
US inflation dynamics on long range data 

Vasilios Plakandaras*, Periklis Gogas*
°
, Rangan Gupta

+ 
and Theophilos 

Papadimitriou* 

*Department of Economics, Democritus University of Thrace 

+
Department of Economics, University of Pretoria 

Abstract 

In this paper we evaluate inflation persistence in the U.S. using long range monthly 

and annual data. The importance of inflation persistence is crucial to policy 

authorities and market participants, since the level of inflation persistence provides an 

indication on the susceptibility of the economy to exogenous shocks. Departing from 

classic econometric approaches found in the relevant literature, we evaluate 

persistence through the nonparametric Hurst exponent within both a global and a 

rolling window framework. Moreover, we expand our analysis to detect the potential 

existence of chaos in the data generating process, in order to enhance the robustness 

of conclusions. Overall, we find that inflation persistence is high from 1775 to 2013 

for the annual dataset and from February 1876 to May 2014 in monthly frequency, 

respectively. Especially from the monthly dataset, the rolling window approach 

allows us to derive that inflation persistence has reached to historically high levels in 

the post Bretton Woods period and remained there ever since. 
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1. Introduction 

 Since the suggestion of Solow (1976) that “any time seems to be the right time 

for reflections on the Phillips curve”, research on inflation dynamics and its impact to 

the economy has been a vigorous field of macroeconomics. The importance of 

inflation persistence stems from the fact that in its presence, the economy is 

susceptible to crisis contagion since exogenous shocks produce permanent effects on 

the series. Modern research builds on the Lucas (1976) critique and examines 

structural rather than autoregressive models in order to evaluate the relationship of 

inflation to the economy. For instance the FED exploits Dynamic Stochastic General 

Equilibrium (DSGE) models that model inflation according to the New Keynesian 

Phillips Curve (Chung et al., 2010). A rather appealing issue found in the literature is 

to identify the extent to which inflation persistence has shifted according to the 

evolution of world economic conditions and the inflation-targeting policies resumed 

by the FED in the post-1984 period. The high level of U.S. inflation persistence in the 

post WWII period is considered a stylized fact. Nevertheless, the existing literature is 

inconclusive regarding the exact level of persistence in the post-1984 period, since 

different methodologies reach to divergent conclusions. 

 In the existing literature there is no definition or consensus of what constitutes 

inflation “persistence”. The earliest approaches use integration and unit root tests in 

order to detect whether the inflation series is stationary or not, or I(0) and I(1) in the 

Engle and Granger (1987) terminology. The detection of non-stationarity is an 

indication of persistence. Evans and Wachtel (1993), Kim (1993) and Culver and 

Pappell (1997) using different datasets find that inflation is stationary for the period 

after the WWII since the mid-1980’s. From that point onwards inflation becomes an 

I(1) process. In contrast, Hassler and Walters (1995) and Baillie et al. (1996) among 

others, find that inflation is neither an I(1) nor an I(0) process. They suggest that such 

an arbitrary classification is rather restrictive and apply fractional integration 

techniques in order to identify the fractional level of integration for inflation. The 

empirical findings suggest that inflation exhibits long memory. 

Building on the aforementioned studies, Kumar and Okimoto (2007) find that 

in the presence of fractional integration unit root tests could reach to diverging 

conclusions. They show that under different autoregressive (AR) model 

configurations of popular univariate unit root tests, inflation time series can be found 



both I(0) and I(1) according to the specification imposed in the number of lags 

included in the test. Moreover, the authors employ a rolling windows framework in 

evaluating the level of fractional integration in inflation series and find that its level 

changes through time from highly persistent to the post-WWII period to weak 

persistent after the inflation targeting policies of the FED in the post-1984 data. 

Overall, they conclude that inflation persistence increased after 1970 and declined 

significantly in the post-1984 period.   

More recently, a significant number of researchers use univariate and 

structural AR models in order to evaluate inflation persistence measuring the Largest 

AutoRegressive Root (LARR) and the Sum of the AutoRegressive Coefficients 

(SARC). Taylor (2000) estimates the LARR and the SARC during the Volcker – 

Greenspan period (1979-1987 and 1987-2006, respectively) and finds that inflation 

persistence has been significantly lower than the previous two decades. Cogley and 

Sargent (2001) use monthly data of U.S. inflation, 3- year Treasury Bonds and 

civilian unemployment spanning the period January 1948 to April 2000 in developing 

a VAR model and find that as monetary authorities focus on inflation, the level of 

persistence is diminishing. Bihan and Matheron (2012) develop AR and VAR models 

using monthly U.S. sectoral data for January 1991 to June 2001 concluding that 

persistence rises with the aggregation level from sectoral prices to a CPI index. 

Kumar and Okimoto (2007) use AR fractionally integrated models on monthly 1960:4 

- 2003:3 U.S. CPI data and show that inflation persistence is period dependent as it 

rises during the 1970’s and falls during mid-80s. These findings are directly linked to 

the work of Dittmar et al. (2005) who argue that monetary authorities focusing on 

interest rates generate inflation persistence on the contrary to inflation targeting 

policies. 

Contrary to the empirical findings of Cogley and Sargent (2001) and Kumar 

and Okimoto (2007), a large number of studies reject that inflation persistence has 

lowered in the post-1984 period. Pivetta and Reis (2007) use quarterly data for the 

period 1947Q2 to 2001Q3 and develop an AR(3) model testing for persistence with 

the half-life (the number of periods in which inflation remains above 0.5 following a 

unit shock), the LARR and the SARC measures on rolling windows. The authors 

show that inflation persistence rises to historically high levels during 1970 and 

remains there until 2001. Stock (2001) on a comment to Cogley and Sargent (2001) 

applies LARR on a rolling window and rejects the change in persistence detected by 



the latter in the post-1984 period.  Noriega and Ramos-Francia (2009) also 

corroborate the findings of Pivetta and Reis (2007), accounting for structural breaks 

on the AR methodology employed by the latter. They find that inflation series exhibit 

an I(1) behavior with the exception of periods 1947-1950 and 1973-1983, where it 

behaves as an I(0) process. Finally, Benatti (2008) argues that a change in the level of 

persistence during mid-1980 and present can be detected only for the CPI and not for 

the GDP, GNP and PCE deflators. Overall, in the existing literature there is no clear 

consensus regarding U.S. inflation persistence for the post-WWII to the present 

period. 

 The innovation of this paper is threefold. We tackle the problem of inflation 

persistence from a completely different point of view. Departing from classic 

econometric methodologies, we empirically test inflation persistence using the non-

parametric Hurst (Hurst, 1951) exponent. We estimate the Hurst exponent applying 

the Detrended Fluctuation Analysis (DFA) (Peng et al., 1994) and the Rescaled Range 

Analysis (R/S) methods in a rolling window framework that have never been used 

before in inflation persistence estimation. Secondly, instead of focusing solely on the 

level of persistence, we also extend our analysis to testing for the potential existence 

of chaos. The possible existence of a chaotic data generating process for the inflation 

will provide evidence in support of persistence. Even small shocks to the inflation rate 

will produce diverging trajectories in the time series if it is chaotic.  In doing so, we 

estimate the maximum Lyapunov exponent as proposed in BenSaida and Litimi 

(2013). In this way, we attempt to fill an existing gap in literature, since in the 

presence of deterministic chaos the high complexity of the system renders every 

attempt to model the future evolution of the phenomenon practically impossible. The 

final innovation of this article is that we gather long range monthly and annual U.S. 

CPI data spanning from January 1876 to May, 2014 and 1774-2013 respectively. In 

this way, we test for inflation persistence within a very broad time framework and 

under different observation frequencies departing from period dependent studies. To 

the best of our knowledge no previous work has examined such an extended dataset.  

2. Methodology and data 

2.1 Methodology 

2.1.1 Hurst Exponent 



The Hurst exponent belongs to the broader category of nonparametric analysis 

methods and was first proposed by Hurst (1951) as a method for analyzing long-range 

dependence in hydrology series. The exponent H (Hurst exponent) takes values on [0, 

1]. Values close to zero indicate an anti-persistent series: the series under examination 

is mean-reverting. Values close to 1 indicate that the series is persistent: the series 

never returns to equilibrium after an exogenous shock. An H = 0.5 indicates a 

Random Walk (RW). Hurst exponent analysis has been applied extensively in 

financial time series (e.g. equities, exchange rates, commodities, derivatives etc.
1
), but 

only sporadically in macroeconomic variables and never before in measuring inflation 

persistence.  

The R/S is one of the oldest and best-known methods for calculating the self-

similarity parameter H of a time series and was proposed by Mandelbrot and Wallis 

(1969).  The R/S begins by using various evenly spaced partitions of the original 

series. The initial series X of length N is divided into q equally sized parts of length 

� = � �� . Each of the new segments m=1,2,3……,q is integrated by the cumulative 

sums: 

��,
(�) = ∑ ��,
(�)���� 	,			� = 1,2,3…… , �																																									(1)	

where �
	is the m-th segment of the original series X.  Next we find the range 

�
(�) = max���,
(�), ��,
(�), ……… , ��,
(�)� − min	{��,
(�), ��,
(�), …… , ��,
(�)}            (2) 

and rescale it by the Standard Deviation %
(�) of each section m to take the mean of the 

rescaled range for all subseries of length n  

&� %� '� =
�
(∑ �
(�) %
(�))(
�� 																																																				(3)	

The&� %� '� values are calculated for every partition and plotted against the partition 

segment size n in a log–log scale. The slope of the linear fit expresses the Hurst 

exponent H. 

                                                           
1
 Due to space restriction the interested reader is referenced to Mulligan and Koppl (2011) and the 

papers cited therein. 



Eke et al. (2002) show that in the presence of non-stationarity, the R/S method 

can yield inconsistent H exponents. In order to enhance the robustness of our results 

we also estimate the DFA method. The DFA method was proposed by Peng et al. 

(1994) for identifying long-dependence in DNA nucleoids series and can be 

summarized as follows. We again start by dividing our initial series into q equally 

partitioned subseries as in R/S method and integrate each segment by (1). We then 

estimate the OLS line for the points in each segment  �
,�(�) = *
(�)� + ,
(�) and 

calculate the standard deviation residuals: 

-
(�) = .��∑ /�
.�(�) − *
,�(�) − ,
(�)0
�����                                (4) 

The average SD is calculated for all segements of length n: 

-1(�) = �
2∑ -
(�)2
��                                                (5) 

 

The -� values are calculated for every partition and plotted against the partition 

segment size n in a log–log scale. The slope of the linear fit expresses the Hurst 

exponent H. 

2.1.2 Lyapunov Exponent 

 The use of the Lyapunov exponent in detecting deterministic chaos in 

economic time series has been applied extensively to financial market series, e.g. 

exchange rates (Serletis and Gogas, 1997), stocks (BenSaida and Litimi, 2013 and 

Hsieh, 1991), etc.  

The basic idea behind the detection of chaos lies with the dependence of 

chaotic systems to initial conditions. More specifically, if we consider two points of 

the same series �3 and �3 + ∆53 and we generate a path for each one of them, then 

these two points will evolve through 2 different time paths. The difference in the 

trajectories of the two paths depends on the initial position �3 and the elapsed time, 

getting the form	∆5(�3, 6). If the system is stable this difference decreases 

asymptotically with time. In contrast, in a chaotic system the difference diverges 

exponentially. The Lyapunov exponent λ measures this difference ∆5(�3 , 6) between 

the two paths. In order to identify a system as chaotic, the corresponding Lyapunov 

exponent should be strictly positive and near unity. In this paper, we follow the 

procedure described in BenSaida and Litimi (2013) in order to estimate the maximum 

Lyapunov exponent. In mathematical notation, we consider a time series X with: 



57 = 8(579: + 579�: +⋯+ 579
:) + <7                                (6) 

Where L is the time delay, f is an unknown chaotic map, m is the embedding 

dimension of the system and <7 represents the added noise. BenSaida and Litimi 

(2013) adopt the Jacobian based approach to compute λ since the direct approach is 

inefficient in the presence of noise in measurement. Briefly the exponent is given by: 

=> = �
�? ln A�                                                           (7) 

where M is an arbitrary selected number of observations often approximating the 2 3�  

of the total span and A� is the largest eigenvalue of the matrix (BCD3)(BCD3)E, with  

D3 = (1	0	0…… .0)E                                                 (9) 
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In the case of scalar time series the chaotic map f generating the series is 

usually unknown; as a result the Jacobean matrix in (11) cannot be estimated. Thus, 

we need to approximate the chaotic map with a data adapting function that can 

produce an exact approximation of the series. The authors choose to estimate the 

chaotic map based on a neural network with one hidden layer of neurons and one 

output layer. In mathematical notation the chaotic map f is approximated by the 

equation: 

57 ≈ *3 + ∑ *� tanh&]^,� +∑ ]�,�579�:
��� ' + <72
���                     (12) 

with q declaries the hidden layers of the neural network with a tangent activation 

function. The order of (L,m,q) defines the complexity of the system and is selected 

according to the triplet that provides the maximum value of the exponent λ.  

A common problem in the identification of the maximum Lyapunov Exponent 

is the determination of noise in the system and misspecifications in the selection of 

the (L,m,q) values. As BenSaida and Litimi (2013) argue, when the noise frequency 

added to the system is sufficiently larger with respect to the output of the chaotic 

system, the chaotic map tends to be absorbed by noise and thus the system imitates a 

stochastic process, leading to small or negative values of the calculated exponent λ.  



The authors overcome these misspecification issues by proposing an auxiliary 

statistical test to the procedure of the evaluation of the maximum Lyapunov exponent, 

based on its asymptotic values. Assuming the existence of chaos as the null 

hypothesis of the test they attempt to reject it in favor of the non-existence of chaos in 

a one-sided statistical test
2
. In this way, a system is identified as chaotic when both 

assumptions are met: a) we find a positive Lyapunov exponent close to unity and b) 

we are unable to reject the null hypothesis on the existence of chaos. 

2.1.2  The Data 

 We compiled long range data for the U.S. CPI on monthly and annual 

frequency in order to evaluate the persistence of inflation. More specifically, we 

gather monthly data spanning from January 1876 to May 2014, and annual CPI 

observations for the period 1774-2013, both with a base period of 1982-1984. The 

monthly data is obtained from the Global Financial database, while the annual data 

comes from the website of Professor Robert Sahr.
3
 The annual frequency is also used 

in the empirical tests following the suggestion from Bihan and Matheron (2012) that 

persistence depends on the data frequency. In Table 1 we report descriptive statistics 

for both series. 

Table 1:Data Descriptive Statistics 

 CPI annual CPI monthly 

Number of Observations 240 1661 

Mean 35.546 54.014 

Median 12.600 18.500 

Max 233.800 237.900 

Min 7.400 6.762 

Standard Deviation 53.653 65.691 

Skewness 2.309 1.425 

Kurtosis 7.142 3.628 

Jarque-Bera (p-value)        0.000***        0.000*** 

 Note: *** denotes rejection of the null hypothesis of normality at the 1% level of 

significance. 

As we observe from Table 1, for both series the normality null hypothesis is 

strongly rejected.  The use of first differences of the natural logarithms of the CPI 

                                                           
2
 For more information on the derivation of the test, the interested reader is referred to BenSaida and 

Litimi (2013). 
3
 http://oregonstate.edu/cla/polisci/sahr/sahr. 



yields us the U.S. inflation series.
4
 Figures A1, A2, A3 and A4 respectively, plots the 

raw monthly and annual CPI series and the corresponding inflation rates in the 

Appendix of the paper. 

3. Empirical results 

3.1 Inflation persistence 

 We begin our analysis by estimating the Hurst exponent for a) the full span of 

the data and b) the rolling window approach. In both cases we report the Hurst 

exponent as it is estimated using both the DFA and the R/S methodology. In the 

rolling window approach we construct 3 alternative windows of different lengths in 

the effort to monitor the evolution of the Hurst exponent through time. These 

windows have a size of 40%, 50% and 60% of the total number of observations with a 

sliding step of one. In this way we estimate for the monthly data 1001, 831 and 661 

Hurst exponents for the three window sizes respectively and 141, 121 and 101 for the 

annual series
5
.  Hence, two consecutive Hurst exponents are estimated from data 

segments that differ in just one values. The rolling overlapping window procedure is 

interesting as: a) creates a smooth Hurst course over time and b) ensures that 

intertemporal Hurst exponent fluctuations are revealed. In Table 2 we report the 

estimated global Hurst exponents and the rolling window Hurst exponents’ statistics 

for the DFA methodology.  

 

Table 2: Hurst Exponent according to the DFA method 

  40% 

window 

50% 

window 

60% 

window 

Global 

Annual 

Observations 100 120 140 240 

Min  0.535 0.624 0.643  

Mean 0.849 0.842 0.801 0.583 

Max 1.000 1.000 0.994  

SD 0.114 0.111 0.096  

Monthly 

Observations 660 830 1000 1660 

Min  0.786 0.798 0.823  

Mean 0.916 0.901 0.926 0.869 

Max 0.999 0.991 1.000  

                                                           
4
 Not surprisingly, unit root test results according to the ADF test (Dickey and Fuller, 1981), the 

Phillips – Perron test (Phillips and Perron, 1988) and the KPSS test (Kwiatkowski et al., 1992), 

suggested that both the monthly and the annual CPI series are I(1) in levels, but are stationary when 

converted to inflation rates. The details of these results are available upon request from the authors.  
5
 Numerical calculations are performed with the MATLAB code provided by Rafal Weron (2011).  



SD 0.041 0.046 0.041  

 

As we observe from Table 2 the annual Hurst exponents fluctuate from 0.535 

to 1.000 for 40%, 0.624 to 1.000 for the 50% and 0.643 to 0.994 for the 60% rolling 

window. According to the first window, inflation shows periods of both weak (almost 

RW) and strong persistence, while the 50% and 60% windows report that the series is 

consistently persistent. This change in the reported persistence can be attributed to the 

sample size of the windows. Delignieres et al. (2006) show that the power of the DFA 

method is low in small samples (less than 256 observations) and introduces significant 

bias to the estimated Hurst exponent towards a random walk (H = 0). As the sample 

increases DFA techniques can model more efficiently local trends in the subseries, 

yielding more consistent results. Under this limitation, the small number of 

observations in the case of the annual data included in all rolling windows may not 

allow for consistent exponent estimations. Even the globally estimated Hurst 

exponent results should be treated with caution. 

Using the monthly frequency, the results provide strong evidence in support of 

inflation persistence on all rolling windows sizes and the global Hurst exponent. As 

the window size widens the fluctuation of the estimated Hurst exponents is decreased 

as it is evident from the calculated standard deviation. This produces a smoother 

series closer to the global Hurst exponent. In Figures 1 and 2 we depict the Hurst 

exponents evaluated with the DFA rolling window technique for the annual and the 

monthly frequency, respectively.  

  



 

Figure 1: Rolling window Hurst exponents of different length for the annual data, 

estimated with the DFA methodology. Grey areas represent NBER recession periods.  

 

It is evident in Figure 1 that there is, in general, an upward trend for all 3 

rolling windows coupled with large fluctuations. Nevertheless, the small number of 

observations included in each rolling window and the significant deviation from the 

global value does not allow for robust conclusions. 
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Figure 2: Rolling windows Hurst exponents of different length for the monthly data, 

estimated with the DFA methodology. Grey areas represent NBER recession periods.  

 

Figure 2 depicts the evolution of the rolling Hurst exponents for the 3 

windows, estimated with the DFA methodology. We observe, in general, an upward 

trend of inflation persistence up to the early 1980’s. The slope of this trend after a 

short-lived decline appears much steeper after the dissolution of the Bretton Woods 

system in the early 1970’s. From the early 1970’s and up to the early 2000 we have 

three decades where the Hurst exponents exhibit large fluctuations without any clear 

trend. Finally, after the early 2000’s the Hurst exponent estimates display a downward 

trend. 

Extending the findings of Pivetta and Rise (2007) in the pre-1965 period, we 

observe that inflation persistence is significantly high for the whole data span, on the 

contrary to Benatti (2008) who argues that inflation has only been persistent after 

WWII. More specifically, during the 1965-1984 period of high inflation in the U.S. 

persistence exhibits a clearly upward trend, meaning that the level of inflation could 

be restrained with inflation-targeting policies. In contrast we do not detect a 

significant drop in inflation persistence in the post-1984 period as reported by Kumar 

and Okimoto (2007) and Stock and Watson (2007). Focusing on the 40% window, we 
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observe a peak in the persistence series right after WWII (1946-1948), an erratic 

upward trend in the early 1960’s and a sharp drop at the end of the Bretton Woods 

system and the Arab oil crisis (1971-1973) The 50% window exhibits erratic drops in 

the early 1950s and around 1965, near the initial point of high inflation in the U.S.  

The fact that peaks in the 40% window are identified in different dates from the  other 

should be traced to the beginning of the rolling windows in the period of 1929-1933., 

The specific period is known as the Great Depression with the 1929 stock market 

crash and a steady decline in the development rate of the world since 1933. These 

effects are imprinted on inflation and produce erratic changes in its persistence.    

 For comparison reasons we repeated the aforementioned procedure using the 

R/S methodology. The corresponding results are reported in Table 3. 

Table 3: Hurst Exponent according to the R/S method 

  40% 

window 

50% 

window 

60% 

window 

Global 

Annual 

Observations 100 120 140 

0.216 

Min  0.525 0.596 0.603 

Mean 0.712 0.713 0.686 

Max 0.826 0.805 0.797 

SD 0.052 0.042 0.045 

Monthly 

Observations 660 830 1000 

0.833 

Min  0.800 0.763 0.791 

Mean 0.898 0.911 0.893 

Max 1.000 1.000 1.000 

SD 0.047 0.060 0.052 

 

As we observe from Table 3 the results on annual data are again inconclusive. The 

mean values of the Hurst exponents evaluated with rolling windows report inflation 

persistence, but the global exponent points to an anti-persistent behavior. On monthly 

frequency both global and rolling windows report strong inflation persistence. In 

Figures 3 and 4 we depict the annual and monthly rolling window Hurst exponent 

series with the R/S methodology. 



 

Figure 3: Rolling windows Hurst exponents of different length for the annual data, 

estimated with the R/S methodology. Grey areas represent NBER recession periods. 

 

 

Figure 4: Rolling windows Hurst exponents of different length for monthly data, 

estimated with the R/S methodology. Grey areas represent NBER recession periods. 
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  The estimation of the rolling windows for the annual frequency results to 

diverging conclusions, as the global Hurst exponent reveals an anti-persistent 

behavior, but the rolling windows report persistence. Thus, again as in DFA the R/S 

tests on annual data should be treated with caution. 

  On the other hand on monthly data the results are qualitative the same with the 

ones from the DFA method (Table 4). As we observe from Figure 4 the rolling 

windows estimated with the R/S methodology depict an upward persistent behavior in 

the post-1973 period. 

3.2 Tests for deterministic chaos 

 In the inflation persistence section we find that inflation persistence has been 

significantly high for the total span of the long range data that we use in this article, 

either in annual or monthly frequency. As a next step we test for the potential 

existence of chaos in the data generating process. 

Initially we tested for the existence of non-linearities in the annual and 

monthly inflation series, using the MacLeod – Li (MacLeod and Li, 1983) test, the 

BDS (Brock et al., 1996) test, the Cobivariate Hinich (Hinich and Patterson, 1985) 

test, the Engle (1982) test and the Tsay (1986) test
6
. In each test the null hypothesis is 

that the series are linear. All tests reject the null hypothesis of linearity in 1% level of 

significance for either the annual or the monthly frequency, evaluated globally and in 

rolling windows (Tables 4 and 5).  

 

Table 4: P-values of linearity tests on annual data 

  40% 

window 

50% 

window 

60% 

window 

Global 

Hinich 

Bispectral 

test 

Observations 100 120 140 

0.740 
Min  1.000 1.000 1.000 

Mean 1.000 1.000 1.000 

Max 1.000 1.000 1.000 

SD 0.000 0.000 0.000 

MacLeod Li 

test 

Min  0.000 0.000 0.000 

0.000*** 
Mean 0.095* 0.035** 0.037** 

Max 1.000 1.000 1.000 

SD 0.179 0.094 0.112 

BDS test Min  0.000 0.000 0.000 0.000*** 

                                                           
6
 Due to space limitations non-linearity test results are not presented here and are available from the 

authors upon request. All calculations were performed with the “non-linear toolkit” software of Ashley 

and Patterson (2000).  



Mean 0.015** 0.001*** 0.000*** 

Max 0.521 0.012 0.001 

SD 0.062 0.001 0.000 

Cobivariate 

Hinich test 

Min  0.000 0.000 0.000 

0.000*** 
Mean 0.089* 0.027** 0.024** 

Max 0.962 0.235 0.219 

SD 0.163 0.031 0.026 

Engle test 

Min  0.000 0.000 0.000 

0.002*** 
Mean 0.089* 0.027** 0.024** 

Max 0.962 0.235 0.219 

SD 0.163 0.031 0.026 

Tsay test 

Min  0.031 0.000 0.000 

0.000*** 

 

Mean 0.456 0.024** 0.007*** 

Max 0.997 0.347 0.074 

SD 0.300 0.053 0.014 

Note: *, ** and *** report rejection of the null hypothesis at the 10%, 5% and 1% 

level of significance, respectively. 

Table 5: P-values of linearity tests on monthly data 

  40% 

window 

50% 

window 

60% 

window 

Global 

Hinich 

Bispectral 

test 

Observations 660 830 1000 

0.272 
Min  0.003 0.018 0.037 

Mean 0.087* 0.125 0.080* 

Max 0.798 0.337 0.137 

SD 0.081 0.059 0.018 

MacLeod Li 

test 

Min  0.000 0.000 0.000 

0.000*** 
Mean 0.004*** 0.002*** 0.001*** 

Max 0.110 0.022 0.110 

SD 0.006 0.002 0.004 

BDS test 

Min  0.000 0.000 0.000 

0.000*** 
Mean 0.000*** 0.000*** 0.000*** 

Max 0.000 0.000 0.000 

SD 0.000 0.000 0.000 

Cobivariate 

Hinich test 

Min  0.000 0.000 0.000 

0.000*** 
Mean 0.004*** 0.002*** 0.001*** 

Max 0.027 0.014 0.006 

SD 0.005 0.002 0.001 

Engle test 

Min  0.000 0.000 0.000 

0.000*** 
Mean 0.004*** 0.002*** 0.001*** 

Max 0.027 0.014 0.006 

SD 0.005 0.002 0.001 

Tsay test 

Min  0.000 0.000 0.000 

0.000*** 

 

Mean 0.018** 0.021** 0.008*** 

Max 0.139 0.259 0.082 

SD 0.020 0.040 0.013 

Note: *, ** and *** report rejection of the null hypothesis at the 10%, 5% and 1% 

level of significance, respectively. 



Rejecting linearity, we then test whether the non-linearities detected in our 

data are the result of an actual stochastic process or deterministic chaos (that appears 

random). For this reason, we estimate the maximum Lyapunov exponent employing 

the methodology suggested by BenSaida and Litimi (2013). The maximum Lyapunov 

exponents for the global and rolling window data series and the p-values of the 

statistical tests of the null hypothesis accepting the existence of chaos (Hο: λ=1) are 

reported in Table 6 for the annual data and in Table 7 for the monthly series.  

 

Table 6: Lyapunov Exponents for the annual dataset 

  40% 

window 

50% 

window 

60% 

window 

Global 

Exponent 

Observations 100 120 140 

 

-0.140 

 

Min  -0.144 -0.191 -0.216 

Mean 0.062 -0.051 -0.071 

Max 0.979 0.501 0.501 

SD 0.173 0.119 0.128 

p-value 

Min  0.011 0.000 0.000 
 

0.000*** 

 

Mean 0.553 0.224 0.198 

Max 0.999 0.999 0.999 

SD 0.318 0.297 0.296 

Note: *** denotes rejection of the null hypothesis regarding the existence of chaos in 

1% level of significance. 

 

Table 7: Lyapunov Exponents for the monthly dataset 

  40% 

window 

50% 

window 

60% 

window 

Global 

Exponent 

Observations 660 830 1000 

 

-0.144 

 

Min  -0.160 -0.163 -0.179 

Mean -0.123 -0.120 -0.120 

Max -0.004 -0.024 -0.016 

SD 0.027 0.027 0.026 

p-value 

Min  0.000 0.000 0.000 
 

0.000*** 

 

Mean 0.000*** 0.000*** 0.000*** 

Max 0.117 0.000 0.000 

SD 0.004 0.000 0.000 

Note: *** denote rejection of the null hypothesis regarding the existence of chaos in 

1% level of significance. 

 

As we observe in Table 6 the mean values of the maximum Lyapunov 

exponent for all 3 annual rolling windows is small and close to zero, while the value 

of the global exponent is negative. In Table 7 the mean values of all maximum 

Lyapunov exponents for the monthly rolling windows are negative, while the mean 



values of the p-values from the statistical tests in each rolling window reject the null 

hypothesis regarding the existence of chaos in the system in rolling windows and on 

global evaluation. Overall, we reject the existence of chaos for both data frequencies 

under both global and rolling windows setups. Thus, the identified inflation 

persistence should not be attributed to randomness. 

 

4. Conclusions 

In this paper we evaluate inflation persistence in the U.S. using long range 

monthly and annual data spanning the period from January 1876 to May 2014 and 

1776 to 2013, respectively. Departing from classic econometric approaches found in 

the relevant literature, we evaluate persistence through the nonparametric Hurst 

exponent and test for the potential existence of chaos in the data generating process by 

estimating the maximum Lyapunov exponent. All estimations are performed within a 

global and rolling window (with alternative window sizes) framework. In contrast to 

Stock and Watson (2007) and Benati (2008), we find that inflation persistence 

remained high for the entire period under examination, exhibiting an upward trend up 

to the early 1980’s. After a short-lived decline following the dissolution of the fixed 

exchange rates system in the 1970’s, inflation persistence trends appear steeper up to 

the early 1980’s. From that point onwards inflation persistence fluctuates erratically 

remaining at a high level but with no clear trend. Our empirical findings corroborate 

the ones of Pivetta and Reis (2007) as we do not detect any significant fall in inflation 

persistence in the post-1984 period, in contrast to the findings reported by Stock and 

Watson (2007) and Benati (2008). Both global and rolling window estimations reject 

the existence of deterministic chaos in either of the two series. Overall, we conclude 

that inflation exhibits a persistent behavior in the entire period under examination 

without significant shifts towards a RW process and has reached historically high 

levels in the post Bretton Woods period and remained there ever since. 
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Appendix 

 

Figure A1: Plot of monthly CPI series (1876:1-2014:5) 

 
Figure A2: Plot of annual CPI series (1774-2013) 

 
Figure A3: Plot of monthly inflation rate series (1876:2-2014:5) 
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Figure A4: Plot of annual inflation rate series (1775-2013) 
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