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Improved Seeding Schemes for Interleaved Thinned
Array Synthesis

W. P. du Plessis and A. bin Ghannam

Abstract—This paper considers the synthesis of interleaved antenna
arrays with shared and inactive elements. A hybrid genetic algorithm
(GA) where the initial population is seeded with good solutions is
proposed. A number of seeding schemes are considered and the most
effective of these are identified. The proposed algorithm is shown to
reliably produce results with sidelobe level (SLL) values which are close to
the optimum and to converge faster than the other algorithms considered.
However, some of the seeding schemes mislead the GA and actually
produce worse results than random initialisation.

Index Terms—Interleaved arrays, sparse array antennas, thinned
arrays, antenna arrays, initialisation, genetic algorithms.

I. INTRODUCTION

Modern platforms are performing ever-increasing numbers of radio
frequency (RF) functions, while simultaneously requiring a reduction
in the number of antenna apertures [1]. Interleaved arrays are antenna
arrays where different antenna elements within the array are allocated
different functions, thereby achieving multiple functions within a
single aperture [2]. Interleaved arrays have been developed to achieve
wider operating bandwidths by interleaving differently-sized antenna
elements [3], to achieve isolation between a transmitter and receiver
in a continuous wave (CW) radar by interleaving transmit and receive
elements [4], and to achieve multiple polarisations through the use
of antenna elements with differing polarisations [5], [6].

Traditional interleaved arrays require each antenna element to be
assigned to one of the sub-arrays as shown in Fig. 1(a). However,
recent work suggests that an improved sidelobe level (SLL) can be
achieved by also allowing antenna elements to be shared between
sub-arrays or to be inactive as shown in Fig. 1(b) [7]. Examples
of methods for sharing elements between a transmitter and receiver
include switches (e.g. pulsed radar), circulators (e.g. CW radar) and
duplexers (e.g. communications systems).

Unfortunately, the conclusions drawn from the results presented
in [7] are limited by the performance of the algorithm used to
generate the results. Improved synthesis algorithms are thus required
to properly evaluate interleaved thinned arrays of the form shown in
Fig. 1(b).

The use of genetic algorithms (GAs) in the synthesis of thinned
antenna arrays (e.g. [8], [9]) and interleaved thinned arrays [2], [6],
[7] is well established. Recent results have shown that seeding the
initial population of a GA with good solutions (solutions whose
SLL is better than that achieved by a random population) leads to
hybrid algorithms which outperform their non-seeded counterparts for
thinned-array synthesis (e.g. [10]–[12]). Based on observations about
the form of the resulting solutions, a similar process was applied to
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Fig. 1. Diagrammatic illustration of the difference between (a) traditional
interleaved arrays and (b) interleaved arrays with shared and inactive elements.
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Fig. 2. The flowchart of the proposed algorithm with the modifications to a
conventional GA highlighted.

the synthesis of interleaved thinned arrays and improvements to the
synthesised results were obtained [7].

This paper presents an improved hybrid algorithm for the synthesis
of interleaved thinned arrays through the use of a GA with a seeded
initial population. A number of seeding schemes are evaluated, and
the best of these identified. The hybrid algorithm is shown to lead to
better results on a more consistently than the GA alone and than the
other seeding schemes considered.

II. ALGORITHM

The GA used here is based on the simple binary GA described by
Goldberg [13], and a flowchart of the algorithm is provided in Fig. 2.

The initial population is randomly generated with some solutions
set to good values as described below. A population size of 1000 is
used, the GA is terminated after 150 generations, and selection is
performed by exponential-ranking with a selection parameter (κ) of
0.005 [14]. The genetic operators used are uniform crossover with
a probability of 0.9 and binary mutation with a probability of 0.01
[13]. Elitism is implemented by ensuring the best individual survives
from each generation to the next [13].

The GA uses a representation composed of the concatenation of
the two subarrays as shown in Fig. 3. The SLL of each subarray is
independently computed using a half-wavelength spacing, omnidirec-
tional antenna elements and equal weighting. The worse of the two
subarray SLL values is used as the base fitness for that individual.
The one drawback of this approach is that it does not allow control
of the number of shared elements.

A penalty is thus added to each individual’s base fitness to favour
solutions with the specified number of shared elements (the overlap).
The penalty in decibels is computed using

P = |O −Os| (1)
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Fig. 3. The relationship between the representation used by the GA on the
left and the physical array implied on the right.
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Fig. 4. The (a) single non-overlapping seeded individual [7], (b) single
overlapping seeded individual, (c) multiple non-overlapping seeded individual
and (d) multiple overlapping seeded individual initialisation schemes where M
is the available number of elements and S is the number of shared elements.

where O and Os are the number of shared elements of the solution
being evaluated and the specified number of shared elements respec-
tively. In this way, the correct overlap is ensured by the penalty-
function formulation.

The objective function which was minimised by the algorithm is
thus given by

F = max (SLL1, SLL2) + |O −Os| (2)

where F is the fitness of a solution, and SLL1 and SLL2 are the
SLL values of the two arrays in decibels.

The initial population is seeded with good individuals [13] using
a number of seeding schemes which are summarised in Fig. 4.

The first initialisation scheme tested is that proposed by [15], where
difference sets (DSs) and almost difference sets (ADSs) can be used
to seed the initial population. The nature of this approach is that the
configuration shown in Fig. 1(a) is used. The DS or ADS from [16],
[17] was used to seed a single solution in the initial population.

The first new seeding scheme investigated is that described in [7],
and is based on the observation that the two subarrays tend to have
the majority of their elements on opposite sides of the array aperture.
This seeding scheme initialises the two subarrays to each have half
the available elements active, but on opposite sides of the aperture as
shown in Fig. 4(a). While this seeding scheme dramatically improves
the results for small numbers of shared elements, the results are less
impressive for larger numbers of shared elements [7].
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Fig. 5. The best results obtained for arrays with (a) 100 available elements
and (b) 200 available elements.

In an effort to improve the results with larger numbers of shared
elements, the seeding scheme in [7] was modified to achieve the
specified number of shared elements at the centre of the array as
shown in Fig. 4(b). In this way, the number of active elements in
each subarray increases as the specified number of shared elements
increases, while the shared elements are concentrated at the centre
of the array as noted in previous results [7].

The one drawback of the above approaches is that only a single
individual in the population is seeded, so the effect of the seeding
is limited. While [7] has shown the effectiveness of this approach,
seeding additional individuals is expected to produce improved re-
sults. The seeding schemes in Figs 4(c) and 4(d) are realised by
shifting the transition from one subarray to the other in Figs 4(a) and
4(b) across the antenna aperture.

III. RESULTS

The best and median results obtained from 51 runs of the GA for
arrays of 100 and 200 available elements are shown in Figs 5 and
6 respectively. The general shape of the curves mirrors the results
presented previously [7], with the notable difference that the results
using the new seeding schemes are shown to generally have lower
SLL in Fig. 5 and to be far more consistent in Fig. 6.

The improvement associated with the use of seeding is less
noticeable with 100 available elements because the problem is simpler
than in the 200 available-element case. This conclusion arises from
the fact that there are 2N possible solutions for an array with N
elements, so increasing N leads to a rapid increase in problem
complexity.
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Fig. 6. The median results obtained for arrays with (a) 100 available elements
and (b) 200 available elements.

The variation in the best results in Fig. 5 is far greater than for the
median case in Fig. 6. This outcome is anticipated because the best
solutions from 51 independent runs of the GA are used, and even a
single outlier will affect the best-case results. The median results are
thus better indicators of the performance of the underlying algorithms
because they are not as strongly affected by outliers.

Seeding with single individuals as shown in Figs 4(a) and 4(b)
is seen to improve the results, despite the fact that there is only a
small change to the initial population (only one of 1000 individuals is
seeded). The implementation of elitism means that the single seeded
individual survives to future generations until it is improved upon, so
its effect on the algorithm can be greater than its effect on the initial
population suggests.

Significantly, the results obtained when seeding with even the
simplest of the proposed schemes (Fig. 4(a)) produces results which
are significantly better than those obtained using DSs and ADSs for
small numbers of shared elements and comparable results otherwise.

Still better results are obtained when a number of individuals
are seeded using the schemes shown in Figs 4(c) and 4(d). The
improvement is a result of the fact that a greater proportion of
the initial population is seeded, thereby increasing the effect of the
seeding on subsequent generations. The fact that the position of the
shared elements is shifted across the array also contributes to the
improvement achieved because the shared elements are not limited
to the centre of the array in the best solutions [7].

The differences between the various cases are small when the
number of shared elements is greater than about 50% of the available
elements. In this case, the performance of the GA itself ensures that
good results are achieved largely irrespective of the seeding. The
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Fig. 7. The best excitations for an array with 50 available elements.

exceptions to this observation are the cases where individuals are
initialised with the specified number of shared elements (Figs. 4(b)
and 4(d)).

Fig. 7 shows the best positions of the elements within an aperture of
50 available elements from 51 runs of the algorithm with a population
size of 5000. When the number of shared elements is low, the shared
elements tend to cluster near the centre of the aperture as observed
previously [7]. However, as the number of shared elements increases,
the shared elements split into two groups, one near the centre of the
aperture and another near the edges of the aperture. The seeding
schemes in Figs 4(b) and 4(d) are based on the assumption that the
shared elements are clustered together at the centre of the array. The
initialisation thus causes the GA to focus the search in the wrong
areas of the problem space, leading to suboptimum solutions as seen
in Figs 5 and 6.

The solution to this difficulty is simply not to seed the initial
GA population when the number of shared elements is more than
50% of the number of available elements. As outlined previously,
all the initialisation schemes except those in Figs 4(b) and 4(d) give
approximately equal results in this case, so seeding is not required.

Further information about the performance of each seeding scheme
can be gleaned from Fig. 8, which shows the cumulative distribution
functions (CDFs) of the results for each seeding scheme when a
quarter of the available elements are shared.

The non-overlapping seeding with both single and multiple so-
lutions (Figs 4(a) and 4(c)) show only small improvements to the
unseeded case. This is because these seeding schemes do not consider
shared elements.

By comparison, the seeding schemes with the specified number
of shared elements (Figs 4(b) and 4(d)) produce significantly better
results than the unseeded GA. This improvement is due to the ex-
ploitation of additional information about the problem (the specified
number of shared elements). Also noticeable is the significantly
smaller variation in the achieved SLL when the population is seeded
with a number of solutions with the specified number of shared
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Fig. 8. The cumulative distributions when a quarter of the available elements
are shared for arrays with (a) 100 available elements and (b) 200 available
elements.

elements (Fig. 4(d)).
The variation of the results achieved by the algorithms is explored

in Fig. 9, where the standard deviation obtained for each algorithm
over 51 runs is shown. In general, seeding the initial population leads
to more consistent results.

However, some of the seeding schemes are seen to have a sig-
nificant increase in their standard deviation for some numbers of
shared elements. This is a result of the population being seeded with
misleading solutions which cause the GA to focus its search on the
incorrect portions of the solution space.

The improvement to the SLL as the number of generations
increases when a quarter of the elements are shared is shown in
Fig. 10 for the best solution obtained with each seeding scheme.
Only 80 generations are shown as the only case where the solutions
shown improve after 80 generations is the case where no initialisation
is used. This case reaches its final value of -17.05 dB after 127
generations. The decision to run the GA for 150 generations was
motivated by the fact that convergence takes place long before 150
generations, so this value allows the performance of the underlying
algorithm to be demonstrated.

The most important observation from Fig. 10 is that the seeding
schemes with the specified number of shared elements (Figs 4(b)
and 4(d)) improve significantly faster than the other cases for 100
available elements. For 200 available elements, the seeding scheme in
Fig. 4(b) improves at a rate comparable to that of the other cases, but
continues to improve after the other cases have converged. As with
100 available elements, the seeding scheme in Fig. 4(d) improves
substantially quicker than the other cases for 200 available elements.
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Fig. 9. The standard deviation of the results obtained for arrays with (a) 100
elements and (b) 200 elements.

TABLE I
TIME REQUIRED TO RUN THE PROPOSED ALGORITHM.

Seeding Scheme 100 elements 200 elements
No seeding 41.25 s 49.35 s
Difference set [15] 40.98 s 49.05 s
Single non-overlapping (Fig 4(a)) 41.48 s 50.42 s
Single overlapping (Fig 4(b)) 40.98 s 49.97 s
Many non-overlapping (Fig 4(c)) 41.18 s 48.42 s
Many overlapping (Fig 4(d)) 41.44 s 48.76 s

These convergence-rate improvements are achieved despite the
initial solutions (generation 0) having comparable SLL values for
all the cases considered. The improvement to the final results is thus
not due to better starting SLL values, but rather due to the elements
in the aperture having initial distributions which are closer to the
optimum distributions.

The time required to run the algorithm is summarised in Table I,
where the averages of thirty independent runs of the algorithm are
provided. The algorithm was coded in MATLAB R2014a and was
run on a computer with an Intel Xeon X5355 central processing unit
(CPU) (quad-core running at 2.66 GHz), and 8 GB of random-access
memory (RAM).

Table I shows that no significant additional run time is required
by the proposed seeding schemes. This is anticipated as seeding is
only performed once at the start of the algorithm and all the seeding
schemes considered have simple implementations.

IV. CONCLUSION

A GA with suitable seeding of the initial population has been
shown to produce excellent results far more reliably than the GA
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which improves after 80 generations and reaches its final value of -17.05 dB
after 127 generations.

alone and previously-proposed approaches to seeding the initial
population, including those based on DSs and ADSs. Furthermore, the
use of the proposed seeding schemes does not lead to any significant
increase in the algorithm run time.

The GA used was conventional apart from the fact that it includes
a penalty function. The penalty function was required to ensure that
the specified number of shared elements is achieved.

A number of seeding schemes were evaluated, and the improve-
ment in the final SLL results due to suitable seeding was clearly
demonstrated. Even seeding just one individual of a large initial
population can lead to significant improvements to the final results,
though greater improvements were noted when a greater number of
individuals were seeded. Seeding a number of individuals with the
specified number of shared elements was shown to produce the best
results. This seeding scheme was also shown to converge significantly
faster than the other cases considered.

However, some of the seeding schemes lead to worse results than
random initialisation under certain circumstances. This is a result of

the seeding misleading the GA and causing the incorrect portions of
the solution space to be explored.

Despite this limitation, the value of seeding is clearly demonstrated,
especially when the number of shared elements is small (less than
approximately 50% of the number of available elements). Remark-
ably, the difference between the best and worst results for 51 runs of
the proposed algorithm differ by on the order of 1.5 dB and have a
standard deviation of approximately 0.5 dB, so even a single run of
the algorithm will produce a result which is close to the optimum.
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