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Abstract

Overhead cranes are widely used in industrial applications for ma-
terial displacing. Many linear or nonlinear control schemes have been
proposed for overhead cranes and implemented on electronic systems,
but energy efficiency of transportation has seldom been considered
in motion planning. This paper aims at finding an optimal solution
of motion planning in terms of energy efficiency for overhead cranes.
Using the optimal control method an optimal trajectory is obtained
with less energy consumption than the compared trajectories and is
also satisfying physical and practical constraints such as swing, accel-
eration, and jerk. Besides the energy optimal model, we also propose
two other models to optimize time efficiency and safety during trans-
portation. The results obtained have been compared with some exist-
ing motion trajectories, and have been shown to be superior to these
benchmarks in terms of energy efficiency, time efficiency and safety
respectively.

Keywords: Overhead crane; Optimal control; Motion planning; Energy effi-
ciency

1 Introduction

In some industrial fields, such as sea ports, manufacturing plants, factories and
construction sites, overhead cranes are indispensable for handling materials in the
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process of transportation and production [1, 2, 3]. Due to high payload capacity,
good operational flexibility and efficient energy consumption, overhead cranes are
playing significant roles in many industrial applications. Regardless of the type of
overhead crane, overhead cranes always have a similar fundamental structure that
can be described as a trolley-pendulum system. The overhead crane is a typical
nonlinear underactuated mechanical system. The system, which consists of a trol-
ley, a supporting frame and a rope connecting the trolley with the payload, has
fewer independent control inputs than degrees of freedom. Compared with fully
actuated systems, control of underactuated systems is much challenging. There-
fore, underactuated overhead cranes have attracted much interest from researchers
in areas of mechanics and control.

One complete crane motion process is composed of three phases: payload hoist-
ing, horizontal transportation, and payload lowering, among which the control of
horizontal transportation is the most difficult problem. These three phases can be
integrated in one maneuver with overlap [4, 5, 6, 7] or be decomposed sequentially
without overlap [8, 9]. Phase overlap means that the payload can be horizontally
transported when it is hoisted and that the payload can be lowered during the
horizontal transportation. In this paper, phase overlap is not considered as the
scope is specifically modeling motion planning problems confronted in the most
complicated horizontal phase. Time efficiency and safety of the horizontal trans-
portation are two main objectives of motion planning that are usually considered
in previous work [10, 9]. For time efficiency, the transportation time is preferred
to be as short as possible while other safety and mechanical constraints must be
satisfied. For safety, the requirement is to suppress or eliminate payload swing for
some fragile or harmful payloads. To meet the safety requirement, both transient
and residual swing must be controlled in a small tolerance range.

Many control strategies have been proposed to improve their performance in
terms of time efficiency and transportation safety of overhead cranes. Due to
the nonlinear nature of the crane system [11], nonlinear control methods, such as
sliding-mode control [12], flatness-based inverse methods[4, 5, 7] and energy-based
control scheme [13], have been applied to control overhead cranes. For simplicity,
the original complicated crane systems are usually linearized for using linear con-
trol methods. Under the assumption of small payload swing, the nonlinear crane
model can be linearized around its equilibrium points, and then linear control ap-
proaches can be used on the simplified linear system. Many linear control methods
have been applied to overhead cranes, including feedback control [14, 15, 16], input
shaping (feedforward control) [17, 18, 19], optimal control [20, 21, 22]. Feedback
control methods utilize measurements and estimates of the system states to reduce
the payload’s swing, while feedforward approaches alter the actuator commands
so that system oscillations are reduced. Optimal control methods look for opti-
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mal solutions to minimize (or maximize) the defined objectives of crane problems
subject to certain problem-based constraints.

In some control strategies, motion planning is a preliminary step to generate
operation commands (profiles of acceleration or velocity) before online control of
overhead cranes [23, 24]. Here motion planning means the trajectory design of
trolley velocity and acceleration, which are regarded as control inputs (or states)
of the crane system with velocity-driven or force-driven trolley. Unlike the inverse
methods to control the stability of tracking the reference of outputs [4, 5], optimal
control is a useful method to design the profile of control inputs with certain
optimal performance index, such as time efficiency and swing angle. Optimal
design of the transportation trajectory not only improves the control performance
in terms of efficiency or safety, but also releases some pressure on control for the
sequential strategy. Researchers have focused their efforts on motion planning of
overhead cranes. The most difficult task in motion planning is to analyze the
kinematic coupling behavior between the underactuated payload’s swing and the
actuated trolley’s motion. In [20, 21], optimal control theory was effective to
generate optimal transportation trajectories that could minimize steady-state error
or transportation time. A motion planning-based adaptive control strategy [25]
was proposed to make the trolley track the planned S-shaped trajectory, where an
online updating mechanism was employed to enhance the control stability under
different working conditions. In [8], an anti-swing motion planning scheme with
swing suppression was designed based on the anti-swing control law and typical
crane operations in practice. In [9], three analytical trajectories were designed
to address the coupling behavior and consider practical constraints such as swing
amplitude, residual swing, and physical constraints.

Among existing literature on motion planning, some trajectories are designed
according to the empirical experiences; some trajectories are designed for satisfy-
ing practical constraints; and the other trajectories are designed in consideration
of time efficiency of motion planning. In [20], time optimal control theory has
been evaluated on the bang-bang control system of cranes, but their time-optimal
solution has not considered the continuous system and the constraint of swing
amplitude. In [21, 22], optimal trajectories have been designed for continuous sys-
tems of cranes subject to the swing constraint. It may be noted that swing-optimal
control is seldom considered to minimize the swing angle separately for safety in
transportation. Another issue that has been neglected in the crane control is en-
ergy efficiency. Nowadays, the energy issue turns out to be significantly urgent
as power demand keeps increasing when a large number of machines, such as belt
conveyors and cranes, have been equipped in industry [26]. In the crane control,
the profile of power, as well as the total energy consumption, is closely related to
the transportation trajectory, so energy efficiency may be optimized by choosing
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a proper motion trajectory. These two issues will be analyzed and solved in our
proposed strategies for overhead cranes.

In this paper, two objectives, safety and energy efficiency, are studied under
the optimal control theory. First, swing-optimal model is proposed to minimize the
swing amplitude and residual oscillation, in order to provide the highest degree of
safety during horizontal transportation. Second, energy-optimal model is proposed
to minimize the energy consumption in the transportation period. The power
profile obtained is smoothed, and its peak is reduced as well. For the purpose of
better comparison, we will revisit the time-optimal motion planning problem, but
we include more practical constraints, such as maximum swing amplitude, and
maximum jerk of motion. These three proposed motion planning strategies have
covered the demanding requirements of crane control systems, and results obtained
in the simulation section indicate their superiority in terms of time efficiency, safety
and energy efficiency.

This paper is organized as follows. Section 2 describes the dynamic model of
the overhead crane system. Then literature review on motion planning of overhead
cranes is given in Section 3. In Section 4, the discrete-time dynamic equation is
deduced and three optimal strategies in terms of the safety, energy efficiency and
time efficiency are proposed. The comparison study is performed in Section 5.
The last section concludes this paper.

2 Description of the Overhead Crane System

An overhead crane can be sketched as shown in Figure 1, where the trolley moves on
the horizontal bridge and the payload is connected with a constant-length rope.
x(t), θ(t) and F (t) denote the trolley’s position, the payload’s swing angle and
overall force on the trolley respectively. In this paper, stiffness and mass of the
rope, as well as air resistance, are neglected and the load is considered as a point
mass. Moreover, as this study only focuses on the open-loop optimal planning
of horizontal transportation, hoisting and the effects of wind disturbance are not
considered. Then the overhead crane system with constant rope length can be
described as follows:

(M +m) ẍ+ml cos θθ̈ −ml sin θθ̇2 = F, (1)

ml2θ̈ +ml cos θẍ+mgl sin θ = 0, (2)

where M and m denote masses of the trolley and the payload, respectively. l is
the length of the rope; g the gravitational acceleration. The overall force F is
composed of the actuating force Fa and the friction Fr as

F = Fa − Fr, (3)
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Figure 1: Two-dimensional overhead crane system

Motivated by the friction models in [27, 28], this paper employs the same
nonlinear friction model as

Fr = fr0 tanh ẋ/ξ − kr|ẋ|ẋ, (4)

where fr0, kr ∈ R are friction-related parameters and ξ ∈ R is a static friction
coefficient, which can be obtained from off-line experimental analysis. Note that
the small friction caused by the payload’s swing is neglected in the above model.

The payload-swing dynamics Eq. (2) defines the kinematic relationship be-
tween the trolley acceleration and the load swing. For this reason, the swing
dynamics can be considered as a kinematic equation for motion planning and can
be rewritten as

lθ̈ + cos θẍ+ g sin θ = 0. (5)

When the swing angle is small enough (θ < 5◦), the kinematic equation can be
linearized with the approximations of cos θ � 1 and sinθ � θ. The approximated
linear kinematics can be obtained as

lθ̈ + ẍ+ gθ = 0. (6)

In the evaluated planning period T , a successful trajectory must ensure the
crane to arrive at the destination. For a successful trajectory planning, several
constraints must be satisfied according to practical constraints.
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(1): The trolley reaches the desired location pd at the end of the period. The
final states of the payload must be static with no swing so that it can be lowered
immediately as

x(T ) = pd, ẋ(T ) = 0, θ(T ) = 0, θ̇(T ) = 0. (7)

(2): During the horizontal transportation, velocity and acceleration of the
trolley must be limited in certain ranges as

{
0 ≤ ẋ(t) ≤ vm
|ẍ(t)| ≤ am

, t ∈ (0, T ], (8)

where vm and am are the permitted maximum of velocity and acceleration, respec-
tively.

(3): The payload swing during the transportation must be limited within a
safe range as

|θ(t)| ≤ θm, t ∈ (0, T ], (9)

where θm is the permitted maximum of swing amplitude.
(4): The jerk (defined as the time derivative of acceleration j(t) =

...
x (t)) must

be limited to a reasonable range to satisfy the mechanical constraint and to prolong
the motor’s lifetime.

|j(t)| ≤ jm, t ∈ (0, T ] (10)

where jm is the permitted maximal jerk in the horizontal transportation.

3 Literature Review

Different models, as well as control methods of overhead cranes, have been pro-
posed in the past decades. These have been well reviewed in [29]. As the scope
of this paper focuses on the motion planning methods, five trajectory references
mentioned in [9, 25, 8] are analyzed in this section. For the same specific overhead
system, we have plotted these five trajectories in Figure 2. For each trajectory,
the profiles of velocity, acceleration and swing angle are shown in the figure.

3.1 Trajectory 1

Lee [8] proposed a smooth velocity profile for a smooth low-jerk motion. Lee’s
trajectory has been named Trajectory 1 as shown in Figure 2. When the trol-
ley reaches the destination, the velocity and acceleration become 0. Because the
swing suppression has not been considered in Trajectory 1, the residual swing is
unacceptably large.
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Figure 2: Trajectory references in terms of velocity, acceleration and swing
angle

3.2 Trajectory 2

In [30, 9], a symmetric three-segment trajectory is proposed to eliminate the resid-
ual swing. From Figure 2, it can be noticed that Trajectory 2 has shorter arrival
time than the other four trajectories. It has zero residual swing, and the jerk at
the time t2a, t2a+t2c and 2t2a+t2c is infinite, which implies a discontinuous control
signal and hence potential damage to the actuating motor.

3.3 Trajectory 3

In Trajectory 3 [9], some linear ramp functions at the transition stage are inserted
into the three-segment trajectory to ensure smooth motion. It can be noticed
from Figure 2 that the residual swing of Trajectory 3 is zero when the trolley
stops. Unlike Trajectory 2 with infinite jerk, Trajectory 3 has jerk not larger than
a predefined value during transportation.
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3.4 Trajectory 4

Like in Trajectory 3, ramp functions in Trajectory 4 [9] have also been inserted into
the transient stages. The main difference is that the ramp functions are not linear
but S-shaped functions. For Trajectory 4, the profiles of velocity, acceleration and
swing angle are given in Figure 2. They are almost the same as the profiles of
Trajectory 3 due to similar structures.

3.5 Trajectory 5

In [25], another S-curve trajectory is used as the reference for nonlinear tracking.
Trajectory 5 satisfies the physical constraints of velocity and acceleration. The
obtained trajectory always has the positive velocity bounded to the permitted
maximum of velocity; its acceleration is also bounded to the permitted maximum
of acceleration. It can be noticed from Figure 2 that the residual swing exists in
Trajectory 5, and that the arriving time is longest among these referred trajecto-
ries. Another observation is that the initial velocity is not zero in Trajectory 5, so
the acceleration profile of Trajectory 5 cannot be used in open-loop controllers for
the static cranes. Only closed-loop controllers (such as PID or fuzzy controllers)
can use this profile of acceleration (or velocity) as the reference for tracking. As
this paper only considers motion planning when the initial velocity of crane is zero,
Trajectory 5 is not included in the simulation section.

4 Optimal control models

The five trajectories mentioned above have analytical formulations and convenient
setting of parameters, which are easily applied to some real-time implementations.
Although some of them have the advantage of zero residual swing, their swing
amplitudes have not been optimized. Among these five trajectories, Trajectory 2
has the shortest transportation time, which is still not the minimal one. Another
important issue is the fact that the energy consumption has not been considered
yet in these trajectories. Therefore, it is necessary and meaningful to propose
such trajectories that can minimize the transportation time, swing angle and en-
ergy consumption. In this section, three optimal control strategies are proposed
to provide optimal solutions in terms of transportation safety, energy and time
efficiency. Each proposed model is a discrete model with the input of acceleration.
Therefore, the continuous system is first discretized by a sampling period t0. Over
the evaluated planning period T = N ·t0, the discrete system of the overhead crane
can be formulated as Eq. (32) and Eq. (33).
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(M +m)Δ2x(n) +ml cos θ(n)Δ2θ(n)−ml sin θ(n)Δθ(n)2 = F (n), (11)

lΔ2θ(n) + Δ2x(n) + gθ(n) = 0, (12)

where n = 1, . . . , N ; x(n), θ(n) and F (n) represent the displacement, swing angle
and overall force at the nth sample respectively. Δ and Δ2 represent the first and
second-order difference as{

Δq(n) = (q(n+ 1)− q(n))/t0
Δ2q(n) = (Δq(n+ 1)−Δq(n))/t0

, q(n) = [x(n), θ(n)]T . (13)

In the description of proposed models, we denote the input vector (acceleration)
as a (a(n) = Δ2x(n)), and denote the state vector of velocity as v (v(n) = Δx(n)).
When the initial state of the crane is static with zero swing, the velocity v , the
displacement x and the swing angle θθθ can be expressed by the acceleration a as⎧⎪⎪⎨

⎪⎪⎩

a = [ẍ(1), . . . , ẍ(N)]T

v = Avat0
x = Axat

2
0

θθθ = Aθat
2
0

, (14)

where

Av =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

...
...

1 1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎦
, (15)

Ax =

⎡
⎢⎢⎢⎢⎢⎣

0.5 0 0 . . . 0
1.5 0.5 0 . . . 0
2.5 1.5 0.5 . . . 0
...

...
...

...
...

N − 0.5 N − 1.5 N − 2.5 . . . 0.5

⎤
⎥⎥⎥⎥⎥⎦
, (16)

Aθ = −1

l
B−1

= −1

l

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 + gt0
l 0 . . . 0 0 0

−2 1 + gt0
l . . . 0 0 0

1 −2 . . . 0 0 0

0
. . .

. . .
. . .

. . .
...

0 . . .
. . . 1 −2 1 + gt0

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1

.

(17)
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Note that the matrix B is non-singular. Eq. (14) is deduced according to
Newton’s second law of motion. Based on the discrete system, three optimal
control models are then introduced as follows.

(1) Swing-optimal model
The objective function of swing-optimal model is about safety over the hori-

zonal transportation. Safety of an overhead crane can be reflected by two metrics,
i.e. the maximal swing angle and the residual swing. In the evaluated planning
period T , the objective function will integrate both two metrics as

J1(a) = α max
n∈{1,...,N}

θ(n) + (1− α)

N∑
n=N−Nr+1

θ(n)

Nr
(18)

where Nr is the number of samples considered in the residual swing. The first
component of the right-hand side is the maximal swing angle, and the second
component of the right-hand side is the residual swing. The coefficient α is used
to integrate these two metrics. α is set to 0.5 in this paper. The residual swing is
defined as the average swing angle during the final Nr · t0 period.

By substituting θ(n) with acceleration a(n) using Eq. (14), the swing-optimal
model Eq. (18) can be expressed by the acceleration. In this model, the input
vector a is bounded in the range [−am, am] as

a(n) ∈ [−am, am], n = 1, . . . , N. (19)

The constraints of this model include the equality constraints of final displace-
ment, velocity and swing angle, and also include the inequality constraints of
velocity, swing angle and jerk. The set of constraints C(N) is formulated as

C(N) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−am ≤ a(n) ≤ am, n = 1, . . . , N
x(N) = xp
v(N) = 0
θ(N) = 0
θ(N − 1) = 0
0 ≤ v(n) ≤ kv, n = 1, . . . , N
|θ(n)| ≤ θmax, n = 1, . . . , N
|a(n+ 1)− a(n)| ≤ jm, n = 1, . . . , N − 1
|a(1)| ≤ jm
|a(N)| ≤ jm

. (20)

To minimize the objective function Eq. (18) under the constraints, the solution
is expected with the highest degree of safety.

(2) Energy-optimal model
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The objective function of energy-optimal model is energy consumption over
the horizontal transportation. Within the planning period T , energy consumption
can be calculated as

E =

∫ T

0
Pdt =

∫ T

0
Faẋdt (21)

where Fa is the output force of the actuating motor, P is the power of the actuating
motor, and E is the energy consumption of the motor. For the discrete system,
the proposed energy-optimal model can be formulated as

J2(a) =
N∑

n=1

Fa(n)v(n) =

N∑
n=1

[F (n) + Fr(n)]v(n) (22)

where the overall force F (n) is computed as Eq. (11), and the friction Fr(n) can
be formulated similarly with Eq. (4) as

Fr(n) = fr0(tanh v(n)/ξ)− kr|v(n)|v(n). (23)

By substituting v(n) and θ(n) with a(n) using Eq. (14), the energy consump-
tion can be expressed by the acceleration a . The input vector is also bounded
in [−am, am]. The energy optimal control model has the same constraints C(N)
as the swing optimal control model. For the energy-optimal model, we aim to
minimize the energy consumption in Eq. (22) under the practical constraints.

(3) Time-optimal model
The objective function of time-optimal model is equivalent with the trans-

portation time. If the transportation time is denoted as tf = Nf · t0, then the
time-optimal model can be formulated as

J3(a) = Nf . (24)

It is difficult to express Nf by the acceleration a . We can only determine Nf

by checking the feasibility of a specific acceleration profile. C(i) denotes constraints
that must be satisfied when the transportation can be completed at i · t0. C(i) is
formulated as
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C(i) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−am ≤ a(n) ≤ am, n = 1, . . . , i
x(i) = xp
v(i) = 0
θ(i) = 0
θ(i− 1) = 0
0 ≤ v(n) ≤ kv, n = 1, . . . , i
|θ(n)| ≤ θmax, n = 1, . . . , i
|a(n+ 1)− a(n)| ≤ jm, n = 1, . . . , i− 1
|a(1)| ≤ jm
|a(i)| ≤ jm

. (25)

If the profile satisfies the constraints C(i), the transportation time is not longer
than i · t0. Nf can be determined in a backward way (shown in Algorithm 1) or a
bisection way (shown in Algorithm 2) to repeatedly check feasibility. If the trans-
portation time is close enough to the planning period T , the backward algorithm
can find Nf effectively. Otherwise, the bisection algorithm is a better choice than
the backward algorithm. Although Nf can be known for any profile of accelera-
tion, it is still difficult to find an efficient direction of decreasing Nf . In this paper,
we propose a bisection searching algorithm for the time-optimal profile to search
the minimal transportation time (shown in Algorithm 3). First, search a feasible
solution satisfying constraints C(N). Note that the interval of searching is [0, N ].
Second, check whether a feasible solution can be found at the midpoint of interval
and update the interval as shown in Algorithm 3. Third, repeat the second step
iteratively until the tolerance error is satisfied.

1 Check the feasibility on constraints C(N)
2 if C(N) is satisfied then
3 i← N
4 while C(i) is satisfied do
5 i← i− 1;
6 Check the feasibility on constraints C(i);
7 end
8 Nf ← i+ 1;

9 else
10 Nf is null;
11 end

Algorithm 1: The backward way to determine the transportation time
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1 Check the feasibility on constraints C(N)
2 if C(N) is satisfied then
3 c1 ← 0, c2 ← N ;
4 while c2 − c1 ≤ ε do
5 c← � c1+c2

2
�;

6 Check the feasibility on constraints C(c)
7 if C(c) is satisfied then
8 c2 ← c
9 else

10 c1 ← c
11 end

12 end
13 Nf ← c2
14 else
15 Nf is null;
16 end

Algorithm 2: The bisection way to determine the transportation time

1 Search a feasible solution on constraints C(N)
2 if a feasible solution can be found then
3 c1 ← 0, c2 ← N ;
4 while c2 − c1 ≤ ε do
5 c← � c1+c2

2
�;

6 Search a feasible solution on constraints C(c)
7 if a feasible solution can be found then
8 c2 ← c
9 else

10 c1 ← c
11 end

12 end
13 The minimum of Nf is c2;

14 else
15 The algorithm cannot obtain any solution in the planning period;
16 end

Algorithm 3: The bisection searching algorithm
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5 Numerical Simulation

The overhead crane system described in [9] is used to test our proposed models
and the reference trajectories 1, 2, 3 and 4. The physical parameters of the system
are listed as follows

m = 1.025 kg,M = 7 kg, l = 0.75 m, g = 9.8 m/s2. (26)

The desired trolley location in simulation is set as pd = 0.6 m, and the practical
constraints are given as

vm = 0.4 m/s, am = 0.2 m/s2, θm = 2◦, jm = 5 m/s3. (27)

The parameters for the friction model Eq. 4 are referred from the offline re-
gression results in [28] as

fr0 = 4.4, kr = −0.5, ξ = 0.01. (28)

The simulation is conducted on a PC computer with Intel Core i7 CPU (3.4
GHz) and 8 GB RAM. On the 64-bit Win-7 system, Matlab 2013 is installed as
the software platform of coding and simulation.

Test 1: comparisons of swing
The evaluated planning period T is 6 s, and the sampling period t0 is 0.01 s.

The duration of residual swing is defined as the last 2s, i.e., Nr = 200. The opti-
mization algorithm for solving the swing-optimal model is chosen as the fmincon
function in Matlab toolbox. Note that fmincon is a simple example of solver in
our simulations, other more complicated solvers may also be employed instead of
it here. In the fmincon function, the algorithm type is set as “interior-point”and
the maximum function evaluation times are 50 ·N .

For each compared trajectory, the results of maximum swing angle, residual
swing and their average are listed in Table 1. The swing-optimal trajectory has
the smallest maximal swing angle 0.5278◦. Although the residual swing of the
optimal trajectory is larger than Trajectory 2, 3 and 4, but the average value
of the maximal swing and the residue swing is the smallest among the compared
trajectories. In Figure 3, the profiles of acceleration and swing angle are given. Due
to the jerk constraint, the optimal trajectory has a smooth acceleration profile. In
Figure 3, the same conclusion can be drawn namely that the maximum and average
swing angles are smallest and the residual swing is close to zero. The profiles of
acceleration and swing angle when T = 12 s are also given. The conclusion is
clearer that due to longer planning period the maximum swing angle is much
smaller than Trajectory 2, 3 and 4, and that the residual swing is close to zero.
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Table 1: Comparisons of swing
Trajectory Swing-optimal 1 2 3 4

Maximal swing (◦) 0.5278 1.912 2.000 2.001 2.001
Residual swing (◦) 0.3600 0.8634 7.248× 10−3 6.622× 10−3 6.853× 10−3

Average (◦) 0.4439 1.388 1.003 1.004 1.004
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Figure 3: The trolley acceleration profile and the payload swing angle for
the swing-optimal model: swing-optimal trajectory 1 with T = 6 s; swing-
optimal trajectory 2 with T = 12 s.
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In general, a long duration of transportation, i.e., a low average velocity, may
reduce the swing of the payload. This can be verified by the following experiment
to evaluate different planning periods, i.e. 4 s, 6 s, 8 s, 10 s and 12 s. The resulting
profiles of acceleration and swing angle are given in Figure 4. The maximal swing
angle of 4 s period is the largest at 1.623◦, and the maximum swing of 12 s period
is the smallest at 0.319◦. It can be concluded that the maximal swing is closely
related to the evaluated planning period. The maximal swing decreases when the
transportation period increases, but the change of maximal swing is small when
planning period is larger than 10 s.

Test 2: comparisons of energy efficiency
The evaluated planning period T is 6 s, and the sampling period t0 is 0.01 s.

The optimization algorithm for solving the energy-optimal control model is chosen
as the fmincon function in the Matlab toolbox. In the fmincon function, the
algorithm type is set as “interior-point”and the maximum function evaluation
times are 50 ·N .

In Table 2, energy consumption and peak power during the entire transporta-
tion are listed for each trajectory. For the energy-optimal model, the lowest energy
consumption and peak load (as bolded in the table) can be obtained. But the en-
ergy saving in this simulation is not large. One reason found is that the parameters
of system referred from [9] are relatively small. When these parameters, such as
maximum velocity, acceleration and rope length, turn larger, energy saving be-
comes more promising. For this energy-optimal trajectory, the maximum swing
angle is 0.8948◦ with the residue swing 0.2994◦, and the average is 0.5971◦. Profiles
of acceleration, swing angle and power when T = 6 and 12 s are given as in Figure
5. Compared with swing angles of Trajectory 1–4, energy-optimal trajectories still
have smaller maximum and average swing angle as shown in the figure. As shown
in the figure, the maximum swing angle of T = 12 s turns to be smaller than
T = 6 s due to smoother acceleration. It can also be noticed that the optimal
trajectory has a smooth power consumption while the other compared trajecto-
ries are not smooth. Although the optimal trajectory has a longer transportation
time, the sacrifice of time efficiency is paid back with the improvement of energy
efficiency.

Table 2: Comparisons of energy efficiency
Trajectory Energy-optimal 1 2 3 4

Energy usage (J) 2.626 2.651 2.653 2.652 2.653
Peak power (W) 0.702 1.323 1.647 1.602 1.589

The relation of energy efficiency and time efficiency has not been clearly stated
in the literature. In this section, an experiment with different planning periods
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Figure 5: Profiles of acceleration, swing angle and power for the energy-
optimal model: energy-optimal trajectory 1 with T = 6 s; energy-optimal
trajectory 2 with T = 12 s
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has been done to evaluate such relation. Planning periods are set to be 4 s, 6 s,
8 s, 10 s, and 12 s, respectively. Then after solving the energy-optimal model
over each period, energy consumptions can be obtained. When the period is 4 s,
energy consumption is the largest at 2.6534 J. When the period is 12 s, energy
consumption is the smallest at 2.5777 J. When the planning period gets larger
than 10 s, the change of peak power is close to zero and the energy consumption
has slow or no decrease as shown in Figure 6.

0 2 4 6 8 10 12
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
ac

ce
le

ra
tio

n
(m

/s
2 )

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

po
w

er
(W

)

time (s)

N=400
N=600
N=800
N=1000
N=1200

Figure 6: Profiles with different planning periods for the energy-optimal
model

Test 3: comparisons of time efficiency
The evaluated transportation period T is 6 s, and the sampling period t0 is

0.01 s. The optimization algorithm for solving the time-optimal control model is
chosen as the fmincon function in the Matlab toolbox. In the fmincon function,
the maximum function evaluation times are 50 · N . The algorithm type is set as
“active-set”, because “active-set”is suitable to find a feasible solution for the time
optimal model. The number of iterations in the bisection algorithm is set to 10.
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As mentioned in Section 3, Trajectory 2 has the shortest transportation time
among the five trajectories reviewed, but the jerk at certain time is infinite. For
the tested crane system, the transportation time of Trajectory 2 is 3.66 s. When
ignoring the jerk constraint in our time optimal control model, we can obtain an
optimal trajectory with transportation time of 3.62 s. The profile of acceleration
is given in Figure 7.
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Figure 7: Profiles of acceleration without the jerk constraint for the time
optimal model

The optimal trajectory with the jerk constraint (jm = 5) is given in Figure 8.
The optimal time of transportation is 3.65 s, while the transportation time of Tra-
jectory 1, 3 and 4 is 4.08 s, 3.76 s and 3.73 s, respectively. Figure 8 shows profiles
of displacement, acceleration and jerk. The crane using the optimal trajectory can
arriver at the destination earlier than using other trajectories. It can be noticed
that the jerk of the optimal trajectory never violates the permitted maximal jerk,
which can be set by users according to different requirements. For example, when
the actuating motor of the crane system is retrofitted, the maximum of jerk can
be changed according to the performance of the new motor.

6 Conclusion

In view of safety, energy efficiency and time efficiency, three optimal motion plan-
ning strategies for overhead cranes have been proposed to provide three trajecto-
ries with the lowest swing, energy consumption, and transportation time respec-
tively. These optimal planning strategies have considered practical and physical
constraints such as maximal swing and jerk. Note that these trajectories obtained
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by off-line computation can be utilized as inputs of open loop control schemes, or
as tracking references of closed-loop control schemes.

In this paper, energy efficiency of crane is newly modeled under practical and
physical constraints, including maximal swing and jerk. The result of the energy-
optimal model can reduce energy consumption and peak power, which may be use-
ful in the incentive electricity market. The time and swing-optimal strategies can
also achieve better performance than existing strategies in terms of time efficiency
and safety. In practise, decision makers can choose one optimal strategy among
these three proposed ones depending on the requirements of work. As these three
objectives are competing, we have only considered each of them separately in this
paper. Methods of integrating three objectives can be reasonably extended, but
that is beyond the scope of this paper. In future work, the phases of hoisting and
lowering will be combined with the horizontal transportation for complete motion
planning using the proposed methods, and the closed-loop methods may be pro-
posed for tracking the planned trajectory and updating the trajectory online. The
proposed strategies of motion planning are developed on two dimensional crane
systems, and they are possibly extended on three or more dimensional systems as
part of future work.
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