 are adjusted by their DF (see Draper & SmithDraper & Smith (19981998:139-140)). It is easily

shown (see Seber & LeeSeber & Lee (20032003:400-401)) that the model with the maximum R̄2 is the same model with

the minimum s2.
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Mallow’s Cp

Mallows’ Cp is de�ned for a model containing k predictors as

Ck =
RSSk

σ̂2
+ 2 (k + 1) − n, (3.2.4)

where an estimate of σ2 from a low biasmodel can be used. It is suggested to use the estimate σ̂2 = s2p from

the least squares �t including all the predictors available. See Clarke et al.Clarke et al. (20092009:572,579). If the largest

model contains p variables, then σ̂2 = RSSp/ (n − p − 1) and for that model we have

Cp =
RSSp

σ̂2
+ 2 (p + 1) − n =

RSSp
RSSp/ (n − p − 1)

+ 2 (p + 1) − n = p + 1.

So by using σ̂2, we are comparing each model to the full model where Cp = p + 1. In fact, for all k, the

expected value of Ck is

E (Ck) =
E (RSSk)
E (σ̂2) + 2 (k + 1) − n

= (n − k − 1) σ2

σ2
+ 2 (k + 1) − n

= k + 1,

if the model is correct, E (y) = Xkβ
k
, so that E (RSSk) = (n − k − 1) σ2. �us, a plot of Ck against k

should reveal adequate models close to the Ck = k + 1 line. According to Draper & SmithDraper & Smith (19981998:332),

biased models will appear above the Ck = k + 1 line. �is is because RSSk is larger when the model is

biased so that Ck > k + 1. Seber & LeeSeber & Lee (20032003:402) show that when the estimate σ̂2 from the largest model

is used, and if n is much larger than k, then the lowest value of Ck − k − 1 coincides with the highest value

of R̄2k . Efron & TibshiraniEfron & Tibshirani (19931993:242), Hastie et al.Hastie et al. (20092009:230) and James et al.James et al. (20132013:211) de�ne a version

of the Ck statistic as an estimate of the expected in-sample PE,

Ck = P̂E in ( f̂ (xk))

= TE ( f̂ (xk)) +
2 (k + 1)

n
σ̂2 from (3.1.113.1.11)

= RSSk
n

+ 2 (k + 1)
n

σ̂2. (3.2.5)
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Seber & LeeSeber & Lee (20032003:402) show that Ck is an estimate of E [MSE ( f̂ (X))]/ σ2. �is result can be used to

show that the two versions in equations (3.2.43.2.4) and (3.2.53.2.5) are proportional and di�er by a factor of σ̂2/n.

For more information, MillerMiller (20022002:116-127) discusses Mallow’s Cp and modi�cations thereof in detail.

AIC and BIC

If the errors are Gaussian, we can use measures based on the likelihood function. If the true model

contains d ⩽ p predictors then the best model is selected having size

d̂ = argmin
k

ICk ,

with

ICk = Dk + φn (k) (3.2.6)

where Dk is the minimum deviance (see (2.1.132.1.13)) for a model containing k predictors,

Dk = −2 ln Lk (β̃
k
, σ̃2∣ε)

= n ln (2πσ̃2) + RSSk
σ̃2

(3.2.7)

= n ln (2πσ̃2) + n (3.2.8)

= n + n ln (2π) + n ln (σ̃2) , (3.2.9)

and φn (k) is the penalty function which increases with n. �us, these information criteria penalize the

likelihood function Lk and the idea is quite similar to shrinkage methods which penalize RSSk . However,

the penalty function for shrinkage methods applies to the parameters β
k
and depends on the shrinkage

parameter λ, whereas the penalty function for these criteria applies to the number of predictors k and

depends on the sample size n. �ese criteria are consistent for model selection if limn→∞ P (d̂ = d) = 1.

Clarke et al.Clarke et al. (20092009:579) show that if limn→∞ φn (k)/ n = 0 then limn→∞ P (d̂ < d) = 0 so that consistency

for selection can be shown by proving that limn→∞ P (d̂ > d) = 0.

AIC has penalty function φn (k) = 2 (k + 2). From (3.2.83.2.8), the AIC is given by

AICk = n ln (2πσ̃2) + n + 2 (k + 2) . (3.2.10)
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It is derived from the Kullback-Leibler discrepancy and is an estimate of the discrepancy between the

density of the true distribution of y and that speci�ed by the model. Seber & LeeSeber & Lee (20032003:407-410) show

that an unbiased estimate of the discrepancy between the densities is given by the modi�ed criterion

CAICk = n ln (2πσ̃2) + n (n + k + 1)
n − k − 3

= AICk +
2 (k + 2) (k + 3)

n − k − 3
= Dk +

2n (k + 2)
n − k − 3 . (3.2.11)

�e bias correction is necessary for small samples, Burnham & AndersonBurnham & Anderson (20022002:66) recommend using

this version when n/ (k + 2) < 40. When n is large AICk and CAICk are asymptotically equivalent since

lim
n→∞φn (k) = limn→∞

2n (k + 2)
n − k − 3 = 1.

When σ2 is known, AIC is

AICk =
RSSk

σ2
+ 2 (k + 1) , (3.2.12)

by using (3.2.73.2.7) and omitting the constant n log (2πσ2) which does not dependent on the model. �is

form of AIC is proportional toCp in (3.2.53.2.5) with σ2 known, they di�er by a factor of σ2/n. In the literature,

AIC has many similar de�nitions based on either equations (3.2.73.2.7) to (3.2.93.2.9), possibly removing constants

and dividing by n or σ̂2. For example James et al.James et al. (20132013:212) de�ne

AICk =
RSSk
nσ̂2

+ 2 (k + 2)
n

. (3.2.13)

Clarke et al.Clarke et al. (20092009:580-581) shows that limn→∞ P (d̂ > d) > 0 so that AICk is not consistent for selection.

But limn→∞ P (d̂ ⩾ d) = 1, so asymptotically, AICk will select too many variables. In the �nite sense, this

can be seen by its small penalty function which does not depend on n. Because the deviance is not heavily

penalized, more variables are allowed to enter the model. For this reason, Clarke et al.Clarke et al. (20092009:585-586) say

that AIC is robust and should be used when selecting a model for prediction purposes. Furthermore,

Clarke et al.Clarke et al. (20092009:580-581) show that the model chosen by AIC is minimax optimal. For small samples,

or when p is large compared to n, CAICk will select less variables than AICk because its penalty function

is larger. MillerMiller (20022002:162-163) shows that AICk and Ck are equivalent, but if σ̂2 = RSSk/ (n − k − 1) is

used for AICk then it will select more variables than Ck . For more information, Burnham & AndersonBurnham & Anderson
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(20022002) provide extensive details about AIC.

�e Bayesian information criterion (BIC), also known as the Schwarz criterion, penalizes the deviance

with penalty function φn (k) = ln (n) (k + 2). It is given by

BICk = n ln (2πσ̃2) + n + ln (n) (k + 2) (3.2.14)

and when σ2 is known then

BICk =
RSSk

σ2
+ ln (n) (k + 1) . (3.2.15)

�e BICwas developed from a Bayesian approach: choosing themodel withminimum BIC is equivalent to

choosing themodel with the largest posterior probability. For a discussion about the Bayesian perspective

of BIC, see Seber & LeeSeber & Lee (20032003:410-413), or Hastie et al.Hastie et al. (20092009:233-235). As with AIC, there appear to be

many forms of BIC in the literature. In particular, James et al.James et al. (20132013:212) de�ne it as

BICk =
RSSk
n

+ (ln n) (k + 2) σ̂2

n
. (3.2.16)

�e BIC penalty depends on n and is much stricter than AIC since ln n > 2 when n > e2 = 7.389. �us, BIC

allows less predictors into the model and is more appropriate for identifying the correct model. In fact,

Clarke et al.Clarke et al. (20092009:584) show that BIC is consistent for selection because limn→∞ P (d̂ > d) = 0. However,

it is not minimax optimal.

Other Information Criteria

�e information criteria discussed above are among the most popular criteria used but there are many

others. �e minimum description length (MDL) minimizes the negative log-posterior distribution and

is thus equivalent to the BIC which maximizes the posterior probability (see MillerMiller (20022002:158-160) and

Hastie et al.Hastie et al. (20092009:235-237)). �ere are also a number of modi�ed AIC and BIC criteria. MillerMiller (20022002:157)

explains two modi�cations of the AIC, Risannen’s criterion and the Hannan and Quinn (HQ) criterion.

Clarke et al.Clarke et al. (20092009:586-587) alsomentions theHQ criterion including some others, the deviance informa-

tion criterion (DIC), the focused information criterion (FIC) and the covariance in�ation criterion (CIC).

MillerMiller (20022002:127-129) discusses the risk in�ation criterion (RIC), which has amuch smaller dependency on

the number of variables. ShaoShao (19971997) examines the asymptotic properties of various information criteria

for linear model selection.
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3.3 Resampling Methods

Resampling methods consist of repeatedly drawing random samples from the training data and estimat-

ing the same model or measure on each sample. �ey can be immensely bene�cial if there is not a wealth

of data available since the same observations are reused in di�erent subsets of data. A disadvantage of

resampling is that it can be very computationally expensive. If the model is computationally expensive

then resampling methods will be even more so, since they involve �tting the same model repeatedly on

di�erent subsets of data. �ese methods can be used to measure accuracy, such as �nding standard errors

of estimates; for model selection, like choosing the level of complexity for a method or deciding between

di�erent methods; and for model assessment, to ascertain how well the model performs. A major advan-

tage is that they do not make any distributional assumptions.

3.3.1 Cross-Validation

Cross-validation is a resampling method that can be used for model selection and model assessment. In

Section 3.13.1, it was recommended to split the data into three parts, a training set, a validation set and a test

set, provided there is su�cient data to do so. If there is insu�cient data to warrant having a designated

validation set and test set, the training data can be split into parts to obtain a validation set. James et al.James et al.

(20132013:176-178) describe the validation set approach which randomly splits the observations into two equal

parts, a training set and a validation set. �e training observations are used to estimate the parameters of

themodel and those estimates are used tomake predictions on the validation observations. �e estimated

test error for the validation set is used to assess the performance of the model. However, they show

that estimating the test error in this way can be highly variable. �ey repeat the process ten times, each

time randomly splitting the data into two equal parts, estimating the parameters on the training set and

predicting the validation set. �ey point out that the variation of the test error among the ten models is

large. �e test error is very di�erent each time, and highly depends on which observations are included

in each data set. Furthermore, since the model is �t on only a subset of the data, they suggest that the

estimated test error is an overestimate of the actual test error for the model �t on the full data set.

Repeatedly performing the process of splitting the data, estimating and predicting is the basis of CV.

Eachmethod splits the data in di�erent ways and provides an estimate of PE. Hastie et al.Hastie et al. (20092009:241) assert

that CV directly estimates the expected PE. Using CV avoids the problems incurred in the validation set

approach.
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K-Fold Cross-Validation

K-Fold CV repeatedly splits the data into K di�erent parts, approximately equal in size, and uses one part

for predictions and the remaining parts for estimation. For each k, the k-th part is used for validation

and the other k − 1 parts are used for training.

Algorithm 3.3.1 K-fold cross-validation

1. Randomly split the data into K parts

2. For k = 1, 2, . . . ,K

(a) �e training set includes all the observations except those in the k-th part. Fit the model to the

training set and denote it by f̂ −k (x).

(b) Use the model f̂ −k (x) to make predictions on the k-th part of the data which includes nk ob-

servations.

(c) Calculated the estimated test error for the k-th fold

P̂Ek =
1
nk

nk
∑
i=1

(yi − f̂ −k (x i)) .

3. Calculate the CV estimate of PE is the average

CVK ( f̂ ) = 1
K

K
∑
k=1

P̂Ek . (3.3.1)

Usually we choose K = 5 or K = 10. James et al.James et al. (20132013:183-184) state that these values yield estimates

which are not excessively biased or excessively variable. �e size of each training sample is (K − 1) n/K, so

as K increases, themodel is �t on a larger data set and the bias is reduced. However, the variance increases

as K increases. �e larger K is, the more the training sets overlap each other and the correlations increase

between the �tted models, and therefore between the P̂Ek . Since CVK ( f̂ ) is the mean of the P̂Ek , it’s

variance is given by

var [CVK ( f̂ )] = 1
K2

K
∑
k=1
var (P̂Ek) +

2
K2 ∑j≠k

cov (P̂E j , P̂Ek) . (3.3.2)
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So the variance of the estimate increases as the correlations between the P̂Ek increases. �e choice of K

thus plays an important role in estimating the PE. Similar discussions about the bias and variance ofK-fold

CV can be found in Clarke et al.Clarke et al. (20092009:593-594) and Hastie et al.Hastie et al. (20092009:242-243). James et al.James et al. (20132013:182)

notice that the variability of the K-fold CV estimate of PE is much lower than that of the validation set

approach, there is still variation in how the data is split but not as much as when the data is split into two

equal parts. �ey also note that the K-fold CV estimates are subject to moderate bias, an improvement

over the validation set approach.

James et al.James et al. (20132013:182-183) do simulation studies to examine how well K-fold CV estimates the true

PE for di�erent levels of complexity of a model. �ey �nd that, although the estimates can sometimes be

biased and underestimate the true PE, they usually do a good job in identifying the minimum value of

the PE. �us, K-fold CV may be more suited for model selection, where the minimum is of importance,

rather than for model assessment, where the actual value if of interest.

Breiman et al.Breiman et al. (19841984:Section 3.4.3) proposed the one standard error (1 SE) rulewhich they use for prun-

ing classi�cation and regression trees. Suppose we use CV for model selection and CVK is plotted against

model complexity. �ere is o�en a steep initial decrease in the curve, followed by a long �at tail and then

possibly an increase. �e minimum CVK o�en lies somewhere on the long �at tail and can be unstable

with slight up and down �uctuations. We can estimate the variance of each CVK using equation (3.3.23.3.2),

then the 1 SE rule selects the smallest model for which CVK lies within one standard error of theminimum

CVK . �e idea is to stabilize the selection and promote parsimony without losing accuracy. Hastie et al.Hastie et al.

(20092009:244) recommend using the 1 SE rule for subset selection.

Leave One Out Cross-Validation

leave one out cross-validation (LOOCV) is a special case of K-fold CV with K = n. For k = 1, 2, . . . , n,

we remove the k-th observation (xk , yk) from the data set and �t the model f̂ −k (x) on the remaining

n − 1 observations. �e model is then used to predict the k-th observation and the estimated test error is

calculated as P̂Ek = (yk − f̂ −k (xk))
2
. �e LOOCV estimate of the PE is

CVn ( f̂ ) =
1
n

n
∑
k=1

P̂Ek

= 1
n

n
∑
k=1

(yk − f̂ −k (xk))
2
. (3.3.3)
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James et al.James et al. (20132013:179-180) point out some advantages of this method over the validation set approach.

Since eachmodel is �tted on n−1 observations, nearly the entire data set, LOOCVwill not overestimate the

test error like the validation set approach and the estimate will be approximately unbiased. Furthermore,

since there is no randomness in data splits, LOOCV will always yield the same results if repeated multiple

times.

Another consideration is that LOOCV can be computationally expensive if n is large or if the model

requires extensive calculation since the model has to be �t n times. If this is the case, K-fold CV could

be more feasible since the model is �tted only K times. Although, for a least squares �t, the following

formula can be used to obtain the LOOCV estimate of the PE (see James et al.James et al. (20132013:180)),

CVn ( f̂ ) =
1
n

n
∑
i=1

⎛
⎝
yi − f̂ (x i)
1 − hii

⎞
⎠

2

, (3.3.4)

where ŷi is the i-th least squares �tted values and hii is the i-th diagonal element of the projection matrix

H in (2.1.82.1.8). �e values hii are called leverages, they reveal the extent to which an observation yi e�ects

it own �t ŷi . �ey can also be used to identify outlying x i observations (see Draper & SmithDraper & Smith (19981998:207)).

Generalized Cross-Validation

generalized cross-validation (GCV) is an approximation to LOOCV. For any linear �tting method where

we have f̂ (x) = ŷ = Sy, under squared-error loss the GCV is given by (see Hastie et al.Hastie et al. (20092009:244-245)),

GCV ( f̂ ) = 1
n

n
∑
i=1

⎛
⎝

yi − f̂ (x i)
1 − tr (S)/ n

⎞
⎠

2

, (3.3.5)

since sii ≈ ∑n
i=1 sii/n = tr (S)/ n. We saw in (3.1.93.1.9) that tr (S) is the e�ective degrees of freedom in the

model. �us, for a least squares �t the GCV is

GCV ( f̂ ) =
RSSp

n (1 − p/n)2
= n

(n − p)2
RSSp =

n
n − p

σ̂2.

Clarke et al.Clarke et al. (20092009:591-592) show that GCV can be seen as a weighted LOOCV. Furthermore, they show

that both methods are asymptotically equivalent to Mallows’ Cp and AIC. �e GCV is also known as the

prediction sum of squares statistic (PRESS), see MillerMiller (20022002:143-146).
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Other Cross-Validation Methods

Delete-d CV removes d observations from the data and holds them out as a validation set. �e model

is �tted on the remaining n − d observations and then used to predict the validation set. A major dis-

advantage is its computational load. When d = 1, it is identical to LOOCV. �e method is mentioned in

Clarke et al.Clarke et al. (20092009:590) who provide references. Clarke et al.Clarke et al. (20092009:598-599) also mention Monte Carlo

CV (MCCV), Bayesian CV and median CV.

3.3.2 Bootstrap

�ebootstrap is a resamplingmethod that is used to assess accuracy. It can be used to �nd standard errors

of an estimate when the distribution of the estimate is unknown. It can also be used to estimate prediction

accuracy for model assessment.

Standard Errors

Suppose the training observations are denoted by t i = (x i , yi) for i = 1, 2, . . . , n. �e training set can

then be denoted by T = (t1, t2, . . . , tn). A bootstrap sample T∗b = (t∗b1 , t∗b2 , . . . , t∗bn ) is a sample of

size n drawn randomly from the training set by sampling with replacement. It can be interpreted as a

random sample drawn from F̂, the empirical distribution of T . �e distribution F̂ is an estimate of the

probability distribution F of T . It is a discrete distribution that puts a probability of 1/n on each of the

observations t i for i = 1, 2, . . . , n. We can estimate any function of the probability distribution by using the

empirical distribution. Suppose we would like to determine the standard errors of an estimate θ̂ = f̂ (x)

which is given by SEF (θ̂). �e ideal bootstrap estimate of SEF (θ̂) uses the empirical distribution instead

of the unknown probability distribution to produce SEF̂ (θ̂
∗). �e sample standard deviation of the

bootstrap replications (θ̂
∗1
, θ̂

∗2
, . . . , θ̂

∗B) is a consistent estimate of SEF̂ (θ̂
∗). �e following algorithm

demonstrates the process.

Algorithm 3.3.2 Bootstrap standard errors

1. For b = 1, 2, . . . , B

(a) Draw an independent bootstrap sample T∗b = (t∗b1 , t∗b2 , . . . , t∗bn )

62



(b) Calculate the estimate using the bootstrap sample to obtain the bootstrap estimate

θ̂
∗b = f̂ (x∗b)

2. Calculate the sample mean of bootstrap estimates

θ̄∗ = 1
B

B
∑
b=1

θ̂
∗b

3. A consistent estimate of the standard errors of θ̂ is given by

ŜEB =
¿
ÁÁÀ 1

B − 1
B
∑
b=1

(θ̂
∗b − θ̄∗)

2

Efron & TibshiraniEfron & Tibshirani (19931993:52) suggest that the number of replications needed to provide a good es-

timate of SEF (θ̂) could be as little as B = 50 and seldomly exceeds B = 200. See Efron & TibshiraniEfron & Tibshirani

(19931993:45-56,105-117) for more information on the bootstrap.

Prediction Error

A simple approach for using the bootstrap to estimate PE is to let the training sample act as the test sample.

Draw B bootstrap samples from the training data. For b = 1, 2, . . . , B, estimate the model f̂ ∗b (x∗b) from

the b-th bootstrap sample, then use the model to predict the training observations and obtain an estimate

of the PE

P̂Eb =
1
n

n
∑
i=1

(yi − f̂ ∗b (x i))
2
.

�e simple bootstrap estimate is then the average of these B estimates

P̂Eboot =
1
B

B
∑
b=1

P̂Eb .

So the training set is being used for predictions. But each model is �tted on a bootstrap sample which

is sampled with replacement from the training set. So the data sets being used for estimation and pre-

diction both contain some of the same observations. �us this is not a good estimate of PE, it tends to

underestimate the true PE and promote over�tted models.

63



Efron & TibshiraniEfron & Tibshirani (19931993:247-252) suggest a more re�ned bootstrap estimate by estimating the opti-

mism and adding it to the training error. In the simple bootstrap approach, for b = 1, 2, . . . , B, compute

the error of the �tted model. �at is, the error when the model estimated from the b-th bootstrap sample

is used to predict the b-th bootstrap sample itself. We can view this as the training error for the b-th

bootstrap sample,

TEb =
1
n

n
∑
i=1

(y∗bi − f̂ ∗b (x∗bi ))2 .

Because the model is predicted on the exact same observations used for estimation, TEb should be lower

than P̂Eb. An estimate of the optimism for the b-th bootstrap sample is then given by P̂Eb − TEb. To

obtain an estimate of the expected optimism, we take the average over the B bootstrap samples,

ω̂ = 1
B

B
∑
b=1

{P̂Eb − TEb} .

If TE = RSS/n is the training error from the original training sample, then the re�ned bootstrap estimate

of PE is given by

P̂Erboot = TE + ω̂.

Efron & TibshiraniEfron & Tibshirani (19931993:252-254) and Hastie et al.Hastie et al. (20092009:251) discuss an alternative approach. Sim-

ilar to LOOCV, it involves predicting each observation in the training sample using only the bootstrap

samples which do not contain that observation. Suppose B−i is the set that indexes which bootstrap sam-

ples do not contain the i-th observation and B−i is the number of these bootstrap samples. �en the

leave-one-out bootstrap estimate is given by

P̂E(1) = 1
n

n
∑
i=1
∑

b∈B−i
(yi − f̂ ∗b (x i))

2/B−i .

Although it does not over�t, it is biased due to the size of the training set, resulting in an estimate that is

usually larger than the true PE. When drawing a bootstrap sample of size n, at each draw, an observation

from the training set has probability 1/n of being selected and probability 1 − 1/n of not being selected.

Since each draw is independent, the probability that the i-th observation does not appear in the b-th

bootstrap sample is

P (t i ∉ {T∗b}) =
n
∏
i=1

(1 − 1/n) = (1 − 1/n)n ,
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where {T∗b} is the set of observations included in the b-th bootstrap sample. Using the following de�-

nition of the exponential function,

exp (x) = lim
n→∞(1 + x

n
)
n
,

we can approximate this probability by exp (−1) = 0.368. So, the probability that the i-th observation

appears at least once in the b-th bootstrap sample is

P (t i ∈ {T∗b}) = 1 − P (t i ∉ {T∗b})

= 1 − (1 − 1/n)n

≈ 1 − exp (−1)

= 0.632.

Efron & TibshiraniEfron & Tibshirani (19931993:252-254) make use of this probability and de�ne an adjusted estimate of the

optimism as

ω̂(.632) = 0.632(P̂E(1) − TE) .

�e .632 estimate of the PE is then

P̂E(.632) = TE + ω̂(.632)

= TE + 0.632(P̂E(1) − TE)

= 0.368 TE + 0.632 P̂E(1).

�is adjusted estimate lowers the value of P̂E(1)and is roughly unbiased for the true PE. However, this

estimate does not work well in over�t situations (Hastie et al.Hastie et al. (20092009:251-252)). By estimating the rate of

over�tting, a further alternative for improving P̂E(.632) can be derived (see Efron & TibshiraniEfron & Tibshirani (19971997)).
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Chapter 4

LASSOMethods

�e LASSO is explored in this chapter, with an introductory look at its penalty function in Section 4.1.14.1.1.

To further understand how the penalty operates, the orthogonal design is examined. A closed form so-

lution can be obtained in orthogonal designs and such functions are known as thresholding functions.

Section 4.1.24.1.2 compares the LASSO thresholding (so�-thresholding), with that of ridge regression and sub-

set selection (hard thresholding). Further insight can be gained by exploring the geometry of the LASSO

in the two predictor case. Section 4.1.34.1.3 looks at the norm balls formed by penalties constructed with

ℓq-norms and shows how the LASSO is able to perform variable selection in contrast to ridge regression.

�e e�ciency history of algorithms for computing the LASSO and an overview of those currently available

are given in Section 4.1.44.1.4. Suggestions and approximations for �nding the standard errors of LASSO esti-

mates are discussed in Section 4.1.54.1.5, followed by a look at the consistency and asymptotic properties of

the LASSO. Section 4.1.64.1.6 concludes the exploration of the LASSOwith an approximation of the DF and ways

to select tuning parameter. Methods for controlling the bias of the LASSO and improving on its selection

consistency are covered in Section 4.24.2. �e relaxed LASSO algorithm and the adaptive LASSO are discussed

in Section 4.2.14.2.1 and Section 4.2.24.2.2, respectively. Further modi�cations of the LASSO to incorporate di�er-

ent structure between the predictors are presented in Section 4.34.3, including the fused LASSO for ordered

predictors (Section 4.3.14.3.1) and LASSOmethods for including grouped variables (Section 4.3.24.3.2). Chapter 44

by nomeans provides an exhaustive look at all the methods and adaptations available today. �e research

in this �eld has been explosive since the LASSOs introduction in 1996.

4.1 �e LASSO

4.1.1 Estimation

�e least angle selection and shrinkage operator (LASSO) was introduced by TibshiraniTibshirani (19961996). �e for-

mulation is similar to ridge regression,
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α̂L = argmin
α

∥v − Zα∥2 subject to ∥α∥1 ⩽ t, (4.1.1)

where t > 0. �e di�erence is that the LASSO constraint uses the ℓ1 norm ∥α∥1, whereas the ridge constraint

uses the squared ℓ2 norm ∥α∥2. As with ridge regression, the problem 4.1.14.1.1 is equivalent to a penalized

regression, in this case

α̂L = argmin
α

∥v − Zα∥2 + λ ∥α∥1 , (4.1.2)

where λ ⩾ 0 is selected so that ∥α∥1 = t. �e LASSO penalty function,

PL (α) = λ ∥α∥1 = λ
p
∑
j=1

∣β j∣ , (4.1.3)

is convex and is always positive. So both RSS and the penalty function are minimized and it is clear that

the penalty function will be be a minimum when α1, α2, . . . , αp are all close to zero. �us, the LASSO

also shrinks the parameter estimates towards zero. However, the LASSO penalty is non-di�erentiable at

zero and it has the e�ect of setting some parameter estimates exactly to zero. Hence, the LASSO �ts a

subset of variables, thereby performing variable selection as well as shrinkage. When λ = 0 the penalty

has no e�ect and α̂L = α̂, the LSE, but when λ → ∞, the null model is obtained α̂L = 0. A convenience

of the LASSO is that the tuning parameters are bounded. Osborne et al.Osborne et al. (2000b2000b) show that α̂L = 0 for all

λ ⩾ λmax = ∥ZTv∥∞ = max j ∣zTj v∣ so that a search for the optimal value of λ can commence on the interval

(0, λmax). �e constrained problem can also provide a closed range of tuning parameters to consider. Let

t0 = ∥α̂∥1, the ℓ1 norm of the LSE, then α̂ is obtained whenever t ⩾ t0 and more shrinkage is applied as

t → 0 with the null model occurring at t = 0. So we can search for the optimal t on the interval (0, t0), or

more conveniently, we can parameterize the LASSO by a tuning parameter s = t/t0 ∈ (0, 1). Note that the

relationship between λ and t is not strictly one-to-one because of this behaviour. Table 4.1.14.1.1 summarizes

the many-to-one relationship of these parameters at the boundaries of the LASSO path.

Boundary Constraint Parameter Penalty Parameter

α̂L = 0 Null model t = 0 λ ⩾ ∥ZTv∥∞
α̂L = α̂ Least squares model t ⩾ ∥α̂∥1 λ = 0

Table (4.1.1) Tuning parameters at the LASSO path boundaries. For the null model, t = 0 for
many values of λ and for the least squares model, λ = 0 for many values of t.
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Since

∣α j∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α j if α j > 0
0 if α j = 0

−α j if α j < 0

�e subgradient of PL (α) for α j > 0 is λ and is −λ for α j < 0 so that the subdi�erential is given by λϖ

where

ϖ j ∈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if α j > 0
[−1, 1] if α j = 0

−1 if α j < 0
. (4.1.4)

So the LASSO shrinks all parameters at a constant rate since ϖ j is constant for all j and does not depend

on α. Note that ϖ j = sign (α j) and we have that ∥α∥1 = ϖTα.

4.1.2 Orthogonal Design

To compare the e�ect of the LASSOs shrinkage and selection with the e�ects of traditional methods, it is

useful to look at an orthogonal design where a closed form solution can be obtained. When the predictors

are mutually orthogonal, we have that

1. 1Tx j = 0 for all j = 1, 2, . . . , p, and

2. xTj xk = 0 for all j ≠ k

�en, XTX is the diagonal matrix

XTX =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n 1Tx1 ⋯ 1Txp
1Tx1 xT1 x1 ⋯ xT1 xp
⋮ ⋮ ⋱ ⋮

1Txp xT1 xp ⋯ xTp xp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n 0 ⋯ 0
0 xT1 x1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ xTp xp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

�us,

(XTX)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/n 0 ⋯ 0
0 1/xT1 x1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1/xTp xp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

so the LSEs are given by

β̂ j =
xTj y

xTj x j
with var (β̂ j) =

1
xTj x j

σ2,
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for j = 1, 2, . . . , p. �us, in the orthogonal design, β̂ j does not depend on any predictors other than X j

and remains unchanged if we set βk = 0 for any j ≠ k. Furthermore, Seber & LeeSeber & Lee (20032003:52) show that

RSS (β) = vTv−
p
∑
j=1

β̂2jx
T
j x j,

so that RSS (β) increases by exactly β̂2kx
T
k xk when β̂k = 0.

When the predictors are orthogonal and standardized then the design is orthonormal, since we have

1. 1Tz j = 0 for all j = 1, 2, . . . , p, and

2. zTj zk = 0 for all j ≠ k, and

3. zTj z j = 1.

Hence, Z is an orthonormal matrix with ZTZ = I. �is can also be seen by noting that

ZTZ = R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 r12 ⋯ r1p
r21 1 ⋯ r2p
⋮ ⋮ ⋱ ⋮
rp1 rp2 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= Ip,

since the correlation between two orthogonal vectors is zero, r jk = 0. �erefore the standardized LSEs are,

α̂ = ZTv or α̂ j = zTj v

with

var (α̂ j) = σ2.

See Draper & SmithDraper & Smith (19981998:165-167) or Seber & LeeSeber & Lee (20032003:51-53) for more information on orthogonal de-

signs.
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Since ZTZ = I and α̂ = ZTv, we can write RSS as

RSS (α) = ∥v − Zα∥2

= vTv − 2αTZTv + αTZTZα

= vTZTZv − 2αT α̂ + αTα

= α̂T α̂ − 2αT α̂ + αTα

= ∥α̂ − α∥2 .

�us, minimizing the penalized RSS is equivalent to minimizing

hλ (α) = 1
2
∥α̂ − α∥2 + Pλ (∣α∣) , (4.1.5)

for any penalty function Pλ (∣α∣) of α depending on λ.

Using the LASSO penalty, the objective function is

hL (α) = 1
2

p
∑
j=1

(α̂ j − α j)
2 + λ

p
∑
j=1

∣α j∣

=
p
∑
j=1

[ 1
2
(α̂ j − α j)

2 + λ ∣α j∣] . (4.1.6)

Since 4.1.64.1.6 is additively separable,

hL (α) =
p
∑
j=1

hL (a j) ,

we have that
∂
∂α j

hL (α) = d
dα j

hL (α j)

so that minimizing 4.1.64.1.6 with respect to α is equivalent to p component-wise minimizations with respect

to α j for j = 1, 2, . . . , p. Because of the −α jα̂ j term in the objective function, we choose α j to have the

same sign as α̂ j to preserve the formation of the problem.

1. Suppose that α̂ j > 0, then for j = 1, 2, . . . , p we must minimize

hL (α j) =
1
2

α̂2j − α̂ jα j +
1
2

α2j + λα j, (4.1.7)
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since ∣α j∣ = α j when α j ⩾ 0. �e derivative of (4.1.74.1.7) is

h′L (α j) = α j − α̂ j + λ = α j − (α̂ j − λ) .

(a) If ∣α̂ j∣ < λ then −(α̂ j − λ) > 0 so that h′L (α j) > 0 for all α j ⩾ 0. �us (4.1.74.1.7) is strictly

increasing for all α j ⩾ 0 and α̂L
j = 0.

(b) If ∣α̂ j∣ ⩾ λ/ then −(α̂ j − λ) ⩽ 0 and setting h′L (α j) = 0 gives the solution

α̂L
j = α̂ j − λ = sign (α̂ j) (∣α̂ j∣ − λ) . (4.1.8)

2. Similarly, for α̂ j < 0 we must minimize

hL (α j) =
1
2

α̂2j − α̂ jα j +
1
2

α2j − λα j, (4.1.9)

since ∣α j∣ = −α j when α j ⩽ 0. �e derivative of (4.1.94.1.9) is

h′L (α j) = α j − α̂ j − λ = α j − (α̂ j + λ) .

(a) If ∣α̂ j∣ < λ then −(α̂ j + λ) < 0 so that h′L (α j) < 0 for all α j ⩽ 0. �us (4.1.94.1.9) is strictly

decreasing for all α j ⩽ 0 and α̂L
j = 0.

(b) If ∣α̂ j∣ ⩾ λ then −(α̂ j + λ) ⩾ 0 and setting h′L (α j) = 0 gives the solution

α̂L
j = α̂ j + λ = −(−α̂ j − λ) = sign (α̂ j) (∣α̂ j∣ − λ) . (4.1.10)

Now, we have the solution in the common form (4.1.84.1.8) and (4.1.104.1.10) for ∣α̂ j∣ ⩾ λ. We can incorporate

the solution for ∣α̂ j∣ < λ by considering only the positive part of (∣α̂ j∣ − λ),

α̂L
j = sign (α̂ j) (∣α̂ j∣ − λ) δ (∣α̂ j∣ ⩾ λ) = sign (α̂ j) (∣α̂ j∣ − λ)+ , (4.1.11)

where

δ (a ∈ A) = { 1 if a ∈ A
0 if a ∉ A and (a)+ = { a if a > 0

0 if a ⩽ 0 . (4.1.12)
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�e solution (4.1.114.1.11) can also be written as

S (α̂ j , λ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α̂ j − λ if α̂ j > λ
0 if ∣α̂ j∣ ⩽ λ
α̂ j + λ if α̂ j > −λ

, (4.1.13)

which is known as the so� thresholding rule.

Subset selection can be viewed in a similar manner to ridge regression and the LASSO. �e problem

can be stated as �nding a subset of d < p parameter estimates which minimizes RSS,

α̂SS = argmin
α

∥v − Zα∥2 subject to
p
∑
j=1

δ (α j ≠ 0) ⩽ d, (4.1.14)

It is clear from the constraint∑p
j=1δ (α j ≠ 0) that the process is discrete. �e problem is equivalent to the

penalized regression

α̂L = argmin
α

∥v − Zα∥2 + λ2

2
∥α∥0 , (4.1.15)

where the penalty function contains the so-called ℓ0-"norm" (SheShe (20092009)),

PSS (α) = λ2

2
∥α∥0 =

λ2

2

p
∑
j=1

δ (α j ≠ 0) (4.1.16)

and λ ⩾ 0 is chosen so that ∑p
j=1δ (α j ≠ 0) = d is the number of nonzero parameters. With σ2 known,

AIC and BIC correspond to this penalty with λ2/2 = 2σ2/n and λ2/2 = ln (n) σ2, respectively (see

Bühlmann & van de GeerBühlmann & van de Geer (20112011:20)). Using (4.1.54.1.5), we need to minimize the following objective func-

tion for orthogonal designs,

hSS (α j) =
1
2
(α̂ j − α j)

2 + λ2

2
δ (α j ≠ 0) .

If α j = 0 then hSS (0) = 1
2 α̂2j . If α j ≠ 0 then hSS (α j) = (α̂ j − α j)

2 + λ2/2 and the minimum is obtained

when α j = α̂ j with hSS (α̂ j) = λ2/2. �us, α̂ j is the solution if

hSS (α̂ j) < hSS (0)

⇔ 1
2 λ2 < 1

2 α̂2j

⇔ ∣α̂ j∣ > λ
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and otherwise the solution is 0. �erefore,

α̂SS
j = α̂ jδ (∣α̂ j∣ > λ) .

�is is also known as the hard thresholding rule,

H (α̂ j , λ) = { α̂ j if ∣α̂∣ j > λ
0 if ∣α̂ j∣ ⩽ λ . (4.1.17)

�e ridge estimator is given in (2.3.52.3.5) as

α̂R = (ZTZ + λI)−1 ZTv.

So for the orthogonal design we have α̂R = (1 + λ)−1 α̂ or

α̂R
j =

α̂ j

1 + λ
.

Donoho & JohnstoneDonoho & Johnstone (19941994) proposed using the functions (4.1.134.1.13) and (4.1.174.1.17) to denoise the esti-

mates obtained when using wavelet transforms for function estimation. �e estimates obtained in the

orthogonal design can hence be viewed as thresholding functions. Table 4.1.24.1.2 summarizes the penalty

functions and thresholding functions for subset selection, ridge regression and the LASSO. �e penalty

functions and thresholding functions for each method are shown in Figures 4.1.14.1.1 and 4.1.24.1.2, revealing how

they shrink the LSEs when λ = 2. Subset selection does not perform any shrinkage and discretely sets

parameters to zero. Conversely, ridge regression does not set any parameters to zero and the shrinkage

is proportional to the size of the LSEs. �e LASSO is a compromise between the two traditional methods,

setting some parameters to zero and shrinking others, although the shrinkage is constant and does not

depend on the size of the LSEs.
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Method Penalty Function �resholding Function

Subset Selection λ∑ δ (α j ≠ 0) α̂ jδ (∣α̂ j∣ > λ)

Ridge regression λ∑ α2j α̂ j/ (1 + λ)

LASSO λ∑∣α j∣ sign (α̂ j) (∣α̂ j∣ − λ)+

Table (4.1.2) Penalty and thresholding functions for subset selection, ridge regression and LASSO
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Figure (4.1.1) Penalty functions with λ = 2 for (a)(a) subset selection, (b)(b) ridge regression and (c)(c)
LASSO. The LASSO penalty is non-differentiable at zero.
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Figure (4.1.2) Thresholding functions with λ = 2 for (a)(a) subset selection, which is discrete with
a jump to zero between α̂ ∈ [−λ, λ], (b)(b) ridge regression, which shrinks estimates proportional
to their size, and (c)(c) the LASSO, which sets estimates to zero and applies constant shrinkage to
nonzero estimates.

74



4.1.3 Geometry

To understand why the LASSO is able to perform variable selection, it is helpful to look at the geometric

interpretation. �e RSS can be written as

RSS (α) = ∥v − Zα∥2

= ∥(v − Zα̂) − (Zα−Zα̂)∥2

= ∥(v − Zα̂) − Z (α−α̂)∥2

= ∥v − Zα̂∥2 − 2 (α−α̂)T ZT (v − Zα̂) + (α−α̂)T ZTZ (α−α̂)

= RSS (α̂) + (α−α̂)T ZTZ (α−α̂) .

since, from the normal equations,

ZT (v − Zα̂) = 0.

�us,

RSS (α) = (α−α̂)T ZTZ (α−α̂) (4.1.18)

up to an additive constant. So, RSS is a p-dimensional hypersurface in Rp+1 space known as a quadric

surface.

Consider the 3-dimensional case where p = 2. �en,

ZTZ = R =[ 1 r12
r11 1 ]

with determinant

∣ZTZ∣ = 1 − r212

and inverse

(ZTZ)−1 = 1
1 − r212

[ 1 −r12
−r11 1 ] .

75



Furthermore, vTv = ∑i (yi − ȳ)2 = syy and

ZTv = [ zT1 v
zT2 v

]

= [ ∑i (xi1 − x̄1) (yi − ȳ)/√s11
∑i (xi2 − x̄2) (yi − ȳ)/√s22

]

= [ r1y
√syy

r2y
√syy

] ,

where r1y = ∑i (xi1 − x̄1) (yi − ȳ)/√s11
√syy is the sample correlation between X1 and Y , and similarly

r2y is the sample correlation between X2 and Y . �en the standardized LSEs are

α̂ = (ZTZ)−1 ZTv

= 1
1 − r212

[ 1 −r12
−r12 1 ] [ r1y

√syy
r2y

√syy
]

= 1
1 − r212

[ r1y
√syy − r12r2y

√syy
r2y

√syy − r12r1y
√syy

] .

�at is,

α̂1 =
r1y

√syy − r12r2y
√syy

1 − r212
(4.1.19)

and

α̂2 =
r2y

√syy − r12r1y
√syy

1 − r212
. (4.1.20)

�e RSS can be written as,

RSS (α1, α2)

= αT (ZTZ) α − 2αTZTv + vTv

= [ α1 α2 ] [ 1 r12
r12 1 ] [ α1

α2
] − 2 [ α1 α2 ] [ r1y

√syy
r2y

√syy
] + syy

= α21 + 2r12α1α2 + α22 − 2r1y
√
syyα1 − 2r2y

√
syyα2 + syy. (4.1.21)

�is is a quadratic equation in three variables and de�nes a quadric surface in R3. We can graph this

surface with α1 on the x-axis, α2 on the y-axis and RSS (α1, α2) on the z-axis. To determine the shape

of the surface we look at the intersections that the surface makes with planes that are parallel to the

coordinate axes. �ese curves are called the traces of the surface and are quadratic equations in two
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variables called conic sections. Section A.4A.4 contains details about conic sections used here.

Any plane parallel to the xz-plane is described by the equation α1 = k , where k is a constant. Setting

α1 = k in (4.1.214.1.21), we obtain the vertical traces,

α22 + 2α2 (kr12 − r2y
√
syy) + (k2 − 2kr1y

√
syy + syy) − RSS = 0.

�is is a quadratic equation in terms of α2 and RSS. �e equation can be written as θTAθ, where θT =

(α2, RSS , 1) and by (A.4.2A.4.2),

A =
⎡⎢⎢⎢⎢⎢⎣

1 0 kr12 − r2y
√syy

0 0 −1/2
kr12 − r2y

√syy −1/2 k2 − 2kr1y√syy + syy

⎤⎥⎥⎥⎥⎥⎦
,

with ∣A∣ = −1/4 ≠ 0, so the conic section is non-degenerate for all α2. From (A.4.3A.4.3), the discriminant is

given by

∆ = ∣ 1 0
0 0 ∣ = 0,

so these traces are parabolas for all α2. Since α22 > 0, the parabolas open upwards and the turning point

is a minimum. By setting α2 = k in (4.1.214.1.21), similar conclusions can be drawn about the vertical traces

which are parallel to the yz-plane - they are always parabolas which open upward.

Setting RSS (α1, α2) = k, we obtain the horizontal traces of the surface. �ese curves are also called

the contour lines of the function, each one is a curve along which the function has a constant value k. �e

contours of RSS are given by the equation

α21 + 2α1α2r12 + α22 − 2α1r1y
√
syy − 2α2r2y

√
syy + (syy − k) = 0.

�e equation can be as θTAθ, where θT = (α2, α2, 1) and by (A.4.2A.4.2),

A =
⎡⎢⎢⎢⎢⎢⎣

1 r12 −r1y√syy
r12 1 −r2y√syy
−r1y√syy −r2y√syy syy − k

⎤⎥⎥⎥⎥⎥⎦
,
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with

∣A∣ = (syy − k) + 2r12r1yr2ysyy − r21ysyy − r22ysyy − r212 (syy − k)

= (syy − k) (1 − r212) − syy (r21y + r22y − 2r12r1yr2y) .

If r12 = 1 then

∣A∣ = −syy (r21y + r22y − 2r1yr2y)

= −syy (r1y − r2y)
2

= 0,

since r1y = r2y when r12 = 1. If r12 = −1 then

∣A∣ = −syy (r21y + r22y + 2r1yr2y)

= −syy (r1y + r2y)
2

= 0,

since r1y = −r2y when r12 = −1. �us, the conic will be degenerate when X1 and X2 are perfectly correlated

(positively or negatively), so that ∣r12∣ = 1. When ∣r12∣ ∈ [0, 1), the conic is non-degenrate and from (A.4.3A.4.3),

the discriminant is given by

∆ = ∣ 1 r12
r12 1 ∣ = 1 − r212 = ∣ZTZ∣ .

Since ∣r12∣ ∈ [0, 1) we have that ∆ > 0 so that the contours are ellipses. �eminimum value is at the center

of the ellipses and the function gains height as the ellipses get larger. �e center of the contours is given

by (A.4.4A.4.4) and turn out to be the LSEs:

(
r1y

√syy − r12r2y
√syy

1 − r212
,
r2y

√syy − r12r1y
√syy

1 − r212
)

= (α̂1, α̂22) from (4.1.194.1.19) and (4.1.204.1.20).

�e angle that the axes of the contours makes with the coordinate axes is determined by (A.4.5A.4.5),

cot 2ϑ = 1 − 1
2r12

= 0
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An angle that satis�es cot 2θ = 0 is 2θ = ± π/ 2 so that the contour axes are at θ = ± π/4 = ±45○ from the

coordinate axes.

Since the surface has parabolic vertical traces and elliptical horizontal traces, RSS (α1, α2) de�ned

by the equation (4.1.214.1.21) describes an elliptic paraboloid in R3 with the minimum turning point at the

least squares solution. Solving the constrained problem, we seek the minimum point on the RSS quadric

surface that lies within the feasible region described by the constraint. Figure 4.1.34.1.3 shows the contours

of RSS for a linear model with two predictors, where the correlation between the predictors is set to

r12 = 0.75 in the le� panels and r12 = −0.75 in the right panels. �e contours in red are values of the

constraint, ∥α∥2 for ridge regression and ∥α∥1 for the LASSO. �e lines are drawn at levels of the constraint

where the ℓq-norm of the constrained parameters is a fraction, inF = {0.2, 0.3, . . . , 0.9}, of the ℓq-norm

of the LSEs. �at is, for ridge regression the value of the constraint surface at each contour line is such

that ∥α∥2/ ∥α̂∥2 ∈ F . Similarly for the LASSO, the contour lines represent values of the constraint at which

s = ∥α∥1/ ∥α̂∥1 ∈ F . �e black dot in the center is the minimum point of the RSS function, the LSEs. �e

red triangles on each contour line of the constraint indicate where the constrained estimate would lie if

that value of the constraint is used to estimate the model. For the LASSO, the estimates corresponding to

the fractions 0.2, 0.3 and 0.4 lie on the x-axis, e�ectively setting α̂2 = 0.

�e penalty functions of ridge regression and the LASSO are both comprised of some ℓq-norm. ℓq-

norms can be generalized to form a functional space known as ℓq-space and when combined with a

vector space forms a normed vector space. In Rp, a norm ball, or ℓq-ball with radius r and center c ∈ Rp

is convex and is given by {a ∈ Rp ∣∥a − c∥q ⩽ r} (see Boyd & VandenbergheBoyd & Vandenberghe (20042004:30-31)). �e ridge and

LASSO constraints are therefore norm balls with c = 0 and radius r =
√

τ and r = t, respectively. �e

LASSO norm ball has sharp corners at each point {α ∈ Rp ∣αi = 0, α j≠1 = ∣t∣}. If RSS touches the LASSO at

one of the sharp corners where αi = 0 then that estimate is set to zero. Since the ridge norm ball is curved,

it is unlikely that any estimates will be set to zero. �e concept illustrated in Figure 4.1.34.1.3 can therefore

be generalized to higher dimensions. RSS is the quadric surface described by equation (4.1.184.1.18) and the

constraint region is an ℓq-ball, both in Rp. �e ℓ1 and ℓ2 balls are shown in Figure 4.1.44.1.4 in R2 and R3.
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Ridge Regression: ρ = 0.75
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Figure (4.1.3) RSS contours and constraint regions with p = 2 for (a)(a)-(b)(b) ridge regression and
(c)(c)-(d)(d) LASSO with correlations of 0.75 (left) and -0.75 (right) between the two predictors. If t is
chosen such that s ⩽ 0.4 then the minimum value of RSS that satisfies the constraint occurs at a
corner of the constraint region so that α̂L

2 = 0.

(a) (b) (c) (d)

Figure (4.1.4) Norm balls in R2 and R3 for (a)(a)-(b)(b) ridge regression and (c)(c)-(d)(d) LASSO. As the
number of variables increases, the ℓ1 norm ball has more sharp corners so that more estimates
are likely to be set to zero.

80



4.1.4 Computation

A number of algorithms now exist to solve the LASSO. TibshiraniTibshirani (19961996) proposed solving the prob-

lem using quadratic programming or the least squares with linear inequality constraints (LSI) algorithm.

Efron et al.Efron et al. (20042004) discovered that the path of the LASSO is piecewise linear and recognized a similarity be-

tween the least angle regression (LAR) algorithm and the LASSO. While quadratic programming requires

operations of the order O (n2p), the LAR algorithm has the order of computation O (npmin (n, p)).

When n > p, the computational complexity is O (np2) which is the same as calculating the least squares

estimate using the QR-decomposition (see Hastie et al.Hastie et al. (20092009:93)). Further computational e�ciency is

achieved by Friedman et al.Friedman et al. (20072007), who use the so� thresholding rule in a coordinate descent algorithm

for the LASSO, requiring computations of order O (np). �ese are the major advances for computing the

LASSO and are discussed below.

Quadratic Programming and LSI

TibshiraniTibshirani (19961996) proposed two algorithms to solve the LASSO problem. �e ℓ1 norm of α can be written

in the form

∥α∥1 =
p
∑
j=1

∣α j∣ =
p
∑
j=1
sign (α j) α j = ϖTα,

where the elements of ϖ are given by (4.1.44.1.4). �e di�culty with this formulation is that ϖ depends on

the unknown parameters α j. Alternatively, we could view the LASSO constraint as a system of inequalities

considering all the possible signs of α. �at is, ϖα ⩽ t1, where the o × p matrix ϖ has rows in the form

(±1,±1, . . . ,±1). �en we can write the problem as

α̂L = argmin
α

∥v − Zα∥2 subject to ϖα ⩽ t1. (4.1.22)

�is can easily be converted to the LSI problem which is stated as

minimize ∥Zα − v∥2 subject to Gα ⩾ h,

whereG is any o×pmatrix and h is any o×1 vector. �e problem is then converted into a form suitable for

least distance programming (LDP) by using the SVD or QR-decomposition and is eventually solved by the

nonnegative least squares (NNLS) algorithm, see Lawson & HansonLawson & Hanson (19741974:158-173) for details. However,

this leads to o = 2p inequality constraints since the sign of each of the p parameters is either 1 or -1, so
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the problem quickly becomes infeasible as p increases. TibshiraniTibshirani (19961996) noted that only some of the

inequality constraints may be necessary and proposed an algorithm in which the constraints are used

sequentially until convergence is reached. He uses the signs of the LSE as an initial ϖ andmakes use of the

LSI algorithm to compute the LASSO solution. While the solution is greater than t, the signs of the LASSO

solution are added to ϖ and the process is continued until convergence. A drawback of this algorithm is

that the LSE is required to get started.

�e LASSO problem is also recognized as a quadratic programming problem. Since

RSS (α) = ∥v − Zα∥2 = αTZTZα − 2vTZα − vTv,

the problem is equivalent to the quadratic programming problem which is stated as

minimize
1
2

αTZTZα − vTZα − vTv subject to Gα ⩽ h,

whereG is any o× pmatrix, h is any o× 1 vector and ZTZ is a symmetric positive semide�nite matrix (see

Boyd & VandenbergheBoyd & Vandenberghe (20042004:152-153)). An alternative algorithm proposed by TibshiraniTibshirani (19961996) views the

LASSO constraint via non-negative parameters and employs quadratic programming to solve the problem.

Suppose that α j = α+j − α−j , where

α+j = { α j
0

if α j > 0
if α j ⩽ 0

and α−j = { 0−α j

if α j ⩾ 0
if α j < 0

for j = 1, 2, . . . , p. �ese parameters are thus constrained to be non-negative, α+j ⩾ 0 and α−j ⩾ 0 for

j = 1, 2, . . . , p and the LASSO constraint becomes ∑p
j=1 α

+
j + ∑

p
j=1 α

−
j ⩽ t. �e LASSO problem can then be

written as

α̂∗ = argmin
α∗

∥v − Z∗α∗∥2 subject to Aα∗ ⩽ b,

where

Z∗ = [ Z −Z ] , α∗ = [ α+
α− ] , A = [ −I2p

1T2p
] and b = [ 02p

t ] (4.1.23)

and α̂L
j = α̂+j − α̂−j . �e problem then has 2p variables and 2p+ 1 constraints and converges at a faster rate

than the �rst algorithm. By solving the LASSO dual problem, Osborne et al.Osborne et al. (2000b2000b) developed a more

e�cient quadratic programming algorithm for computing the LASSO which can be used when p > n.

Gong & ZhangGong & Zhang (20112011) use a projected Newton method to solve the dual problem.
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Least Angle Regression

Efron et al.Efron et al. (20042004) found that the solution path of the LASSO is piecewise linear and proposed a path

following algorithm called LAR to �nd the entire path. When solving the LASSO problem, we usually

compute an estimator α̂L (λ) for many values of λ and perform a search for the best one. We know

that λ attains its minimum at λ0 = 0 and its maximum at λM−1 = ∥ZTv∥∞ = max j ∣zTj v∣. Let λk ∈

{λ0 < λ1 < ⋯ < λM−1 < λM ∣λ0 = 0, λM = ∞} be the values of λ at which new predictors enter the model.

�en the active set of estimatesAk = { j ∣α̂ j (λk) ≠ 0} remains unchanged on each interval [λk , λk+1] and

it can be shown that

α̂L (λ) = α̂L (λk) + η
k
(λ − λk)

for λ ∈ [λk , λk+1] , 0 ⩽ k ⩽ M − 1 and η
k
> 0 (see equation (B.3.5B.3.5)). Hence, α̂ (λ) is linear on the

interval [λk , λk+1] and if we can identify the λk then we can compute the entire solution path using linear

interpolation.

LAR proceeds in a fashion similar to forward selection (Section 2.2.32.2.3), beginning with the null model

and adding one variable to the model at each step. However, LAR is less greedy and only adds a fraction

of each coe�cient to the model before moving on. It is based on examining the correlations between the

predictors and the residual from the previous step. Beginning with the null model, the residual vector is

the response. So at the �rst step, the variable most correlated with the response is added to the active set.

�e estimator is thenmoved in the direction of the least squares coe�cient that is obtained when regress-

ing the residuals on the active set. �e estimator continues tomove in that direction until another variable

becomes equally correlated with the residual, that is, the residual bisects the angle between them. �at

variable is then added to the active set. �e estimator moves in the direction of their joint least squares

coe�cient with the new residual until another variable becomes equally correlated with the residual. �e

residual is then the vector that has the smallest equal angle with all the predictors in the active set - this

is where the names least angle regression comes from. �e process continues in this way until the least

squares model is reached in the �nal step. �us, LAR is another method which performs shrinkage and

selection. �e formulas to update the estimates for each step are provided in the algorithm below.

Algorithm 4.1.1 Least angle regression

Assume that z1, z2, . . . , zp are linearly independent.

1. Initialize α̂ = 0, then the �tted model is µ̂0 = 0 and the correlations between the predictors and the
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residual are ĉ0 = ZTv.

2. For k = 1, 2, . . . , min (n − 1, p):

(a) Find the largest correlation, ρ̂k = max j ∣ĉk, j∣ and determine the active setAk = { j ∶ ∣ĉk, j∣ = ρ̂k}.

(b) Determine the signs of the correlations s j = sign (ĉk, j) and form the matrix ZAk with columns

s jz j for j ∈ Ak .

(c) Calculate

ak = (1T∣Ak ∣ (Z
T
Ak

ZAk)
−1
1∣Ak ∣)

− 12 and wAk
= ak (ZT

Ak
ZAk)

−1
1∣Ak ∣,

�en

uAk = ZAkwAk

is a unit vector that has equal angles with all the columns in ZAk such that ZT
Ak

uAk = ak1∣Ak ∣

and ∥uAk∥
2 = 1. Let

b = ZTuAk .

i. If rank (ZT
Ak

ZAk) = ∣Ak ∣ then ς̂ = ρ̂k/ak

ii. Else if rank (ZT
Ak

ZAk) < ∣Ak ∣ then

ς̂ = min
j∈Ac

k

+ {
ρ̂k − ĉk, j
ak − b j

,
ρ̂k + ĉk, j
ak + b j

} ,

wheremin+ means that only the positive elements are considered for the minimum.

(d) Update the estimates, �tted model and the correlations between the predictors and the residual,

α̂Ak
= α̂Ak−1 + ς̂wAk

,

µ̂k = µ̂k−1 + ς̂uAk

ĉk = ZT (v − ZT α̂Ak
) = ĉk−1 − ς̂b.

Efron et al.Efron et al. (20042004) shows that the LAR algorithm can be modi�ed to �t forward stagewise regression

(mentioned in Section 2.2.52.2.5) and the LASSO. A connection between LASSO and LAR can bemade by looking

at the KKT optimality conditions of the LASSO, see Section B.3B.3. For the LASSO, equation (B.3.4B.3.4) shows that
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the active variables satisfy

zTj (v − Zα) = sign (α j) λ.

Efron et al.Efron et al. (20042004) show this with a geometrical approach. At any step of the LAR algorithm, the active

variables have equal maximum correlation with the residuals. Denote the correlations at this step by

ZT (v − Zα) = c

and the maximum correlation by

max
j

∣c j∣ = ρ,

then

zTj (v − Zα) = sign (c j) ρ for j ∈ A.

So if sign (α j) = sign (c j) = s j then λ = ρ. To enforce this sign restriction in the LAR algorithm, a

predictor can be removed from the active set if it changes sign. Efron et al.Efron et al. (20042004) suggest the following

modi�cation to solve the LASSO problem:

Algorithm 4.1.2 LAR-LASSO

1. Apply LAR algorithm up to step 2c(ii).

2. Step 2c(iii) added to LAR: Calculate

ς j =
−α j

s jw j
for j ∈ A and ς̃ = min

j∈A
+ {ς j} .

(a) If ς̃ j > ς̂ j then go to step 2d.

(b) Else if ς̃ j < ς̂ j then remove j from the active set and compute the next direction without it,

α̂Ak
= α̂Ak−1 + ς̃wAk

,

Ak = Ak−1 − j.

By inspection of Algorithm 4.1.14.1.1, we see that LAR is a descent algorithm to optimize µ̂ = Zα̂ with

the search direction determined by the unit equiangular vector u and the step length by ς̂. Efron et al.Efron et al.
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(20042004) explain that LAR requires O (p3 + np2) computations when p < n, which is the same order of

computation when �tting least squares via the Cholesky decomposition. �e LASSO modi�cation can

cost up to an additional O (p2) operations for every variable that must be dropped. When p ≫ n, LAR

stops a�er n− 1 variables are in the model (n− 1 because of the centering) with a cost of O (n3). However,

Rosset & ZhuRosset & Zhu (20072007) generalize the LAR algorithm for LASSO (LAR-LASSO) algorithm for use with other

"almost quadratic" loss functions and the ℓ1 penalty. �ey state that the number of steps used on average

is M = O (min (n, p)) so that the overall computational expense of the algorithm is O (npmin (n, p)).

A related method is presented by Osborne et al.Osborne et al. (2000a2000a), an homotopy algorithm which also follows the

piecewise linear path of the LASSO (seeNocedal & WrightNocedal & Wright (19991999:304-310) for information about homotopy

methods). �eir algorithm is closely related to the LAR-LASSO algorithm, although it is somewhat indirect

and lacks the transparency of LAR.

Coordinate Descent

�e coordinate descent algorithm can be described as the steepest descent algorithm in the ℓ1 norm (see

Boyd & VandenbergheBoyd & Vandenberghe (20042004:475-484), a summary of descent methods is provided in De�nition A.3.5A.3.5).

�e problem is given by

minimize l (α) ,

where l (α) is convex and twice di�erentiable. �e search direction is

∆α = −∂l (α)
∂α j

,

where

j = argmax
j

∣∂l (α)
∂α j

∣ .

�us, at each step of the algorithm we update only the coordinate of α corresponding to the coordinate

of the gradient for which ∣∇l (α) j∣ = ∥∇l (α)∥∞. Selectively updating the coordinates in this way is a

greedy version of coordinate descent. An alternative is to cycle through the coordinates and update each

of them in turn.

�e problem is an unconstrained minimization so we can use coordinate descent to solve the La-
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grangian problem (4.1.24.1.2), which is equivalent to minimizing

l (α) = 1
2
∥v−∑ jα jz j∥

2 + λ∑ j ∣α j∣ . (4.1.24)

Although l (α) is convex, it is not di�erentiable. However, coordinate descent can still be applied to a

function

f (α) = g (α) +∑ jh j (α j) , (4.1.25)

where g (α) is convex and di�erentiable and h j (α j) are convex but not necessarily di�erentiable. �is

is true because the nondi�erentiable part∑ j h j (α j) is additively separable. �e �rst order condition for

convex functions is

f (α) − f (α̂) ⩾ ∇ f (α̂)T (α − α̂)

and α̂ is optimal if ∇ f (α̂)T (α − α̂) = 0. For f in the form (4.1.254.1.25), we have

f (α) − f (α̂) ⩾ ∇g (α̂)T (α − α̂) +∑ j [h j (α j) − h j (α̂ j)]

= ∑ j [∇g (α̂) j (α j − α̂ j) + h j (α j) − h j (α̂ j)]

⩾ 0.

Convergence of coordinate descent algorithms applied to functions such as (4.1.254.1.25) is proved by TsengTseng

(20012001). �us, we can apply coordinate descent to (4.1.244.1.24) since the LASSO penalty is separable, ∥α∥1 =

∑ j ∣α j∣.

If we �t a univariate model, that is, j = 1 in (4.1.244.1.24), then

l (α j) =
1
2
∥v−α jz j∥

2 + λ ∣α j∣

and similarly to the orthogonal design (Section 4.1.24.1.2), a closed form solution can be obtained. When

α j > 0 then

l ′ (α j) = 0

⇔ −zTj (v−α jz j) + λ = 0

⇔ α j = zTj v − λ since zTj z j = 1.
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Since α j > 0, we must have zTj v − λ > 0 or zTj v > λ. Similarly, suppose α j < 0, then

l ′ (α j) = 0

⇔ −zTj (v−α jz j) − λ = 0

⇔ α j = zTj v + λ since zTj z j = 1,

but α j < 0, so we must have zTj v − λ < 0 or zTj v < −λ. �e solution is therefore the so� thresholding rule

α̂L
j = sign (α j) (∣zTj v∣ − λ)+ = S (zTj v, λ) . (4.1.26)

Note that zTj v is the univariate LSE so that the solution (4.1.264.1.26) is identical to Equation (4.1.114.1.11). Hence,

if we use this rule to update the coordinates then we are making the assumption that the predictors are

orthogonal.

To use coordinate descent, we need to include all the predictors in the model but when we update the

j-th coordinate, the other k ≠ j coordinates are held �xed. �e objective function (4.1.244.1.24) is written as

l (α j) =
1
2
∥v − α jz j − Z− jα− j∥

2
+ λ ∣α j∣ + λ ∥α− j∥1 , (4.1.27)

where Z− j is the predictor matrix excluding the j-th variable and α− j is the parameter vector excluding

the j-th parameter and is held �xed. �en

l ′ (α j) = −zTj (v − α jz j − Z− jα− j) + sign (α j) λ

= α jzTj z j − zTj (v − Z− jα− j) + sign (α j) λ

= α j − zTj (v − Z− jα− j) + sign (α j) λ

= α j − zTj r− j + sign (α j) λ,

where r− j = v − Z− jα− j is the residual vector excluding the j-th variable. By the same logic as above, the

solution to (4.1.274.1.27) is therefore the so� thresholding rule,

ᾰ j = sign (α j) (∣zTj r− j∣ − λ)+ = S (zTj r− j , λ) .

Note that zTj r− j is the univariate LSE when we regress r− j on z j.
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Friedman et al.Friedman et al. (20072007) used this result to develop a pathwise cyclical coordinate descent algorithm for

the LASSO. At each iteration, the algorithm cycles through the variables for j = 1, 2, . . . , p, incrementing

the j-th estimate by α̃ j while the others are held �xed. �e algorithm is applied to a sequence of λ values,

λ1 > λ2 > ⋯ > λM , using each solution as a warm start for the next problem. �e algorithm is outlined

below:

Algorithm 4.1.3 Pathwise coordinate descent

1. Start with an initial estimate ᾰ(0), possibly the univariate estimates (4.1.264.1.26).

2. For i = 1, 2, . . . ,M: Set k = 1. Until ∥r∥2 converges, repeat:

(a) For j = 1, 2, . . . , p:

i. Calculate r = v − Zᾰ

ii. Update ᾰ(k)j = S (ᾰ(k−1)j + zTj r, λi)

iii. k = k + 1

(b) On convergence, α̂L
i = ᾰ is the estimate corresponding to λi .Reset ᾰ(0) = α̂L

i and go back to step

2.

Coordinate descent methods provide a massive improvement in the computational e�ciency of the

LASSO. �e idea was �rst suggested by FuFu (19981998) who called it a shooting algorithm. DaubechiesDaubechies (20042004)

revisited the problem with an algorithm known as iterative shrinkage thresholding algorithm (ISTA).

Beck & TeboulleBeck & Teboulle (20092009) improves the convergence rate with the fast iterative shrinkage thresholding algo-

rithm (FISTA). �ese algorithms did not receive much attention until the contribution by Friedman et al.Friedman et al.

(20072007). He also derived the thresholding functions for using coordinate descent for the nonnegative

garrote, elastic net, group LASSO and fused LASSO, among other methods not mentioned in this paper.

Wu & LangeWu & Lange (20082008) compare a greedy coordinate descent algorithm with the cyclic version, as well as

with LAR-LASSO. �eir numerical studies show that the cyclic version has faster convergence than the

greedy version for squared error loss. �ey also suggest that both methods are more robust and faster

than LAR-LASSO. SheShe (20092009) discuss a class of thresholding-based iterative selection procedures (TISP.

Bradley et al.Bradley et al. (20112011) propose a parallel coordinate descent algorithmwhich they call ShotGun (as opposed

to shooting).
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Other algorithms

�ese are the major advances of computational e�ciency in the history of the LASSO but there are many

more algorithms available. GrandvaletGrandvalet (19981998) use the EM algorithm. Zhao & YuZhao & Yu (20072007) propose a boost-

ing algorithm which approximates the path of the LASSO using forward and backward steps. A boosting

algorithm was also proposed by Bühlmann & YuBühlmann & Yu (20062006), who use information criteria, including AIC,

BIC, �nal prediction error (FPE) and MDL, as a stopping criterion. Schmidt et al.Schmidt et al. (20072007) propose two al-

gorithms, one based on a smooth approximation of the LASSO penalty, the other a gradient projection

method. Wang & LengWang & Leng (20072007) use a least squares approximation (LSA). Park & HastiePark & Hastie (20072007) compute

the LASSO path using the predictor-corrector convex optimization method. Schmidt et al.Schmidt et al. (20092009) provide

an empirical study comparing a number of algorithms, including cyclical coordinate descent, steepest

descent, sub-gradient descent, EM algorithm, gra�ing, log-barrier method, interior-point method, se-

quential quadratic programming, some smooth approximation methods, projection methods and other

descent methods. Furthermore, the LASSO is a special case of every shrinkage method so that algorithms

developed to solve these methods may also be used to compute the LASSO estimate.

4.1.5 Properties of LASSO Estimates

Standard Errors

Unfortunately the LASSO does not have an explicit solution like ridge regression since the LASSO penalty is

non-di�erentiable at zero. A consequence is that the standard errors of the estimates and the predictions

are not readily obtainable. One approach is to estimated the standard errors using the bootstrap by se-

lecting the best tuning parameter for each bootstrap sample. TibshiraniTibshirani (19961996) states that holding t �xed

during bootstrapping is equivalent to the subset selection situation where the best subset is �rst selected

and then least squares standard errors for that subset are used.

TibshiraniTibshirani (19961996) also proposed an approximation formula for standard errors based on ridge regres-

sion. �e LASSO penalty can be written∑∣α j∣ = ∑ α2j/ ∣α j∣ = αTW−α, whereW = diag (∣α j∣). Now,

W−α = α j/ ∣α j∣ = ϖ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if α j > 0
0 if α j = 0
−1 if α j < 0
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from (4.1.44.1.4). So, the subdi�erential of the LASSO Lagrangian (4.1.24.1.2) is given by

− ZT (v − Zα) + λϖ (4.1.28)

= −ZT (v − Zα) + λW−α.

�us, if ᾰ is a solution to (4.1.24.1.2), then we must have

0 = −ZTv + ZTZᾰ + λW−ᾰ

⇔ (ZTZ + λW−) ᾰ = ZTv

⇔ ᾰ = (ZTZ + λW−)−1 ZTv,

(4.1.29)

and the covariance matrix can be approximated by

var (ᾰ) ≈ σ̂2 (ZTZ + λW−)−1 ZTZ (ZTZ + λW−)−1 . (4.1.30)

However, zero estimates will have approximated variance of zero.

Osborne et al.Osborne et al. (2000b2000b) provide an improved approximation for which zero estimates have positive

standard errors. As above, the subdi�erential of the LASSO Lagrangian (4.1.24.1.2) is given by (4.1.284.1.28). �us, if

ᾰ is a solution to (4.1.24.1.2), then we must have

0 = −ZT r̆ + λϖ, (4.1.31)

where r̆ = v − Zᾰ. Now ϖT ᾰ = ∥ᾰ∥1, so that

λ = r̆TZᾰ
∥ᾰ∥1

(4.1.32)

satis�es (4.1.314.1.31),

λϖ = ZT r̆

⇔ λϖT ᾰ = (ZT r̆)T ᾰ

⇔ λ = r̆TZᾰ/ ∥ᾰ∥1 .
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Also ∥ϖ∥∞ = 1, so that (4.1.314.1.31) yields

λϖ = ZT r̆

⇔ ∥λϖ∥∞ = ∥ZT r̆∥∞
⇔ λ ∥ϖ∥∞ = ∥ZT r̆∥∞
⇔ λ = ∥ZT r̆∥∞ ,

and consequently, we can write

ϖ = ZT r̆
∥ZT r̆∥∞

. (4.1.33)

Again, from (4.1.314.1.31) we have

0 = −ZTv + ZTZᾰ + λϖ

⇔ ZTv = ZTZᾰ + λϖ

⇔ ZTv = ZTZᾰ +
ZT (r̆r̆T)Zᾰ
∥ZT r̆∥∞ ∥ᾰ∥1

from (4.1.324.1.32) and (4.1.334.1.33)

⇔ ZTv = (ZTZ +W) ᾰ

⇔ ᾰ = (ZTZ +W)−1 ZTv,

whereW =
ZT (r̆r̆T)Z
∥ZT r̆∥∞ ∥ᾰ∥1

and rank (W) = 1. Note that,

ZTZ +W = ZT ⎛
⎝
In +

(r̆r̆T)
∥ZT r̆∥∞ ∥ᾰ∥1

⎞
⎠
Z

so that rank (ZTZ +W) = rank (Z) = rank (ZTZ). �erefore, if ZTZ has full rank then (ZTZ +W) is

invertible. �e variance can be approximated by

var (ᾰ) ≈ σ̂2 (ZTZ +W)−1 ZTZ (ZTZ +W)−1 . (4.1.34)

Although their approximationmight be an improvement over the one by TibshiraniTibshirani (19961996), they note that

the estimates may be far from Gaussian so that standard errors are perhaps not an appropriate measure

of uncertainty.

However, Lockhart et al.Lockhart et al. (20142014) have succeeded in developing a signi�cance test for coe�cients as
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they enter the LASSO path. Consider using the LAR-LASSO algorithm. At the beginning of the k-th step,

the active set is given byAk . Suppose that the j-th variable enters next at λk+1 so that

α̂L (λk+1) = α̂L (λk) + ς̂wAk+1

whereAk+1 = Ak ∪ { j}. Let, α̂L
Ak

(λk+1) be the solution at λk+1 using only the active setAk ,

α̂L
Ak

(λk+1) = argmin
αAk

∥v − ZAk αAk
∥2 + λk+1 ∥αAk

∥
1
.

�e full e�ect of the j-th variable on the �t is therefore given by

Zα̂L (λk+1) − ZAk α̂L
Ak

(λk+1) .

To assess the importance of the j-th variable in the modelAk+1, they de�ne the covariance test statistic

Tk = (vTZα̂L (λk+1) − vTZAk α̂L
Ak

(λk+1)) /σ2

and they show that, under the null hypothesis that all the relevant variable are in the model

H0 ∶ Ak ⊇ D,

the distribution of Tk is asymptotically the standard exponential distribution,

Tk
d→ Exp (1) .

Hence, based on this distribution, a p-value can be calculated at each step of the algorithm. �ese p-values

can then be used to decide when to stop adding variables to the model. �at is, the hypothesis tests relate

only to a step in the path of the LASSO.

Near Minimax Optimality

In the orthogonal design, Donoho & JohnstoneDonoho & Johnstone (19941994) proved the near-minimax optimality of the LASSO.

Section 4.1.24.1.2 revealed that the loss function is given by ∥α̂ − α∥2 for orthogonal designs, so that the risk
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function is given by

R (α̂, α) = E ∥α̂ − α∥2 ,

which we recognize as the MSE. Consider

α̂ j = α j + σε j with ε j ∼ N (0, 1) ,

note that var (α̂ j) = σ2 for orthogonal designs. Suppose that we select a subset of the α̂ j using a diagonal

linear projection µα̂ j with µ ∈ {0, 1}. If µ = 0 then the risk is α2j and if µ = 1 then the risk is σ2. Hence,

the ideal risk is R (ideal) = min (α2j , σ2) so that the ideal projection includes those α j which are greater

than the noise level, µ = δ (∣a j∣ > σ). Donoho & JohnstoneDonoho & Johnstone (19941994) introduced the universal threshold

λ∗ = σ
√
2 ln (n) and showed that the so� thresholding function µ̂∗S = sign (α̂ j) (∣α̂ j∣ − λ)+ yields the risk

RS (α̂∗, α) ⩽ 2 ln p (R (ideal) + σ2) .

�ey show that

inf sup
α̂

RS (α̂∗, α)
1 + R (ideal) ∼ 2 ln (n)

so that the estimator is near minimax optimal because the ideal risk is achieved up to a factor of at

most 2 ln (n), a sharp minimax bound. �ey also showed that the hard thresholding function µ̂∗H =

α̂ jδ (∣α̂ j∣ > σλl), yields the risk

RH (α̂∗, α) ⩽ λl (R (ideal) + σ2)

where (1 − l) ln (ln (p)) ⩽ λ2l − 2 ln (p) ⩽ o (ln (p)) for some l > 0. �is shows that the LASSO and subset

selection have the same asymptotic performance for orthogonal designs.

Persistence

Greenshtein & RitovGreenshtein & Ritov (20042004) showed that, in high dimensional settings p ≫ n, in particular p (n) =

O (na) with a > 1 so that p increases with n, the LASSO is consistent for prediction. Consider the predic-

94



tion error

PEF ( f (X , β)) = EF (y − f (X; β))
2

= EF (y −∑p
j=1X jβ j)

2

= νTΣFν,

where X is random, F is the distribution of (X ,Y), νT = (−1, β) and ΣF has typical element EF (X jXk)

for j, k = 0, 1, . . . , p with X0 = Y . Suppose that f (X , β∗) is the ideal predictor,

β∗ = argmin
β

PEF ( f (X , β)) .

Let F̂ be the empirical distribution of (X ,Y) and

PEF̂ ( f (X , β)) = 1
n

n
∑
i=1

(yi − f (Xi ; β))
2

= 1
n

n
∑
i=1

(yi −∑p
j=1Xi jβ j)

2

= νTΣF̂ν,

where ΣF̂ has typical element∑
n
i=1Xi jXik/n for j, k = 0, 1, . . . , p . �ey show that, if one of the following

regularity conditions hold:

1. �e variances of XiX j are bounded and their moment generating functions have bounded third

order derivatives in the neighbourhood of 0, or

2. EF (Y2) < C and P (∣X j∣ < L) = 1 for j = 1, 2, . . . , p for �nite constants C and L.

�en,

β̂
n
= argmin
{β∣∥β∥

1
⩽t(n)}

PEF̂ ( f (X , β))

with

t (n) = o ((n/ ln n)1/4)

is a persistent sequence of procedures, such that

PEF̂ ( f (X , β̂
n
)) − PEF ( f (X , β∗))

p
→ 0 (4.1.35)
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�ey call this property persistence. If F is Gaussian, they relax the order of the constraint to t (n) =

o (
√
n/ ln n). In practice, the persistence rate t (n) is not known and they suggest testing estimators

resulting from di�erent constraints on a test set. A result of persistence is that if the condition on t (n)

holds, then there is no harm in using the LASSO to search through the entire set of predictors. �at is,

prior screening of a smaller subset of variables will not signi�cantly improve the LASSO, it is an e�ective

method to �nd the optimal predictors in high dimensions. Under additional assumptions, they show

that procedures like subset selection, which select a subset of size k (n) variables are persistent if k (n) =

o (
√
n/ ln). GreenshteinGreenshtein (20062006) extend the results to more general loss functions. �ey show that, under

the assumptions:

1. f (X , β) = (y −∑p
j=1X jβ j) is bounded and uniformly continuous in∑p

j=1X jβ j, uniformly in y,

2. X j is bounded, ∣X j∣ < M for j = 1, 2, . . . , p for a �nite constantsM,

3. β∗ has k (n) = o (n/ ln n) non-zero elements (sparsity rate), and

4. ∥β∗∥ is bounded,

then

β̂
n
= argmin
{β∣∥β∥

1
⩽
√

k(n)}
PEF̂ ( f (X , β)) (4.1.36)

is a persistent sequence of procedures, such that (4.1.354.1.35) holds. Furthermore, (4.1.364.1.36) is persistent even

without the assumption on the sparsity rate - a property they call self consistency. �ey demonstrate

that ridge regression, or any bridge estimates with q > 1, are not persistent and that there is not much

improvement when using bridge estimates with q ∈ [0, 1). Further studies on the persistence of the LASSO

are provided by Bunea et al.Bunea et al. (20072007) and Bartlett et al.Bartlett et al. (20122012).

Bühlmann & van de GeerBühlmann & van de Geer (20112011:13-14,23-24,101-108) give a similar result for �xed designs when p ≫

n, assuming that the model is exactly the linear model with true parameter vector α,

v = Zα + ε,

and the errors are Gaussian

ε ∼ N (0, σ2I) .
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In a �nite sense, they prove that if

λ =
√
2σ̂2 (t2 + 2 ln p)/ n,

for some estimate of σ2 and t > 0, then

2 ∥Z (α̂L − α)∥2/ n ⩽ 3λ ∥α∥1

with probability

1 − 2 exp (−t2/2) − P (σ̂ ⩽ σ) .

Asymptotically, under the assumptions on sparsity,

∥α∥1 = o (
√
n/ ln p) (4.1.37)

and the shrinkage parameter,

λ = λn ≍
√
log p/n, (4.1.38)

it holds that the LASSO is consistent for prediction,

MSE [ f (Z , α̂L
n)] = op (1) as n →∞,

where

MSE [ f (Z , α̂L
n)] = (α̂L

n − α)T Σ (α̂L
n − α)

= ∥Z (α̂L
n − α)∥2/ n,

with Σ = ZTZ/ n. Although consistency is established, they show that the rate of convergence is slow,

∥Z (α̂L
n − α)∥2/ n = Op (∥α∥1

√
ln p/n) , (4.1.39)

so that prediction consistency is attained if ∥α∥1 ≪
√
n/ ln p. An oracle inequality improves the conver-

gence rate considerably. An additional assumption is necessary, called the compatibility condition. Let
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D = { j∣ α j ≠ 0} be the true active set of variables of size ∣D∣ = d . �e compatibility constant is given by

υ2c (M ,D) = min
⎧⎪⎪⎨⎪⎪⎩

dαTΣα
∥αD∥

2
1

RRRRRRRRRRR
∥αDc∥1 ⩽ M ∥αD∥1

⎫⎪⎪⎬⎪⎪⎭
, (4.1.40)

where M > 1. For λ as above we require M = 3 and λ must be adjusted accordingly for any change of M.

�e compatibility condition is satis�ed for the set D if υc (M ,D) > 0. In practice, D is not known but if

its size d is known then the condition can be checked for all subsets S ⊂ {1, 2, . . . , p} with ∣S∣ = d. Under

the assumptions the compatibility condition, an oracle inequality is given by

∥Z (α̂L − α)∥2/ n + λ ∥α̂L − α∥1 ⩽ 4λ2d/ υ2c . (4.1.41)

�e inequality shows the bound on prediction error,

∥Z (α̂L − α)∥2/ n ⩽ 4λ2d/ υ2c ,

and asymptotically gives the convergence rate

∥Z (α̂L
n − α)∥2/ n = Op (υ−2c d ln p/n) , (4.1.42)

which is optimal up to the ln p factor (and the compatibility constant υ−2c ) since using least squares with

the correct subset would have the rate O (d/n). �ey remark that the situation can be generalized for

non-Gaussian errors and extend the results to the case when the true model is not exactly linear (pages

108-114) and the case when the predictors are random (pages 150-156).

Estimation Consistency

Knight & FuKnight & Fu (20002000) study the asymptotic properties of bridges estimates for �xed designs where p does

not vary with n, under the mild regularity conditions,

Σn =
1
n

n
∑
i=1

x ix
T
i → Σ and

1
n
max
i⩽i⩽n

xTi x i → 0. (4.1.43)

�ey showed that, for the LASSO,

1. If Σ is nonsingular and λn/n → λ0 ⩾ 0 (i.e. λn = o (n)), then α̂L is consistent, α̂L
n

p
→ argminV1 (u),
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where

V1 (u) = [(u − α)T Σ (u − α) + λ0 ∥u∥1] .

2. If Σ is nonsingular and λn/
√
n → λ0 ⩾ 0 (i.e. λn = O (√n)), then α̂L is asymptotically normal,

√
n (α̂L

n − α) d→ argminV2 (u), where

V2 (u) = −2uTW + uTΣu + λ0
p
∑
j=1

[u j sign (α j) δ (α j ≠ 0) + ∣u j∣ δ (α j = 0)]

withW ∼ N (0,σ2Σ).

3. Suppose Σn is nearly singular but tends to a singular matrix Σ, and assume that an (Σn − Σ) → D,

whereD is nonsingular and an is a sequence tending to∞. If λn/
√
n/an → λ0 ⩾ 0, (i.e. λn = o

√
n)

then (
√
n/an) (α̂L

n − α) d→ argmin{V3 (u)∣Σu = 0}, where

V3 (u) = −2uTW + uTDu + λ0
p
∑
j=1

[u j sign (α j) δ (α j ≠ 0) + ∣u j∣ δ (α j = 0)]

withW ∼ N (0, var (W)) and var (W) is such that var (uTW) = uTDu > 0 for all u > 0 which

satis�es Σu = 0. �us the rate of convergence is slower than when Σ is nonsingular

Bühlmann & van de GeerBühlmann & van de Geer (20112011:14-17,135-137) show that the LASSO is consistent for estimation in the

high dimensional setting with p ≫ n. Under the assumptions above on sparsity (4.1.374.1.37), the shrinkage

parameter (4.1.384.1.38) and the compatibility condition (4.1.404.1.40),

∥α̂L − α∥1
p
→ 0,

and following from (4.1.414.1.41), a bound on the ℓ1 error is

∥α̂L − α∥1 ⩽ 4λd/ υ2c

so that the rate of convergence is

∥α̂L − α∥1 = Op (υ−2c d
√
ln p/n) .
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For the usual ℓ2 error, a stronger assumption is necessary, called the restricted eigenvalue condition. Let

U be any set such that D ⊂ U with ∣U ∣ = u ⩾ d .�e set U ∖ D = U ∩ Dc is the relative complement of U

with respect toD, that is, the elements that are in the set U but not in the setD. �e restricted eigenvalue

is given by

υ (M ,D, u) = min
⎧⎪⎪⎨⎪⎪⎩

αTΣα
∥αU∥

2
2

RRRRRRRRRRR
α ∈ R(M ,D,U) ,U ⊃ D, ∣U ∣ = u

⎫⎪⎪⎬⎪⎪⎭
, (4.1.44)

where

R(M ,D,U) = {∥αDc∥1 ⩽ M ∥αD∥1 , ∥αU∥∞ ⩽ min
j∈U∖D

∣α j∣}

with M > 1 and min j∈U∖D ∣α j∣ = ∞ if U = D. If υ (M ,D, u) > 0, then the restricted eigenvalue condi-

tion is satis�ed. �e condition is stricter than the compatibility condition and it holds that υ (M ,D) ⩽

υc (M ,D, u) for all u ⩾ d. Note that the restricted eigenvalue condition is related to a lower bound on

the eigenvalues of Σ, since

emin (Σ) ∥α∥2 ⩽ αTΣα ⩽ emax (Σ) ∥α∥2 ,

where emin (Σ) and emax (Σ) are the smallest and largest eigenvalues of Σ, respectively. Recall (from Sec-

tion 2.1.72.1.7) that eigenvalues of Σ that are close to zero are indicative of high levels of collinearity. See

Bühlmann & van de GeerBühlmann & van de Geer (20112011:156-177) and Bickel et al.Bickel et al. (20092009) for more information about compatibil-

ity and restricted eigenvalue conditions. Under the restricted eigenvalue condition,

∥α̂L − α∥2
p
→ 0,

and the rate of convergence is

∥α̂L − α∥2 = Op (υ−2
√
d ln p/n) .

A direct consequence is that the LASSO can be used for variable screening, identi�cation of the im-

portant variables. Denote the important variables, those with large e�ects, by

DD = { j∣ ∣α j∣ ⩾ D} ,

for some D > 0. With λn ≍
√
log p/n, asymptotic results are obtained under di�erent assumptions:

• Under the compatibility condition, ∥α̂L − α∥1 ⩽ an = O (d
√
ln p/n) so that

lim
n→∞P (D̂ (λn) ⊃ DDn ∣Dn > an) → 1.
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• Under the restricted eigenvalue condition, ∥α̂L − α∥ ⩽ bn = O (
√
d ln p/n) so that

lim
n→∞P (D̂ (λn) ⊃ DDn ∣Dn > bn) → 1.

• IfDDn = D, then the beta-min condition described below holds and

lim
n→∞P (D̂ (λ) ⊇ D) → 1. (4.1.45)

Variable screening is used purely to reduce the dimension of the problem and is performed prior

to a variable selection and/or estimation method. Other methods for variable screening are sure inde-

pendence screening (SIS) proposed by Fan & LvFan & Lv (20082008), safe feature elimination (SAFE) by Ghaoui et al.Ghaoui et al.

(20122012), and the strong rules discussed in Tibshirani et al.Tibshirani et al. (20122012).

Variable Selection Consistency

Using the LASSO for variable selection, we can use the LAR-LASSO algorithm to compute all LASSOmodels

of di�erent sizes over the path of λ ∈ [0, ∥ZTv∥∞]. Let the set of LASSO subsets be denoted by L̂ =

{D̂k (λ)∣ k = 0, 1, . . . ,M}, where D̂k (λ) = { j ∣α̂L
j (λ) ≠ 0}, ∣D̂k (λ)∣ = k and M = O (min (n, p)). Since

the active set is unchanged between steps, L̂ contains all the possible subsets that can be selected by the

LASSO so that there are a total of ∣L̂∣ = O (min (n, p)) models to consider. Comparison with Table 2.2.12.2.1

shows that variable selection with the LASSO is far more e�cient than any of the subset selectionmethods.

�e question is whether the correct subset D is contained in L̂ and if so, how do we select the value of λ

to identify it. �e problems we encounter when using the LASSO for variable selection are:

1. �e shrinkage parameter λ must be larger for selection than prediction.

2. Small nonzero parameters cannot be detected consistently.

3. High correlations between predictors leads to poor selection performance.

Leng et al.Leng et al. (20062006) showed that the LASSO is generally not consistent for variable selection when λ is

chosen for prediction accuracy. Meinshausen & BühlmannMeinshausen & Bühlmann (20062006) proved a similar result for p = O (na)

with a > 1. �eir work is in the context of neighbourhood selection for Gaussian graphical models but

can be interpreted as variable selection for linear regression with Gaussian variables. �ey show that

consistent neighbourhood selection with the LASSO is possible (under a number of conditions) if λ is
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chosen to be larger than the prediction optimal value. �at is, λn should decay at a slower rate than

O (√n) given by Knight & FuKnight & Fu (20002000). Corresponding with the results above, the shrinkage parameter

should satisfy

λn ≫
√
log p/n

A lower bound on the nonzero parameters is necessary to overcome the LASSOs inability to detect

small variables. Bühlmann & van de GeerBühlmann & van de Geer (20112011:21,24) call such a restriction the beta-min condition,

which must satisfy

αmin = min
j∈D

∣α j∣ ≫ υ−2
√
d ln p/n (4.1.46)

�e condition is discussed further in Bühlmann & van de GeerBühlmann & van de Geer (20112011:187-188) where they relate it to the

signal to noise ratio and the minimal eigenvalue of Σ11.

A very strict condition, known as the irrepresentable condition, is needed to address the correlations

between predictors. Coincidentally, a number of researchers independently discovered similar results:

the LASSO is selection consistent,

lim
n→∞P (D̂ (λn) = D) = 1, (4.1.47)

if and (almost) only if

∥Σ21Σ−111 sign (αD)∥∞ ⩽ 1 − ε for ε > 0, (4.1.48)

where Σ = ZTZ/n is partitioned as

Σ =[ Σ11 Σ12
Σ21 Σ22

]

so that

• Σ11 is the d × d nonsingular matrix with elements (Σ jk) j,k∈D,

• Σ21 is the (p − d) × d matrix with elements (Σ jk) j∉D,k∈D,

• Σ12 is the d × (p − d)matrix ΣT21

• Σ22 is the (p − d) × (p − d)matrix with elements (Σ jk) j,k∉D.

Meinshausen & BühlmannMeinshausen & Bühlmann (20062006) proposed the neighbourhood stability condition which is equiv-

alent to (4.1.484.1.48) and showed that the condition cannot be relaxed. ZouZou (20062006) proved that it is a nec-

essary condition for selection consistency. Yuan & LinYuan & Lin (20072007) showed that it is necessary and su�cient
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for the LASSO to be path consistent, a term they use to describe simultaneous consistence in estimation

and in variable selection. Zhao & YuZhao & Yu (20062006) coined the term irrepresentable condition and showed that

it is almost necessary and su�cient for sign consistency. With sign consistency, the signs of the nonzero

estimates should match the signs of true parameters in addition to distinguishing them from the zero

parameters. Let

sign0 (α j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if α j > 0
−1 if α j < 0
0 if α j = 0

then sign consistency implies

lim
n→∞P (sign0 (α̂ (λn)) = sign0 (α)) = 1.

Note that the irrepresentable condition is similar to applying a constraint on the regression coe�cients

obtained when regressing the irrelevant parameters on the relevant ones,

∥Σ−111 Σ12∥∞ = ∥(ZT
DZD)

−1
ZT
DZDc∥∞ ⩽ 1 − ε.

In other words, the relevant variables should not be too highly correlated with the irrelevant ones. Usu-

ally, a restriction on the minimum eigenvalues of ZT
DZD, emin (Σ11), is also necessary so that the level of

collinearity among the relevant variables is not too high.

Some examples where the irrepresentable condition holds are provided by Zhao & YuZhao & Yu (20062006):

• Constant positive correlation: Σ j j = 1 for j = 1, 2, . . . , p and Σ jk = ρ for j ≠ k, where 0 ⩽ ρ ⩽

1 /(1 + cd) for any c > 0.

• Bounded correlation: Σ j j = 1 for j = 1, 2, . . . , p and Σ jk = ρ for j ≠ k, where ∣ρ∣ ⩽ c /(2d − 1) for any

0 ⩽ c < 1.

• Power decay correlation: Σ jk = ρ∣ j−k∣ for j, k = 1, 2, . . . , p, where ∣ρ∣ < 1.

• Block designs: Consider designs such as

Σ =
⎡⎢⎢⎢⎢⎢⎣

A1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Ak

⎤⎥⎥⎥⎥⎥⎦
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where α = (α1, α2, . . . , αk)with α j corresponding to blockA j. �e strong irrepresentable condition

holds if there is a common ε such that the strong irrepresentable condition holds for all A j and α j.

• Orthogonal designs: Σ = Ip

• General designs where d = 1

• General designs where p = 2

WainwrightWainwright (20092009) calls condition (4.1.484.1.48)mutual incoherence. He provides results for sparsemodels,

∣D∣ = d ≪ p, with a general scaling on n, p and d, where p = p (n) and d = d (n) are allowed to grow as

the number of observations grow. For sign consistency,

lim
n→∞P (sign0 (α̂ (λn)) = sign0 (α)) = 1 − 4 exp (−cnλ2n) → 1,

for some c > 0, the following conditions are su�cient:

1. ∥Σ21Σ−111 sign (βD)∥∞ ⩽ 1 − ε for ε ∈ (0, 1]

2. emin (Σ11) ⩾ cmin for some cmin > 0

3. λn > 2
ε
√
2σ2 ln p/n

4. αmin > g (λn) = λn ∥Σ−111 ∥∞ + 4σλn/
√cmin

Consequences of these conditions on estimation are:

• lim
n→∞P (D̂ (λn) ⊆ D) = 1 − 4 exp (−c1nλ2n) → 1

• ∥α̂D − αD∥∞ ⩽ g (λn)

• Assuming that ∥Σ11∥∞ = O (1) and choosing λn = O (
√
ln p/n)it follows that ∥α̂D − αD∥2 =

O (λn
√
d) = O (

√
d ln p/n)

�ese results tie in nicely with the results presented above by Bühlmann & van de GeerBühlmann & van de Geer (20112011). �is

is because the irrepresentable condition implies the restricted eigenvalue condition so that under con-

ditions above, the LASSO achieves consistent selection and consistent estimation. Further details about

the irrepresentable condition and how it relates to the restricted eigenvalue conditions can be found in
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Bühlmann & van de GeerBühlmann & van de Geer (20112011:189-203). �e results obtained by Zhao & YuZhao & Yu (20062006) are a special case

where the scaling of (n, p, d) is such that p is exponentially larger than n. With p = O (exp (nc3)) and

d = O (nc1), the shrinkage parameter and beta-min conditions are λ2n = 1/n1−c4 and α2min = 1/n1−c2

with 0 ⩽ c1 < c2 < 1 and 0 ⩽ c3 < c4 < c2 − c1 so that consistency is achieved with probability

1 − exp (−cnc4) → 1. WainwrightWainwright (20092009) remarks that the sparsity constraint is very strong in this case

since d/p ≈ nc1 exp (−nc3) disappears quickly. He shows further that sign consistency is not achieved, in

particular

P (sign0 (α̂ (λn)) = sign0 (α)) ⩽ 1/2,

if either

1. the irrepresentable condition is violated, ∥Σ21Σ−111 sign (βD)∥∞ = 1 + ε for ε ∈ (0, 1], or

2. α j ∈ (0, ∣h j (λn)∣) for any j ∈ D where h j (λn) = λneTj Σ−111 sign (αD) and e j is the j-th coordinate

vector.

�us, the irrepresentable condition is necessary for sign consistency. Furthermore, the matrix Σ11

must be well conditioned so that none of the elements in Σ−111 are too large and αmin must not decay

faster than λn. WainwrightWainwright (20092009) extends these results for random Gaussian predictors and provides

a threshold for the number of observations, depending on the scaling of the parameters (p, d), that are

su�cient for consistent selection with the LASSO. For further insights concerning LASSO selection, see

Zhang & HuangZhang & Huang (20082008), Candès & PlanCandès & Plan (20092009) and Meinshausen & YuMeinshausen & Yu (20092009).

Summary

In orthogonal designs, the LASSO thresholding function is near minimax optimal. More generally, when

the true model is sparse and the tuning parameter is selected to minimize the squared error loss, the

LASSO displays impressive properties for estimation and prediction. It has superior prediction perfor-

mance, even when p≫ n, and although convergence may be slow, an oracle inequality can be established

under the weak compatibility condition to improve the convergence rate. For �xed p, parameters are es-

timated consistently and achieve asymptotic normality. Under the slightly stronger restricted eigenvalue

condition, the estimates are also consistent when p ≫ n and p grows with n. If additionally there are no

small nonzero parameters, the beta-min condition is satis�ed and the LASSO can be utilized for variable

screening. However, variable selection with the LASSO requires more restrictive conditions. If the tuning
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parameter is selected to be larger than the prediction optimal value, consistent selection is attained only

under both the beta-min condition and the irrepresentable condition. Bühlmann & van de GeerBühlmann & van de Geer (20112011:24)

provide a convenient summary of the conditions required for di�erent purposes of the LASSO, it is shown

in Table 4.1.34.1.3.

Purpose Conditions

Design Parameters

Prediction, slow (4.1.394.1.39) None None
Prediction, fast (4.1.424.1.42) Compatibility (4.1.404.1.40) None
Variable screening (4.1.454.1.45) Restricted eigenvalue (4.1.444.1.44) Beta-min (4.1.464.1.46)
Variable selection (4.1.474.1.47) Irrepresentable (4.1.484.1.48) Beta-min (4.1.464.1.46)

Table (4.1.3) Conditions for consistency when using the LASSO for different purposes

4.1.6 Model Selection

�eperformance of the LASSO relies heavily on the choice of tuning parameter to select the optimalmodel.

For prediction purposes, the squared error loss is minimized using either cross-validation methods or

information criteria. A drawback of using information criteria is that the model DF must be known.

However, recent studies have shown surprisingly that the LASSO uses DF equal to the number of nonzero

parameters in the model. Selection of the tuning parameter for variable selection is more di�cult since

the prediction optimal value is inconsistent for selection. Recent advances have been made to stabilize

the selection and usually entail some form of resampling, like multiple sample splitting or bootstrapping.

Prediction

When using the LASSO for prediction, the tuning parameter can be found using K-fold cross-validation.

For each K the model is estimated at each value of the tuning parameter and then used to predict the

hold out sample. �e value of the tuning parameter yielding the lowest CV error is selected as the best

one and the �nal model is �tted using that value. Cross-validation can be performed by optimizing

over either λ, t or s, the latter providing a convenient choice since it must lie on the interval [0, 1].

Homrighausen & McDonaldHomrighausen & McDonald (20132013) show that the LASSO is persistent when k-fold cross-validation is used

for selection of the tuning parameter andHomrighausen & McdonaldHomrighausen & Mcdonald (20142014) showpersistence for LOOCV.

Cross-validation can become computationally expensive depending on the dimension of the data and
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the algorithm used to �nd the LASSO solution. As an alternative, GCV or information criteria can be used.

�e di�culty therein lies in determining the DF. �e LASSO estimate is nonlinear and cannot be written

as a linear combination of the response, hence (3.1.103.1.10) can’t be used. TibshiraniTibshirani (19961996) approximated the

DF by making use of the linear approximation (4.1.294.1.29). �en

d f ( f̂L) ≈ tr [Z (ZTZ + λW−)−1 ZT]

and he suggested using GCV along with this approximation. He also proposes an approximation based

on Stein’s unbiased risk estimation (SURE), which assumes normality. See Seber & LeeSeber & Lee (20032003:420-422) for

information about Stein shrinkage and TibshiraniTibshirani (19961996) for the approximation. �e estimate (3.1.93.1.9) is

actually based on SURE theory, and is used in further studies concerning DF. Efron et al.Efron et al. (20042004) used the

theory to �nd the DF of the LASSO and showed that the Cp statistic using this DF is an unbiased estimate of

the prediction error. For LAR they show that, at the k-th step, the DF is approximated by the step number

k. However, the LAR-LASSO algorithm can have more steps than the number of variables. Interestingly, it

turns out that the DF is well approximated by the number of nonzero predictors in the model,

d f ( f̂L) ≈ E ∣D̂ (λ)∣ .

Although a price is paid in DF for the adaptive �tting of the LASSO, the DF that are saved due to shrinking

the estimates appears to balances out. Zou et al.Zou et al. (20072007) developed the theory further and conclude that

the number of nonzero predictors is an unbiased and consistent estimate of the DF. �ey use the estimate

d f ( f̂L) to construct the statistics Cp, AIC and BIC. Furthermore, they prove that the optimal value of λ

is one of the transition points in the LASSO path. �at is, at one of the LAR steps when a new variable joins

the active set. �ese results only hold if the predictor matrix has full column rank. Tibshirani & TaylorTibshirani & Taylor

(20122012) and Dossal et al.Dossal et al. (20132013) generalized the result (independently) so that the full rank assumption is

not needed. �eir estimates can therefore be used when p > n, even when the LASSO solution might not

be unique. Tibshirani & TaylorTibshirani & Taylor (20122012) prove that the DF is given by the rank of the active predictors,

d f ( f̂L) = E [rank (ZD̂)] .
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�e result by Dossal et al.Dossal et al. (20132013) is similar,

d f ( f̂L) = E ∣D̂∗ (λ)∣ ,

where D̂∗ (λ) = { j∣α̂∗j ≠ 0} and α̂∗ is a solution such that ZD̂∗ has full rank. �ey show that D̂∗ (λ) is

the minimum size of all active sets of LASSO solutions. Since each of these studies are based on SURE, the

response is assumed to be Gaussian.

Selection

Use of the LASSO for variable selection requires a larger shrinkage parameter. Cross-validation does not

lead to consistent selection. �e 1 SE rule might improve selection performance but there is no theoretical

justi�cation for its use with the LASSO.

Wang et al.Wang et al. (20092009) constructed a modi�ed BIC criterion,

BICD = ln (σ̂2D) + ∣D∣ ln (n)
n

Cn,

where σ̂2D = ∥v − ZD α̂D∥
2/ n and Cn > 0 is a positive constant. �e ordinary BIC is obtained when

Cn = 1. �ey prove that it is consistent for model selection for �xed p and when p grows with n. However,

BICD cannot be used when p > n since σ̂2D becomes 0 and ln (σ̂2D) is unde�ned. �ey use the value of

Cn = ln (ln p) in their studies where p varies with n. ChandChand (20122012) show that Cn =
√
n/ p leads to con-

sistent selection. Amore general information criterion is proposed by Fan & TangFan & Tang (20132013), the generalized

information criteria GIC, which can be used when p≫ n.

Sun et al.Sun et al. (20132013) propose selecting the tuning parameter by variable selection stability. �eymake use

of the kappa coe�cient, which measures the agreement between two independent sets,

κ (A1,A2) =
P (obs) − P (chance)

P (chance) ,

where the relative observed agreement is

P (obs) = 1
p
[∣A1 ∩A2∣ + ∣Ac

1 ∩Ac
2∣]
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and the probability of chance agreement is

P (chance) = 1
p2

[∣A1 ∩A2∣ + ∣A1 ∩Ac
2∣] [∣A1 ∩A2∣ + ∣Ac

1 ∩A2∣]

+ 1
p2

[∣A1 ∩Ac
2∣ + ∣Ac

1 ∩Ac
2∣] [∣Ac

1 ∩A2∣ + ∣Ac
1 ∩Ac

2∣] .

�e coe�cient lies on the interval κ ∈ [−1, 1], κ = −1 for complete disagreement and κ = 1 for complete

agreement between the two sets. By applying the samemodel to two di�erent data sets, two active sets are

obtained for the same model and the agreement between them can be measured by the kappa coe�cient.

�e set of variables chosen by a particular method should not vary much for samples drawn from the

same population. �us, the kappa coe�cient can be used as a measure of variable selection performance

and the tuning parameter can be selected by maximizing the kappa coe�cient. Suppose the training

observations are denoted by t i = (x i , yi) for i = 1, 2, . . . , n, then the training set can then be denoted by

T = (t1, t2, . . . , tn). �ey propose the procedure below.

Algorithm 4.1.4 Variable selection stability

1. For b = 1, 2, . . . , B:

(a) Randomly split the training data into two equally sized samples T∗b1 = (t∗b1 , t∗b2 , . . . , t∗bm ) and

T∗b2 = (t∗bm+1, t∗bm+2, . . . , t∗b2m)

(b) Calculate the LASSO path for each sample L̂∗b1 = {D̂∗b1 (λk)} and L̂∗b2 = {D̂∗b2 (λk)}

(c) For k = 1, 2, . . .M: Calculate the variable selection stability

ŝ∗b (λk) = κ∗b (D̂∗b1 (λk) , D̂∗b2 (λk))

2. For k = 1, 2, . . .M: Calculate the average variable selection stability

ŝ (λk) =
1
B

B
∑
b=1

ŝ∗b (λk)

3. Calculate

ŝmax = max
λk

{ŝ (λk)}
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and select the optimal λ̂ for variable selection as the one obtaining the upper 1−θn percentile of ŝ∗ (λk)

λ̂ = min{λk ∣
ŝ (λk)
ŝmax

⩾ 1 − θn} .

Sun et al.Sun et al. (20132013) recommend using a small value of limn→∞ θn → 0 and remark that their studies were

performed using θn = 0.1. However, they state that, while θn varies in a certain range, it has little e�ect on

the selection performance. �ey prove that the method leads to consistent variable selection for �xed p

and when p is allowed to grow with n. Fang et al.Fang et al. (20132013) propose combining the performance of variable

selection and prediction by a criterion they call prediction and stability selection (PASS),

PASS (λ) =

B
∑
b=1

κ∗b (D̂∗b1 (λk) , D̂∗b2 (λk))

B
∑
b=1

CV (Z∗b1 , Z∗b2 ∣λk)
.

Hence, the criterion is the ratio of the average kappa coe�cient to the cross-validation error. �ey also

show that this criterion is consistent.

Roberts & NowakRoberts & Nowak (20142014) propose the percentile-lasso, a method that repeatedly performs K-fold

cross-validation. �e idea is to stabilize the variability due to di�erent fold allocations. K-fold CV is

applied for M repetitions and the θ-th percentile of the vector (λ̂1, λ̂2, . . . , λ̂M) is used as the shrinkage

parameter. �ey �nd that M ⩾ 10 is necessary but suggest using M = 100 if an e�cient algorithm is used

to compute the LASSO. �ey further suggest using θ = 0.95 or alternatively, for a range of θ, �nd the

subset obtained by the LASSO with λ = λ̂ (θ) and �t the model using least squares. θ̂ is then selected as

the value corresponding to the re-estimated model with the lowest error. �ey show by simulations that

the number of true nonzero parameters selected decreases by a negligible amount, while the number of

false inclusions and the variability of the model size d̂ is greatly reduced.

Bühlmann & van de GeerBühlmann & van de Geer (20112011:339-385) discuss two methods of variable selection using the LASSO

that do not directly choose a value of the tuning parameter for model selection. �e �rst is stability

selection which was introduced by Meinshausen & BühlmannMeinshausen & Bühlmann (20102010). Subsampling or bootstrapping is

used for the selection of variables. Instead of selecting the model for a value of λ, the selected model is

chosen such that the probability of its selection over the subsamples exceeds some threshold value. �ey

remark that the selection is more stable with this approach and that the error rate of false positives is
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controlled. However, a rather strong assumption, called the exchangeability condition, is required for its

application. �e secondmethod requires weaker assumptions and was proposed byMeinshausenMeinshausen (20092009).

�e data is repeatedly split into two samples of roughly equal size. �e LASSO is used to select the variables

with the �rst sample. �e chosen subset is then estimated using least squares on the second sample and

the p-values are recorded for each active variable (corrected for multiple testing) and set to one for each

inactive variables. A�er the multi sample splitting, the p-values for each variable are aggregated based

on quantiles. Variables can then be selected for the �nal model if their aggregated p-values exceed a

pre-determined threshold.

4.2 Two-stage LASSOMethods

�e LASSO shrinkage is constant - small parameters are set to zero but the other parameters are shrunk at

a constant rate regardless of their size. As a result, large parameters can be overshrunk which causes the

bias of the LASSO estimate to increase. A problem with the LASSO is that it relies on the use of one tuning

parameter for both selection and estimation. Selecting the tuning parameter with cross-validation or

information criteria yields a model that is optimal for prediction. �e value of the shrinkage parameter λ

is o�en small in this case and toomany variables are included in themodel. Using the 1 SE rule with cross-

validation can improve the variable selection properties of the LASSO. In this case, the value of λ is usually

much larger so that more variables are set to zero. However, the larger λ also shrinks the other parameters

more and the large bias results in poor prediction accuracy. Although the LASSO over�ts the model when

a prediction-optimal value of λ is used, the resulting model contains the true subset of variables with a

high probability. �is is suggestive of using the LASSO in a two-stage design which utilizes more than one

tuning parameter.

4.2.1 Relaxed LASSO

MeinshausenMeinshausen (20072007) proposed the relaxed LASSO as a two-stage design to control the bias. �emotivation

was to �nd a method with low computational complexity and good asymptotic properties in a high-

dimensional setting where p ≫ n. �e LASSO, ridge regression and subset selection are special cases of

bridge estimators suggested by Frank & FriedmanFrank & Friedman (19931993),

α̂B = argmin
α

∥v − Zα∥2 + λ ∥α∥γ
γ , (4.2.1)
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for λ ⩾ 0 and γ ⩾ 0. �e idea is to use two tuning parameters where λ controls the amount of shrinkage

and γ controls the rotation of the estimates with respect to the coordinate axes. FuFu (19981998) developed an

algorithm to solve for bridge estimates with γ > 1 using a modi�ed Newton-Raphsonmethod. �e bridge

penalty,

PB (α) = λ ∥α∥γ
γ = λ (ℓγ (α))γ , (4.2.2)

includes the following special cases by using di�erent ℓγ-norms:

• ℓ0 (α) = ∑p
j=1δ (α j ≠ 0) corresponds to subset selection

• ℓ1 (α) = ∑p
j=1 ∣α j∣ corresponds to the LASSO penalty

• ℓ2 (α) = (∑p
j=1α

2
j)

1
2 corresponds to the ridge penalty

�e study by Knight & FuKnight & Fu (20002000) on the limiting distributions of bridge estimates shows that when

γ > 1, the amount of shrinkage increases as the size of the parameter increases so that the bias of large pa-

rameters will be very high. In contrast, they showed that nonzero parameters, including large parameters,

are estimated without bias while zero parameters are shrunk to zero when γ < 1. In the high dimensional

setting convergence rates are much faster when γ < 1. With γ > 1, convergence is slow as p increases.

MeinshausenMeinshausen (20072007) shows that for the LASSO (γ = 1), the rate of convergence is also slow and with a

constant rate of shrinkage, large parameters are still biased to a degree. �erefore, a procedure such as

bridge estimation with γ < 1 is desired. However, these procedures lack the low computational complexity

experienced when γ ⩾ 1 since the calculations involve minimizing a concave penalty function, which can

be di�cult especially when p≫ n.

MeinshausenMeinshausen (20072007) shows that the relaxed LASSO achieves low bias, fast convergence and low com-

putational expense. Let D̂ = { j ∶ α̂L
j ≠ 0} be the nonzero subset variables obtained by the LASSO estimate,

then the relaxed LASSO is given by

α̂RL
D̂ = argmin

αD̂
∥v − ZD̂αD̂∥

2 + ϕλ ∥α∥1 , (4.2.3)

where λ ⩾ 0 is the shrinkage parameter, ϕ ∈ (0, 1] is the relaxation parameter and α̂RL
D̂c = 0. �e penalty

function

PRL (α) = ϕλ ∥α∥1 (4.2.4)
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is convex and is identical to the LASSO penalty except for the factor ϕ which decreases, or relaxes, the

amount of shrinkage applied by λ. In this case, the shrinkage parameter λ controls variable selection

in the �rst stage and the relaxation parameter ϕ controls estimation in the second stage by relaxing the

amount of shrinkage. When ϕ = 1, the shrinkage is not relaxed and the LASSO estimate is obtained. �e

smaller ϕ is, the less shrinkage is applied. As a result, the relaxed LASSO o�en selects sparser models

than the LASSO and can yield better prediction accuracy. �e case when ϕ = 0 is de�ned as the limit

when ϕ → 0 and corresponds to the LAR algorithm used with least squares (LAR-OLS) hybrid method in

which estimation is carried out using least squares. MeinshausenMeinshausen (20072007) proves that the relaxed LASSO

outperforms both the LAR-OLS hybrid and the LASSO. Furthermore, they show that variable selection

is consistent when choosing the tuning parameters by optimizing for prediction. �e relaxed LASSO is

shown to have the following asymptotic properties:

1. For known values of (λ, ϕ), the convergence rate is fast and independent of p

inf MSE ( fRL (z)) = Op (1/n).

2. Selection of (λ, ϕ) by K-fold CV:

(a) �e convergence is near the optimal rate with known (λ, ϕ),

MSE ( f̂RL (z)) = Op (ln (n)2 /n).

(b) Consistent variable selection (shown by simulations).

Computation of the relaxed LASSO is performed using amodi�cation of the LAR-LASSO algorithm. �e

basic idea is that the entire LASSO path is calculated �rst using LAR-LASSO. �en for each model produced

by LAR-LASSO, the LASSO is applied again (using LAR-LASSO), but this time using the relaxed penalty and

only the predictors in that particular model. In this way, the entire path of the relaxed LASSO is computed

and the optimal tuning parameters λ and ϕ can be selected simultaneously using cross-validation. �e

�nal algorithm interpolates the path from the initial LAR-LASSO �t to �nd the solutions at no extra cost.

However, if the extrapolations cross zero for a particular model then LAR-LASSO must be applied again

for that model. In the worst case, with all extrapolations crossing zero, the computational complexity

increases to the order O (npmin (n, p)2).
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Algorithm 4.2.1 Relaxed LASSO

1. Compute all LASSO solutions using the LAR-LASSO algorithm and name them α̂L
1 , α̂

L
2 , . . . , α̂

L
o with cor-

responding shrinkage parameters λ1, λ2, . . . , λo and nonzero variables D̂1, D̂2, . . . , D̂o , where o =

min (n, p).

2. For each k = 1, 2, . . . , o, compute the directions in which the solutions lie,

ek = (α̂L
k − α̂L

k−1) / (λk−1 − λk). Let α̂∗k = α̂L
k + λkek .

3. If any sign (α̂∗k, j) ≠ sign (α̂L
k, j) for j = 1, 2, . . . , p,

(a) compute all relaxed LASSO solutions using the LAR-LASSO algorithm with the subset of variables

D̂k and varying the tuning parameter between 0 and λk .

(b) Else interpolate the relaxed LASSO solutions between α̂L
k−1 (equivalent to ϕ = 1) and α̂∗k (equiv-

alent to ϕ = 0).

4.2.2 Adaptive LASSO

�e adaptive LASSO proposed by ZouZou (20062006) uses a positive weighting factors to directly control the bias

by shrink parameters by di�erent amounts. �e adaptive LASSO estimator is given by

α̂AL = argmin
α

∥v − Zα∥2 + λ
p
∑
j=1
w j ∣α j∣ , (4.2.5)

where λ ⩾ 0 is the shrinkage parameter w j > 0 are the weights. Adaptively selected weights are de�ned

as ŵ j = 1/∣α̂ init
j ∣

ζ
, where ζ > 0 and α̂ init

j is an initial estimate. �us, the amount of shrinkage applied to

a parameter is inversely proportional to its size - large parameters are shrunk less and small parameters

are shrunk more. �e penalty function,

PAL (α) = λ
p
∑
j=1

w j ∣α j∣ (4.2.6)

is convex and is the same as the LASSO penalty whenw j = 1. Suppose that the true set of relevant variables

are the �rst d variables,D = {1, 2, . . . , d} then

1
n
ZTZ = Σ = [ Σ11 Σ12

Σ21 Σ22
] ,
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where Σ11 is the d × d covariance matrix of the relevant variables. ZouZou (20062006) prove that the adaptive

LASSO has the following properties:

1. Near-minimax optimality

In the orthogonal design, the adaptive LASSO thresholding function (shown in Section 4.2.34.2.3) attains

the near minimax risk. If λ∗ = (2 ln n)(1+ζ)/2 and σ2 = 1 then

RAL (α̂∗, α) ⩽ (2 ln p + 5 + 4ζ−1) (R (ideal) + 1/
√
4π ln (n)) .

2. Oracle properties

Suppose that α̂ init
j is a

√
n-consistent estimator, λn/

√
n → 0 and λnn(ζ−1)/2 →∞. Alternatively, the

condition can be relaxed so that α̂ init
j is an an-consistent estimator, λn = o (

√
n) and αζ

nλnn →∞.

�en the adaptive LASSO is

(a) consistent for variable selection, lim
n→∞P (D̂n = D) = 1.

(b) asymptotically normal,
√
n (α̂AL

D̂ − αD)
d→ N (0, σ2Σ−111 ).

See Huang et al.Huang et al. (20082008) and Lin et al.Lin et al. (20092009) for properties of the adaptive LASSO in high dimensional

settings.

�e adaptive LASSO can be stated as a LASSO problem and solved using the LAR-LASSO algorithm at no

extra cost.

Algorithm 4.2.2 Adaptive LASSO

1. Let Z∗ be the matrix with columns z∗j = z j/ŵ j for j = 1, 2, . . . , p

2. Solve the LASSO problem α̂∗ = argmin
α

∥v − Z∗α∥2 + λ ∥α∥1

3. Compute the adaptive LASSO solution α̂AL
j = α̂∗j /ŵ j for j = 1, 2, . . . , p.

For a given value of ζ , the LAR-LASSO algorithm �ts the entire path and cross-validation can be used

to select the best value of ζ . �is can be repeated over a grid of ζ values and the one giving the minimum

CV error is used. ZouZou (20062006) recommends using the LSE to calculate the adaptive weights. In the presence

of collinearity or if the design matrix does not have full rank, he recommends using the best �tting ridge

regression estimate.

115



Qian & YangQian & Yang (20132013) propose a method called standard error adjusted LASSO (SEA-LASSO) to improve

the performance when using the LSE as an initial estimate in the presence of collinearity. Let s1, s2, . . . , sp

be the standard errors of the LSEs, then the weights are calculated as w j = s j/α̂ζ
j . �ey note that when

Σ is ill-conditioned, the LSE can be poor, with true nonzero parameters having estimates far from zero.

Since these estimates are not as small as they should be, the weights in the adaptive LASSO will not be

su�ciently large and the estimates will not be penalized enough. Such estimates are unstable and usually

present with in�ated variances due to collinearity. �us they suggest that multiplying the weights by the

standard errors of the estimates will improve the regularization, if the model is sparse. Furthermore,

they show that SEA-LASSO has the same theoretical properties of the adaptive LASSO. If the model is not

sparse, they propose a two-stage method called NSEA-LASSO. �ese methods are recommended when the

condition number is large, in particular κ2 (Σ) ⩾ 10.

Bühlmann & van de GeerBühlmann & van de Geer (20112011:25) suggest using the LASSO estimate as an initial estimatewhen p≫ n

and calculating the weights with ζ = 1. �e LASSO is applied in the �rst and second stage, each time

selecting the shrinkage parameter λ for optimal prediction.

Algorithm 4.2.3 Adaptive LASSO with LASSO initial estimate

1. Calculate the LASSO solution α̂L selecting λ by CV for optimal prediction and let D̂ = { j ∶ α̂L
j ≠ 0}

2. Calculate the adaptive LASSO solution with α̂AL
D̂c = 0 and

α̂AL
D̂ = argmin

αD̂
∥v − ZD̂αD̂∥

2 + λ∗∑
j∈D̂

∣α j∣
∣α̂L

j ∣
,

again selecting λ∗ by CV for optimal prediction.

Applying the LASSO again in a second stage can simultaneously reduce the number of irrelevant vari-

ables included in the �rst stage and estimate the nonzero parameters with less bias. �e computational

burden of cross-validation is eased by sequentially optimizing over a single parameter instead of optimiz-

ing over two parameters simultaneously. If LAR-LASSO is used in both steps, the computational cost is of

order O (npmin (n, p)2) when simultaneously optimizing over two parameters. In contrast, the cost is

of order O (2npmin (n, p)) when optimizing twice over one parameter.

Bühlmann & van de GeerBühlmann & van de Geer (20112011:30) discuss a further generalization of the idea by applying the LASSO

in multiple stages.
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Algorithm 4.2.4 Multi-stage adaptive LASSO

1. Initialize the weights ŵ(0)j = 1 for j = 1, 2, . . . , p and initialize the set of nonzero parameters D̂(0) =

{ j ∶ 1, 2, . . . , p}

2. For k = 1, 2, . . . ,K:

(a) Calculate the multi-stage adaptive LASSO estimate as α̂ML
D̂c
(k−1)

= 0 and

α̂ML
D̂(k−1) = argminαD̂(k−1)

∥v − ZD̂(k−1)αD̂(k−1)∥
2
+ λ(k) ∑

j∈D̂(k−1)
ŵ(k−1)j ∣α j∣ , (4.2.7)

selecting λ(k) for optimal prediction.

(b) Update the set of nonzero parameters D̂(k) = { j ∶ α̂ML
j ≠ 0}

(c) Update the weights ŵ(k)j = 1/ ∣α̂ML
j ∣ for j ∈ D̂(k)

�e sparsity increases at each step of the multi-stage LASSO. Since the shrinkage parameters are se-

lected sequentially, the computational complexity is of the orderO (Knpmin (n, p)) if LAR-LASSO is used

at each step. Bühlmann & van de GeerBühlmann & van de Geer (20112011:32-33) state that themulti-stage adaptive LASSO is an approx-

imation to the concave bridge estimates with 0 < γ < 1. Furthermore, they relate the computation of the

multi-stage LASSO to that of SCAD using iterative local linear approximations.

Nonnegative Garrote

Around the same time that the LASSO was proposed, BreimanBreiman (19951995) proposed the nonnegative garrote

as a stable, scale invariant method which could be used as an alternative to variable selection methods

and ridge regression. �is method does not standardize the data but instead scales each least squares

estimate directly by a nonnegative constant. Let β̂ = (β̂1, β̂1, . . . , β̂p)
T
be the least squares estimate. �e

nonnegative garrote estimate is given by

β̂
NG = (c1β̂1, c2β̂2, , . . . , cp β̂p)

T
,

where c = (c1, c2, . . . , cp)
T is the solution to the penalized regression

argmin
c

XXXXXXXXXXXX
v −

p
∑
j=1
c j β̂ jx j

XXXXXXXXXXXX

2

+ λ
p
∑
j=1
c j, (4.2.8)
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where λ ⩾ 0 is the shrinkage parameter and c j ⩾ 0 for j = 1, 2, . . . , p. A di�erent amount of shrinkage

is placed on each least squares estimate. Small least squares estimates, which are possibly redundant, are

shrunk more than large ones. Like the LASSO, the problem can be written as a quadratic programming

problem (see Seber & LeeSeber & Lee (20032003:426)). BreimanBreiman (19951995) adapted the NNLS algorithm of Lawson & HansonLawson & Hanson

(19741974:158-173) to solve the problem. He recognized that NNLS handled the nonnegative constraint c ⩾ 0

and incorporated a barrier method to include the constraint∑p
j=1c j ⩽ τ. A drawback of the nonnegative

garrote is its dependence on the LSEs. In situations where the LSEs perform poorly, the nonnegative garrote

will likely su�er the same consequences. Furthermore, the nonnegative garrote cannot be used when

p > n because of its reliance on the LSEs. Yuan & LinYuan & Lin (20072007) propose generalizing the problem to use the

estimates from other methods, such as ridge regression, the LASSO or the elastic net, as initial estimates in

the nonnegative garrote. �ey show that, similar to the LASSO, the entire path of the nonnegative garrote

solution is piecewise-linear. Furthermore, they provide an e�cient algorithm for computing this path,

which alleviates any problems that the procedure might have regarding computational cost.

ZouZou (20062006) shows that the adaptive LASSO is similar to the nonnegative garrote when γ = 1 and α̂ init
j

are the least squares estimates. In this case, the adaptive LASSOminimizes

∥v −∑α jz j∥
2 + λ∑ŵ j ∣α j∣

= ∥v −∑α jz j∥
2 + λ∑ ∣α j∣/ ∣α̂ j∣

= ∥v −∑c jα̂ jz j∥
2 + λ∑∣c j∣ ,

which is similar to the nonnegative garrote since α̂NG
j = c jα̂ j. ZouZou (20062006) states that when adding the

constraint α jα̂ j ⩾ 0, the problems are equivalent.

4.2.3 Orthogonal Design

Using Equation (4.1.54.1.5), closed form estimates can be obtained for the two-stage methods under an or-

thogonal design. �ese estimates are called thresholding functions and are summarized in Table 4.2.14.2.1,

along with penalty functions for each method.

�e penalty and thresholding functions for bridge estimates are depicted in Figure 4.2.14.2.1. When γ ⩾ 2,

the penalty function is convex and the thresholding function shrinks parameters proportional to their

size. As γ increases beyond 2, large parameters are biased more towards zero and small parameters not
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Method Penalty Function �resholding Function

Bridge Estimates λ∑∣α j∣
γ α̂ j − sign (α j) λγ ∣α j∣

γ−1

Relaxed LASSO λϕ∑∣α j∣ sign (α̂ j) (∣α̂ j∣ − ϕλ) δ (∣α̂ j∣ ⩾ λ)
Adaptive LASSO λ∑∣α j∣/∣α̂ j∣

ζ sign (α̂ j)(∣α̂ j∣ − λ/∣α̂ j∣
ζ )

+

Table (4.2.1) Penalty and thresholding functions for bridge estimates and two-stagemethods

shrunk. When 1 ⩽ γ < 2, the penalty function is still convex but we see the discontinuity at zero for γ = 1.

�e thresholding function shows that large parameters are shrunk slightly less and small parameters are

only set to zero when γ = 1. When 0 < γ < 1, the penalty function is concave and the shrinkage of

the thresholding function is inversely proportional to the size of the parameters. Here, with λ = 4 and

γ = 0.25 or γ = 0.5, large parameters remain fairly untouched by the shrinkage.
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Figure (4.2.1) Penalty functions (a)(a)-(c)(c) and thresholding functions (d)(d)-(f)(f) for bridge estimates
at various values of λ and γ. The penalty functions are convex when γ ⩾ 1 and discontinuous
at zero when γ ⩽ 1. When the penalty function is discontinuous, the thresholding function sets
parameters to zero. The shrinkage of nonzero estimates is proportional to their size when γ > 1,
inversely proportional when γ < 1 and constant when γ = 1.
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�e functions for the relaxed LASSO and adaptive LASSO are shown in Figure 4.2.24.2.2. �e adaptive LASSO

penalty appears to be convex and when ξ = 0.5, it is very similar to the bridge penalty with γ = 0.5. �e

relaxed LASSO is convex for all ϕ ∈ (0, 1). �e thresholding function of the relaxed LASSO is similar to

the LASSO threshold but it is clear that less shrinking is applied. �e adaptive LASSO threshold seems to

mimic the behaviour of concave bridge penalties quite well, large parameters are shrunk very little and

small parameters are shrunk slightly less than the bridge penalties.
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Figure (4.2.2) Penalty and thresholding functions for (a)(a)-(b)(b) relaxed LASSO and (c)(c)-(d)(d) adaptive
LASSO. The ordinary LASSO is depicted by the solid black line. The shrinkage mimics the concave
bridge penalties in Figure 4.2.14.2.1 and the bias is reduced.
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4.2.4 Other Methods for Controlling Bias

�e LAR-OLS hybrid is discussed by Efron et al.Efron et al. (20042004). In this procedure the LAR algorithm is used solely

for selection purposes. �e solution path is calculated and a�er identifying the optimal model, least

squares is used to estimate it. Bühlmann & van de GeerBühlmann & van de Geer (20112011:33) propose a similar strategy to the LAR-OLS

hybrid method. Using CV to select the prediction optimal value of λ, the LASSO estimate α̂R is obtained.

A thresholding rule is then applied to select all estimates that are greater than some ι > 0,

α̂thresh
j = α̂R

j δ (∣α̂R
j ∣ > ι) .

Least squares is then used to �t the model using the subset of variables D̂ = { j ∶ α̂thresh
j ≠ 0}. Cross-

validation is used to select the best thresholding parameter ι by calculating the LSE for di�erent D̂ which

result from varying ι. While the method is similar to LAR-OLS hybrid, it includes an addition threshold-

ing stage which improves the performance. In fact, Bühlmann & van de GeerBühlmann & van de Geer (20112011:210-215) show that

thresholding the LASSO has similar properties to the adaptive LASSO for prediction and variable selection.

Zhang & HuangZhang & Huang (20082008) discuss using an initial estimate which is ℓ∞-consistent and then applying

either the adaptive LASSO, the nonnegative garrote or hard thresholding to obtain the �nal estimate. �ey

show that these estimates are consistent for variable selection and estimation even in ill-conditioned de-

signs.

4.3 Modi�ed LASSOMethods

�e LASSO must be modi�ed in order to incorporate di�erent structures among the predictor variables.

Clarke et al.Clarke et al. (20092009:606) and Hastie et al.Hastie et al. (20092009:661) point out that when a group of highly correlated

variables is present, the LASSO tends to randomly select one of them in order to deal with collinearity.

Tibshirani et al.Tibshirani et al. (20052005) proposed the fused LASSO to handle predictors that can be ordered in a meaning-

ful way. A number of modi�cations have been developed to handle groups of variables. �e group LASSO

methods are designed to overcome this by considering whole groups for inclusion in themodel instead of

individual variables. Some of thesemethods are discussed brie�y in Section 4.3.24.3.2. �e group LASSO devel-

oped by Yuan & LinYuan & Lin (20062006) using a quadratic norm in the penalty function to produce sparsity between

groups and not within groups. Zhao et al.Zhao et al. (20092009) generalize the method with CAP, where groups may

be overlapped and can be speci�ed in such a way as to preserve hierarchy. Huang et al.Huang et al. (20092009) proposed
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another generalization called the group bridge which performs selection at the group level and within

groups.

4.3.1 Fused LASSO

Tibshirani et al.Tibshirani et al. (20052005) proposed the fused LASSO for ordered predictors. �ey provide two examples

when this situation occurs. �e �rst is protein mass spectroscopy in which the intensity is observed for

many time-of-�ight values j for each blood serum i. Here the predictors are ordered a priori by time-of-

�ight values. �e second example is gene expression data from a microarray. In this case the ordering of

the variables is unknown and must be estimated from the data. Correlated genes can be placed next to

each other a�er estimating their order using, for example, a clustering algorithm.

�e fused LASSO estimate is given by

α̂FL = argmin
α

∥v − Zα∥2 subject to
p
∑
j=1

∣α j∣ ⩽ t and
p
∑
j=2

∣α j − α j−1∣ ⩽ u, (4.3.1)

where t ⩾ 0 and u ⩾ 0 are tuning parameters. �e ℓ1-norm imposed on the di�erence between adjacent

parameters encourages nearby variables to have similar coe�cients, while the LASSO penalty promotes

sparsity between the coe�cients. When the order of the predictors is unknown, the constraint on the

di�erences can be modi�ed as

∑
j
∣α j − αk( j)∣ ⩽ u,

where k ( j) is the the variable closest to the j-th variable in terms of some similarity measure such as a

distance function or correlation index. �e problem can be written in the Lagrangian form

α̂FL = argmin
α

∥v − Zα∥2 + λ
⎡⎢⎢⎢⎢⎣
∥α∥ + ψ

p
∑
j=2

∣α j − α j−1∣
⎤⎥⎥⎥⎥⎦
.

Two approaches are suggested for computing the solution. First, quadratic programming can be used

by including nonnegative variables as in (4.1.234.1.23). Let θ1 = 1 and θ j = α j − α j−1 for j > 1, then the nonneg-

ative variables α+j , α−j ⩾ 0 and θ+j , θ−j ⩾ 0 are introduced such that α j = α+j − α−j and θ j = θ+j − θ−j . �e
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problem is then equivalent to

minimize 1
2 ∥v − Zα∥2

subject to α j = α+j − α−j for j = 1, 2, . . . , p

θ j = θ+j − θ−j for j = 1, 2, . . . , p

α+j , α−j , θ+j , θ−j ⩾ 0, for j = 1, 2, . . . , p

∑p
j=1 (α+j + α−j ) ⩽ t

∑p
j=2 (θ+j + θ−j ) ⩽ u

which includes 6p constraints and p variables. Let L be a p × p matrix with elements lii = 1, li+1,i = −1

and li j = 0, then θ = Lα. �e equality constraints can then be written as

[ L 0 0 −Ip Ip
Ip −Ip Ip 0 0

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
α+

α−

θ+

θ−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [ 0
0

]

and the inequality constraints can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ip 0 0 0
0 −Ip 0 0
0 0 −Ip 0
0 0 0 −Ip
1Tp 1Tp 0 0
0 0 1T0 1T0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α+

α−

θ+

θ−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
t
u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where 1T0 is a vector of 1s with the �rst element set to zero since θ1 = 1. In the second approach, they set

Z∗ = ZL−1, �t the LASSOmodel using LAR-LASSO to obtain α̂∗ and then compute α̂FL = α̂∗L−1.

Tibshirani & TaylorTibshirani & Taylor (20112011) extended the idea of enforcing structural or geometrical constraints and

proposed the generalized LASSO,

α̂DL = argmin
α

∥v − Zα∥2 + λ ∥Dα∥1 . (4.3.2)

Some special cases of the generalized LASSO are listed here.

• LASSO: D = I
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• 1-dimensional fused LASSO: X = I,

D
(n−1)×n

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 ⋯
0 −1 1 0 ⋯
0 0 −1 1 ⋯
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

• 2-dimensional fused LASSO: X = I,each row of D is given by Di = (0, 0, . . . ,−1, . . . , 1, . . . 0, ) �e

2d-fused LASSO penalty is λ∑ j,k∈D ∣α j − αk ∣. Hence the -1 entries in Di correspond to the j-th

variable and the 1 entries correspond to the k-th variable.

• Linear trend �ltering: X = I,

D
(n−1)×n

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 2 −1 0 ⋯
0 −1 2 −1 ⋯
0 0 −1 2 ⋯
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Wavelet smoothing: X = I,D =WT where the columns ofW are orthogonal wavelet basis.

4.3.2 Group LASSO

Group LASSO methods are an extension of the LASSO method to select known groups of variables called

factors. Examples where factors would be of interest include dummy variables, polynomial functions,

nonparametric basis functions and genes in the same molecular pathway. Categorical variables can be

included in the linear model by deriving dummy variables which correspond to the levels of the variable.

If the categorical variable is a good predictor, we would usually want to include all levels in the model.

When there is no signi�cant di�erence between two levels, the usual approach would be to combine

levels together rather than exclude them. To capture any curvature in the data, polynomial terms and

interactions can be included in the linear model. If a polynomial term or interaction is included in the

model, we would usually include any associated lower order terms to maintain hierarchy and facilitate

interpretation. Preserving hierarchical order helps to prevent shi�s in the data from reparameterizing

the model. Similarly, we might like to include groups of nonparametric basis functions or groups of

genes. �e levels or terms in these factors are o�en highly correlated. �e variables in each group have a

combined e�ect on the response variable and relate to one measured variable, so we would like to either

include or exclude the whole group instead of the individual derived variables.
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�e group LASSO was �rst introduced by BakinBakin (19991999) and later developed by Yuan & LinYuan & Lin (20062006).

Consider �tting a linear model including g groups. Let G1,G2, . . . ,Gg denote the subset of variables in

each group and let the number of variables in the k-th group be ∣Gk ∣ = pk , where p1 + p2 + ⋯ + pg = p.

�en we have the linear model

v =
g
∑
k=1

ZGk αGk + ε. (4.3.3)

�e usual linear model where individual variables are considered occurs when p1 = p2 = ⋯ = pg = 1.

For the group LASSO, the response variable and predictors are all centered to have mean 0 and each group

is orthonormalized so that ZT
GkZGk = Ipk for k = 1, 2, . . . , g. Applying the LASSO directly to (4.3.34.3.3) is

problematic. �e selected model o�en includes too many groups since it is based on the e�ects that

individual variables have on the response instead of the e�ects that the groups have. �e model will also

depend on how the groups are othonormalized and may include di�erent subsets of factors if any of the

groups are reparameterized. �e group LASSO extends the LASSO method to handle e�ects at the group

level and is invariable to the parameterization of the groups.BakinBakin (19991999) de�nes the group LASSO estimate

as

α̂GL = argmin
α

∥v −
g
∑
k=1

ZGk αGk∥
2

+ λ
g
∑
k=1

∥αGk∥Qk
, (4.3.4)

where λ ⩾ 0 is the shrinkage parameter and ∥αGk∥Qk
= (αT

GkQkαGk)
1
2 = ∥Q

1
2
k αGk∥2

is the Qk-quadratic

norm where Qk is a symmetric positive de�nite matrix (see Boyd & VandenbergheBoyd & Vandenberghe (20042004:635) for more

about quadratic norms). Yuan & LinYuan & Lin (20062006) chooseQ j = pkIpk so that the penalty function is

PGL (α) = λ
g
∑
k=1

pk ∥αGk∥2 = λ
g
∑
k=1

pk
√

αT
Gk αGk . (4.3.5)

When pk = 1, the penalty function is the same as the LASSO penalty since ∥αGk∥ =
√

α2Gk = ∣αGk ∣. When

pk > 1, the penalty function is similar to the ridge regression penalty. �e group LASSO promotes sparsity

between groups but not within groups. Yuan & LinYuan & Lin (20062006) extends the LAR algorithm to handle groups

of variables but they show that the group LASSO is not necessarily piecewise linear. Furthermore, they

modify the LAR algorithm to calculate the group estimator for the nonnegative garrote, which guaranteed

to be piecewise linear. To solve (4.3.44.3.4), they use an extension of the shooting algorithm by FuFu (19981998).

Zhao et al.Zhao et al. (20092009) proposed CAP as a more generalized method to incorporate grouped variables into
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the design. �e CAP estimator is given

α̂C = argmin
α

∥v −
g
∑
k=1

ZGk αGk∥
2

+ λ
g
∑
k=1

∣∥αGk∥qk ∣
γ
, (4.3.6)

where λ ⩾ 0 is the shrinkage parameter, γ ⩾ 1 and qk ⩾ 1 for all k = 1, 2, . . . , g control the grouping.

�e ℓγ-norm is the overall norm and controls the relationship between the groups, whereas the ℓqk -norm

controls the relationship between the variables in the k-th group. �e CAP penalty includes a composition

of ℓq-norms,

PC (α) = λ [ℓγ (ℓqk (αGk))]
γ = λ ∥∥αGk∥qk∥

γ

γ
(4.3.7)

and can almost be seen as a two-stage penalty, �rst applying shrinkage between the variables in each

group and then applying shrinkage among the groups. �e �exible penalty allows for di�erent penalties

on each group so that the norm most appropriate for the structure in a speci�c group can applied just

to that group. When γ = 1 and qk = 2 for all k, the group LASSO is obtained. When γ = 1, the bridge

parameter is not strictly necessary since norms are always positive. However, viewing the penalty in

this light does help to interpret why sparsity is promoted at the group level - the LASSO is being applied

between groups. �e bridge parameter γ controls the directions in which we believe the true parameters

are aligned with respect to the coordinate axes. Table 4.3.14.3.1 summarizes the directions that are favoured

for di�erent intervals of γ. Sparse solutions only occur for γ ⩽ 1, when the estimates are likely to lie on the

axes. �e estimates move further away from the axes as γ increases and their sizes get closer together. �e

ℓq-norm balls in Figure 4.3.14.3.1 illustrate the concept visually - the point of intersection with RSS is mostly

likely to occur wherever there are sharp points or edges on the norm ball. �e norm balls are for values

of γ, from le� to right, γ = 0.5, 1, 1.5, 2, 3,∞.

γ Interval Favoured Direction

[0, 1] on the axes
(1, 2) close to the axes
2 none

(2,∞) along diagonals

Table (4.3.1) Directions favoured by bridge estimates. Estimates are set to zerowhen they lie on
the axes and are equally sized when they lie along the diagonals
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Figure (4.3.1) Norm balls for bridge estimates in R2 (top) and R3 (bottom). From left to right,
γ = 0.5, 1 (LASSO), 1.5, 2 (ridge), 3 and∞. The first two figures on the left have protruding points on
the axes which encourage sparsity among the estimates. The last two figures on the right have
protruding points on the diagonals which encourage equality of estimates.

Zhao et al.Zhao et al. (20092009) consider γ = 1 and qk > 1 for all k. Hence, sparsity is encouraged between groups

but not within groups so that complete groups are considered for selection. In particular, they suggest

setting qk = ∞ for all k, thus promoting equally sized coe�cients within groups. It is noted that the

di�erent group sizes are irrelevant and have no e�ect on selection or estimation. Zhao et al.Zhao et al. (20092009) also

outline a way of performing hierarchical selection by de�ning the groups so that they are nested and

overlapping. �ey provide path algorithms to solve the general case qk > 1, the case when qk = ∞ (which

is more e�cient), and the overlapping group case.

Huang et al.Huang et al. (20092009) proposed a similar idea to CAP, called the group bridge. However, they allow for

selection not only between groups but also within groups simultaneously. �is is called bi-level selection,

if a group is selected, variables within that group can be discarded. �e group bridge is given by

α̂GB = argmin
α

∥v −
g
∑
k=1

ZGk αGk∥
2

+ λ
g
∑
k=1

ck ∥αGk∥
γ
1
, (4.3.8)

where λ ⩾ 0 is the shrinkage parameter. �e c j are constants that can be used to adjust for di�erent sizes

of the groups and a suggested value is c j ∝ p1−γ
k . �e bridge parameter γ ∈ (0, 1) is applied to the ℓ1 norm
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of each group, resulting in the concave penalty function

PGB (α) = λ
g
∑
k=1

ck ∥αGk∥
γ
1
. (4.3.9)

�e penalty function is the ordinary bridge penalty when pk = 1. When γ = 1, the LASSO penalty is

obtained. Here, the LASSO is used as the within group penalty and the bridge parameter is used as the

overall penalty.

4.3.3 Geometry

�e norm balls shown in Figure 4.3.24.3.2 clarify how the group norms and overall norms a�ect the param-

eters. �e parameters on the x and y axes correspond to a group of two predictors, while the parameter

on the z axis corresponds to an individual predictor, or a group of size 1. �us, in these plots, the group

norms act horizontally within the group and the overall norm acts vertically between the groups.

(a) (b) (c)

Figure (4.3.2) Norm balls for (a)(a) group LASSO, (b)(b) CAP, and (c)(c) group bridge penalties in R3 . The
parameters on the x and y axes are in a group of size two and the parameter on the z axis
corresponds to an individual variable (groupof size 1). Eachnormball promotes sparsity between
groups. The group LASSO includes entire groups, CAP encourages equality of parameters within
each group and the group bridge allows for sparsity within groups.

In each case, sparsity is induced between groups - by the sharp points of the ℓ1 norm for CAP and

group LASSO, or by the concave ℓγ-norm with γ ∈ (0, 1) for group bridge. However, only the group bridge

penalty allows for sparsity within groups where the ℓ1 norm has its sharp points on the axes. Although

the CAP penalty has sharp points on the xy-plane, these are the corners of the ℓ∞-norm lying along the

diagonals of each quadrant and not on the axes. Rather than setting any estimates within the group to

zero, they are encouraged to be equally sized. �e group LASSO has the curved ℓ2 norm acting within
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groups, where no direction is favoured and the possibility of sparsity is very low.

�e fused LASSO penalty is a combination of two ℓ1 penalties, one on the parameters and one on the

di�erence between adjacent parameters. �us, the normballs for the fused LASSO are shown in Figure 5.1.25.1.2

(in R2 and R3) for comparison with those of the combined penalties.

4.3.4 Hierarchy

�e hierarchy principal is to include any main e�ects that are associated with higher order e�ects. Statis-

ticians argue that hierarchical structure is necessary to avoid any reparameterization of the model if the

data shi�s location. As a simple example, consider �tting a model including a squared term and its main

e�ect,

Y = β0 + β1X2 + β2X (4.3.10)

or �tting the model excluding the main e�ect,

Y = β0 + β1X2. (4.3.11)

Suppose that X were to shi� in location, say to X + a. �en model (4.3.104.3.10) is una�ected by the change,

Y = β0 + β1 (X + a)2 + β2 (X + a)

= (β0 + a2β1 + aβ2) + β1X2 + (β2 + 2aβ1)X

= β∗0 + β1X2 + β∗2X.

However, this is not the case for model (4.3.114.3.11),

Y = β0 + β1 (X + a)2

= (β0 + a2β1) + β1X2 + 2aβ1X

= β∗0 + β1X2 + β∗2X.

�e main e�ect thus reappears when the data shi�s and predictions using model (4.3.114.3.11) will not include

a parameter for it. Geometrically, removal of the X term means that the quadratic curve is symmetric

about x = 0 and has its turning point at x = 0. Similarly, if X21 and X22 are included in the model then

X1X2 should also be included. Omitting the X1X2 term assumes that the quadric surface is aligned with
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the coordinate axis and any rotation of the surface will reintroduce the term. See FarawayFaraway (20052005:130-131).

As mentioned above, the CAP estimator (4.3.64.3.6) can be used to enforce hierarchy by creating over-

lapping groups in a speci�c way. Alternatively, Bien et al.Bien et al. (20132013) focus on a two-way interaction model,

including pairwise interactions between variables,

Y = β0 +∑
j
X jβ j +

1
2∑j≠k

Θ jkX jXk + ε. (4.3.12)

�e response vector y is centered to form the vector v. �e n × p predictor matrix X is �rst centered

and scaled to produce the matrix Z1. �e n × p (p − 1) matrix Z2 is calculated with columns Z jZk for

j ≠ k and the columns of Z2 are then centered. �e p × 1 parameter vector corresponding to Z1 is α and

the p × p parameter matrix corresponding to Z2 is Θ with Θ j j = 0 and ΘT = Θ. Let Z = [Z1,Z2] and

θT = (αT , vec (Θ)T /2). �e problem is then given by

α̂H = argmin
α

∥v − Zθ∥2 + λ ∥α∥1 +
λ
2
∥Θ∥1

subject to ΘT = Θ, ∥Θ j∥1 ⩽ ∣α j∣ for j = 1, 2, . . . , p

where ∥Θ∥1 = ∑ j≠k ∣Θ jk ∣ and Θ j is the j-th row (or column) of Θ. If Θ̂ jk ≠ 0 then ∥Θ j∥1 > 0 and ∥Θk∥1 > 0

so that α̂ j , α̂k ≠ 0. �us, hierarchy is maintained by design.
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Chapter 5

Other Shrinkage Methods

�is chapter provides a brief look at other shrinkage methods currently available. �e EN(Section 5.1.15.1.1)

and OSCAR (Section 5.1.25.1.2) combine the LASSO penalty with the ℓ2 norm and ℓ∞ norm, respectively. �ese

penalties are capable of including groups of correlated predictors in themodel. Finally, the concave penal-

ties of SCAD (Section 5.2.15.2.1) and MCP (Section 5.2.25.2.2) are mentioned. �ese penalties produce nearly un-

biased estimates which are consistent and e�cient, despite being concave and non-di�erentiable and are

the key focus of many researchers today.

5.1 Combined Penalties

Ridge regression o�en outperforms the LASSO when there are high pairwise correlations between groups

of predictors. In this situation, the LASSO tends to randomly select only one of the predictors in the

group. For predictive purposes that is o�en satisfactory, but there may be instances when identifying

the whole group is of importance. Zou & HastieZou & Hastie (20052005) uncovered the reason behind the grouping e�ect

of ridge regression and found a way to combine the ridge and LASSO penalties without overshrinking

parameters. �e result is the elastic net (EN), which is capable of including groups of correlated variables

while promoting sparsity. Bondell & ReichBondell & Reich (20082008) proposed a similar idea, OSCAR, which combines the

LASSO penalty with a pairwise max norm. �e result is a penalty function which allows multiple groups

of di�ering magnitudes to be identi�ed. �ese combined penalties were later modi�ed to have the oracle

property: the adaptive EN by Zou & ZhangZou & Zhang (20092009) and PACS by Sharma et al.Sharma et al. (20132013).

�e EN is also an attractive method to use when there are many relevant predictors in the high di-

mensional setting with p ≫ n. Osborne et al.Osborne et al. (2000b2000b) show that the LASSO selects at most min (n, p)

variables, so that when p > n it cannot select more than n variables. In contrast, the EN can potentially

select all p variables.
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5.1.1 Elastic Net

�e elastic net (EN) was introduced by Zou & HastieZou & Hastie (20052005) as a combination of ridge regression and the

LASSO. �e naive EN estimator is given by

α̂NE = argmin
α

∥v − Zα∥2 subject to (1 − ψ) ∥α∥1 + ψ ∥α∥2 ⩽ τ, (5.1.1)

where τ > 0 is the tuning parameter controlling the size of the constraint and ψ ∈ (0, 1) controls the

weighting of the ℓ1 and ℓ2 norms. When ψ = 0, the constraint becomes the LASSO and when ψ = 1 it

becomes the ridge regression constraint. Like the LASSO, the constraint is non-di�erentiable at 0 and it has

the ability to produce sparse solutions by setting parameter estimates exactly to zero. Like ridge regression,

the constraint is strictly convex for all ψ > 0. Zou & HastieZou & Hastie (20052005) state that the strict convexity allows

the EN to include groups of highly correlated predictors if their e�ects are equal in size. In the extreme

case when the predictors are exactly identical, their parameter estimates will be identical. �e LASSO

constraint is convex, but not strictly convex. �us, the LASSO does not have this grouping e�ect and in the

case of identical predictors it will not have a unique solution. Problem (5.1.15.1.1) is equivalent to the penalized

regression,

α̂NE = argmin
α

∥v − Zα∥2 + λ {(1 − ψ) ∥α∥1 + ψ ∥α∥2}

= argmin
α

∥v − Zα∥2 + λ1 ∥α∥1 + λ2 ∥α∥2 , (5.1.2)

where ψ = λ2/ (λ1 + λ2) and λ = λ1 + λ2, with λ1 ⩾ 0 and setting λ2 > 0 ensures strict convexity. So the

penalty function is

PE (α) = λ1 ∥α∥1 + λ2 ∥α∥2 . (5.1.3)

In this form we see that the ridge penalty can be obtained by setting λ1 = 0 and the LASSO penalty is

obtained by setting λ2 = 0.

�e naive EN can be written as a LASSO problem and solved in the same fashion. Let

Z∗
(n+p)×p

= 1√
1 + λ2

[ Z√
λ2Ip

] and v∗
(n+p)×1

= [ v
0

] , (5.1.4)
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and let λ∗ = λ1 /
√
1 + λ2 and α∗ =

√
1 + λ2α. �en

α̂∗ = argmin
α∗

∥v∗ − Z∗α∗∥2 + λ∗ ∥α∗∥1 (5.1.5)

is the solution of the augmented problem. �e equivalence of (5.1.25.1.2) and (5.1.55.1.5) can easily be veri�ed by

substitution,

∥v∗ − Z∗α∗∥2 + λ∗ ∥α∗∥1

= ∥[ v
0

] − 1√
1 + λ2

[ Z√
λ2Ip

]
√
1 + λ2α∥

2

+ λ1√
1 + λ2

∥
√
1 + λ2α∥1

= ∥[ v − Zα√
λ2α

]∥
2

+ λ1 ∥α∥1

= ∥v − Zα∥2 + ∥
√

λ2α∥
2
+ λ1 ∥α∥1

= ∥v − Zα∥2 + λ2 ∥α∥2 + λ1 ∥α∥1 .

�e naive EN solution is then

α̂NE = α̂∗√
1 + λ2

.

Note the similarity of the augmentedmatrices (5.1.45.1.4) with the augmented ridge problem (2.3.82.3.8). �e naive

EN di�ers only by the factor of 1/
√
1 + λ2 in the Z∗ matrix. �e augmented matrix Z∗ has n+ p rows and

rank (Z∗) = p so the naive EN could potentially include all p variables in the model, even when p≫ n.

Zou & HastieZou & Hastie (20052005) realized that the naive EN appears to double the amount of shrinkage, which

in�ates the bias without any further reduction in variance. �e problem is that both the ridge and LASSO

penalties attempt to shrink the estimates. Using (2.3.72.3.7), the form of the ridge estimate with shrinkage

parameter λ2 is

(ZTZ + λ2I)
−1
ZTv = 1

1 + λ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 r12
1+λ2 ⋯ r1p

1+λ2
r12
1+λ2 1 ⋯ r2p

1+λ2
⋮ ⋮ ⋱ ⋮
r1p
1+λ2

r2p
1+λ2 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

ZTv.

Zou & HastieZou & Hastie (20052005) suggest that decorrelation, shrinking the correlations by 1/ (1 + λ2), is the cause of

the grouping e�ect in ridge regression. However, they argue that the direct shrinkage factor of 1/ (1 + λ2) is

not needed by the EN since the LASSO shrinkage e�ectively controls the variance in addition to promoting

133



sparsity. �e corrected EN estimate is therefore scaled to undo the extra shrinkage,

α̂E = (1 + λ2) α̂NE =
√
1 + λ2α̂∗.

A further motivation for the correction factor is seen from the orthogonal design. In this case,

α̂NE
j =

sign (α̂ j) (∣α̂ j∣ − λ1)+
(1 + λ2)

.

For large LSEs, the naive EN threshold has substantial bias. Applying the correction factor (1 + λ2), the

EN threshold is identical to the LASSO threshold and achieves near minimax optimality. Figure 5.1.15.1.1 the

penalty function and thresholding function for the naive elastic net. �e penalty function is convex but

the thresholding has very large bias, shrinking parameters nearly as much as ridge regression.
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Figure (5.1.1) Penalty and thresholding functions for the naive EN. The LASSO is represented
by the thick black curve and ridge regression by the thin black curve. Except that the naive EN
penalty is discontinuous at zero when ψ < 1, the functions look similar to the bridge functions in
Figure 4.2.14.2.1 with γ ∈ [1, 2]. Large estimates are subject to larger shrinkage than the LASSO. After
applying the correction factor, the EN thresholding function is identical to the LASSO.

�e EN estimate is thus given by

α̂E = argmin
α

(1 + λ2) {∥v − Zα∥2 + λ1 ∥α∥1 + λ2 ∥α∥2}

= argmin
α

αT (Z
TZ + λ2I
1 + λ2

) α − 2vTZα + λ1 ∥α∥1 , (5.1.6)
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where the LASSO is obtained by setting λ2 = 0. So the EN can be seen as stabilizing the LASSO. �e pa-

rameter λ1 controls the amount of shrinkage and selection whereas the λ2 parameter controls the amount

grouping.

As with the LASSO, the EN can be solved e�ciently by using a modi�cation of the LAR algorithm,

LAR-EN, to calculate the entire solution path for �xed λ2. However, the EN has two tuning parameters

(λ1, λ2) which must be estimated. For a grid of λ2 values, the algorithm provides the entire solution path

for each λ2. �en λ1 can be selected using K-fold cross-validation and the value of λ2 giving the lowest

cross-validation error is selected. �e computational cost increases with p but is still manageable even

when p≫ n, although early stopping rules can be used to lessen the computational load. Since α̂E ∝ α̂∗

from the augmented LASSO problem, we could also parameterize the EN by (λ2, t) or (λ2, s), where t is

the ℓ1 norm of the coe�cients and s = t/t0 = ∥α̂E∥1 /∥α̂∥1 .

Adaptive Elastic Net

�e adaptive LASSO and the EN improve the LASSO in di�erent ways. �e adaptive LASSO controls the bias

by shrinking larger parameters less, while the EN handles collinearity by incorporating the ridge penalty.

�e EN can be also extended to shrink parameters by di�erent amounts. �e adaptive EN is a combination

of the adaptive LASSO and the EN and enjoys the good properties of both methods. It is given by

α̂AE = argmin
α

(1 + λ2)
⎧⎪⎪⎨⎪⎪⎩
∥v − Zα∥2 + λ∗1

p
∑
j=1
w j ∣α j∣ + λ2 ∥α∥2

⎫⎪⎪⎬⎪⎪⎭
, (5.1.7)

where w j > 0 are weights. Setting λ1 = 0 we obtain the ridge penalty and setting λ2 = 0 we obtain the

adaptive LASSO penalty. Zou & ZhangZou & Zhang (20092009) suggest �tting the EN model to obtain α̂E and calculating

the weights as

ŵ j = (1/ ∣α̂E
j ∣)

ζ
,

where α̂E
j ≠ 0. Let D̂ = { j ∶ α̂E

j ≠ 0}, then the adaptive EN estimates can be calculated as α̂AE
D̂c = 0 and

α̂AE
D̂ = argmin

α
(1 + λ2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∥v − ZD̂αD̂∥

2 + λ∗1∑
j∈D̂

ŵ j ∣α j∣ + λ2 ∥αD̂∥
2
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

�e same tuning parameter λ2 can be used for the EN and adaptive EN since it has the same contribution in

bothmethods but λ1 and λ∗1 are likely to di�er. We can obtain the solution by using the LAR-EN algorithm.
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Let Z∗D̂ be the matrix with columns z
∗
j = z j/ŵ j for j ∈ D̂. �en we can formulate the problem as

α̂∗ = argmin
α

∥v − Z∗D̂αD̂∥
2 + λ∗1 ∥αD̂∥1 + λ2 ∥αD̂∥

2 ,

and α̂AE
j = (1 + λ2) α̂∗j / ŵ j for j = 1, 2, . . . , p. See Zou & ZhangZou & Zhang (20092009) for details.

FriedmanFriedman (20122012) proposed the generalized elastic net penalty,

PGE (α) =
p
∑
j=1
ln ((1 − ψ) ∣α j∣ + ψ) ,

where 0 < ψ < 1. �e penalty is concave and approaches the LASSO as ψ → 1 and approaches subset

selection as ψ → 0. So this penalty provides a bridge between subset selection and the LASSO, while

the elastic net provides a bridge between the LASSO and ridge regression. Together the elastic net family

encompass the same range of penalties as bridge estimates. However, it is shown that the elastic net

penalties are more stable than bridge penalties.

5.1.2 OSCAR

�e octagonal shrinkage and clustering algorithm for regression (OSCAR) penalty was introduced by

Bondell & ReichBondell & Reich (20082008). It is similar to the EN since it is also a combination of two norms, but in this

case, the ℓ1-norm and the pairwise ℓ∞-norm of the parameters. �e estimate is given by

α̂O = argmin
α

∥v − Zα∥2 subject to
p
∑
j=1

∣α j∣ + ψ∑
j<k
max{∣α j∣ , ∣αk ∣} ⩽ τ, (5.1.8)

where τ > 0 controls the size of the constraint and ψ ⩾ 0 controls the extent of the pairwise ℓ∞-norm.

Similarly to the EN, the ℓ1 norm controls the variance and promotes sparsity, while the ℓ∞-normpromotes

equality of parameter estimates. �us, the OSCAR penalty is also capable of including groups of highly

correlated variables by setting the estimates of parameters within a group to be equal. �e pairwise ℓ∞-

norm is used instead of the overall ℓ∞-norm so thatmultiple groups of variableswith di�erentmagnitudes

can be included, the latter would only allow one group with the largest magnitude to be included. �e

OSCAR penalty also bears some resemblance to the fused LASSO, which imposes a pairwise ℓ1 norm in

combination with the regular ℓ1 norm. However, OSCAR considers any pairs of variables and not only

adjacent ones. �e LASSO is obtained by setting ψ = 0, which results in sparsity but no grouping. Letting
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ψ → ∞ results in the grouping e�ect without any sparsity. Problem (5.1.85.1.8) is equivalent to the penalized

regression

α̂O = argmin
α

∥v − Zα∥2 + λ
⎧⎪⎪⎨⎪⎪⎩
∥α∥1 + ψ∑

j<k
max{∣α j∣ , ∣αk ∣}

⎫⎪⎪⎬⎪⎪⎭
(5.1.9)

= argmin
α

∥v − Zα∥2 + λ1 ∥α∥1 + λ2∑
j<k
max{∣α j∣ , ∣αk ∣} ,

where λ ⩾ 0 and the penalty function is given by

PO (α) = λ1 ∥α∥1 + λ2ℓ∞ (α j , αk) . (5.1.10)

�e penalty function is convex and to solve the problem, Bondell & ReichBondell & Reich (20082008) use the 2p variables

corresponding to the nonnegative parameters α+j and α−j such that α j = α+j − α−j . �ey also introduce

p (p − 1) /2 variables l jk for the pairwise maxima for 1 ⩽ j ⩽ k ⩽ p. �e problem can then be written as a

quadratic programming problem with (p2 − 3p) /2 variables and p2 + p + 1 linear constraints. Since the

quadratic programming is of order p2, it can be computationally expensive for large p. �e problem is

stated as

minimize 1
2 ∥v−∑

p
j=1 Z j (α+j − α−j )∥

2

subject to ∑p
j=1 (α+j + α−j ) + ψ∑ j<k l jk ⩽ τ

l jk ⩾ α+j + α−j for 1 ⩽ j ⩽ k ⩽ p

l jk ⩾ α+k + α−k for 1 ⩽ j ⩽ k ⩽ p

α+j ⩾ 0, for all j = 1, 2, . . . , p

α−j ⩾ 0 for all j = 1, 2, . . . , p

Wu et al.Wu et al. (20092009) proposed a similar penalty given by

P∞ (α) = (1 − ψ) ∥α∥1 + ψ ∥α∥∞ ,

which also includes features of sparsity and grouping. �ey show that the penalty is piecewise linear and

provide a homotopy algorithm for its solution.
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PACS

Sharma et al.Sharma et al. (20132013) generalize the OSCAR penalty by including weights on the ℓ1 norm. However, their

pairwise absolute clustering and sparsity (PACS) penalty includes weighted sums and di�erences of pairs

of coe�cients instead of the pairwise ℓ∞-norm. �e estimate is given by

α̂P = argmin
α

∥v − Zα∥2 + λ
⎡⎢⎢⎢⎢⎣

p
∑
j=1
w j ∣α j∣ +∑

j<k
w jk(−) ∣αk − α j∣ +∑

j<k
w jk(+) ∣α j + αk ∣

⎤⎥⎥⎥⎥⎦
, (5.1.11)

where λ ⩾ 0 is the tuning parameter and w j, w jk(−) and w jk(+) are nonnegative weights. Sharma et al.Sharma et al.

(20132013) show that OSCAR is a special case of PACS by noting that

max{∣α j∣ , ∣αk ∣} =
1
2
{∣αk − α j∣ + ∣α j + αk ∣} .

�en the OSCAR estimate is given by

α̂O = argmin
α

∥v − Zα∥2 + λ
⎡⎢⎢⎢⎢⎣
ψ

p
∑
j=1

∣α j∣ +
1
2
(1 − ψ)∑

j<k
∣αk − α j∣ +

1
2
(1 − ψ)∑

j<k
∣α j + αk ∣

⎤⎥⎥⎥⎥⎦
,

where ψ ∈ [0, 1]. �ey also point out that the ridge penalty can be formulated as 2 (p − 1)∑p
j=1 α

2
j =

∑ j≠k [(α j − αk)
2 + (α j + αk)

2]. Four di�erent approaches for calculating the weights are discussed by

Sharma et al.Sharma et al. (20132013). In particular, the adaptive weights are given by ŵ j = ∣α̂ j∣
−ζ , ŵ jk(−) = ∣α̂k − α̂ j∣

−ζ and

ŵ jk(+) = ∣α̂k − α̂ j∣
−ζ for ζ > 0, where α̂ j are any consistent estimates such as the LSEs. Sharma et al.Sharma et al. (20132013)

also develop a local quadratic approximations (LQA) algorithm to compute the solution more e�ciently

than quadratic programming.

5.1.3 Geometry

Presented here are the norm balls for EN, OSCAR and the fused LASSO in Figure 5.1.25.1.2. �e elastic net is

curved like ridge regression but has points on the axes due to its LASSO characteristic. �e e�ect of the

curves meeting at a point on each axis is to bulge the curve outward along the diagonals of each quadrant.

Parameters are thus encouraged to fall either on a point and be set to zero, or near the diagonals and have

the same size as other parameters. Adjusting the ψ parameter lower yields sharper points and adjusting it

upward increases the curvature. �e OSCAR norm ball is similar but, instead of having points only on the

axes, it has pointy edges in every direction. �is allows for multiple groups of equally sized parameters
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within groups and di�erent sized parameters between groups. �e octagonal shape is the reason for its

name. �e fused LASSO looks very similar to OSCAR in two dimensions since the pairwise ℓ1 norm acts

on adjacent parameters. �e di�erence can be seen by examining the three dimensional ball. �e fused

LASSO produces a rather strange looking surface with pointy edges along the xy-plane and the yz-plane

but �at LASSO-like diamonds along the xz-plane.

(a) (b) (c)

(d) (e) (f)

Figure (5.1.2) Norm balls in R2 and R3 for (a)(a),(d)(d) elastic net, (b)(b), (e)(e) OSCAR, and (c)(c),(f)(f) fused
LASSO, all with ψ = 0.5. Each norm ball promotes sparsity with protruding points on the axes
and encourages estimates of equal size with protruding points on the diagonals. OSCAR allows
for multiple groups with different sized estimates between groups and fused LASSO sets estimates
equal only for adjacent variables.

5.2 Concave Penalties

Bridge penalties with 0 < γ < 1 are concave functions but they have the appeal of decreasing the amount of

shrinkage as the size of the parameter increases. Furthermore, Knight & FuKnight & Fu (20002000) show that these penal-

ties have the oracle properties (De�nition A.3.8A.3.8). �is is the idea behind the concave penalty functions,
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large parameters are penalized less so that the resulting estimates are nearly unbiased. In particular, this

is achieved by placing a constant bound on the penalty function. Fan & LiFan & Li (20012001) proposed SCAD, which

was the �rst shrinkagemethod having the oracle property. Although the adaptive LASSO is oracle, the bias

may decrease at a faster rate with SCAD. MCP, proposed by ZhangZhang (20102010), follows a similar approach but

penalizes smaller parameters less. Despite having concave penalties which are also non-di�erentiable at

zero, they both provide e�cient algorithms for computing the solution, even in high dimensional settings

when p ⩾ n.

5.2.1 SCAD

�e smoothly clipped absolute deviation (SCAD) estimate proposed by Fan & LiFan & Li (20012001) solves the penal-

ized regression

α̂S = argmin
α

∥v − Zα∥2 +
p
∑
j=1
PS (α j) , (5.2.1)

with penalty function

PS (α j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ ∣α j∣ if ∣α j∣ ⩽ λ
−(α2j − 2ξλ ∣α j∣ + λ2)

2 (ξ − 1) if λ < ∣α j∣ ⩽ ξλ

(ξ + 1) λ2/ 2 if ∣α j∣ > ξλ,

(5.2.2)

where ξ > 2 and λ ⩾ 0 are tuning parameters. �e penalty function PS (α j) is a symmetric quadratic

spline function with knots at λ and ξλ. It applies a di�erent amount of shrinkage to parameters based on

their size. For small parameters, the penalty is equal to the LASSO penalty and the shrinkage is constant.

While the LASSO penalty remains linear for all parameters, the SCAD penalty becomes quadratic for mod-

erately sized parameters and starts applying less shrinkage as the size of the parameter grows. For large

parameters the penalty is constant and little or no shrinkage is applied. �us, the ξ parameter e�ectively

controls the region in which parameters are almost unpenalized. As a result the SCAD estimate will have

less bias than the LASSOwhen there are large parameters in the model. �e rate of shrinkage is clear when

examining the derivative of the penalty function,

P′S (α j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sign (a j) λ if ∣α j∣ ⩽ λ
sign (a j) (ξλ − ∣α j∣)/ (ξ − 1) if λ < ∣α j∣ ⩽ ξλ

0 if ∣α j∣ > ξλ.
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Since the penalty function is the LASSO penalty for ∣α j∣ ⩽ λ it is also non-di�erentiable at zero so that

SCAD produces sparse models. Fan & LiFan & Li (20012001) show that scad has the oracle properties and also provide

a sandwich formula for calculating standard errors.

A di�culty with SCAD is that the penalty function is concave, which complicates its computation. De-

spite the concavity, Fan & LiFan & Li (20012001) propose an algorithmusing LQA to solve the problem. Zou & LiZou & Li (20082008)

developed an algorithm based on local linear approximation (LLA). Breheny & HuangBreheny & Huang (20112011) developed

a coordinate descent algorithm to compute the SCAD solution. Clarke et al.Clarke et al. (20092009:611-615) discuss the

the LQA algorithm, along with three other algorithms which have been developed to calculate the SCAD

estimate. Cross-validation or GCV can be used to estimate the tuning parameters ξ and λ. Although,

searching over a two-dimensional grid of values can easily become computationally expensive and they

recommend �xing ξ = 3.7 since they �nd it to be similar to GCV.

5.2.2 MCP

ZhangZhang (20102010) introduced the minimax concave penalty (MCP) which also has a concave penalty function.

�e penalized regression takes the form

α̂M = argmin
α

⎧⎪⎪⎨⎪⎪⎩
∥v − Zα∥ +

p
∑
j=1
PM (α j)

⎫⎪⎪⎬⎪⎪⎭
, (5.2.3)

and the penalty function is de�ned as

PM (α j) =
⎧⎪⎪⎨⎪⎪⎩

λ ∣α j∣ − α2j/ 2ξ if ∣α j∣ ⩽ ξλ
ξλ2/ 2 if ∣α j∣ > ξλ,

(5.2.4)

where ξ > 1 and λ ⩾ 0 are tuning parameters. �e LASSO penalty is obtained when ξ → ∞. While

the limiting distributions of concave bridge penalties obtained by Knight & FuKnight & Fu (20002000) show that large

parameters are estimated with less bias, they also show that small nonzero parameters are not estimated

consistently but are instead set to zero. �eMCP attempts to correct the problem and applies less shrinkage

to smaller parameters. �e penalty is thus a an improvement of the SCAD penalty, since the bias is slightly

lower and the accuracy of variable selection is improved. Its derivative is given by

P′M (α j) = { λ − sign (α̂ j) ∣α j∣/ ξ if ∣α j∣ ⩽ ξλ
0 if ∣α j∣ > ξλ,
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and is also non-di�erentiable at zero so that parameters can be set to zero. ZhangZhang (20102010) propose the

penalized linear unbiased selection (PLUS) algorithm to �nd the solution and the coordinate descent al-

gorithm by Breheny & HuangBreheny & Huang (20112011) also solves the MCP problem.

5.2.3 Orthogonal Design

�e penalty and thresholding functions for SCAD andMCP are summarized in Table 5.2.15.2.1 and displayed in

Figure 5.2.15.2.1. Both penalty functions are convex and look almost identical. �e shrinkage is also similar,

both penalties set small parameters to zero and leave large parameters untouched. Let’s call the region

in between the shrinkage region. �e di�erence between the penalties is the rate at which parameters

in the shrinkage region are shrunk. �e SCAD penalty has a steeper gradient than MCP so that smaller

parameters will be shrunk towards zero at a faster rate.

Method Penalty Function �resholding Function

SCAD

λ ∣α j∣ if ∣α j∣ ⩽ λ
−(α2j−2ξλ∣α j ∣+λ2)

2(ξ−1) if λ < ∣α j∣ ⩽ ξλ
(ξ + 1) λ2/ 2 if ∣α j∣ > ξλ

sign (α̂ j) (∣α̂ j∣ − λ)+ if ∣α̂ j∣ ⩽ 2λ
(ξ−1)α̂ j−sign(α̂ j)ξλ

(ξ−2) if 2λ < ∣α̂ j∣ ⩽ ξλ
α̂ j if ∣α̂ j∣ > ξλ

MCP
λ ∣α j∣ − ∣α j∣

2/ 2ξ if ∣α j∣ < ξλ
ξλ2/ 2 if ∣α j∣ ⩾ ξλ

sign(α̂ j)(∣α̂ j ∣−λ)+
1−1/ξ if ∣α̂ j∣ ⩽ ξλ

α̂ j if ∣α̂ j∣ > ξλ

Table (5.2.1) Penalty and thresholding functions for concave penalty methods
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Figure (5.2.1) Penalty and thresholding functions for (a)(a)-(b)(b) SCAD and (c)(c)-(d)(d) MCP at the
recommend value of ξ, 3.7 for SCAD and 3 for MCP. Large parameters are not subject to shrinkage
so that the estimate is not biased. The functions look similar, but MCP shrinks smaller parameters
less than SCAD.
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Chapter 6

Simulation Studies

Simulation studies are performed to support the theory and identify scenarios in which the LASSO per-

forms well. Section 6.16.1 explains how the performance of each method is assessed. �e LASSO is compared

with ridge regression and subset selection in Section 6.26.2. A study of the prediction accuracy along the

pathways of these methods are explored and it is shown how the bias variance trade-o� in�uences the

quality of the �nal models. Furthermore, a number of information criteria are used to select the �nal

model and the performance in terms of prediction and selection is assessed. It is also shown how the DF

is heavily underestimated in the subset selection case when using the number of nonzero variables as an

approximation. �e LASSO is shown to be a good competitor for both prediction and variable selection.

Section 6.36.3 studies the consistency of the LASSO and a number of other shrinkage methods.

6.1 Performance Measures

In the simulation studies below, regression models are estimated for each method over a grid of some

complexity measure θ. In some cases, the complexity parameter indexes the entire solution path from the

nullmodel to the full least squaresmodel. A set of coe�cients β̂
θ
, and hence a set ofmodels f̂θ (X) = Xβ̂

θ
,

are estimated on the training sample for each method. Each study is repeated on N = 100 samples and

the best models f̂θ̂ (X), chosen using either CV or information criteria, are recorded for each sample.

Performance measures are calculated for each iteration of the process, producing a sample of size N of

each measure. Sample statistics can then be derived by analysing the distributions of these measures over

the N repetitions. �emeasures below were calculated to compare the performance of di�erent methods.

6.1.1 Estimation Accuracy

To assess the accuracy of estimation, the parameter estimates of the best model β̂
θ̂
are recorded for each

sample. �e statistics below can be calculated to compare their e�ciency.
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1. �e mean of each estimate,

β̄ j (θ̂ i) =
N
∑
i=1

β̂ j (θ̂ i)/N ,

and their variances

var (β̄ j (θ̂ i)) = var (β̂ j (θ̂ i))/N

2. �e variance of each estimate,

var (β̂ j (θ̂ i)) =
N
∑
i=1

(β̂ j (θ̂ i) − β̄ j (θ̂ i))
2/(N − 1)

3. �e bias of each estimate,

Bias (β̂ j (θ̂ i)) = β̄ j (θ̂ i) − β j

4. �e MSE of each estimate,

MSE (β̂ j (θ̂ i)) = var (β̂ j (θ̂ i)) + Bias (β̂ j (θ̂ i))
2

By summing the statistics in 2-4, we obtain the total variance, bias andMSE, respectively. In particular,

the total MSE can be used to compare the overall e�ciency of estimation.

6.1.2 Prediction Accuracy

Prediction accuracy is assessed by calculating the mean squared error of the predictions f̂θ̂ (X) for each

sample. �ere are a number of ways that this can be done.

1. Since the true parameter vector and covariancematrix of the predictor variables are known, we can

calculate the true MSE of prediction directly,

MSE ( f̂θ̂ (X)) = (β̂
θ̂
− β)

T
Σ (β̂

θ̂
− β) . (6.1.1)

�e accuracy can then be assessed by calculating either,

(a) the sample mean of the MSEs and its standard error, which is the sample variance of the MSEs

divided by N , or
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(b) if the distribution is skewed, the sample median of the MSEs is a better statistic. �e standard

error of the median is calculated using the bootstrap with B = 200 bootstrap replications.

For each b = 1, 2, . . . , B, a sample of N MSEs is drawn, with replacement, and the median is

calculated each time. �e sample standard deviation over the B medians is an estimate of its

standard error.

2. Alternatively, a test set can be used and the predictions f̂θ̂ (Xt) on this set are recorded for each

training sample. �e statistics described in Section 6.1.16.1.1 for the parameter estimates, namely the

mean, bias, variance and MSE can be calculated in the same way for the predictions. �is MSE

should be similar to that obtained using equation (6.1.16.1.1).

3. A further alternative is to use an estimate of the prediction error, such as,

(a) the test error, TE ( f̂θ̂ (X)) = ∑m
i=1 (yt,i − f̂θ̂ (xt,i))

2/m for a test sample of sizem. �e aver-

age over the 100 samples is equal to the expected prediction error, or

(b) the information criteria Cp, AIC and BIC, or

(c) the cross-validation error.

Note that these methods include the irreducible error σ2, that is, the estimate should be similar to

MSE ( f̂θ̂ (X)) + σ2. �erefore, results are usually reported relative to σ2. �at is, for an estimate

of PE, P̂E, results are reported for P̂E ( f̂θ̂ (X))/ σ2.

6.1.3 Variable Selection

Variable selection can be assessed by looking at the estimated parameters which are included in the best

models. �e measures below are useful for assessing selection performance.

1. An indicator of whether each estimate is included in the selected subset

2. �e number of parameter estimates, further split by

(a) the number of correct or incorrect nonzero parameter estimates

(b) the number of correct or incorrect zero parameter estimates

3. Indicators of whether the true model is:
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(a) selected as the best subset,

(b) a subset of the selected variables, or

(c) contained in the solution path of the method. �at is, the true model could be obtained by

selecting a di�erent value of the complexity parameter θ̂.

�e number of incorrect nonzero estimates corresponds to a type I error of the hypothesis H0 ∶ β = 0

and the number of incorrect zero estimates corresponds to a type II error. �e measures are all averaged

over the N samples. Since measures 3a3a - 3b3b, and the indicator in 11, record either a success or a failure, the

sum over the N samples has a binomial distribution and the average is an estimate of the probability of

success. �at is, the probability of the method selecting the correct model is estimated by the proportion

of times the correct model is selected out of the N times the model is �tted. Similarly, we can estimate the

probability that the correct model is a subset of the selected model or if it lies in the solution path of the

method and the inclusion probability of each parameter can also be estimated.

6.2 Selection and Prediction

�is simulation study analyses the selection and prediction performance of the LASSO in comparison with

the traditional methods. Model selection is also examined by comparing the performance when using the

information criteria and CVmethods described in Sections 3.23.2 and 3.33.3 and some of themethods described

in Section 4.1.64.1.6.

6.2.1 Data

�e data generating process is given by

Y = Xβ + ε where X ∼ N (0, 1) and ε ∼ N (0, σ2) .

�e predictor variables are related by a power decay correlation structure corr (Xi , X j) = ρ∣i− j∣. Since the

predictors have unit variance, the matrix of predictor observations are distributed as X ∼N (0, Σ) with

Σi j = ρ∣i− j∣. �e true relationship between the response and the predictors is given by E (y) = Xβ where

β = (3, 1.5, 0, 0, 2, 0, 0, 0)T . �at is,

f (X) =
8
∑
j=1

X jβ j,
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and the correct model is given by

f (X) = X1β1 + X2β2 + X5β5.

�is example was studied in the original LASSO paper by TibshiraniTibshirani (19961996) and appears in a number

of studies, including but not limited to Fan & LiFan & Li (20012001), Zou & HastieZou & Hastie (20052005), ZouZou (20062006), Yuan & LinYuan & Lin

(20072007) and Bondell & ReichBondell & Reich (20082008), under various scenarios. In this study the sample size is n = 25,

quite a small sample a�ording about 3 observations for each parameter. �e correlation is varied by

considering ρ ∈ {0, 0.5, 0.9} to test the e�ect of collinearity. �e e�ect of noise in the data is tested by

using σ ∈ {1, 3, 6}. Estimation, selection and prediction is carried out by generatingN = 100 samples from

this process. For the generated data, the average condition number of the predictor correlation matrix

and the average signal to noise ratio (SNR) are shown in Table 6.2.16.2.1. �e condition number is given by

κ2(Σ) =
¿
ÁÁÀmax j e j(Σ)
min j e j(Σ)

,

where e j(Σ) are the eigenvalues of Σ, and the SNR, is given by

SNR = ∥ f (X)∥2
σ2

.

When ρ = 0.9, the large condition number indicates that high levels of collinearity are present. �e signal

to noise ratio is very low when σ = 6, making signi�cant e�ects harder to �nd.

SNR

ρ κ2(Σ) σ = 1 σ = 3 σ = 6
0 2.690 19.654 2.184 0.546
0.5 4.585 23.213 2.579 0.645
0.9 16.751 30.131 3.348 0.837

Table (6.2.1) Average condition number and SNR for generated data

6.2.2 Estimation and Model Selection

�emodel is estimated using forward selection, ridge regression and the LASSO. �e LAR algorithm is used

for computation of the LASSO. Forward selection is indexed by the number of nonzero variables θ = p,

ridge regression by the shrinkage parameter θ = λ, and the LASSO by the ℓ1 fraction, θ = s = ∥α∥1 / ∥α̂∥1 ∈
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[0, 1], where α̂ is the LSE. For every model selection procedure, the optimal tuning parameter is searched

for over a �xed grid of values. For comparison, least squares models and oracle least squares (that is, least

squares using only the true nonzero parameters) are also �tted.

Model selection is carried out using information criteria and CV on the training sample. An indepen-

dent validation sample, selected to be the same size as the training sample, is also used for comparison.

�e model f̂θ (X) is used to predict the response for the observations in the validation set and the ex-

pected test error is estimated by ∑(yv − f̂θ (xv))
2/ n. Suppose that the model with the lowest value

occurs at θ̂, then f̂θ̂ (X) is selected as the best model. �e information criteria used were Cp (3.2.53.2.5), AIC

(3.2.133.2.13) and BIC (3.2.163.2.16). CV methods used include 5-fold CV, 10-fold CV, LOOCV and GCV. All of these

methods attempt to estimate the expected test error. �us, to see how well they perform, each model

is used to predict an independent test sample of size m = 200 and the test error ∑(yt − f̂θ (xt))
2 /m is

recorded. �e training error is also recorded to examine the extent of its optimism.

�e expected test error is supposedly equal to the true PE. Since the data generating process is known,

we can verify this by comparing the average test error over the N samples with the true prediction error

given by PE = MSE + σ2, where MSE is calculated using equation (6.1.16.1.1). We can also show how the

prediction error is composed of the irreducible error, squared bias and variance by collecting the predicted

values f̂θ̂ (xt) for each sample. Collecting these values for each value of model complexity, we can show

how these measures are related to complexity. �e �tted model f̂θ̂ (x) on the training set is also collected

for each value ofmodel complexity over theN samples in order to estimate the e�ectiveDF using equation

(3.1.93.1.9).

Criteria used for variable selection are also investigated. K-fold CV is applied with the 1 SE rule for K =

5, 10. In addition, themodi�ed BIC, percentile CV and kappa selectionmethods discussed in Section 4.1.64.1.6

are applied. For both the percentile CV and kappa coe�cient, 20 repetitions were used.

6.2.3 Results

Solution path

Figures 6.2.16.2.1, 6.2.26.2.2 and 6.2.36.2.3 show the prediction error, estimates thereof and its decomposition into the

squared bias, variance and σ2 for forward selection, ridge regression and the LASSO, respectively for ρ =

0.5 and σ = 3. �e plots are all increasing with model complexity from le� to right. Forward selection is
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indexed by the number of variables p. �e LASSO models were �tted over a grid of s ∈ [0, 1] with a step

size 0.01. Ridge regression models were �tted over a grid of λ ∈ [0, 50] with step size of 0.2. �e di�culty

with the selection of the ridge tuning parameter is that there is no upper bound since estimates are not set

exactly to zero. �e plots for ridge regression are indexed by − ln (λ) so that model complexity is in the

same direction as the other methods. Of course, the least squares model at λ = 0 is therefore not included.
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Figure (6.2.1) Prediction error for forward selectionwhen σ = 3 and ρ = 0.5. PE is plotted against
the number of variables p and the effective DF is shown on the top axes. The top panels show the
PE for each sample (light curves) and the average over the 100 samples (thick curves), with the test
error and training error in (a)(a) and the test error and true PE in (b)(b). Estimates of PE are shown in (c)(c)
and (d)(d) displays the decomposition of MSE into the squared bias and variance of the predictions,
where PE = MSE + σ 2

For each method, the training error and test error comparisons are shown in panel (a). �e lighter

curves represent the error for each sample and the average is shown by the thicker curves. �e variation
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in the lighter curves reveals that the training error has high variance at low model complexity and the

variance decreases as we �t the model harder. In contrast, the variability of the test error increases with

complexity. �e average training error decreases steadily, while the test error begins to increase as we

start over�tting. �e di�erence between the two thick curves shows the average optimism of the training

error. Similarly, panel (b) displays the test error and the true PE for each sample along with the averages.

To be clear, the true PE is calculated as described in point 11 of Section 6.1.26.1.2, where PE = MSE+σ2 and the

test error is calculated as described in point 3a3a. In each case, the curves are similar in terms of their values

and their shape. �e average curves and the position of their minimum value are almost identical, with

the test error only slightly under estimating the PE. �e instability of forward selection due to its discrete

nature can be seen by the high variability and wild behaviour of the PE. Ridge regression and the LASSO

display smooth curves with stabilized variance and less erratic behaviour.

Averages of PE estimates are shown in panel (c). While some estimates may fail to accurately predict

the correct value PE, they mostly perform well in identifying the position of the minimum value. �is

makes themwell suited for model selection and generally a test set is preferred for model assessment. �e

validation set usually provides an over estimate of PE but still manages to identify the minimum position

adequately. �e Cp and GCV are almost identical, they tend to under estimate PE and select a slightly

more complex model. AIC also showed similar results for the model selection since AIC ∝ Cp, but

because of the scale di�erence its value does not approach the true PE so it is not shown. BIC o�en has

its minimum at a model with lower complexity and then increases dramatically as the model complexity

increases. LOOCV, 10-fold CV and 5-fold CV are very similar to each other. �ey perform exceptionally

well as estimates of PE, outperforming even the test error, and also excel in identifying the optimal model.

�e performance, in terms of prediction and selection, for the best models chosen using each of these

criteria are shown in the next subsection.

�e decomposition of PE is shown in panel (d). �e solid red curve is the MSE, which is obtained

by adding the two dashed curves representing the squared bias and the variance of the predictions. �e

values were calculated as described in point 22 of Section 6.1.26.1.2. �e di�erence between the MSE in (d) and

the PE in (b) is an amount of about σ2 = 9. �is con�rms that PE is composed of the irreducible error,

squared bias and variance. �e plots show clearly that models with low complexity have high bias and

low variance, while more complex models have low bias and high variance.
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Figure (6.2.2) Prediction error for ridge regression when σ = 3 and ρ = 0.5. PE is plotted against
the −ln(λ) and the effective DF is shown on the top axes. The top panels show the PE for each
sample (light curves) and the average over the 100 samples (thick curves), with the test error and
training error in (a)(a) and the test error and true PE in (b)(b). Estimates of PE are shown in (c)(c) and (d)(d)
displays the decomposition of MSE into the squared bias and variance of the predictions, where
PE = MSE + σ 2
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Figure (6.2.3) Prediction error for LASSO when σ = 3 and ρ = 0.5. PE is plotted against s and the
effectiveDF is shownon the topaxes. The toppanels show the PE for each sample (light curves) and
the average over the 100 samples (thick curves), with the test error and training error in (a)(a) and
the test error and true PE in (b)(b). Estimates of PE are shown in (c)(c) and (d)(d) displays the decomposition
ofMSE into the squared bias and variance of the predictions, where PE = MSE + σ 2

153



Here we see again that forward selection has larger variance than ridge regression or the LASSO. How-

ever, the estimation bias of ridge regression and the LASSO due to the constrained model space is clear,

with the bias increasing substantially as the constraint region is reduced. �e LASSO has larger bias than

ridge regression because the radius of the constraint region is a lot smaller, ∥α∥1 ⩽ ∥α∥2. Ridge regres-

sion also has lower bias since all the variables are retained in the model. While the LASSO drops variables

from the model, the prediction vs selection dilemma is clear - selecting a smaller model comes at the cost

of increased bias. Forward selection is only biased when the model is under�tted (that is, p = 1, 2) and

displays no bias for the true model and any of the over�tted models. �is makes sense since each model

is the best �tting least squares model of that size. However, more DF than a least squares �t have been

used to identify the best �tting models. �e secondary x-axis is the average DF for each model, estimated

using the covariance formula (3.1.93.1.9). It appears that on average, about 2 to 3 DF are spent by the adaptive

search of forward selection. Figure 6.2.46.2.4 show the average DF in comparison with the number of nonzero

variables for forward selection and the LASSO when σ = 3 and ρ = 0.5. �e number of nonzero variables

under estimates the DF for forward selection, while it is a close approximation of the DF of the LASSO. �e

LASSO also performs an adaptive search, however, the DF saved by the shrinkage of estimates balances out

with the DF spent on the search.
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Figure (6.2.4) Comparison of DF and the number of nonzero variables for (a)(a) forward selection
and (b)(b) the LASSO. The number of nonzero variables is a good approximation of the DF of the LASSO
but heavily under estimates the DF of forward selection.

Although the plots above are all shown for σ = 3 and ρ = 0.5, similar results were observed for each
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method, for all combinations of σ and ρ. �e e�ects of increasing the noise and/or the correlation on the

bias and the variance of each method is shown in Table 6.2.26.2.2. �e maximum variance and squared bias

over the solution path of each method is shown, where the null model and full model are not included.

�e variance and squared bias of least squares and oracle least squares is shown for comparison. For all

methods, the variance increases with σ but is little a�ected by increasing ρ. �is veri�es that the predic-

tions do not su�er from collinearity among the predictor variables. In particular, the full least squares

model has identical variance and squared bias for all ρ. �e bias of the LASSO increases substantially as ρ

increases, while the bias of ridge regression decreases.

Variance Squared Bias

Method ρ σ = 1 σ = 3 σ = 6 σ = 1 σ = 3 σ = 6
FORWARD 0 2.533 4.643 19.072 4.944 4.145 3.616

0.5 1.873 4.750 18.868 6.403 5.191 3.171
0.9 2.555 4.735 18.405 1.674 1.048 0.465

LASSO 0 0.509 4.700 18.890 14.098 14.022 13.985
0.5 0.510 4.705 18.911 18.460 18.302 18.084
0.9 0.746 4.739 18.981 35.446 34.658 33.254

RIDGE 0 0.546 4.627 18.512 6.790 6.719 6.620
0.5 0.501 4.520 18.094 5.822 5.683 5.483
0.9 0.407 3.651 14.609 4.019 3.869 3.658

OLS 0 0.534 4.807 19.227 0.005 0.045 0.180
0.5 0.534 4.807 19.227 0.005 0.045 0.180
0.9 0.534 4.807 19.227 0.005 0.045 0.180

ORACLE 0 0.149 1.342 5.368 0.001 0.005 0.021
0.5 0.142 1.281 5.122 0.002 0.014 0.058
0.9 0.171 1.536 6.146 0.002 0.021 0.084

Table (6.2.2) Maximumvarianceandsquaredbiasofpredictionsalongthepathofeachmethod.
The nullmodel and the fullmodel (least squares) are excluded from the path of forward selection,
ridge regression and the LASSO. The variance and squared bias for least squares and oracle least
squares is shown for comparison.

For each method, the minimum MSE occurs at the best balance of bias and variance and indicates

which models should be selected. �e models selected by ridge regression and the LASSO have lower

variance and slightly more bias than the best forward selection model. Table 6.2.36.2.3 shows the variance and

squared bias at theminimumMSE as σ and ρ are varied. Forward selection appears to have lower variance

when σ = 1. As σ increases, ridge regression and the LASSO tend to select models with lower complexity.

�e increase in variance shi�s theminimumMSE towards the larger bias where theDF is lower. �e LASSOs
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increase in bias, as ρ increases, appears to have little e�ect on the selected model. Conversely, the DF for

forward selection increases as σ or ρ are increased. �e number of variables and DF at the minimumMSE

are shown in Table 6.2.46.2.4. �e entire situation is seen clearly when presented graphically as in Figure 6.2.56.2.5.

Variance Squared Bias

ρ Method σ = 1 σ = 3 σ = 6 σ = 1 σ = 3 σ = 6
0 FORWARD 0.149 3.255 12.570 0.001 0.090 1.093

LASSO 0.278 2.142 4.450 0.055 0.553 3.055
RIDGE 0.488 2.602 3.624 0.015 0.699 3.639

0.5 FORWARD 0.242 3.407 11.927 0.004 0.035 0.597
LASSO 0.269 1.883 4.577 0.044 0.523 2.268
RIDGE 0.409 1.852 3.301 0.044 0.659 2.442

0.9 FORWARD 0.347 2.427 7.605 0.004 0.236 0.465
LASSO 0.387 2.199 4.385 0.016 0.160 0.783
RIDGE 0.274 1.033 2.342 0.063 0.497 1.322

Table (6.2.3) Variance and squared bias of predictions at theminimumMSE

Number Variables df

Method ρ σ = 1 σ = 3 σ = 6 σ = 1 σ = 3 σ = 6
FORWARD 0 3.00 3.00 2.00 4.43 5.26 4.96

0.5 3.00 4.00 2.00 6.82 7.36 5.24
0.9 4.00 2.00 1.00 10.98 5.93 3.98

LASSO 0 5.70 5.50 4.16 6.87 5.47 3.63
0.5 5.70 5.26 4.13 9.21 5.69 3.82
0.9 6.65 5.60 3.92 11.73 6.82 3.91

RIDGE 0 8.00 8.00 8.00 9.06 6.49 3.94
0.5 8.00 8.00 8.00 11.04 6.39 3.93
0.9 8.00 8.00 8.00 11.14 5.27 3.10

Table (6.2.4) Number of variables and estimated degrees of freedom at theminimumMSE

�e average coe�cient pro�les and their probabilities of inclusion are shown in Figure 6.2.66.2.6 and Fig-

ure 6.2.76.2.7. From the coe�cient pro�les, we can see how ridge regression shrinks parameters proportionally

to their size. �e LASSO shrinkage is constant, all parameters are shrunken equally, but additional bias is

introduced since they are shrunk all the way to zero. In this example, it is clear from the coe�cient pro-

�les which of the variables are important. In other situations, particularly when p > n, examining the

inclusion probabilities can clarify which variables should be included. Supposedly, selecting the variables

based on these probabilities can improve the variable selection properties of the LASSO.

156



0
5

10
15

20

●

4 5 4 7 8 9 9 9

●

3 4 5 7 7 8 8 8

●

3 5 6 7 8 8 8 8

0
5

10
15

20

●

4 7 7 10 11 12 12 12

●

3 5 6 7 8 9 9 9

●

3 5 6 7 8 8 8 8

1 2 3 4 5 6 7 8

0
5

10
15

20

●

11 11 10 11 12 13 13 13

1 2 3 4 5 6 7 8

●

6 6 7 8 9 9 9 10

1 2 3 4 5 6 7 8

●

4 5 6 7 8 8 9 9

FORWARD

σ = 1 σ = 3 σ = 6

ρ
=

0.
9

ρ
=

0.
5

ρ
=

0

(a)

0
5

10
15

20

●

5 7 8 9 9

●

4 6 7 8 8

●

4 6 7 8 8

0
5

10
15

20

●

6 9 10 11 12

●

4 6 8 9 9

●

4 6 7 8 8

−4 −3 −2 −1 0 1

0
5

10
15

20

●

7 8 9 11 12

−4 −3 −2 −1 0 1

●

4 5 6 7 8

−4 −3 −2 −1 0 1

●

3 4 5 7 8

RIDGE

σ = 1 σ = 3 σ = 6

ρ
=

0.
9

ρ
=

0.
5

ρ
=

0

(b)

0
5

10
15

20

●

0 2 3 4 6 9

●

0 2 3 5 7 8

●

0 2 4 6 7 8

0
5

10
15

20

●

0 2 4 5 8 12

●

0 2 4 6 8 9

●

0 2 4 6 7 8

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

●

0 4 7 9 11 13

0.0 0.2 0.4 0.6 0.8 1.0

●

0 3 6 7 9 10

0.0 0.2 0.4 0.6 0.8 1.0

●

0 3 6 7 8 9

LASSO

σ = 1 σ = 3 σ = 6

ρ
=

0.
9

ρ
=

0.
5

ρ
=

0

(c)

Figure (6.2.5) MSE, squared bias and variance as σ and ρ are varied for (a)(a) forward selection, (b)(b)
ridge regression and (c)(c) the LASSO
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Figure (6.2.6) Average coefficient profiles for forward selection, ridge regression and the LASSO
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Figure (6.2.7) Coefficient inclusion probabilities for forward selection and the LASSO
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Model Selection

Figures 6.2.86.2.8, 6.2.96.2.9, 6.2.106.2.10 show how each method performs when a particular CVmethod or information

criterion is used to select the best model from the solution path. �e box and whisker plots show the

distribution of the MSE of predictions. For forward selection and the LASSO, the probability of selecting

the correct model is shown simultaneously with the use of a colour scale, where darker shades indicate

higher probabilities. �e �gures are shown for σ = 3 and ρ = 0.5 and the discussion below describes how

results di�er as σ and ρ are varied.
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Figure (6.2.8) Model selection for ridge regression:MSEwhen using CV and information criteria

For eachmethod, K-fold CV, LOOCV, GCV, AIC andCp are all equivalent, with GCV, AIC andCp almost

identical. Although the validation set approach has the bestMSEwith the lowest variation, these methods

o�er a satisfactory alternative. �ey select the best model for prediction but do not do very well for

variable selection. For forward selection, using K-fold CV with the 1 SE rule works particularly well when

the noise level is low, showing excellent variable selection and low PE. �e percentile CV method and

kappa coe�cient also perform well in both aspects. �e BIC is slightly more variable than these two

methods and has slightly lower selection accuracy, although it does seem less a�ected by the increase in

noise. For the LASSO, the BIC and the percentile CVmethod perform similarly, showing good prediction

accuracy and improved variable selection. �e 1 SE rule improves the variable selection further and the

kappa coe�cient even more so. However, the resulting models using these methods are very biased and

highly variable. �e 1 SE rule appears to worsen as the noise is increased, while the kappa coe�cient seems
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Figure (6.2.9) Model selection for forward selection: MSE and probability of selecting the correct
model when using CV and information criteria
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Figure (6.2.10) Model selection for the LASSO: MSE and probability of selecting the correct model
when using CV and information criteria
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more susceptible to increases in correlation. �emodi�ed BIC does not appear to o�er any improvement.

Performance

Prediction

�e performance of each method is examined when using either 5-fold CV or the kappa coe�cient

for model selection. Table 6.2.56.2.5 shows the median MSE of predictions and the probability of selecting the

correct model for each method as σ and ρ are varied. Least squares and oracle least squares are included

for comparison. �e accuracy of the median MSE is assessed by bootstrap standard errors, calculated

as described in Section 6.1.26.1.2. �e MSE and probability of selecting the correct model is also presented

graphically in Figure 6.2.116.2.11 for σ = 3 and ρ = 0.5.

As expected, oracle least squares has the highest prediction accuracy in all scenarios, with the MSE

generally increasing slightly as σ and ρ increase. �e larger MSE and variance of least squares is due to

over�tting and it is clear that the predictions are not a�ected by collinearity. When using CV, the LASSO,

forward selection and ridge regression all have lower MSE than least squares in all scenarios except one,

the low noise orthogonal design, where ridge regression performs poorly. Forward selection performs

the best when σ = 1 and ρ = 0, 0.5, with high prediction accuracy and good selection performance, but

su�ers higher MSE and high variance in other scenarios, with variance larger than least squares in some

cases. �e LASSO is a close competitor when σ = 1, but really shines when σ = 3. In this case, it has high

prediction accuracy and selection performance nearly as good as forward selection. Also, for orthogonal

designs, the MSE for the LASSO does appear to be close to that of oracle least squares (near minimax

optimality). Ridge regression performs best in the high noise scenariowhen σ = 6 andhandles collinearity

superbly, outperforming other methods when ρ = 0.9 (except in the low noise case). Model selection

using the kappa coe�cient improves the performance of forward selection when σ = 1, 3, increasing

the probability of selecting the correct model and resulting in lower MSE as well as low variance which

is smaller than that of least squares. �e LASSOs selection performance is remarkably improved when

using the kappa coe�cient for σ = 1, 3, such that it surpasses that of forward selection. However, theMSE

increases substantially due to large bias. �e kappa coe�cient is not suitable for ridge regression, which

seems to have selected the full (least squares) model.
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σ = 1 σ = 3 σ = 6
ρ Method Median MSE PCS Median MSE PCS Median MSE PCS

5-fold CV

0 FORWARD 0.174 (0.022) 0.70 4.042 (0.549) 0.20 13.391 (1.265) 0.03
LASSO 0.320 (0.028) 0.21 2.817 (0.362) 0.14 10.261 (0.915) 0.04
RIDGE 0.489 (0.036) 0.00 3.554 (0.301) 0.00 8.802 (0.461) 0.00

0.5 FORWARD 0.174 (0.022) 0.55 3.995 (0.496) 0.22 10.893 (0.996) 0.05
LASSO 0.306 (0.026) 0.14 2.425 (0.274) 0.16 7.804 (0.598) 0.06
RIDGE 0.405 (0.032) 0.00 2.857 (0.189) 0.00 7.523 (0.472) 0.00

0.9 FORWARD 0.336 (0.044) 0.30 3.542 (0.407) 0.03 7.613 (0.982) 0.00
LASSO 0.330 (0.022) 0.07 2.127 (0.131) 0.08 5.818 (0.745) 0.04
RIDGE 0.334 (0.022) 0.00 1.720 (0.104) 0.00 4.480 (0.448) 0.00

κ Coe�cient

0 FORWARD 0.146 (0.019) 0.84 3.051 (0.249) 0.28 13.416 (1.350) 0.05
LASSO 2.307 (0.145) 0.84 6.204 (0.252) 0.32 8.654 (0.762) 0.04
RIDGE 0.474 (0.048) 0.00 4.266 (0.420) 0.00 17.062 (1.705) 0.00

0.5 FORWARD 0.136 (0.018) 0.78 2.986 (0.327) 0.20 13.220 (1.023) 0.02
LASSO 2.724 (0.140) 0.83 7.426 (0.333) 0.32 9.201 (0.399) 0.04
RIDGE 0.474 (0.047) 0.00 4.266 (0.412) 0.00 17.062 (1.642) 0.00

0.9 FORWARD 0.256 (0.031) 0.37 2.623 (0.321) 0.03 10.696 (0.948) 0.00
LASSO 8.930 (0.599) 0.26 12.889 (1.013) 0.03 9.144 (1.379) 0.02
RIDGE 0.474 (0.045) 0.00 4.266 (0.418) 0.00 17.062 (1.666) 0.00

Least Squares

0 OLS 0.474 (0.045) 0 4.266 (0.447) 0 17.062 (1.756) 0
0.5 0.474 (0.046) 0 4.266 (0.429) 0 17.062 (1.661) 0
0.9 0.474 (0.045) 0 4.266 (0.414) 0 17.062 (1.707) 0

0 Oracle 0.115 (0.014) 1 1.038 (0.117) 1 4.153 (0.485) 1
0.5 0.107 (0.010) 1 0.965 (0.087) 1 3.860 (0.350) 1
0.9 0.157 (0.017) 1 1.410 (0.152) 1 5.638 (0.544) 1

Table (6.2.5) MedianMSE (withbootstrapstandarderrors)andprobabilityof selectingthecorrect
subset when using CV and the kappa coefficient for model selection. Least squares and oracle
least squares are shown for comparison.
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Figure (6.2.11) Comparisonofpredictionandselectionperformancebetweendifferentmethods:
MSE and probability of selecting the correct model as σ and ρ vary

Estimation

�e variance and squared bias of the parameter estimates is shown in Table 6.2.66.2.6. �e e�ect of

collinearity on the least squares estimates is seen clearly by the in�ated variance. �e LASSO, forward

selection and ridge regression estimates all have much lower variance than the LSEs when using either CV

or the kappa coe�cient. When using CV, forward selection has the lowest bias in all scenarios. It also has

the lowest variance when σ = 1 and ρ = 0, 0.5 but in other scenarios it is highly variable, compared to the

LASSO and ridge regression. �e LASSO appears to have the lowest variance in most of these scenarios. It

also has highest bias in most of the scenarios, although the bias is still within an acceptable range. Us-

ing the kappa coe�cient with forward selection and the LASSO, in almost every scenario, the variance is

reduced and the bias is increased - the LASSOs bias increasing considerably.

Figures 6.2.126.2.12 and 6.2.136.2.13 examine the distributions of the parameter estimates. For each parameter,

a box and whisker plot depicts the range of the estimates value, along with a colour scale showing its

inclusion probability, for each method. Histograms with the normal probability density function are also

shown for each method. Results are shown for σ = 3 and ρ = 0.5. Every method includes β1, the largest

parameter, with high probability (tending to 1). Forward selection and least squares have the largest vari-

ability. When using kappa, the LASSO over shrinks β1 so that it is biased toward zero. Examining the

histograms, each method displays a fairly normal distribution for β1. Only LASSO using CV includes β2,
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σ = 1 σ = 3 σ = 6
ρ Method Variance Sq Bias Variance Sq Bias Variance Sq Bias

5-fold CV

0 FORWARD 0.249 0.002 4.616 0.155 15.100 0.666
LASSO 0.293 0.093 2.563 0.998 7.855 3.760
RIDGE 0.515 0.013 3.234 0.589 6.444 2.674

0.5 FORWARD 0.432 0.003 5.502 0.240 17.791 0.621
LASSO 0.437 0.062 2.792 0.751 8.210 2.517
RIDGE 0.713 0.039 3.551 0.619 9.062 1.911

0.9 FORWARD 3.121 0.060 21.092 1.211 56.139 2.388
LASSO 1.826 0.294 11.024 1.665 16.432 3.861
RIDGE 2.533 0.405 8.360 2.011 24.339 2.622

κ Coe�cient

0 FORWARD 0.199 0.001 3.513 0.120 15.797 0.281
LASSO 0.374 2.204 1.100 5.167 5.192 5.234
RIDGE 0.538 0.005 4.844 0.048 19.376 0.192

0.5 FORWARD 0.233 0.002 5.583 0.251 22.198 0.362
LASSO 0.391 2.139 1.214 5.100 3.642 5.270
RIDGE 0.839 0.007 7.548 0.063 30.191 0.253

0.9 FORWARD 2.940 0.136 20.818 0.667 97.168 2.011
LASSO 1.678 5.546 2.865 7.221 16.175 5.338
RIDGE 4.454 0.035 40.088 0.312 160.352 1.246

Least Squares

0 OLS 0.538 0.005 4.844 0.048 19.376 0.191
0.5 0.839 0.007 7.548 0.063 30.191 0.253
0.9 4.454 0.035 40.088 0.312 160.352 1.246

0 Oracle 0.147 0.001 1.326 0.006 5.302 0.022
0.5 0.163 0.001 1.469 0.013 5.878 0.052
0.9 0.781 0.003 7.024 0.026 28.096 0.104

Table (6.2.6) Total variance and squared bias of parameter estimates when using CV and the
kappa coefficient for model selection
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the smallest nonzero parameter, with high probability. �e inclusion probabilities are signi�cantly lower

for forward selection and LASSO using kappa, and the histograms for these methods also display a sig-

ni�cant deviation from the normal distribution. Similarly to β1, forward selection has large variance and

LASSO using kappa results with β2 biased towards zero. β5 is also included by LASSO using CV with high

probability. �e inclusion probabilities are somewhat lower for forward selection and LASSO using kappa,

although slightly higher than for β2. �ese methods show the same behaviour as for the other nonzero

parameters, forward selection is highly variable and LASSO using kappa is heavily biased towards zero.

Neither forward selection nor the LASSO exhibit normal distributions for β5. While it is not clear from

the plots, LASSO using CV selects each of the zero parameters with probability of approximately 0.4; for-

ward selection using CV selects them with probability of approximately 0.2; and using kappa, both LASSO

and forward selection select them with low probability. �e zero parameter estimates are not normally

distributed when using LASSO or forward selection.

Variable Selection

Figure 6.2.146.2.14 shows the variable selection performance of forward selection and the LASSO when σ =

3 and ρ = 0.5. �e average number of nonzero parameter estimates that are included in the selected

models are shown in panel (a). �e estimates that are correctly estimated as nonzero are coloured in

green and those incorrectly estimated as nonzero are coloured in red. �e LASSO using CV always over�ts

the model and usually includes more variables than the other methods. In this scenario, none of the

methods perform exceptionally well in terms of variable selection. When σ = 1 and ρ = 0, 0.5, all three

nonzero parameters are correctly estimated as nonzero for all methods, and the use of kappa yields the

lowest false inclusion rate.

Panel (b) displays the probabilities of selecting the correct model, including the correct model in the

selected subset of variables, and containing the correct model in the solution path. In this scenario, the

correct model is included in the selected subsets with high probability when using CV for the LASSO. �e

same is true when σ = 1. However, for σ = 1, forward selection performs variable selection exceptionally

well, and surprisingly, the true model does lie in the local search path of forward selection with high

probability. Selection performance is very poor for the high noise scenarios when σ = 6, but LASSO does

appear to perform slightly better than forward selection.
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Figure (6.2.12) Comparisonof parameter estimates β1 − β4 betweendifferentmethods: value of
estimates and their inclusion probabilities, along with histograms of their distributions for σ = 3
and ρ = 0.5
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Figure (6.2.13) Comparisonof parameter estimates β5 − β8 betweendifferentmethods: value of
estimates and their inclusion probabilities, along with histograms of their distributions for σ = 3
and ρ = 0.5
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Figure (6.2.14) Variable selection performance of forward selection and LASSO: the number of
nonzeroparameters is shownin (a)(a)andtheprobabilitiesof selectingthecorrectmodel, containing
the correct model and having the correct model in the solution path are shown in (b)(b)

6.3 Oracle Procedures

�is simulation study analyses the consistency, in terms of variable selection estimation and prediction,

of the LASSO, some two-stage LASSO methods and some of the other shrinkage methods. Small sample

results can be compared with the previous simulation study.

6.3.1 Data

�edata generating process is similar to Section 6.26.2. �e error variance is �xed at σ = 3 and the parameter

vector is given by β = (3, 1.5, 0, 0, 2, 0, 0, 0)T . Consistency is tested by allowing the sample size to grow,

n ∈ {25, 50, 75, . . . , 500}. �e correlation is �xed at ρ = 0.5 but, in order to examine the capability of each

method, di�erent correlation structures are used:

• Power decay correlation, or AR(1) covariance structures, which will be denoted as AR: Σ jk = ρ∣ j−k∣

for j, k = 1, 2, . . . , p

• Constant positive correlation, or compound symmetry, which will be denoted as CS: Σ j j = 1 for

j = 1, 2, . . . , p and Σ jk = ρ for j ≠ k

• A disturbed orthogonal design, which will be denoted as IR: Σ j j = 1 for j = 1, 2, . . . , p and Σ jk = 0
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for j ≠ k, except for Σ jk = ρ, where j ∈ D, the set of true nonzero parameters D = {1, 2, 5}, and

k ∈ A for some set of parametersA ⊂ Dc . Here, the set is chosen asA = {3}.

According to Zhao & YuZhao & Yu (20062006), the �rst two types of correlation satisfy the irrepresentable condition

in equation (4.1.484.1.48),

∥Σ21Σ−111 sign (αD)∥∞ ⩽ 1 − ε for ε > 0.

�e third correlation structure is constructed to violate the condition. Assuming an orthogonal design for

the active set of variables (those indexed byD, we have Σ−111 = Σ11 = Id and since α j ⩾ 0 for all j = 1, 2, . . . , p,

the condition does not hold when ∥Σ21∥∞ > 1 − ε for ε > 0. Now, ∥Σ21∥∞ = ∥ZT
AZD∥∞ = zTj ZD such

that j = argmax j ∣ZT
AZD∣. �erefore, allowing one of the irrelevant predictor variables to have strong

correlations with all the variables in the active set will present a correlation structure dissatisfying the

irrepresentable condition.

N = 100 training samples are simulated for each combination of n and the three correlation structures.

Figure 6.3.16.3.1 shows the average SNR and condition number of the correlationmatrix for the generated data.

Both measures improve as the sample size increases and for all scenarios, the SNR and condition number

are within a suitable range.
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Figure (6.3.1) Condition numbers and signal to noise ratio for the generated data

�e average of the compatibility condition and the restricted eigenvalue condition are given in Ta-

ble 6.3.16.3.1 for the generated data. �e compatibility condition holds in each case but the restricted eigen-

value condition does not hold for the IR correlation structure. �e irrepresentable condition for the
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generated data is depicted in Figure 6.3.26.3.2. Panel (a)(a) shows the maximum value of the irrepresentable con-

dition over the 100 samples. �e probability that the condition is not satis�ed is shown in panel (b)(b), where

the bars have been overlayed instead of stacked. For the AR and CS correlation structures, the condition

does not hold when n ⩽ 100, but with low probability. For instance, when n = 25, the probability of a false

irrepresentable condition is about 0.4 for CS structures and for AR structures the probability is under 0.2.

For the IR structure, the condition is not met with probability tending to 1 (as designed).

Condition

Correlation Structure Compatibility Restricted Eigenvalue

AR 1.509 1.393
CS 2.041 1.885
IR 1.083 1.000

Table (6.3.1) Compatibility and restricted eigenvalue conditions for the generated data
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Figure (6.3.2) Irrepresentable condition for the generated data. The maximum value of the
condition over the 100 samples is shown in (a)(a) and the probability that the condition does not
hold is shown in (b)(b), where the bars have been overlayed rather than stacked.

6.3.2 Estimation and Model Selection

�emodel is estimated using least squares, oracle least squares with

f̂ (X) = X1β1 + X2β2 + X5β5,
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the LASSO, relaxed LASSO, adaptive LASSO, SEA-LASSO, two-stage LASSO (using LASSO initial estimates for

the adaptive LASSO), EN, adaptive EN, MCP and SCAD.

In each case, model selection is performed using 10-fold CV over a �xed grid of one tuning parameter

and, where applicable, the second tuning parameter is held �xed. For methods excluding the two-stage

LASSO and adaptive EN, which sequentially cross-validate over one tuning parameter, the kappa coe�cient

with 20 repetitions is also used to select the tuning parameter. Table 6.3.26.3.2 shows the tuning parameters

that are considered in the study. For the LASSO and EN methods, the LAR algorithm was used with the

primary tuning parameter selected over a �xed grid of s = ∥α∥1 / ∥α̂∥1 ∈ [0, 1] with increments of 0.01.

�e relaxed LASSO is an exception, where the �rst p steps of the LAR algorithm is used instead. For the

concave penalties of SCAD and MCP, the coordinate descent method by Breheny & HuangBreheny & Huang (20112011) is used

and the primary tuning parameter is selected over a grid of 100 λ values, equally spaced on the logarithmic

scale.

Tuning Parameter

Method Primary Secondary

LASSO s ∈ [0, 1]
Relaxed LASSO LAR step ∈ [1, p] ϕ = 0.3
Adaptive LASSO s ∈ [0, 1] ζ = 1
SEA-LASSO s ∈ [0, 1] ζ = 1
Two-stage LASSO s ∈ [0, 1]
EN s ∈ [0, 1] λ2 = 0.5
Adaptive EN s ∈ [0, 1] λ2 = 0.5
SCAD λ ∈ [e1.5, e−6] ξ = 3.7
MCP λ ∈ [e1.5, e−6] ξ = 3

Table (6.3.2) Tuning parameters used for model selection

�e variable selection performance measures described in Section 6.1.36.1.3 are calculated to determine

selection consistency. Estimation consistency is tested by calculating the MSE of the parameter estimates

as detailed in Section 6.1.16.1.1. Furthermore, persistence is assessed by calculatingMSE using equation (6.1.16.1.1),

along with its median and bootstrap standard errors.
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6.3.3 Results

Consistency

Figure 6.3.36.3.3 reveals whichmethods are path consistent for each correlation structure. Amethod is termed

path consistent if the correct model lies its solution path with probability tending to 1 as n → ∞. �e

AR and CS correlation structures are shown in panels (a)(a) and (b)(b), respectively, where it is clear that all

the methods are path consistent. In panel (c)(c), we see that the LASSO is not path consistent when the

irrepresentable condition does not hold. �e EN, adaptive EN and relaxed LASSO also do not appear to

be path consistent. However, it can only be said with certainty that they are not path consistent when

holding the secondary tuning parameter �xed at the chosen value. It is possible that they may perform

better when �xing the parameter at an alternative value or if it is chosen adaptively for each sample.
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Figure (6.3.3) Probability that the correct model is in the solution path
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It is comforting to know that the correct solution exists within the path of amethod but the question of

whether we are able to recover that solution still remains. For this study, the tuning parameter is selected

using either 10-fold CV or the kappa coe�cient. �e probability of selecting the correct model is shown

in Figure 6.3.46.3.4 for each correlation structure with the models selected by CV on the le� and those selected

by the kappa coe�cient on the right.

When using CV, only the adaptive EN, when applied to an AR correlation structure, appears to be

consistent for variable selection. However, the concave penalties ofMCP and SCAD approach a high prob-

ability of 0.8 for each correlation structure. Furthermore, they appear to be strictly increasing so that, if

the sample size were to grow larger, they could indeed attain a probability of 1. �e same argument could

hold for the adaptive EN and the CS design. �e relaxed LASSO also appears to be increasing for AR andCS

designs, albeit at a slower rate. �e LASSO and two-stage LASSO show no improvement in terms of variable

selection as n increases. �e same can be said for the EN, adaptive LASSO and SEA-LASSO, although these

methods could possibly improve by adjusting the secondary tuning parameter.

Using the kappa coe�cient for model selection, all methods appear to be selection consistent under

AR and CS designs. However, when the irrepresentable condition is not met, only the adaptive LASSO,

SEA-LASSO, MCP and SCAD achieve consistent selection, while the LASSO, relaxed LASSO and EN fail hope-

lessly.

Although not shown here, it is worth noting that, for all correlation structures and whether CV or the

kappa coe�cient are used, everymethod includes the correctmodel in the selectedmodelwith probability

tending to one. �at is, the correct model is a subset of the chosen model, so that these methods can be

used for variable screening. �e only exception is the adaptive EN, where the probability of including the

correct model is nearly identical to the probability of selecting the correct model - that is, the adaptive EN

does not over�t the model.

Figure 6.3.56.3.5 shows the MSE of the parameter estimates for each correlation structure when using CV

and the kappa coe�cient for model selection. When using CV, theMSE tends to zero as n →∞, indicating

that the parameter estimates are consistent. �e EN and adaptive EN are exceptions, although for AR and

CS designs, the EN might approach 0 with a larger sample size. When using the kappa coe�cient, only

the relaxed LASSO, adaptive LASSO and SEA-LASSO are consistent for estimation. When the irrepresentable

condition does not hold, the MSE of the MCP and SCAD estimates also appears to approach 0.
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Figure (6.3.4) Probability of selecting the correct model
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Figure (6.3.5) MSE of parameter estimates
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Persistence, or consistent prediction, can be shown in a similar way by plotting theMSE of the predic-

tions against the sample size. �e results are very similar to those obtained for estimation and the �gures

are therefore omitted. For CV, the curves are almost identical to estimation, all methods appear to be

persistent except the EN and adaptive EN. Similar results are also seen when using the kappa coe�cient,

except that MCP appears to be persistent for any correlation design.

�e kappa coe�cient therefore appears to be an excellent model selection criteria for the adaptive

LASSO, SEA-LASSO and relaxed LASSO, yielding consistent prediction, estimation and variable selection

(except for relaxed LASSO and IR structures). �e relaxed LASSO also appears to enjoy consistent predic-

tion, estimation and selection (except for IR designs), when using CV for model selection. MCP and SCAD

appear to perform better in all aspects when using CV formodel selection. �e ENmethods do not achieve

consistence in all aspects using either CV or the kappa coe�cient and perhaps it would be worth investi-

gating the use of a di�erent secondary tuning parameter. �e LASSO achieves consistent estimation and

prediction when using CV and achieves consistent selection when using the kappa coe�cient. Neither of

these two model selection criteria are capable of yielding all-round consistency for the LASSO.

Small Sample Results

�e results shown below are for the AR correlation structure when n = 25 and the data is identical to

that in Section 6.26.2. Table 6.3.36.3.3 shows the total variance and squared bias of the parameter estimates when

using 5-fold CV and the kappa coe�cient for model selection. When using 10-fold CV, the variance of the

LASSO estimate is slightly higher and the bias slightly lower than when using 5-fold CV. It is clear that the

two-stage LASSOmethods and the concave penalties control the bias better than the LASSO, they all have

lower bias than the LASSO regardless of whether CV or the kappa coe�cient is used. Although they also

have higher variance than the LASSO, they all display lower variability than the least squares model. �e

EN is the only method which has lower variance than the LASSO but its bias is also larger than the LASSO.

�e adaptive EN performs very poorly, with large bias and large variance.

Figure 6.3.66.3.6 shows the distribution of theMSE of predictions and themedianMSE alongwith bootstrap

standard errors are shown in Table 6.3.46.3.4. �e probability of selecting the correct model is also shown in

both the �gure and the table. �e LASSO appears to be quite competitive in terms of prediction accuracy

when using CV, the median MSE is among the lowest and it has the lowest variance. �e EN and relaxed
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10-fold CV κ Coe�cient

Method Variance Squared Bias Variance Squared Bias

LASSO 3.243 0.5504 1.183 5.3504
RLASSO 3.683 0.3063 3.073 0.6085
ALASSO 4.592 0.3492 3.187 2.0228
SLASSO 4.710 0.3427 2.808 2.3222
TLASSO 3.980 0.3174
ENET 2.212 0.8164 1.368 3.4698
AENET 5.294 1.4086
MCP 5.673 0.2490 4.710 0.9512
SCAD 6.112 0.2021 3.232 2.8406

Full Oracle

OLS 7.548 0.06334 1.469 0.01287

Table (6.3.3) Variance and squared bias of parameter estimates

LASSO also perform very well in terms of prediction. While the adaptive EN has the highest probability

of selecting the correct model, there is no gain in �tting the smaller model since its median MSE and

its variance is larger than that of the least squares model. MCP and SCAD also perform no better than

least squares. Using the kappa coe�cient does increase the probability of selecting the correct model for

each method, but in most cases, the MSE and its variance are increased so that least squares is a more

attractive option. However, it does work remarkably well with the relaxed LASSO, not only improving its

variable selection performance but also theMSE, with only a slight increase in variance. �e relaxed LASSO

outperforms forward selection in terms of prediction and selection.

10-fold CV κ Coe�cient

Method Median MSE PCS Median MSE PCS

LASSO 2.70 (0.19) 0.14 7.94 (0.39) 0.32
RLASSO 2.63 (0.39) 0.27 2.52 (0.55) 0.35
ALASSO 2.99 (0.28) 0.20 4.43 (0.42) 0.27
SLASSO 2.96 (0.46) 0.15 4.15 (0.29) 0.27
TLASSO 2.84 (0.33) 0.20
ENET 2.12 (0.22) 0.05 4.63 (0.42) 0.27
AENET 5.69 (0.42) 0.31
MCP 3.77 (0.45) 0.15 4.00 (0.63) 0.18
SCAD 4.21 (0.47) 0.17 6.63 (0.52) 0.27

Full Oracle

OLS 4.266 (0.421) 0 0.965 (0.081) 1

Table (6.3.4) MedianMSE and probability of selecting the correct model
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Figure (6.3.6) MSE of predictions and probability of selecting the correct model

Figures 6.3.76.3.7 and 6.3.86.3.8 take a closer look at the variable selection performance of each method. �e

LASSO and EN both include the correct model in the selected models with high probability. However,

they both tend to over�t the model (the EN more so than the LASSO), resulting in a large number of

false inclusions and a low probability of selecting the correct model. Except for the adaptive EN each

method over�ts the model when using CV and under�ts the model when using the kappa coe�cient.

MCP performs especially poor with this data, the true model lying in its solution path only about 40% of

the time. �e relaxed LASSO performs the best in terms of selection.
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Chapter 7

Application

7.1 Data

An analysis is performed on the diabetes data set from Efron et al.Efron et al. (20042004) available in the R package lars

or at http://web.stanford.edu/~hastie/Papers/LARShttp://web.stanford.edu/~hastie/Papers/LARS. A study was conducted on 442 diabetes patients. Baseline

measurements were taken at the beginning of the study and a quantitative measure of disease progression

was recorded one year a�er the baseline. Ten baseline variables were recorded, including age, gender,

body mass index, average blood pressure, as well as six blood serum measurements. �ese variables are

used as predictor variables in a regression model with the measure of disease progression as the response

variable. �e model can be useful in determining which factors promote the progression of the disease

as well as predicting disease progression for future patients using their baseline measurements. �e data

is presented visually in Figure 7.1.17.1.1. �e blood serum measurements appear to have moderate to high

correlations with each other. In particular, the variables tc, ldl, tch and ltg form a group of variables

with high pairwise correlations, with substantial correlation between ldl and tc. Of the remaining blood

serummeasurements, hdl is very highly correlatedwith tch andmoderatelywith ltg, and glu hasmoderate

correlations with all blood serum measurements. �e average blood pressure, more formally the mean

arterial pressure (MAP) has moderate correlations with ltg and glu, and bmi with map, hdl, tch, ltg and

glu. Variables hdl and ltg are signi�cantly di�erent between males and females, while map and glu are

moderately related to age. Collinearity is de�nitely a problem with this data set, with a condition number

of the correlation matrix being 21.68. �e response has the largest correlation with bmi, followed closely

by ltg, and has moderate correlations with map, hdl, tch and glu. All variables appear to be normally

distributed, apart from bmi and tch which appear to be right-tailed, or skewed to the le�.
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Figure (7.1.1) Visual presentation of diabetes data set
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7.2 Estimation, Model Selection and Prediction

�e data is split roughly 75-25%, into a training set of size 332 and a test set of size 110 using simple

random sampling without replacement. �e model is estimated on the training set using all the methods

examined in Chapter 66, including least squares, forward selection, ridge regression, the LASSO, relaxed

LASSO, adaptive LASSO, SEA-LASSO, two-stage LASSO, EN, adaptive EN, MCP and SCAD.

Model selection is performed by resampling data from the training set using 10-fold cross-validation,

simultaneously optimizing over two tuning parameters where relevant. �e primary tuning parameter

(the shrinkage parameter) is selected in a similar fashion as in Chapter 66 for each method, except for the

LASSO, where λ is now selected as one of the values at which newpredictors enter the LAR-LASSO algorithm.

�e values considered for the secondary tuning parameter, where necessary, are shown in Table 7.2.17.2.1. �e

λ2 parameter for the adaptive EN is set to the value that is chosen by CV for the EN. As before, the primary

tuning parameters for the adaptive EN and the two-stage LASSO are chosen sequentially using CV. For

all other methods, the model is also selected using the kappa coe�cient, where the secondary tuning

parameter is �xed at its cross-validated value for easy comparison. Finally, the selected models are used

to predict the observations in the test set and the generalizability of each model is assessed via the test

error.

Tuning Parameter

Method Primary Secondary

Forward selection p ∈ [1, 10]
Ridge regression λ ∈ [0, 50]
LASSO λ ∈ [2, 835]
Relaxed LASSO LAR step ∈ [1, 10] ϕ ∈ {0, 0.1, . . . , 1}
Adaptive LASSO s ∈ [0, 1] ζ ∈ {0.5, 1, 2}
SEA-LASSO s ∈ [0, 1] ζ ∈ {0.5, 1, 2}
Two-stage LASSO s ∈ [0, 1]
EN s ∈ [0, 1] λ2 ∈ {0.1, 0.5, 1, 5, 10}
Adaptive EN s ∈ [0, 1] λ2 = 0.1
SCAD λ ∈ [0.05, 46] ξ ∈ {2.5, 2.6, . . . , 3.5}
MCP λ ∈ [0.05, 46] ξ ∈ {3, 3.1, . . . , 4}

Table (7.2.1) Tuning parameters considered for the diabetes data
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7.3 Results

Table 7.3.17.3.1 shows the values of the tuning parameters selected by CV and the kappa coe�cient for each

method. �e tuning parameters chosen by CV in the initial round of the two-stage LASSO and the adaptive

EN are shown too. �e initial models selected are similar to those selected by CV for the LASSO and EN,

respectively. Also included in the table is the ℓ1 fraction, the ratio of the ℓ1 norm of the parameter vector to

that of the least squaresmodel. It is usually denoted by s but is not done so here in order to avoid confusion

with the tuning parameter s. Examining the ratios, we see that the LASSO and EN models chosen by CV

all shrink the size of the parameter vector by about 50% and they are shrunk even more when using the

kappa coe�cient.

Secondary Primary ℓ1 Fraction

Method Type CV Type CV Initial κ CV κ

FORWARD p 6.00 5.00 0.82 0.54
RIDGE λ 20.80 0.00 0.56 1.00
LASSO λ 20.61 112.03 0.51 0.33
RLASSO ϕ 0.30 LAR step 9.00 5.00 0.52 0.37
ALASSO ζ 0.50 s 0.52 0.39 0.53 0.43
SLASSO ζ 0.50 s 0.32 0.12 0.50 0.29
TLASSO s 0.76 0.50 0.54
ENET λ2 0.1 s 0.8 0.52 0.48 0.31
AENET λ2 0.1 s 0.13 0.84 0.55
MCP ξ 2.90 λ 2.62 4.91 0.64 0.57
SCAD ξ 3.70 λ 1.98 4.91 0.64 0.50

Table (7.3.1) Tuning parameters selected for the diabetes data

�e CV error curves are shown in Figure 7.3.17.3.1, including standard error bars, for the LASSO and the

EN. �e position of the minimum CV error and the position of the CV error within 1 SE of the minimum

are indicated by the dotted black lines on the plot. For each method, the model selected by the kappa

coe�cient lies somewhere in between the model selected using the minimum and the model selected

using the 1 SE rule. Also, for each method, the variance of the CV error is quite large and it could be

bene�cial to use 5-fold CV instead.

�e order in which variables are included in the forward selection and LAR algorithms is shown in

Table 7.3.27.3.2. In most cases, bmi is the �rst variable entered since it has the largest correlation with the

response. �e adaptive LASSO scales the data by the squared size of the least squares coe�cients. �e least
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Figure (7.3.1) CV curves for the diabetes data

squares coe�cient of ltg is much larger than that of bmi and causes ltg to have a higher correlation with

the response. �e SEA-LASSO also takes the standard errors of the least squares coe�cients into account

so that bmi, which has a smaller standard error than ltg, remains the most correlated with the response.

�e two-stage LASSO and adaptive EN begin with the subsets selected for the LASSO and EN, respectively,

so that not all of the variables are considered in their paths.

Step FORWARD LASSO ALASSO SLASSO TLASSO ENET AENET

1 bmi bmi ltg bmi bmi bmi bmi
2 ltg ltg bmi ltg ltg ltg ltg
3 tc map tc map map map map
4 map hdl ldl sex hdl tch hdl
5 sex sex map tc tc hdl sex
6 ldl ldl sex ldl sex glu ldl
7 tch tc tch tch glu age tc
8 hdl -ldl hdl glu tc glu
9 glu glu glu hdl ldl tch
10 age age age age sex
11 tch
12 ldl

Table (7.3.2) Order in which variables are included in the forward selection and LAR algorithms

�e coe�cient pro�les for some of the methods are shown in Figure 7.3.27.3.2. �e discrete nature of

forward selection can be seen by the dramatic changes in the active coe�cient values whenever a new

predictor enters the model. For ridge regression, we see the proportional shrinkage, where larger coef-
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�cients are shrunk more than smaller ones. �e least squares coe�cients for tc and ltg are the largest

and it is these parameters that are shrunk the most. As seen before, the kappa coe�cient does not work

well for ridge regression and selects the least squares model. �e LASSO displays a more constant kind

of shrinkage across variables, allowing smaller parameters to be set to zero quickly. CV selects a value of

λ = 20.8 for the shrinkage parameter which is equivalent to an ℓ1 fraction of 0.51 and the model contains

7 parameters. We can expect this model to be over�tted but to include the true set of relevant predictors

with high probability. �e kappa coe�cient selects a larger value of the shrinkage parameter, λ = 112, in

order to set more coe�cients equal to zero. �e model only contains 4 parameters and has an ℓ1 fraction

of 0.33. �e kappa coe�cient selects the same model for the EN as the LASSO. �e models are similar

when using CV, except that the EN also included ldl - probably because it has high pairwise correlations

with tc and ltg. Comparing the path of the LASSO and adaptive LASSO, it is clear that the adaptive LASSO

applies a di�erent amount of shrinkage to each parameter. �e path for the SEA-LASSO looks similar to the

adaptive LASSO and is not shown. �e path forMCP is also shown, the large parameters of ltg and bmi are

not shrunk as much as in the LASSO and the small parameters of age and glu are not set to zero as quickly.

�e SCAD path is similar to MCP and CV selects exactly the same model for both.

�e standardized coe�cients are shown in Table 7.3.37.3.3 for least squares and the LASSOmodels selected

by CV and kappa. �e standard errors and p-values are shown for least squares. �e variables sex, bmi,

map, tc and ltg are signi�cant at the 5% level. �e standard errors are shown for the LASSOmodels, cal-

culated using the approximations given by TibshiraniTibshirani (19961996) and Osborne et al.Osborne et al. (2000b2000b). �e standard

errors using the Osborne approximation are quite similar to the least squares standard errors. �e Tib-

shirani standard errors are substantially lower than least squares for variables tc, ldl, hdl and ltg. Which

are correct is debatable and it would have been bene�cial to include bootstrap standard errors for com-

parison. However, from the simulation studies it was seen that the LASSO estimates had lower variance

than the least squares estimates.

�e standardized coe�cients for all methods are shown in Table 7.3.47.3.4 for model selection by 10-fold

CV and in Table 7.3.57.3.5 for model selection using the kappa coe�cient. Ridge regression is excluded from

the discussion of variable selection since it retains all of the variables. �e variables that have a signi�cant

e�ect in the least squares mode (sex, bmi, map, tc, ltg) are indicated with bold headers. When using CV,

all models include these variables except the adaptive EN, where tc is not included. In addition to these

variables, hdl is included for all methods except forward selection. LASSO, SEA-LASSO and EN include glu;

185



2 4 6 8 10

-1
00

0
-5

00
0

50
0

10
00

p

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

CVκ age
sex
bmi
map
tc
ldl
hdl
tch
ltg
glu

FORWARD

(a)

0.6 0.7 0.8 0.9 1.0

-1
00

0
-5

00
0

50
0

ℓ   Fraction

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

CV κ age
sex
bmi
map
tc
ldl
hdl
tch
ltg
glu

RIDGE

1

(b)

0.0 0.2 0.4 0.6

-6
00

-4
00

-2
00

0
20

0
40

0
60

0

ℓ   Fraction

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

CVκ age
sex
bmi
map
tc
ldl
hdl
tch
ltg
glu

LASSO

1

(c)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-2
00

0
20

0
40

0
60

0

ℓ   Fraction

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

CVκ age
sex
bmi
map
tc
ldl
hdl
tch
ltg
glu

ENET

1

(d)

0.0 0.2 0.4 0.6 0.8 1.0

-1
00

0
-5

00
0

50
0

ℓ   Fraction

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

CVκ age
sex
bmi
map
tc
ldl
hdl
tch
ltg
glu

ALASSO

1

(e)

0.0 0.2 0.4 0.6 0.8 1.0

-1
00

0
-5

00
0

50
0

10
00

ℓ   Fraction

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

CVκ age
sex
bmi
map
tc
ldl
hdl
tch
ltg
glu

MCP

1

(f)

Figure (7.3.2) Coefficient profiles for the diabetes data
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age sex bmi map tc ldl hdl tch ltg glu

Least Squares

Est 24 −237 580 266 −941 531 172 185 821 49
SE 60 62 67 66 410 329 210 158 170 66
p-value 0.732 0.001 0.000 0.000 0.046 0.166 0.474 0.313 0.000 0.539

LASSO using 10-fold CV

Est 0 −179 590 245 −181 0 −175 0 553 34
SE Tibs 59 53 62 57 52 102 67 123 73 34
SE Osb 60 60 65 64 400 327 206 158 168 66

LASSO using the κ coe�cient

Est 0 0 573 151 0 0 −109 0 407 0
SE Tib 59 60 50 31 145 158 14 94 49 65
SE Osb 60 53 66 62 406 335 212 160 167 66

Table (7.3.3) Standardized parameter estimates (Est) and standard error estimates (SE) for least
squares and the LASSO. For the LASSO, the standard errors are calculated using both the Tibshirani
approximation (SE Tib) and the Osborne approximation (SE Osb).

forward selection, EN and adaptive EN include ldl; and only adaptive LASSO includes tch. When using

kappa, four models include the least squares signi�cant predictors, forward selection, adaptive LASSO,

SCAD andMCP, although adaptive LASSO and SCAD also select hdl. �e other fourmethods, LASSO, relaxed

LASSO, SEA-LASSO and EN all select the model including only bmi, map, hdl and ltg. �e exception here is

SEA-LASSO, which does not select hdl.

age sex bmi map tc ldl hdl tch ltg glu Test Error

FORWARD 0 −222 587 276 −750 460 0 0 812 0 2968
RIDGE 29 −212 563 256 −162 −77 −159 105 490 66 2916
LASSO 0 −179 590 245 −181 0 −175 0 553 34 2934
RLASSO 0 −183 596 257 −188 0 −180 0 569 0 2951
ALASSO 0 −172 608 248 −227 0 −130 31 592 0 2980
SLASSO 0 −168 620 253 −160 0 −130 0 555 7 2950
TLASSO 0 −202 604 268 −216 0 −181 0 595 0 2970
ENET 0 −137 592 245 −28 −70 −222 0 476 46 2880
AENET 0 −196 668 278 0 −131 −266 0 540 0 2947
MCP 0 −247 694 315 −258 0 −217 0 702 0 3077
SCAD 0 −247 694 315 −258 0 −217 0 702 0 3077

Table (7.3.4) Standardized coefficients selected when using CV

Figure 7.3.37.3.3 shows the test error when using the selected models to make predictions on the observa-

tions in the test data set. �e least squares test error is 2954 and is indicated by the dashed horizontal line
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age sex bmi map tc ldl hdl tch ltg glu Test Error

FORWARD 0 −155 652 263 −292 0 0 0 682 0 3126
RIDGE 24 −237 580 266 −941 531 172 185 821 49 2951
LASSO 0 0 573 151 0 0 −109 0 407 0 3043
RLASSO 0 0 609 203 0 0 −162 0 443 0 2958
ALASSO 0 −48 627 169 −168 0 −49 0 578 0 3067
SLASSO 0 0 679 133 0 0 0 0 289 0 3307
ENET 0 0 548 143 0 0 −98 0 392 0 3077
MCP 0 −65 782 228 −306 0 0 0 782 0 3289
SCAD 0 −16 816 115 −192 0 −4 0 741 0 3309

Table (7.3.5) Standardized coefficients selected when using kappa

in the �gure. �e test error for eachmethod is also shown in Tables 7.3.47.3.4 and 7.3.57.3.5. When using CV the fol-

lowingmethods have lower test error than least squares: ridge, LASSO, relaxed LASSO, SEA-LASSO, adaptive

EN. Only ridge regression has lower test error than least squares when using the kappa coe�cient.
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Figure (7.3.3) Test error when using CV and kappa

I would recommend using the LASSO model chosen by CV. Other than ridge regression and the EN,

it has the lowest test error and should yield a more accurate prediction of disease progression than least

squares. Although ridge regression and EN have lower test error, the LASSO produces a sparser model and

helps to narrow down the risk factors associated with the progression of diabetes. Furthermore, the LASSO

model should contain the correct model with high probability so we can be con�dent that an important

risk factor has not been falsely excluded.
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Chapter 8

Conclusion

�e LASSO and related methods provide an elegant class of methods which simultaneously perform vari-

able selection and estimation with superb performance when the underlying model is sparse. Each LASSO

model is delivered with an interesting geometrical interpretation and its entire pathway can be produced

which aids in the interpretability of a data set. With state of the art algorithms for e�cient computation

and model selection procedures, the LASSO can be applied to high dimensional data with ease. �e LASSO

is shown to have excellent prediction accuracy, consistent estimation and is suitable for variable selection

under certain conditions. Since the predictions are not sensitive to collinearity, weaker conditions are

necessary for persistence than for consistent variable selection. Where these conditions are not met, one

of the two-stage LASSOmethods or concave penalties can be used. Modi�ed LASSOmethods or combined

penalties allow for more �exibility by incorporating di�erent structures between predictor variables.

�e hexagonal operator for regression with shrinkage and equality selection (HORSES) is a modi�ed

LASSO method by Jang et al.Jang et al. (20132013) which is not mentioned above. Similar to the fused LASSO, it is a

combination of two ℓ1 penalties. However, the second penalty is applied to all the pairwise di�erences

of the coe�cients instead of only the adjacent ones. �e result is a hexagonal shaped penalty function

which has a natural grouping e�ect such as the e�ect experienced with the combined penalties. Two

other combined penalties also worth noting are Mnet proposed by Huang et al.Huang et al. (20102010) and the sparse

Laplacian shrinkage (SLS) estimator proposed by Huang et al.Huang et al. (20112011). �e former is a combination of the

ridge and MCP penalties, while the latter combines the MCP penalty with a Laplacian quadratic penalty.

�ere are a number of group penalties, not mentioned above, which can be employed. �e con-

cave penalties have been adapted to perform bi-level selection. Wang et al.Wang et al. (20072007) proposed the group

SCAD, Breheny & HuangBreheny & Huang (20092009) proposed the group MCP and Breheny & HuangBreheny & Huang (20142014) developed de-

scent algorithms for their solutions. Other bi-level selection procedures include the sparse-group LASSO

(Simon et al.Simon et al. (20132013)) and the group exponential lasso (BrehenyBreheny (20142014)). For comparisons of group penal-
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ties, see YangYang (20112011) and Huang et al.Huang et al. (20122012). Also worth mentioning, is the hierarchical group-lasso pro-

posed by Lim & HastieLim & Hastie (20142014) which handles interactions in the group LASSO.

�e LASSO has also beenmodi�ed for other purposes than to incorporate di�erent structures between

the predictors. HeHe (20112011) proposed a model which can incorporate prior information into the LASSO

by using a set of linear constraints. �e model proposed by LiLi (20122012) utilizes a mean-shi� to allow for

simultaneous outlier detection and variable selection with the LASSO.

�e LASSO can also be applied outside the scope of the general linear model. Turlach et al.Turlach et al. (20052005)

provide an extension of the LASSO to multiple response regression. �e LASSO has also been extended to

generalized linear models (GLMs), where the errors follow a distribution from the exponential family and

the linear model is related to the response via a link function. GLMs are discussed by TibshiraniTibshirani (19961996),

who provides an example using logistic regression (binomial distribution). ZhaoZhao (20082008) also discusses

using the LASSO for logistic regression. Park & HastiePark & Hastie (20072007) and Friedman et al.Friedman et al. (20102010) propose path

algorithms for the solution path of ℓ1 regularized GLMs. An extension to survival models is covered by

TibshiraniTibshirani (19971997), who uses the LASSO for theCox proportional hazardsmodel. Wang et al.Wang et al. (20072007) extends

LASSO to least absolute deviations (LAD) estimation, where the parameters are estimated using the ℓ1 loss

function. Gaussian graphical models using the LASSO are discussed byMeinshausen & BühlmannMeinshausen & Bühlmann (20062006),

Witten et al.Witten et al. (20112011) and Mazumder & HastieMazumder & Hastie (20122012).

�ere are also some extensions of the LASSO for nonparametric methods, including regression splines

(Osborne et al.Osborne et al. (19981998), Rosset & ZhuRosset & Zhu (20072007)), the support vector machine (SVM) and kernel smoothers

(RothRoth (20042004)), and wavelet analysis (Donoho & JohnstoneDonoho & Johnstone (19941994), DonohoDonoho (19951995), AntoniadisAntoniadis (19971997),

Donoho & JohnstoneDonoho & Johnstone (19981998), Sardy et al.Sardy et al. (19991999)). Furthermore, SunSun (19991999) discusses using the LASSO for

neural networks.

�e LASSO solution has an alternative interpretation as the Bayesian posterior mode with double-

exponential (Laplace) priors on the regression parameters (TibshiraniTibshirani (19961996)). Park & CasellaPark & Casella (20082008) dis-

cuss the Bayesian LASSO and derive Bayesian interval estimates. Armagan & ZaretzkiArmagan & Zaretzki (20102010), Kyung et al.Kyung et al.

(20102010) and Lykou & NtzoufrasLykou & Ntzoufras (20122012) also approach the problem from a Bayesian perspective.

Further developments may still be necessary before these methods have mainstream appeal. Few

advances have been made concerning statistical inferences for the models produced. Better standard
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errors of LASSO estimates and derivation of con�dence intervals remain a topic for further research. �e

signi�cance test described by Lockhart et al.Lockhart et al. (20142014) is a step in the right direction but can only be used as

a stopping rule for the LAR-LASSO algorithm. Testing the overall signi�cance of a predictor, the goodness

of �t of the model and methods for multiple testing still need to be uncovered.
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Appendix A

De�nitions and�eorems

A.1 Vectors and Matrices

De�nition A.1.1 ℓq-norm

�e ℓq-norm of a p × 1 vector a is given by

ℓq (a) = ∥a∥q =
⎛
⎝

p
∑
j=1

∣a j∣
q⎞
⎠

1
q

,

where q ⩾ 1, and has the following properties:

1. ∥a∥q ⩾ 0 for all a ∈ Rp (nonnegative)

2. ∥a∥q = 0⇔ a = 0 (de�nite)

3. ∥sa∥q = ∣s∣ ∥a∥q for all a ∈ Rp , s ∈ R (homogenous)

4. ∥a + b∥q ⩽ ∥a∥q + ∥b∥q for all a, b ∈ Rp (subadditive)

GentleGentle (20072007:16-18) or Boyd & VandenbergheBoyd & Vandenberghe (20042004:633-637) can be consulted for more information

about norms. Some notes:

• �e ℓ2 norm corresponds to the usual Euclidean norm and the subscript is normally omitted.

• �e max norm, also called the Chebyshev norm, is given by

ℓ∞ (a) = lim
q→∞ ∥a∥q = max{∣a1∣ , ∣a2∣ , . . . , ∣ap∣} .

• ∥a∥q is a measure of length or size, ∥a − b∥q is a measure of distance.

• When q ∈ [0, 1)
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– ∥a∥q is homogeneous but it is not subadditive.

– ∥a∥qq is subadditive but it is not homogeneous.

De�nition A.1.2 Generalized inverse

A generalized inverse of an n × p matrix A is de�ned as the p × n matrix A− such that

A = AA−A.

A− is not unique, unless A is square and has full rank then A− = A−1.

See SearleSearle (19711971:1-7) for a discussion and for methods of computing the generalized inverse.

�eorem A.1.1 Generalized inverse of Gramian matrix

�e generalized inverse of a Gramian matrix, (ATA)−, has all of the following properties:

1. ((ATA)−)
T
is also a generalized inverse of ATA

2. (ATA)−AT is a generalized inverse of A

3. A (ATA)−AT
is invariant to the choice of (ATA)−

4. A (ATA)−AT
is always symmetric regardless of the choice of (ATA)−

See SearleSearle (19711971:20) for a proof of the theorem.

De�nition A.1.3 Moore-Penrose inverse

�eMoore-Penrose inverse is a generalized inverse of A that satis�es all of the following conditions:

1. A = AA−A

2. A− = A−AA−

3. (AA−)T = AA−

4. (A−A)T = A−A

�eMoore-Penrose inverse exists for any matrix. It is unique and will be denoted by A+
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See SearleSearle (19711971:16-18) or GentleGentle (20072007:102-103) for a proof of the existence and uniqueness of the

Moore-Penrose inverse.

De�nition A.1.4 Four fundamental subspaces of a matrix

�e four fundamental subspaces of an n × p matrix A with rank (A) = r are:

1. �e column space, also known as the image or range, is the subspace spanned by the columns ofA and

is given by

C (A) = {a ∈ Rn ∶ Ab = a for all b ∈ Rp}

�e set of linearly independent columns ofA is a basis for the column space ofA and dim (C (A)) = r.

2. �e row space is the subspace spanned by the rows of A and is the column space of AT ,

C (AT) = {b ∈ Rp ∶ ATa = b for all a ∈ Rn}

�e set of linearly independent rows of A is a basis for the row space of A and dim (C (AT)) = r.

3. �e null space, also known as the kernel, is given by

N (A) = {b ∈ Rp ∶ Ab = 0}

�e dimension ofN (A) is called the nullity of A and is given by dim (N (A)) = p − r.

4. �e le� null space, also known as the cokernel, is the null space of AT

N (AT) = {a ∈ Rn ∶ ATa = 0}

and dim (N (AT)) = n − r.

�ese de�nitions can be found in any text on linear algebra, see MesserMesser (19941994:245-254) or StrangStrang

(20062006:115-121). �e le� null space of A is the orthogonal complement of the column space of A which is

denoted by C� (A) = N (AT).

194



�eorem A.1.2 Expectation of quadratic forms

Let v be an n × 1 vector and let A be an n × n symmetric matrix. If E (v) = µ and var (v) = Σ then

E (vTAv) = tr (AΣ) + µTAµ.

See SearleSearle (19711971:55) or Seber & LeeSeber & Lee (20032003:9) for a proof.

�eorem A.1.3 Inverse of a partitioned matrix

A nonsingular matrix A partitioned as

A = [A11 A12
A21 A22

] ,

where A11 and A22 are nonsingular, has inverse

A−1 = [A
−1
11 + B12B−122B21 −B12B−122
−B−122B21 B−122

]

= [ C−111 −C−111 C12
−C21C−111 A−1

22 +C21C−111 C12
] ,

where

B22 = A22 −A21A−1
11 A12,

B12 = A−1
11 A12,

B21 = A21A−1
11

and

C11 = A11 −A12A−1
22A21,

C12 = A12A−1
22 ,

C21 = A−1
22A21.

�e result is given in Seber & LeeSeber & Lee (20032003:466) and can easily be proved by showing that AA−1 = I.

GentleGentle (20072007:101) provides a similar result for nonsingular matrices and SearleSearle (19711971:27) provides a result

speci�cally for symmetric matrices.
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De�nition A.1.5 Singular value decomposition (SVD)

If A is an n × p matrix with rank (A) = r, it has the SVD

A = UDVT ,

where U is an n × n orthogonal matrix, V is a p × p orthogonal matrix and D is an n × p diagonal matrix

(withmin (n, p) diagonal elements and zeroes elsewhere). �e nonnegative diagonal elements of D are the

singular values of A, with d1 ⩾ d2 ⩾ ⋯ ⩾ dr > 0. If any r < min (n, p) then dr+1 = dr+2 = ⋯ = dmin(n,p) = 0

and

D = [ Dr 0
0 0

] ,

where Dr = diag (d1, d2 . . . , dr). �e columns of U span the column space of A and the columns of V span

the row space of A.

See GentleGentle (20072007:127-128). �e above representation always holds but alternative representations are

given as follows:

• If n > p then U is an n × pmatrix with orthogonal columns andD is a p × p diagonal matrix,

• If n < p then V is a p × n matrix with orthogonal columns andD is a p × p diagonal matrix.

De�nition A.1.6 Spectral decomposition

If the p × p matrix A is symmetric, it has the spectral decomposition

A = VEVT ,

where E is a diagonal matrix whose diagonal elements are the eigenvalues ofA and the columns ofV are the

eigenvectors of A that are chosen to be orthonormal so that VVT = VTV = I..

• Using the SVD, ATA = VDUTUDVT = VD2VT . But ATA is symmetric and has the spectral de-

composition above. �us E = D2, the eigenvalues of ATA are the squared singular values of A,

ei (ATA) = d2i (A) ⇔ di (A) =
√
ei (ATA).

• Similarly, if A is a symmetric matrix then di (A) = ∣ei (A)∣.
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De�nition A.1.7 QR decomposition

If A is an n × p matrix, it has the QR decomposition

A = QR.

1. If n = p then Q is an n × n orthogonal matrix and R is an n × n upper triangular matrix,

2. If n > p then Q is an n × n orthogonal matrix and R is the n × pmatrix (R1, 0)T where R1 is a p × p

upper triangular matrix,

3. If n < p then Q = (Q1,Q2) and R = (R1,R2) where Q1 is an n × p matrix with orthogonal columns

and R1 is a p × p upper triangular matrix. In this case, A = Q1R1.

See GentleGentle (20072007:188-189).

A.2 Estimators

De�nition A.2.1 Estimable functions

Consider the linear model y = Xβ+ε with E (ε) = 0 and var (ε) = σ2I. A linear function of β given by

aTβ is estimable if any of these equivalent conditions hold:

1. aTβ = E (tTy) for any vector t

2. a = XTt for any vector t

3. a ∈ C (XT)

When X has full column rank, aTβ is estimable for any a ∈ Rp+1.

See SearleSearle (19711971:180-188) or ShaoShao (19991999:148-150) for more details.

De�nition A.2.2 Best linear unbiased estimator (BLUE)

A linear estimate cTy is the BLUE of aTβ if it is unbiased and has the lowest variance among all linear

unbiased estimates. �at is, both these conditions are satis�ed:

1. E (cTy) = aTβ

2. var (cTy) ⩽ var (dTy) for any other unbiased linear estimate dTy.
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�eorem A.2.1 Gauss-Markov�eorem

Consider the linear model y = Xβ+ε with E (ε) = 0 and var (ε) = σ2I. If aTβ is an estimable function

then the LSE aT β̂ is the BLUE of aTβ.

See GentleGentle (20072007:234-235), Seber & LeeSeber & Lee (20032003:42-43) or ShaoShao (19991999:155) for a proof.

De�nition A.2.3 Uniformly minimum variance unbiased estimator (UMVUE)

An estimate g (y) is the UMVUE of aTβ if it is unbiased and has the lowest variance among all unbiased

estimates. �at is, both these conditions are satis�ed:

1. E (g (y)) = aTβ

2. var (g (y)) ⩽ var (h (y)) for any other unbiased estimate h (y).

See SpanosSpanos (19891989:232-244), ShaoShao (19991999:127-139) or Casella & BergerCasella & Berger (20022002:334-348) for more infor-

mation about unbiased estimates.

�eorem A.2.2 Properties of LSEs under normality

Consider the linear model y = Xβ+ε with ε ∼ N (0, σ2I).

1. If aTβ is an estimable function then the LSE aT β̂ is the UMVUE of aTβ.

2. If rank (X) = r then σ̂2 = RSS (β̂)/(n − r) is the UMVUE of σ2

See ShaoShao (19991999:152-154) for a proof.

De�nition A.2.4 Sampling properties of an estimator

A sample estimate of a parameter θ calculated from observed data a is given by θ̂ (a). �e estimator is

a function of the random variable A and is given by θ̂ (A). �e estimator is denoted in short by θ̂ and has

the following �nite sample properties:

1. �e bias of the estimator is B (θ̂) = E (θ̂) − θ

2. �e variance of the estimator is var (θ̂) = E [θ̂ − E (θ̂)]2

3. �e MSE of an estimator is MSE (θ̂) = E (θ̂ − θ)2 = var (θ̂) + B (θ̂)2.
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See Casella & BergerCasella & Berger (20022002:330). A way to decompose the MSE into the squared bias and variance of

the estimate is shown in Section B.1.1B.1.1.

�eorem A.2.3 Cramér-Rao lower bound

�e variance of any estimate of θ is bound by the Cramér-Rao lower bound, which is given by

CR (θ) =
[ d
dθ E (θ)]2

In (θ) = [1 + B′ (θ)]2

In (θ) ,

where In (θ) = E [ ∂
∂θ ln L (θ)]2 is called the Fisher information of the sample and L (θ) is the likelihood

function. �at is, var (θ̂) ⩾ CR (θ) for all estimates θ̂.

See SpanosSpanos (19891989:237-241), ShaoShao (19991999:135-138) and Casella & BergerCasella & Berger (20022002:335-338) for a proof and

more information. Some notes:

• By the de�nition of bias, E (θ̂) = θ + B (θ̂) so that d
dθ E (θ) = 1 + B′ (θ).

• SinceMSE (θ̂) = var (θ̂) + B (θ̂)2, the MSE is bounded byMSE (θ̂) ⩾ CR (θ) + B (θ)2.

• An unbiased estimator is said to be fully e�cient of its variance equals theCramér-Rao lower bound

which is simpli�ed to In (θ)−1. Such an estimator is also the UMVUE.

De�nition A.2.5 Convergence of random variables

Suppose An = A1,A2, . . . ,An is a sequence of random variables.

1. �e sequence converges to A in probability, denoted by An
p
→ A, if lim

n→∞P (∣An − A∣ < ε) = 1 or equiv-

alently lim
n→∞P (∣An − A∣ ⩾ ε) = 0 for every ε > 0.

2. �e sequence converges to A in ℓq, or in q-th moment, denoted by An
ℓq→ A,

if lim
n→∞E (∣An − A∣q) = 0 for q > 0.

3. �e sequence converges to A almost surely, denoted by An
a.s.→ A, if P ( lim

n→∞An = A) = 1.

4. �e sequence converges to A in distribution, denoted by An
d→ A, if lim

n→∞FAn (a) = FA (a) for all a

where the cumulative distribution function FA (a) = P (A ⩽ a) is continuous.

See Casella & BergerCasella & Berger (20022002:232-245) or ShaoShao (19991999:38-41) for more information about convergence.
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De�nition A.2.6 Order of a sequence

Suppose An is a sequence of random variables, bn and cn are two sequences of real numbers and dn is a

sequence of positive real numbers.

1. �e sequence bn is at most of order cn, denoted by bn = O (cn), if limn→∞
∣bn ∣
cn < ε for some ε > 0.

2. �e sequence bn is of smaller order than cn, denoted by bn = o (cn), if limn→∞
bn
cn = 0.

3. �e sequence An is at most of order dn in probability, denoted by An = Op (dn), if An
dn

p
→ an for some

sequence an = O (1).

4. �e sequence An is of smaller order than dn in probability, denoted by An = op (dn), if An
dn

p
→ 0.

See SpanosSpanos (19891989:195-198) and ShaoShao (19991999:42).

De�nition A.2.7 Asymptotic properties of an estimator

Suppose θ̂n = θ̂ (A1,A2, . . . ,An) is a sequence of estimators. �e estimator θ̂ has the following asymp-

totic properties:

1. Asymptotic accuracy:

(a) An estimator is consistent if θ̂n
p
→ θ

(b) An estimator is ℓq-consistent if θ̂n
ℓq→ θ.

(c) An estimator is strongly consistent if θ̂n
a.s.→ θ

(d) An estimator is an-consistent if an ∣θ̂n − θ∣ = Op (1), where an is a sequence of positive constants.

2. Asymptotic normality:

an estimator is asymptotically normal if
√
n (θ̂n − θ) d→ N (0, ~var (θ)), where ~

var (θ) > 0 is the

asymptotic variance of θ.

3. Asymptotic e�cience:

an asymptotically normal estimator is asymptotically e�cient if ~
var (θ) = I∞ (θ)−1, where I∞ (θ) =

lim
n→∞ ( 1n In (θ)). �at is, the asymptotic variance, ~

var (θ) = lim
n→∞ var (θ̂n) equals the limit of the

Cramér-Rao lower bound.
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4. Asymptotic bias:

an estimator is asymptotically unbiased if var (θ̂n) = O (1/n) and lim
n→∞

√
n (θ̂n − θ) = 0.

A note on (1b1b), the following are equivalent:

• θ̂ is ℓ2 consistent (for q = 2) if limn→∞E (∣θ̂n − θ∣2) = 0.

• �e estimator is consistent in MSE sinceMSE (θ̂n) = E (∣θ̂n − θ∣2) .

�e same is true for (1a1a):

• θ̂ is consistent if lim
n→∞P (∣θ̂n − θ∣ ⩾ ε) = 0.

• �e estimator is consistent inMSE since P (∣θ̂n − θ∣ ⩾ ε) ⩽ E (θ̂n − θ)2/ ε2 by Chebyshev’s inequal-

ity (see ShaoShao (19991999:51)) andMSE (θ̂n) = E (θ̂n − θ)2.

SinceMSE (θ̂n) = var (θ̂n) + B (θ̂n)
2
, θ̂ is consistent in MSE if both

• lim
n→∞ var (θ̂n) = 0 and

• lim
n→∞B (θ̂n) = 0.

See SpanosSpanos (19891989:244-247), ShaoShao (19991999:102-109) or Casella & BergerCasella & Berger (20022002:467-473) for more infor-

mation.

De�nition A.2.8 Coe�cient of determination

�e coe�cient of determination is given by

R2 = ∑( ŷi − y)2

∑(yi − y)2
.

R2 measures the proportion of the total variation in v that is explained by the model Ŷ and its range is

0 ⩽ R2 ⩽ 1. It can also be written as

R2 = 1 − ∑(yi − ŷi)2

∑(yi − y)2
= 1 −

RSS (β̂)
vTv

.

See Draper & SmithDraper & Smith (19981998:33). Seber & LeeSeber & Lee (20032003:110-112) show that R2 = corr (Y , Ŷ) and when p = 1

for a straight line �t then R2 = corr (X ,Y).
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A.3 Optimization

De�nition A.3.1 Convex functions

1. A is a convex set if the line segment between any two points in a A also lies in A. �at is, for all

a, b ∈ A and c ∈ (0, 1),

ca + (1 − c) b ∈ A.

2. f is a convex function if its domain is a convex set, sayA, and the line segment between any two points

on the function lies above the function. �at is, for all a, b ∈ A and c ∈ (0, 1),

f (ca + (1 − c) b) ⩽ c f (a) + (1 − c) f (b) .

3. f is a strictly convex function if for all a, b ∈ A and c ∈ (0, 1),

f (ca + (1 − c) b) < c f (a) + (1 − c) f (b) .

See Boyd & VandenbergheBoyd & Vandenberghe (20042004:23-25,67-68) for more information.

De�nition A.3.2 First and second order conditions

1. If f is di�erentiable then f is convex if and only if the domain of f is the convex set A and for all

a, b ∈ A,

f (b) ⩾ f (a) + ∇ f (a)T (b − a) .

For strict convexity, strict inequality is required, f (b) > f (a) + ∇ f (a)T (b − a).

2. If f is twice di�erentiable then f is convex if and only if the domain of f is the convex set A and for

all a ∈ A, ∇2 f (a) is positive semide�nite. For strict convexity, ∇2 f (a)must be positive de�nite.

See Boyd & VandenbergheBoyd & Vandenberghe (20042004:69-71) for more information.
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De�nition A.3.3 Optimization terminology

For any optimization problem

minimize f (θ)
subject to gi (θ) ⩽ 0, i = 1, 2, . . . , I

h j (θ) = 0, j = 1, 2, . . . , J,
(A.3.1)

1. �e domain of the problem is the set of pointsA for which the objective function f and all the constraint

functions g and h are satis�ed.

2. A point θ ∈ A is feasible if it satis�es all the constraints gi (θ) ⩽ 0, h j (θ) = 0∀i , j. �e set of all

feasible points is called the feasible set F .

3. If θ ∈ F and gi (θ) = 0 then the inequality constraint gi (θ) ⩽ 0 is active.

4. If θ ∈ F and gi (θ) < 0 then the inequality constraint gi (θ) ⩽ 0 is inactive.

5. �e optimal value of the problem is opt = inf { f (θ)∣ gi (θ) ⩽ 0, h j (θ) = 0∀i , j}.

6. θ̂ is an optimal point if θ̂ ∈ F and f (θ̂) = opt. �is is also known as the globally optimal point.

7. θ̂ is sub-optimal if θ̂ ∈ F and f (θ̂) = opt + ε for some ε > 0.

8. θ̂ is locally optimal if θ̂ ∈ F and

f (θ̂) = inf { f (θ1)∣ gi (θ1) ⩽ 0, h j (θ1) = 0, ∥θ1 − θ∥ ⩽ ε∀i , j and some ε > 0}.

See Boyd & VandenbergheBoyd & Vandenberghe (20042004:127-129) for more information. �e problem (A.3.1A.3.1) is the standard

formof the optimization problem. Boyd & VandenbergheBoyd & Vandenberghe (20042004:129-135) discuss problems that are equiv-

alent to (A.3.1A.3.1), including maximization, change of variables, function transformations, slack variables,

eliminating or introducing equality constraints, sequentially optimizing over some variables, including

the objective function as a constraint and including a constraint implicitly in the objective function.

De�nition A.3.4 Convex optimization

If f , g1, . . . , gI are convex and h1, . . . , hJ are a�ne then the optimization problem (A.3.1A.3.1) is convex and

the following hold:

1. Any locally optimal point is also globally optimal.
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2. θ̂ is optimal if and only if θ̂ ∈ F and ∇ f (θ̂)T (θ − θ̂) ⩾ 0 for all θ ∈ F .

3. For unconstrained problems, a necessary and su�cient condition for θ̂ to be optimal is ∇ f (θ̂) = 0.

See Boyd & VandenbergheBoyd & Vandenberghe (20042004:136-144) for more information about convex optimization.

De�nition A.3.5 Descent method

A descent method solves the optimization problem

minimize f (θ) ,

where f is convex and twice di�erentiable. �e algorithm can be used if there is no closed form for the

necessary and su�cient optimality condition

∇ f (θ̂) = 0.

A general descent algorithm produces a minimizing sequence by iteratively updating

θ(k+1) = θ(k) + s(k)∆θ(k),

where ∆θ(k) is the search direction and s(k) > 0 is the step length. �e search direction is chosen so that f

descends,

f (θ(k+1)) < f (θ(k))

unless ∥∇ f (θ(k))∥ ⩽ ε for small ε > 0 so that θ(k) is optimal. Since convexity implies that f (θ) ⩾ f (θ̂)

when ∇ f (θ̂)T (θ − θ̂) ⩾ 0, the search direction must satisfy

∇ f (θ(k))
T
∆θ(k) < 0.

See Boyd & VandenbergheBoyd & Vandenberghe (20042004:463-484) for more information about descent methods.
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Given a starting point θ(0), the algorithm repeatedly performs the following steps until convergence

of the gradient:

1. Find the search direction ∆θ

• Gradient descent: ∆θ gd = −∇ f (θ)

• Normalized steepest descent: ∆θnsd = argminv {∇ f (θ)T v∣ ∥v∥ ⩽ 1} for any norm ∥⋅∥. �us,

∆θnsd extends θ by the greatest distance in the direction of −∇ f (θ) while remaining in the

unit ball of ∥⋅∥.

• Steepest descent: ∆θsd = ∆θnsd ∥∇ f (θ)∥∗ where ∥⋅∥∗ is the dual norm which is given by

∥a∥∗ = sup{∣aTb∣∣ ∥b∥ ⩽ 1} such that ∥a∥ ∥b∥∗ ⩾ aTb

2. Line search - �nd s which minimizes f along {θ + t∆s∣ ⩾ 0}

• Exact: s = argmint⩾0 f (θ + t∆θ)

• Backtracking: s = sb while f (θ + s∆θ) > f (θ)+ as∇ f (θ)T ∆θ, where a ∈ (0, 0.5), b ∈ (0, 1)

and we begin with s = 1

3. Update θ+ = θ + s∆θ

Note that for any ℓq-norm, the dual norm is the ℓr-norm where 1/q + 1/r = 1. �e ℓ1 norm is the

dual norm of the ℓ∞-norm and conversely, the ℓ∞-norm is the dual norm of the ℓ1 norm. For more

information, see Boyd & VandenbergheBoyd & Vandenberghe (20042004:637).

De�nition A.3.6 Karush-Kuhn-Tucker conditions

For any optimization problem (A.3.1A.3.1), the Lagrangian function is given by

l (θ , η, µ) = f (θ) +
I
∑
i=1

ηi gi (θ) +
J
∑
j=1

µ jh j (θ) ,

where ηi and µi are called dual variables or Lagrangemultipliers. If f , g1, . . . , gI , h1, . . . , hJ are di�erentiable

then the following conditions are necessary for θ̂ and (η̂, µ̂) to be optimal:

1. gi (θ̂) ⩽ 0, i = 1, 2, . . . , I,

2. η̂i ⩾ 0, i = 1, 2, . . . , J,
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3. η̂i gi (θ̂) = 0, , i = 1, 2, . . . , J,

4. ∇l (θ̂ , η̂, µ̂) = ∇ f (θ̂) +∑I
i=1 η̂i∇gi (θ̂) +∑J

j=1 µ̂ j∇h j (θ̂) = 0,

5. h j (θ̂) = 0, i = 1, 2, . . . , J.

�ese are called the Karush-Kuhn-Tucker (KKT) conditions. If the problem is convex then the KKT con-

ditions are also su�cient for optimality.

See Boyd & VandenbergheBoyd & Vandenberghe (20042004:243-244) for further details.

De�nition A.3.7 Minimax optimality

An estimator θ̂1 is minimax optimal for θ if it minimizes the maximum MSE. �at is, for all θ̂2,

sup
θ
MSE (θ̂1) ⩽ sup

θ
MSE (θ̂2) .

In other words, a minimax estimator performs the best possible in the worst case. See RaoRao (19731973:341)

and ShaoShao (19991999:223).

De�nition A.3.8 Oracle properties

Suppose the true regression parameters α include a set of important e�ects indexed byD = { j ∶ α j ≠ 0}.

�en α = (αD , αDc)T = (αA, 0)
T and the true model is given by

Vi = ∑
j∈A

Zi jα j + εi .

Furthermore, suppose that var (αD) = Σ. An oracle variable selection method for linear models is able to:

1. Select the correct parameters consistently, that is, lim
n→∞P (D̂n = D) = 1

2. Estimate the nonzero parameters e�ciently, that is,
√
n (α̂A − αA)

d→ N (0, Σ).

See Fan & LiFan & Li (20012001) and ZouZou (20062006) for more information.
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A.4 Geometry

De�nition A.4.1 Conic sections

Conic sections are surfaces de�ned by the intersections of a quadric surface with the coordinate planes.

A conic section in two variables θ1 and θ2 has the general form

aθ21 + 2bθ1θ2 + cθ22 + 2dθ1 + 2eθ2 + f = 0. (A.4.1)

�e equation can be written as a quadratic form

θTAθ = 0,

where θT = (θ1, θ2, 1) and

A =

⎡⎢⎢⎢⎢⎢⎢⎣

a b d
b c e
d e f

⎤⎥⎥⎥⎥⎥⎥⎦

. (A.4.2)

If ∣A∣ = 0 then the conic section is degenerate, otherwise it is not degenerate. �e top 2×2 partition ofA can

be used to write the equation as

[ θ1 θ2 ] [ a b
b c

] [ θ1
θ2

] + 2dx + 2ev + f = 0.

�e determinant of this partition is known as the discriminant,

△ = ∣ a b
b c

∣ = ac − b2. (A.4.3)

�e shape of the conic section is determined by the discriminant. In the non-degenrate case:

• if△ = 0 then the conic is a parabola,

• if△ > 0 then the conic is an ellipse,

• if△ < 0 then the conic is an hyperbola.

�e center of the conic is the point where the gradient of the quadratic form is zero, and is given by

(be − cd
ac − b2

,
bd − ae
ac − b2

) . (A.4.4)
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If b ≠ 0, then the axes of the conic section are not parallel to the coordinate axes. �e angle ϑ that the axes

of the conic section makes with the coordinate axes can be found by rotating the system to eliminate the

bθ1θ2-term and is determined by

cot 2ϑ = a − c
2b

. (A.4.5)

More information about quadric surfaces and conic sections can be found in Sicelo� et al.Sicelo� et al. (19221922) or

any text on analytic geometry.
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Appendix B

Calculations

B.1 Estimation and Prediction Accuracy

B.1.1 Mean Squared Error

�e MSE of an estimator β̂ is a measure of how well it estimates the true β and is given by MSE (β̂) =

E (β̂ − β)2. We can write

β̂ − β = [β̂ − E (β̂)] − [E (β̂) − β] .

Squaring both sides gives

(β̂ − β)2

= [β̂ − E (β̂)]2 + [E (β̂) − β]2 − 2 [β̂ − E (β̂)] [E (β̂) − β] ,

and taking expectations gives

E [β̂ − E (β̂)] [E (β̂) − β]

= [E (β̂) − E (β̂)] [E (β̂) − β] = 0,

so that

MSE (β̂) = E (β̂ − β)2

= E [β̂ − E (β̂)]2 + [E (β̂) − β]2

= var (β̂) + B (β̂)2 .

�us the MSE of an estimate is a trade-o� between its variance and its bias.

�e result can easily be generalized for a vector of estimates β̂. We have MSE (β̂) = E ∥β̂ − β∥
2
. We
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can write

β̂ − β = [β̂ − E (β̂)] − [E (β̂) − β] .

Taking squared norms on both sides gives

∥β̂ − β∥
2

= ∥β̂ − E (β̂)∥
2
+ ∥E (β̂) − β∥

2
− 2 [β̂ − E (β̂)]

T
[E (β̂) − β] ,

and taking expectations gives

E [β̂ − E (β̂)]
T
[E (β̂) − β]

= [E (β̂) − E (β̂)]
T
[E (β̂) − β] = 0,

so that

MSE (β̂) = E ∥β̂ − β∥
2

= E ∥β̂ − E (β̂)∥
2
+ ∥E (β̂) − β∥

2
,

where E ∥β̂ − E (β̂)∥
2
is the total variance of β̂. We can show this by noting that

E ∥β̂ − E (β̂)∥
2

= E [(β̂ − E (β̂)
2
)
T
(β̂ − E (β̂)

2
)]

= E {tr [(β̂ − E (β̂)
2
)
T
(β̂ − E (β̂)

2
)]}

= E {tr [(β̂ − E (β̂)
2
)(β̂ − E (β̂)

2
)
T
]}

= tr{E [(β̂ − E (β̂)
2
)(β̂ − E (β̂)

2
)
T
]}

= tr [var (β̂)] .
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�us,

MSE (β̂) = tr [var (β̂)] + ∥E (β̂) − β∥
2

=
p
∑
j=1
var (β̂ j) +

p
∑
j=1

B (β̂ j)
2

=
p
∑
j=1

MSE (β̂ j) .

B.1.2 Prediction Error

Individual Observation

Suppose we would like to predict a new response at a new observation (x0, y0), where y0 has the same

probability structure as the elements of y: E (y0) = f (x0), var (y0) = σ2 and cov (y0, yi) = 0. �e

expected PE of the predictor f̂ (x0) is a measure of how well it predicts the new response and is given by

PE ( f̂ (x0)) = E [y0 − f̂ (x0)]
2
. We can write

y0 − f̂ (x0) = [y0 − E (y0)] − [ f̂ (x0) − E (y0)]

= [y0 − E (y0)] − [ f̂ (x0) − f (x0)] ,

since E (y0) = f (x0). Squaring both sides gives

[y0 − f̂ (x0)]
2

= [y0 − E (y0)]2 + [ f̂ (x0) − f (x0)]
2 − 2 [y0 − E (y0)]T [ f̂ (x0) − f (x0)] ,

and taking expectations gives

E [y0 − E (y0)]T [ f̂ (x0) − f (x0)]

= [E (y0) − E (y0)]T [E ( f̂ (x0)) − f (x0)] = 0,
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so that

PE ( f̂ (x0)) = E [y0 − f̂ (x0)]
2

= E [y0 − E (y0)]2 + E [ f̂ (x0) − f (x0)]
2

= var (y0) +MSE ( f̂ (x0))

= σ2 +MSE ( f̂ (x0)) .

�us, the PE is also a trade-o� between the variance and bias but it includes an additional irreducible

variance σ2 to account for the variation in the data.

Similarly, if we would like to predict m new observations, (x0,1, y0,1) , (x0,2, y0,2) , . . . , (x0,m , y0,m),

then the PE is given by PE ( f̂ (X0)) = E ∥y0 − f̂ (X0)∥
2
. We can write

y0 − f̂ (X0) = [y0 − E (y0)] − [E (y0) − f̂ (X0)]

= [y0 − E (y0)] − [ f (X0) − f̂ (X0)] ,

since E (y0) = f (X0). Taking squared norms on both sides gives

∥y0 − f̂ (X0)∥
2

= ∥y0 − E (y0)∥2 + ∥ f (X0) − f̂ (X0)∥
2 + 2 [y0 − E (y0)]T [ f (X0) − f̂ (X0)] ,

and taking expectations gives

E [y0 − E (y0)]T [ f (X0) − f̂ (X0)]

= [E (y0) − E (y0)]T [ f (X0) − E ( f̂ (X0))] = 0,
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so that

PE ( f̂ (X0)) = E ∥y0 − f̂ (X0)∥
2

= E ∥y0 − E (y0)∥2 + E ∥ f (X0) − f̂ (X0)∥
2

= tr [var (y0)] +MSE ( f̂ (X0))

= mσ2 +
m
∑
i=1

MSE ( f̂ x0,i)

=
m
∑
i=1

[σ2 +MSE ( f̂ x0,i)]

=
m
∑
i=1

PE ( f̂ x0,i) ,

since

E ∥y0 − E (y0)∥2

= E [(y0 − E (y0))T (y0 − E (y0))]

= E {tr [(y0 − E (y0))T (y0 − E (y0))]}

= E {tr [(y0 − E (y0)) (y0 − E (y0))T]}

= tr{E [(y0 − E (y0)) (y0 − E (y0))T]}

= tr [var (y0)] .

B.1.3 Optimism

�e expected optimism of the training sample is given by ω = E [PEin ( f̂ (x))] − E [TE ( f̂ (x))]. �e

in-sample error is

PEin ( f̂ (x)) =
1
n

n
∑
i=1

Ey0 (y0,i − f̂ (x i))
2
.

We can write

y0,i − f̂ (x i) = [y0,i − f (x i)] − [ f̂ (x i) − E ( f̂ (x i))] − [E ( f̂ (x i)) − f (x i)] .
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Squaring both sides gives

[y0,i − f̂ (x i)]
2

= [y0,i − f (x i)]
2 + [ f̂ (x i) − f (x i)]

2 − 2 [y0,i − f (x i)]
T [ f̂ (x i) − f (x i)] .

Taking expectations over y0 gives

Ey0 [y0,i − f (x i)]
T [ f̂ (x i) − f (x i)]

= [Ey0 (y0,i) − Ey0 (y0,i)]
T [ f̂ (x i) − f (x i)] = 0,

since Ey0 (y0,i) = f (x i). �us,

Ey0 [y0,i − f̂ (x i)]
2

= Ey0 [y0,i − Ey0 (y0,i)]
2 + [ f̂ (x i) − f (x i)]

2

= var (y0,i) + [ f̂ (x i) − f (x i)]
2
,

so that

EyEy0 [y0,i − f̂ (x i)]
2

= var (y0,i) + E [ f̂ (x i) − f (x i)]
2

= var (y0,i) +MSE ( f̂ (x i))

= σ2 +MSE ( f̂ (x i)) .

�e training error is

TE ( f̂ (x)) = 1
n

n
∑
i=1

(yi − f̂ (x i))
2
.

We can write

yi − f̂ (x i) = [yi − f (x i)] − [ f̂ (x i) − E ( f̂ (x i))] − [E ( f̂ (x i)) − f (x i)] .
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Squaring both sides gives

[yi − f̂ (x i)]
2

= [yi − f (x i)]
2 + [ f̂ (x i) − E ( f̂ (x i))]

2 + [E ( f̂ (x i)) − f (x i)]
2

− 2 [yi − f (x i)] [ f̂ (x i) − E ( f̂ (x i))]

− 2 [yi − f (x i)] [E ( f̂ (x i)) − f (x i)]

− 2 [ f̂ (x i) − E ( f̂ (x i))] [E ( f̂ (x i)) − f (x i)]

Since E (yi) = f (x i), taking expectations gives

E [yi − f (x i)] [E ( f̂ (x i)) − f (x i)]

= [E (yi) − E (yi)] [E ( f̂ (x i)) − f (x i)] = 0

and

E [ f̂ (x i) − E ( f̂ (x i))] [E ( f̂ (x i)) − f (x i)]

= [E ( f̂ (x i)) − E ( f̂ (x i))] [E ( f̂ (x i)) − f (x i)] = 0

so that

E [yi − f̂ (x i)]
2

= E [yi − E (yi)]2 + E [ f̂ (x i) − E ( f̂ (x i))]
2 + E [E ( f̂ (x i)) − f (x i)]

2

− 2E [yi − E (yi)] [ f̂ (x i) − E ( f̂ (x i))]

= var (yi) + var ( f̂ (x i)) + B ( f̂ (x i))
2 − 2 cov (yi , f̂ (x i))

= σ2 +MSE ( f̂ (x i)) − 2 cov (yi , f̂ (x i)) .
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�us,

ω = E [PEin ( f̂ (x))] − E [TE ( f̂ (x))]

= 1
n

n
∑
i=1

EyEy0 (y0,i − f̂ (x i))
2 − 1

n

n
∑
i=1

Ey (yi − f̂ (x i))
2

= 1
n

n
∑
i=1

[σ2 +MSE ( f̂ (x i))]

− 1
n

n
∑
i=1

[σ2 +MSE ( f̂ (x i)) − 2 cov (yi , f̂ (x i))]

= 2
n

n
∑
i=1
cov (yi , f̂ (x i)) .

B.2 Over�tting and Under�tting

B.2.1 Over�tting

Estimation

Suppose that the true model includes only the predictors X1, X2, . . . , Xd , so that βT = (βT
D , 0

T). Let

X = (XD ,XDc), where D = { j ∶ 0, 1, . . . , d} and Dc = { j ∶ d + 1, . . . , p} so that XD is the �rst d + 1

columns of X (d predictors plus the intercept) and XDc is the last p − d columns of X. Assume that both

XD and XDc have full column rank. Similarly, partition βT = (βT
D , β

T
Dc). �us the true model is given by

E (y) = f true (X) = XDβD. (B.2.1)

�en the estimate of the true model (β̂
true)

T
= ((β̂

true
D )

T
, 0T) has MSE

MSE (β̂
true) = tr [var (β̂

true)] + ∥E (β̂
true) − β∥

2

= tr [σ2 (XT
DXD)

−1] + ∥(βT
D , 0

T) − (βT
D , 0

T)∥
2

= σ2 tr [(XT
DXD)

−1] .

�e following is an examination of results mentioned in Seber & LeeSeber & Lee (20032003:230-231). Suppose we

over�t the model by including the predictors X1, X2, . . . , Xp,

f̂ (X) = Xβ̂ = XD β̂D +XDc β̂Dc . (B.2.2)
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We have

XTX =[ XT
DXD XT

DXDc

XT
DcXD XT

DcXDc
] ,

and we can invert this matrix using�eorem A.1.3A.1.3 to obtain

(XTX)−1 =
⎡⎢⎢⎢⎣
(XT
DXD)

−1 + BM−1BT −BM−1

−M−1BT M−1
⎤⎥⎥⎥⎦
,

where

B = (XT
DXD)

−1
XT
DXDc (B.2.3)

and

M = XT
DcXDc −XT

Dc {XD (XT
DXD)

−1
XT
D}XDc

= XT
DcXDc −XT

DcHDXDc

= XT
Dc (I −HD)XDc

= ETE,

where

HD = XD (XT
DXD)

−1
XT
D

and

E = (I −HD)XDc .

(Notice that B is the estimate obtained when regressing XDc on XD, E is the residual matrix andM is the

minimum RSS from that regression). �us, the LSEs are

β̂ = (XTX)−1XTy

=
⎡⎢⎢⎢⎣
(XT
DXD)

−1 + BM−1BT −BM−1

−M−1BT M−1
⎤⎥⎥⎥⎦
[ XT

Dy
XT
Dcy

] .
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�at is,

β̂Dc =M−1XT
Dcy −M−1BTXT

Dy (B.2.4)

=M−1XT
Dcy −M−1XT

Dc {XD (XT
DXD)

−1
XT
D} y

=M−1XT
Dcy −M−1XT

DcHDy

=M−1XT
Dc (I −HD) y (B.2.5)

= (ETE)−1 ETy

and

β̂D = (XT
DXD)

−1
XT
Dy + BM−1BTXT

Dy − BM−1XT
Dcy

= (XT
DXD)

−1
XT
Dy − B (M−1XT

Dcy −M−1BTXT
Dy)

= (XT
DXD)

−1
XT
Dy − Bβ̂Dc from (B.2.4B.2.4) (B.2.6)

= β̂
true
1

− Bβ̂Dc .

�e expected values of the estimates are

E (β̂Dc) = E [M−1XT
Dc (I −HD) y]

=M−1XT
Dc (I −HD) E (y)

=M−1XT
Dc (I −HD)XDβD from (B.2.1B.2.1)

= 0 since (I −HD)XD = 0 (B.2.7)

and

E (β̂D) = E ((XT
DXD)

−1
XT
Dy − Bβ̂Dc)

= (XT
DXD)

−1
XT
DE (y) − BE (β̂Dc)

= (XT
DXD)

−1
XT
DXDβD − 0 from (B.2.1B.2.1) and (B.2.7B.2.7)

= βD, (B.2.8)
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and the variance-covariance matrix of the estimates is

var (β̂) = σ2 (XTX)−1

= σ2
⎡⎢⎢⎢⎣
(XT
DXD)

−1 + BM−1BT −BM−1

−M−1BT M−1
⎤⎥⎥⎥⎦
. (B.2.9)

So the MSE of β̂ is

MSE (β̂) = tr [var (β̂)] + ∥E (β̂) − β∥
Dc

= tr [σD
c (XTX)−1] + ∥(βD , 0)

T
− (βD , 0)

T
∥
Dc

= σ2 (tr (XT
DXD)

−1) + tr (BM−1BT) + tr (M−1) (B.2.10)

= var (β̂
true)+

σ2 tr [XT
Dc (XD (XT

DXD)
−Dc

XT
D)XDc (XT

Dc (I −HD)XDc)−1]+

σ2 tr [(XT
Dc (I −HD)XDc)−1]

> MSE (β̂
true) .

Prediction

�e prediction of a new response y0 at x0 = (x0,D , x0,Dc) using the over�tted model is

f̂ (x0) = xT0 β̂ = xT0,D β̂D + xT0,Dc β̂Dc

with

E ( f̂ (x0)) = E (xT0 β̂)

= xT0,DE (β̂D) + xT0,DcE (β̂Dc)

= xT0,DβD from (B.2.8B.2.8) and (B.2.7B.2.7),
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B ( f̂ (x0)) = E ( f̂ (xT0 )) − f true (xT0 )

= xT0,DβD − xT0,DβD from (B.2.1B.2.1)

= 0

= B ( f̂ true (x0))

and

var ( f̂ (x0))

= var (xT0 β̂)

= σ2xT0 (XTX)−1 x0

= σ2 [ xT0,D xT0,Dc ]
⎡⎢⎢⎢⎣
(XT
DXD)

−1 + BM−1BT −BM−1

−M−1BT M−1
⎤⎥⎥⎥⎦
[ x0,D
x0,Dc

] from (B.2.9B.2.9)

= σ2 [xT0,D (XT
DXD)

−1 x0,D + xT0,DBM
−1BTx0,D

−xT0,DcM−1BTx0,D − xT0,DBM
−1x0,Dc + xT0,DcM−1x0,Dc ]

= σ2xT0,D (XT
DXD)

−1 x0,D + σ2 (BTx0,D − x0,Dc)
T
M−1 (BTx0,D − x0,Dc)

= σ2xT0,D (XT
DXD)

−1 x0,D + σ2dTM−1d

= var ( f̂ true (x0)) + σ2dTM−1d

> var ( f̂ true (x0)) ,

where

d = BTx0,D − x0,Dc . (B.2.11)

So the expected PE is,

PE ( f̂ (x0)) = σ2 +MSE ( f̂ (x0))

= σ2 + var ( f̂ (x0)) + B ( f̂ (x0))
2

= σ2 + σ2xT0,D (XT
DXD)

−1 x0,D + σ2dTM−1d (B.2.12)

= PE ( f̂ true (x0)) + σ2dTM−1d

> PE ( f̂ true (x0)) .
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B.2.2 Under�tting

Estimation

In contrast to Section B.2.1B.2.1, suppose that the true model is given by

E (y) = f true (X) = XDβD +XDc βD̂c , (B.2.13)

whereD = { j ∶ 0, 1, . . . , d} andDc = { j ∶ d + 1, . . . , p}, and the model is under�tted using only d predic-

tors,

f̂ (X) = XDβD.

�e LSE is β̂
T = (β̂

T
D , 0

T) where

β̂D = (XT
DXD)

−1
XT
Dy

with

E (β̂D) = (XT
DXD)

−1
XT
DE (y)

= (XT
DXD)

−1
XT
D (XDβD +XDc βDc) from (B.2.13B.2.13)

= (XT
DXD)

−1
XT
DXDβD̂ + (XT

DXD)
−1
XT
DXDc βDc

= βD + BβDc from (B.2.3B.2.3) (B.2.14)

and

var (β̂D) = σ2 (XT
DXD)

−1
. (B.2.15)

Equation (B.2.14B.2.14) shows that the estimate is biased. Comparing equations (B.2.9B.2.9) and (B.2.15B.2.15) shows that

var (β̂) ⩽ var (β̂
true). �e MSE is

MSE (β̂) = tr [var (β̂)] + ∥E (β̂) − β∥
2

= tr [σ2 (XT
DXD)

−1] + ∥(βD + BβDc , β̂)
T
− (βD , βDc)

T
∥
2

= σ2 tr ((XT
DXD)

−1) + ∥(BβDc ,−βD̂c)
T
∥
2

= σ2 tr ((XT
DXD)

−1) + βT
Dc (B

TB + I) βD̂c .

See Draper & SmithDraper & Smith (19981998:235-241) and Seber & LeeSeber & Lee (20032003:228-230) for more information.
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Prediction

�e bias of the prediction at a new observation x0 = (x0,D , x0,Dc) is

B ( f̂ (x0)) = E ( f̂ (x0)) − f true (x0)

= xT0,D (βD + BβD̂c) − (xT0,DβD + xT0,Dc βDc)

= (BTx0,D − x0,Dc)
T βDc

= dTβDc from (B.2.11B.2.11)

and the variance is

var ( f̂ (x0)) = var (xT0,D β̂D)

= σ2xT0,D (XT
DXD)

−1 x0,D,

so that the expected PE is

PE ( f̂ (x0)) = σ2 +MSE ( f̂ (x0))

= σ2 + var ( f̂ (x0)) + B ( f̂ (x0))
2

= σ2 + σ2xT0,D (XT
DXD)

−1 x0,D + (dTβDc)
2
.

B.3 LASSO and LAR

Write α j = α+j − α−j , where α+j , α−j ⩾ 0 such that

α+j = { α j if α j > 0
0 if α j ⩽ 0

and α−j = { 0 if α j ⩾ 0
−α j if α j < 0

. (B.3.1)

�en the LASSO constraint becomes∑∣α j∣ = ∑ ∣α+j − α−j ∣ = ∑(α+j + α−j ) and we must solve

minimize ∥v − Zα∥2

subject to ∑ j (α+j + α−j ) ⩽ t

−α+j ⩽ 0 for j = 1, 2, . . . , p

−α−j ⩽ 0 for j = 1, 2, . . . , p
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�e Lagrangian of the problem is given by

l (α) = RSS (α) + λ∑(α+j + α−j − t) −∑λ+j α+j −∑λ−j α−j

and the KKT optimality conditions are (by De�nition A.3.6A.3.6):

1. ∑ j (α+j + α−j − t) ⩽ 0,−α+j ,−α−j ⩽ 0∀ j = 1, 2, . . . , p

2. λ, λ+j , λ−j ⩾ 0∀ j = 1, 2, . . . , p

3. (a) λ∑ j (α+j + α−j − t) = 0,

(b) −λ+j α+j = 0, j = 1, 2, . . . , p

(c) −λ−j α−j = 0, j = 1, 2, . . . , p

4. (a) ∂
∂α+j

l (α) = ∇RSS (α) j + λ − λ+j = 0

(b) ∂
∂α−j

l (α) = −∇RSS (α) j + λ − λ−j = 0

�e conditions imply that

∇RSS (α) j + λ − λ+j = 0 by cond. 4a4a

⇔ −∇RSS (α) j = λ − λ+j

⇔ −∇RSS (α) j ⩽ λ by cond. 22

(B.3.2)

and

−∇RSS (α) j + λ − λ+j = 0 by cond. 4b4b

⇔ ∇RSS (α) j = λ − λ−j

⇔ ∇RSS (α) j ⩽ λ by cond. 22,

(B.3.3)

hence,

∣∇RSS (α) j∣ ⩽ λ.

A Suppose that λ = 0. �en ∇RSS (α) j = 0∀ j.

B Suppose that λ > 0 and α j > 0. �en

1 α+j > 0 by eq. B.3.1B.3.1
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2 α−j = 0 by eq. B.3.1B.3.1

3 λ+j = 0 by cond. 3b3b and point 2a2a

4 ∇RSS (α) j = −λ < 0 by eq. B.3.2B.3.2 and point 2c2c

C Suppose that λ > 0 and α j < 0. �en

1 α+j = 0 by eq. B.3.1B.3.1

2 α−j > 0 by eq. B.3.1B.3.1

3 λ−j = 0 by cond. 3c3c and point 3b3b

4 ∇RSS (α) j = λ > 0 by eq. B.3.3B.3.3 and point 3c3c

�erefore, for any active predictor with α j ≠ 0, we have that

∇RSS (α) j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−λ if α j > 0

λ if α j < 0

and since ∇RSS (α) j = −zTj (v − Zα),

zTj (v − Zα) = sign (α j) λ. (B.3.4)

So λ is related to the correlation between the j-th predictor and the residuals by equation (B.3.4B.3.4).

Suppose that A(λ) = { j ∶ α̂L
j (λ) ≠ 0} is the active set of variables and A(λ) does not change on

the interval λ ∈ [λ0, λ1]. �e estimates for the non-active set are zero, α̂L
Ac (λ) = 0 ∀λ ∈ [λ0, λ1]. Let

ϖ̂ j = sign (α̂L
j (λ)). For the active set, we have from equation (B.3.4B.3.4) that

ZT
A (v − Zα̂L (λ)) = ϖ̂Aλ

⇔ ZT
A (v − ZAα̂L

A (λ)) = ϖ̂Aλ since α̂L
Ac (λ) = 0

⇔ ZT
AZAα̂L

A (λ) = ZT
Av−ϖ̂Aλ

⇔ α̂L
A (λ) = (ZT

AZA)
−1 (ZT

Av−ϖ̂Aλ) if ZT
AZ

T
A is positive de�nite

⇔ α̂A (λ) = α̂L
A (λ) + λη,
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where α̂A (λ) = (ZT
AZA)

−1 ZT
Av is the LSE for the active set and η = (ZT

AZA)
−1 ϖ̂A. If the active set is

unchanged on λ ∈ [λ0, λ1], then the LSEs are identical for all λ ∈ [λ0, λ1],

α̂A (λ) = α̂A (λ0)

⇔ α̂L (λ) + λη = α̂L (λ0) + λ0η

⇔ α̂L (λ) = α̂L (λ0) − (λ − λ0) η.

(B.3.5)

�us, α̂L (λ) is linear as λ ranges from λ0 to λ1.
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Appendix C

R Packages

C.1 Subset Selection Methods

�e linear regression model can be estimated via least squares in R using the lm function. �e summary.lm

method includes the measures σ , R2 and adjusted R2. �e extractAIC function can be used to obtain

the AIC (equivalent to Cp for linear models) and BIC. �ere are a number of R functions available for

performing subset selection. Some of these functions are described below and summarized in Table C.1.1C.1.1.

�e path of forward selection and backward elimination can be followed manually by applying the

add1 and drop1 functions, respectively, to an lm object and examining the RSS values for each variable. �e

desired variable can then be added or removed from themodel using the update function. �e step function

performs these procedures automatically by repeatedly using add1 or drop1 and chooses the best model

based on either AIC or BIC. Similar functions are available in the MASS package, namely addterm, dropterm

and stepAIC.

�e regsubsets function in the leaps package also performs forward selection and backward elimina-

tion. In addition, it can apply an exhaustive search using a branch and bound algorithm called leaps where

it returns the nbestmodels for each size of subsets. Although the function only provides the variable sub-

sets and does not estimate parameters, the estimates and their covariance matrix can be computed using

the coef and vcov functions. �emeasures RSS, R2, adjusted R2, AIC and BIC are provided for each subset.

�e bestglm package also makes use of the leaps algorithm when �tting linear models, it provides

the best subsets of each size and chooses the best model based on some criteria. �e selection criteria

available for selecting the best model are AIC and various forms of BIC including BIC, BICg and BICq.

In addition, various forms of CV can be used including LOOCV , delete-d CV , K-fold CV and adjusted

K-fold CV . When K-fold CV is used, the standard errors of the CV estimates are also provided so the 1 SE

rule can be used. See McLeod & XuMcLeod & Xu (20102010) for a detailed description of the selection criteria.
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�e glmulti package is also available for subset selection. It can perform an exhaustive search and also

includes a genetic algorithm which can handle larger numbers of variables more e�ciently. �e selection

criteria available for choosing the best model are AIC, the small-sample corrected version AICc, other

variants QAIC and QAICc, and BIC. See Calcagno & de MazancourtCalcagno & de Mazancourt (20102010) for more details.

�e subselect package o�ers subset selection methods by using one of four di�erent algorithms for

selecting the best subsets: an adaptation of the leaps algorithm, a simulated annealing algorithm, a ge-

netic algorithm and a modi�ed local search algorithm. A number of coe�cients corresponding to test

statistics are available as selection criteria, in particular, the Wald statistic is used for linear models. See

Cadima et al.Cadima et al. (20122012) for further details.

Package Function Methods Selection Criteria
stats add1 Forward selection AIC

drop1 Backward elimination BIC
MASS addterm Forward selection AIC

dropterm Backward elimination BIC
leaps regsubsets Forward selection adjusted R2

Backward elimination AIC
Leaps algorithm BIC

bestglm bestglm Forward selection AIC
Backward elimination BIC, BICg , BICq

Leaps algorithm LOOCV , delete-d CV
K-fold CV , adjusted K-fold CV

glmulti glmulti Leaps algorithm AIC, AICc

Exhaustive screening QAIC, QAICc

Genetic algorithm BIC
subselect eleaps Adapted leaps algorithm Wald statistic

genetic Genetic algorithm
anneal Simulated annealing algorithm
improve Modi�ed local search algorithm

Table (C.1.1) Subset selectionmethods in R

C.2 Shrinkage Methods

R packages are also available for shrinkage methods. Some of these functions are described below and

summarized in Table C.2.1C.2.1. �e MASS package has a function to perform ridge regression, lm.ridge. �e
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tuning parameter is speci�ed by λ and the GCV statistic for each value of λ is output.

�e lasso2 package is based on Osborne et al.Osborne et al. (2000b2000b). �e l1ce function �ts the ℓ1 constrained linear

model using their algorithm on the LASSO and its dual. �e package also contains functions to calculate

the deviance (which is RSS for linear models), the GCV and the covariance matrix of the coe�cients.

�e summary.l1ce function calculates standard errors of the coe�cients as shown in Equation (4.1.344.1.34). �e

tuning parameter is given by t from the constrained problem. Alternatively, s = t /t0 can be used, where t0

is the ℓ1 norm of the least squares estimates. �is is bene�cial when selecting the tuning parameter since

the range is closed, s ∈ [0, 1]. �e entire path of the LASSO can be computed by specifying a sequence from

0 to 1, producing a l1celist object and a plot.l1celistmethod is available to plot this path.

�e lars package �ts the entire LASSO solution simultaneously for all values of s via the LAR algorithm

by Efron et al.Efron et al. (20042004). �e lars function �ts the LASSO piecewise linear path without specifying the tuning

parameter. �e plot.lars method can plot the path against either s or the e�ective degrees of freedom.

�e summary.lars function gives the RSS and Cp statistic at each step in the path. A plot of the Cp statistic

can also be drawn with the plot.larsmethod. �e package provides a function for performing K-fold CV

which can be used to select the optimal tuning parameter, in this case, s. �e cv.lars function calculates

standard errors of the CV estimates so that the 1 SE rule can be used to choose ŝ. When using a lars object

to make predictions or estimate coe�cients with predict.lars, the tuning parameter can be speci�ed by

either s, t, or λ.

�e glmpath function in the glmpath package also computes the path of the LASSO and is based on the

predictor-corrector algorithmby Park & HastiePark & Hastie (20072007). �e tuning parameter is not speci�edwhen �tting

the path, as with the lars function. �e output of the function provides, for each step of the algorithm,

the degrees of freedom, the tuning parameter λ, the deviance, AIC and BIC. �e plot.glmpath method

can plot the coe�cient paths, AIC or BIC against either t or λ. Either of these two tuning parameters

can be used in the cv.glmpath function, to select the optimal value via K-fold CV, and in the predict.glmpath

function. In cv.glmpath, they are speci�ed as a fraction of the maximum (corresponding to least squares)

but in predict.glmpath you can choose whether to specify them as a fraction or not.

�e enet function in the elasticnet package is based on the LAR algorithm for elastic net (LAR-EN),

discussed in Zou & HastieZou & Hastie (20052005). �e lambda argument to the function is the tuning parameter λ2 corre-

sponding to the ridge penalty, setting lambda=0 �ts the LASSOmodel, otherwise the EN is �tted. Like the lars
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function, the tuning parameter for the LASSO penalty is not speci�ed to �t the path. �e plot.enetmethod

plots the coe�cient paths against either s, t, or the LASSO tuning parameter λ1. Either of these three pa-

rameters can be used in predict.enet to make predictions or estimate coe�cients. �e cv.enet function

can also compute the K-fold CV estimates and standard errors for values of either s, t or λ1. When �tting

the EN, the value of t is still interpreted as the ℓ1 norm of the coe�cients.

�e penalized package �ts combinations of the ℓ1 and ℓ2 penalties with arguments lambda1 and lambda2

for the tuning parameters, respectively. �erefore it is capable of �tting ridge regression, LASSO and EN

models. Altenatively, by specifying fusedl=TRUE, the fused LASSO can be �tted where lambda2 is then used for

the penalty on the di�erences of parameters. �e package includes functions for �tting the model, plots,

predictions and CV.

�e ENmodel can also be �t using the glmnet package. �e glmnet function �ts the path of the EN using

the cyclical coordinate descent algorithm by Friedman et al.Friedman et al. (20102010). �e LASSO and ridge regressionmod-

els can also be �t using this function. �e alpha argument controls which penalty function is used: when

alpha=0 the ridge penalty is used, when alpha=1 the LASSO penalty is used and the EN penalty is obtained

when alpha is between 0 and 1. �e tuning parameter is given by λ from the Lagrangian form of the prob-

lem and it is best to supply a sequence so that prior estimates are ued for the warm start. �e plot.glmnet

method plots the coe�cient paths against either t, ln (λ), or the percentage of deviance explained by the

model. �e package also provides functions to calculate the deviance and to perform K-fold CV. �e

cv.glmnet function includes standard errors for the CV estimates, it also speci�es which value of λ corre-

sponds to the minimum CV and the largest value of λ such that the CV lies within one standard error of

the minimum. �ese values are also indicated in the plot produced by the plot.cv.glmnet method, which

graphs the CV curve along with its standard errors against ln (λ). �e cv.glmnet function does not vali-

date the alpha parameter. To do so, the folds need to be prespeci�ed and used repeatedly in cv.glmnet for

di�erent values of alpha.

�e ncvreg package is based on Breheny & HuangBreheny & Huang (20112011) and contains functions to apply the concave

penalty functions of SCAD andMCP. �e ncvreg function �ts the path using a coordinate descent algorithm.

It can also �t the LASSO model and has an argument alpha to include an optional ridge penalty. When

alpha=1 no ridge penalty is added. A ridge regressionwould correspond to alpha=0 but this is not supported,

alpha can be set close to zero. Functions are available for K-fold CV, prediction, estimating coe�cents and
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plotting. In all functions, the tuning parameter is speci�ed by λ and the second parameter has default 3.7

for SCAD and 3 otherwise. �e plot.ncvregmethod shades the nonconvex region.

�e lqa package was developed by UlbrichtUlbricht (20102010) as part of his PhD �esis. �e lqa function uses

a modi�ed LQA algorithm and can be used for a speci�ed value of the tuning parameter λ. Among the

methods we have discussed, the following penalty functions can be used: ridge, LASSO, bridge, adaptive

LASSO, fused LASSO, EN, OSCAR and SCAD. Other penalty functions available are the weighted fusion and

a number of correlation based penalties developed in his �esis. �ere is a function corresponding to

each penalty function which creates an object of class penalty to be used in lqa. �e cv.lqa function can be

used to choose the optimal value for the tuning parameter λ by searching over a grid of values. Penalty

functions parameterized with multiple tuning parameters are supported, up to 3 tuning parameters can

be validated simultaneously. A validation set can be supplied for this purpose, otherwise K-fold CV is

performed. A number of loss functions can be used for validation: RSS, AIC, BIC, GCV and deviance

(which is just RSS for linear models). �e function returns the optimal tuning parameter as well as the

lqamodel using the optimal tuning parameter. A cv.nng function is available for the nonnegative garrote

model. �ere is also a plot.lqa function which plots the coe�cient path against a tuning parameter. For

multiple tuning parameters, �xed values must be supplied for all tuning parameters except the one being

plotted against. A pedict.lqa function is also available for predicting new data.

Other packages for penalized regression include relaxo and relaxnet, which implement the relaxed

LASSO, sealasso performs the SEA-LASSO, genlasso has functions for the generalized LASSO, grplasso is avail-

able for the group LASSO and SGL for the sparse-group LASSO, hierNet implements the hierarchical LASSO

and glinternet the hierarchical group-LASSO. �e PLUS algorithm for MCP is provided in the plus package.

�e grpreg package is based on the descent algorithms by Breheny & HuangBreheny & Huang (20142014) and implements a num-

ber of group penalties including the group LASSO, group bridge, group MCP, group SCAD and the group

exponential lasso. Furthermore, variable screening with SIS can be performed using the SIS package. �e

kappa coe�cient and PASS methods, for selecting the tuning parameter for variable selection purposes,

can be applied using the pass package. �e covTest package performs the signi�cance test discussed by

Lockhart et al.Lockhart et al. (20142014). Other packages which can be consulted include lassoshooting, lassogrp and parcor.

For Gaussian graphical models, see glasso .
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Package Function Methods Selection Criteria Tuning Parameter
MASS lm.ridge Ridge regression GCV λ

lasso2 l1ce LASSO RSS, GCV s, t
lars lars LASSO RSS, Cp s

K-fold CV
glmpath glmpath LASSO RSS, AIC, BIC s, t, λ

K-fold CV
elasticnet enet LASSO RSS, Cp s, t, λ

EN K-fold CV
penalized penalized Ridge regression K-fold CV λ

LASSO

EN

Fused LASSO
glmnet glmnet Ridge regression RSS λ

LASSO K-fold CV
EN

ncvreg ncvreg LASSO RSS λ
SCAD K-fold CV
MCP

lqa lqa Ridge regression K-fold CV λ
Nonnegative Garrote Validation set
LASSO GCV
Adaptive LASSO RSS, AIC, BIC
Bridge
EN

OSCAR

SCAD

Table (C.2.1) Shrinkagemethods in R
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