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Fig. 11. POS of HE6 for two decision variables: x2 and x5. c©2013 IEEE. Reprinted with permission from
Helbig and Engelbrecht [2013a].

The POF of HE6 is similar to the POF of HE3 (refer to Figure 7). The POS of HE6 is
illustrated in Figure 11.
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HE7 is a Type III DMOOP, since the POF changes over time but the POS remains the
same. The POS and POF of HE7 are:
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Fig. 12. POS of HE7 for two decision variables: x2 and x5. c©2013 IEEE. Reprinted with permission from
Helbig and Engelbrecht [2013a].

The POS of HE7 is illustrated in Figure 12. The POF is similar to the POF of HE3, as
illustrated in Figure 7.
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Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))
f1(x) = x1 + 2

|J1|
∑

j∈J1

(
4y2

j − cos(8yiπ ) + 1.0
)

g(x) = 2 − √
x1 + 2

|J2|
∑

j∈J2

(
4y2

j − cos(8yiπ ) + 1.0
)

h( f1, g) = 1 −
(

f1
g

)H(t)

where:
H(t) = 0.75 sin(0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}

yj = xj − x

(
0.5
(
1.0+ 3( j−2)

n−2

))
1 , ∀ j = 2, 3, . . . , n

xi ∈ [0, 1], ∀i = 1, 2, . . . , n

(39)
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The POF of HE8 changes over time but the POS remains the same. Therefore, HE8
is a Type III DMOOP. The POS (refer to Figure 8) and POF (refer to Figure 7) of
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HE8 are:

POS : xj = x
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]

For HE9, the POF changes over time but the POS remains the same. Therefore, HE9
is a Type III DMOOP. The POS (refer to Figure 8) and POF (refer to Figure 7) of HE9 are:
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Minimise: f(x, t) = ( f1(x), g(x, t) · h( f1(x), g(x, t)))
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The POF of HE10 changes over time but the POS remains the same. Therefore, HE10
is a type I DMOOP. The POS (refer to Figure 9) and POF (refer to Figure 7) of HE10 are:

POS : xj = sin
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)
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The HE3 to HE10 DMOOPs can be changed from Type III DMOOPs to Type II
DMOOPs by changing the h function in Equations (34) through (41) as follows:

h( f1, g) = 1 −
(

f1

g

)H2(t)

with:

H2(t) = H(t) +
∑
xi∈xII

(
xi − H(t)

)2
, xII ⊂ x (42)

This new h function will cause the POS to change over time.

6. EVALUATION OF DMOO ALGORITHMS

This section highlights findings of a study that compares the performance of DMOAs
on DMOOPs with various characteristics [Helbig 2012]. Five DMOAs were used for
the experiments, namely the Dynamic Nondominated Sorting Genetic Algorithm II
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(DNSGA-II)-A [Deb et al. 2007], DNSGA-II-B [Deb et al. 2007], the dynamic coopera-
tive competitive Evolutionary Algorithm (dCOEA) [Goh and Tan 2009b], the Dynamic
Multi-objective Particle Swarm Optimisation (DMOPSO) algorithm [Lechuga 2009],
and the Dynamic Vector Evaluated Particle Swarm Optimisation (DVEPSO) algorithm
[Helbig and Engelbrecht 2013b]. All DMOAs were evaluated on a modified version of
DIMP2 with a concave POF, ZJZ (Equation (16)), FDA2 (Equation (6)), FDA2Camara
[Cámara et al. 2010], FDA3 (Equation (7)), FDA3Camara [Cámara et al. 2010], FDA5
(Equation (9)), FDA5iso (Equation (31)), FDA5dec (refer to Section 5.2), dMOP2
(Equation (14)), dMOP3 (Equation (15)), dMOP2iso (Equation (32)), dMOP2dec (refer
to Section 5.2), HE1 (Equation (19)), HE2 (Equation (20)), HE6 (Equation (37)), HE7
(Equation (38)), and HE9 (Equation (40)). For all benchmark functions, the severity
of change frequency of change combination (nt − τt) was set to 1–10, 10–10, 10–25,
10–50, and 20–10. For each DMOOP, the DMOA was executed for 30 runs, with each
run consisting of 1,000 iterations. Three performance measures were used, namely
the number of nondominated solutions found, accuracy [Cámara Sola 2010] (low value
indicates good performance), and stability [Cámara Sola 2010].

The following observations were made:

—DMOAs solving a DMOOP with a discontinuous POF will struggle to find a diverse
set of solutions for each of the continuous sections of the POF. Therefore, a DMOA
may require a longer period to find a diverse set of solutions. However, the time
available depends on the frequency of changes in the environment. Only DMOPSO
performed really well on DMOOPs with a discontinuous POF. DVEPSO struggled to
converge towards a discontinuous POF. However, the other algorithms managed to
find solutions that were relatively close to the true POF. DMOOPs with a discontin-
uous POF are selected as a characteristic of an ideal benchmark function suite (refer
to Table II, item 2).

—Only DVEPSO and dCOEA could solve DIMP2, where each decision variable has its
own rate of change. In addition, DVEPSO outperformed dCOEA. In a fast-changing
environment, both DMOAs obtained very high accuracy and stability values. There-
fore, the found solutions were far from the true POF, and the performance of both
DMOAs was severely affected by changes in the environment. DMOOPs with deci-
sion variables that change at different rates are selected as a characteristic that an
ideal benchmark function suite should exhibit (refer to Table III, item 6).

—The lack of gradient information may cause a DMOA to converge slower to an isolated
POF. All DMOAs, except DMOPSO, obtained a better performance for dMOP2iso
than the original dMOP2 DMOOP. However, in contrast to dMOP2, when solving
FDA5iso, all DMOAs obtained a worse performance than with the original FDA5
DMOOP. Furthermore, dCOEA struggled to converge towards the POF of FDA5iso.
In a fast-changing environment with severe changes, all DMOAs obtained much
larger accuracy and stability values. Therefore, they struggled to find solutions close
to the true POF in the available time, and their performance was severely affected
by the changes the environment.

—Since the search space favours the local POF, DMOAs take longer to converge to
the true POF if the POF is deceptive. Therefore, when the changes in the environ-
ment are gradual and occur only occasionally, the DMOAs obtain reasonable accu-
racy and stability values. However, when the environment changes frequently, the
DMOAs’ performance degrade, leading to very large accuracy and stability values.
On dMOP2dec, all DMOAs except DMOPSO performed much worse than on the orig-
inal dMOP2. For FDA5dec, all DMOAs performed much worse than for the original
FDA5 function. In addition, dCOEA struggled to find solutions for FDA5dec, even
in slow-changing environments. DMOOPs with an isolated or deceptive POF are
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Table II. Set of DMOO Benchmark Functions for Each Identified Characteristic for MOOPs in
General

Characteristic DMOOP Type: Suggested DMOOPs
1. DMOOPs that cause difficulties to
converge towards the POF:
— Multimodal DMOOPs Type I: DMZDT4 [Wang and Li 2009]
— DMOOPs with an isolated optimum Various: DMOOPs developed according to Section 5.1
— DMOOPs with a deceptive optimum Various: DMOOPs developed according to Section 5.2
2. DMOOPs that cause difficulties to
find a diverse set of solutions:
— DMOOP with a convex POF —Type I: FDA1 (Equation (5)), DMZDT1 [Wang and Li

2009]
—Type II: Modified FDA3 functions [Zheng 2007;

Talukder and Khaled 2008; Khaled et al. 2008; Cámara
et al. 2010]

—Type III: dMOP1 (Equation (13))
— DMOOPs with a nonconvex POF — Type I: DMZDT2 [Wang and Li 2009], FDA4

(Equation (8)), DMOP3 [Liu et al. 2010]
— Type II: FDA5 (Equation (9))
—Type III: Modified FDA5 [Talukder and Khaled 2008]

— DMOOPs with a discontinuous POF —Type I: DMZDT3 [Wang and Li 2009]
—Type III: HE1 (Equation (19)), HE2 (Equation (20))

— DMOOPs with a nonuniform spread of
solutions

—Type I: dMOP3 (Equation (15))
—Type II: FDA5 (Equation (9)), modified FDA3 functions

[Zheng 2007; Talukder and Khaled 2008; Khaled et al.
2008; Cámara et al. 2010]

—Type III: Modified FDA5 [Talukder and Khaled 2008]

3. DMOOPs with various types or
shapes of POSs

— Types I, II: DTLZAv (Equation (21))
— Type II: ZJZ (Equation (16)), DSW2 (Equation (28)),

DSW3 (Equation (29))
— Type III: HE3 to HE10 (Equations (34) through (41))
—Types II, III: Modified FDA2 [Mehnen et al. 2006; Deb

et al. 2007; Liu et al. 2010; Zheng 2007; Isaacs et al.
2008; Ray et al. 2009; Lechuga 2009; Cámara et al.
2009, 2010; Cámara Sola 2010]

4. DMOOPs with dependencies
between the decision variables

—Type II: ZJZ (Equation (16))

c©2013 IEEE. Reprinted with permission from Helbig and Engelbrecht [2013a]

identified as characteristics of an ideal benchmark function suite (refer to Table II,
item 1).

—DMOAs solving a DMOOP with a complex POS will require more time to converge
than when they are solving a DMOOP with a simple POS—that is, when all decision
variables have the same POS, with the POS being defined by a linear function.
When solving HE6, HE7, and HE9 with complicated POSs, the DMOAs struggled
to converge to the true POF. For HE9, three of the five DMOAs obtained very high
accuracy values, and two DMOAs obtained high accuracy values, indicating a poor
performance. In addition, when solving HE6 and HE7, all DMOAs, except dCOEA,
obtained high accuracy values. DMOOPs where the POS is a nonlinear function have
been identified as a characteristic that an ideal benchmark function suite should
exhibit (refer to Table II, item 5).

It should be noted that similar to a lack of standard DMOO benchmark functions,
there are no standard DMOO performance measures. Selecting which performance
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Table III. Set of DMOO Benchmark Functions for Each Identified Characteristic for DMOOPs

Characteristic DMOOP

1. DMOOPs where the distribution of
solutions in the POF changes over
time

— Type I: dMOP3 (Equation (15))
— Type II: FDA5 (Equation (9)), modified FDA3 functions

[Zheng 2007; Talukder and Khaled 2008; Khaled et al.
2008; Cámara et al. 2010]

— Type III: Modified FDA5 [Talukder and Khaled 2008]

2. DMOOPs where the POF changes
from convex to nonconvex and/or
vice versa over time

—Type II: dMOP2 (Equation (14)), ZJZ (Equation (16))
— Type III: dMOP1 (Equation (13))
— Types II, III: Modified FDA2 functions [Mehnen et al.

2006; Deb et al. 2007; Liu et al. 2010; Zheng 2007;
Isaacs et al. 2008; Ray et al. 2009; Lechuga 2009;
Cámara et al. 2009, 2010; Cámara Sola 2010]

3. DMOOPs where the shape of POS
changes over time

— Various types: DTLZAv (refer to Equation (21))

4. DMOOPs with a disconnected POS
that changes over time

— Type II: DSW2 (Equation (28))

5. DMOOPs where each decision
variable has a different POS that
changes over time

— Type III: HE3 to HE10 (Equations (34) through (41))

6. DMOOPs with decision variables
that change with different rates over
time

— Type I: DIMP1 (Equation (17)), DIMP2 (Equation (18))

7. DMOOPs where the current POF
depends on the previous POF or POS

— Type IV: T3 (Equation (24)), T4 (Equation (25))

8. DMOOPs where the number of
decision variables vary over time

— Type IV: T1 (Equation (22))

9. DMOOPs where the number of
objective functions vary over time

— Types I, II: DTLZAv (Equation (21))
—Type III: T2 (Equation (23))

10. Real-world DMOOPs — Refer to Section 8
c©2013 IEEE. Reprinted with permission from Helbig and Engelbrecht [2013a]

measures to use to evaluate DMOAs is no trivial task. However, the reader is referred
to Helbig [2012] and Helbig and Engelbrecht [2013c], which provide a comprehen-
sive overview of DMOO performance measures and highlight issues with performance
measures that are currently used to evaluate DMOAs.

7. IDEAL SET OF DMOO BENCHMARK FUNCTIONS

Taking into consideration the benchmark functions currently being used for DMOO
(discussed in Section 4) and the ideal characteristics of benchmark functions (dis-
cussed in Section 3), it becomes clear that many different types of DMOOPs have been
suggested to be used as benchmark functions. Therefore, when a new DMOO algorithm
has been developed, the selection of benchmark functions to test the algorithm’s ability
to solve DMOOPs in comparison with other algorithms is a daunting task. This section
presents the characteristics of an ideal benchmark function set and suggests DMOOPs
that can be used to sufficiently test an algorithm’s ability to solve DMOOPs.

From Sections 3 and 4, the following characteristics were identified that an
ideal MOO (static or dynamic) set of benchmark functions should have [Helbig and
Engelbrecht 2013a]:

(1) The set of benchmark functions should test whether an algorithm can converge
towards a POF with the following characteristics:
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—Multimodality
—Isolated optimum
—Deceptive optimum

(2) The set of benchmark functions should test whether an algorithm can obtain a
diverse set of solutions when a POF has the following characteristics:
—Convexity and/or nonconvexity in the POF
—Discontinuous POF (i.e., a POF with disconnected continuous subregions)
—Nonuniform distribution of solutions in the POF

(3) The benchmark functions should have various types (Type I to IV of Farina et al.
[2004]) or shapes of POSs, including POSs with nonlinear curves.

(4) The benchmark functions should have decision variables with dependencies (link-
ages).

In addition, the following characteristics were identified that an ideal DMOO bench-
mark function suite should have [Helbig and Engelbrecht 2013a]:

(1) The benchmark functions should have a nonuniform distribution of solutions in
the POF and/or the distribution of solutions should change over time.

(2) The POFs’ shape should change over time from convex to nonconvex and/or vice
versa.

(3) The POSs’ shape should change over time.
(4) The POS should be disconnected and change over time.
(5) Each decision variable should have a different POS that changes over time.
(6) The benchmark functions should have decision variables that change with differ-

ent rates over time.
(7) The benchmark functions should include cases where the POF depends on values

of POSs or POFs of previous environments.
(8) The benchmark functions should enable varying the number of decision variables

over time.
(9) The benchmark functions should enable varying the number of objective functions

over time.
(10) A real-world DMOOP

For each characteristic, a set of DMOOPs was identified from Sections 4, 5.1, and
5.2. Tables II and III present the proposed ideal benchmark functions suite from which
DMOOPs can be selected to evaluate the performance of DMOAs.

Selection of DMOOPs for a study should be done in such a way that various types of
DMOOPs are selected for each characteristic. The reason for this is to ensure that an
algorithm can overcome a certain difficulty in various types of DMOO environments.

In order to evaluate whether an algorithm can solve DMOOPs with various change
frequencies (τt) and change severities (nt), the following parameter values are sug-
gested: τt = {5, 10, 25, 50, 100} and nt = {1, 10, 20}, where various combinations of
τt and nt values should be used. These parameter values will enable researchers to
analyse the performance of the algorithms for specific type of environments—that
is, whether a specific algorithm performs well in slow-changing environments, fast-
changing environments, or both; gradually changing environments, severely changing
environments, or both; and a combination of these listed environment types.

In addition to the benchmark functions listed in Table II, generic benchmark function
generators can be used to create DMOOPs of various types with specific characteris-
tics as outlined in this section—for example, DTF (refer to Equation (10)), DTLZAv

(refer to Equation (21)), DSW (refer to Equation (26)), and the DMOOP of Tang et al.
(refer to Equation (11)).
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8. REAL-WORLD DMOO PROBLEMS

Normally, the degree of difficulty of a real-world problem is unknown beforehand. Fur-
thermore, in many cases, the true POF of a real-world problem is unknown. Therefore,
artificial problems or benchmark functions are used to evaluate the performance of an
algorithm. The benchmark functions exhibit certain characteristic and therefore test
whether an algorithm can overcome specific difficulties.

Numerous real-world DMOOP application areas exist, of which some are hydro-
thermal power scheduling [Deb et al. 2007], machining of gradient material [Roy
and Mehnen 2008], controller design for a time-varying unstable plant [Farina et al.
2004; Huang et al. 2011], war resource allocation [Palaniappan et al. 2001], route
optimisation according to real-time traffic [Wahle et al. 2001], design optimisation of
wind turbine structures [Maalawi 2011], supply chain networks [Chen and Lee 2004;
Selim et al. 2008], and energy-efficient routing optimisation in mobile ad hoc networks
[Constantinou 2011].

In this section, four real-world DMOOPs of various application areas are discussed,
namely the regulation of a lake-river system, the optimisation of a heating system, the
control of a greenhouse, and the management of hospital resources.

8.1. Regulation of a Lake-River System

Hämäläinen and Mäntysaari [2001] proposed a mathematical model to regulate a lake-
river system that consists of four lakes and a river that connects the lakes to the sea.
The DSOOP in Hämäläinen and Mäntysaari [2001] is adapted to a DMOOP as follows:

min f = ( f1, f2)

f1 =
∑
k∈K

cggk +
n∑

i=1

pi

f2 =
∑
k∈K

cI Ik +
n∑

i=1

pi

with:

gk = (xgoal
k − xk

)2
Ik =
⎧⎨
⎩

(Ik − xk)2, if xk < Ik
(xk − uk)2, if xk > Ik
0, otherwise

pi =
{

c1 (|qi − qi−1| − 	qmax)2 + c2 (qi − 1i−1)2
, if |qi − qi−1| > 	qmax

c2 (qi − qi−1)2 , otherwise

where K is the set of goal observation indexes of the planning period; c1 and c2 are
adjustable parameters; gk is the deviation from the goal point; xgoal

k is the goal; xk is the
true water level; Ik is the deviation from the goal set; lk and uk are the lower and upper
bounds of the goal xk, respectively; pi is a penalty function; qi is the outflow from Lake
Päijänne; 	qmax is the upper limit of the change in flow rate; and i refers to the dis-
cretized time interval. The following parameter values are suggested [Hämäläinen and
Mäntysaari 2001]: cg = 10L/m2, cI = 100L/m2, c1 = 100s2/m6, and c2 = 0.00001s2/m6.
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8.2. Heating Optimisation

Hämäläinen and Mäntysaari [2002] proposed a DMOOP to optimise indoor heating.
The DMOOP is defined as:

min f = ( f1, f2, f3)

f1 =
n−1∑
i=0

piqi

f2 =
n−1∑
i=0

qi

f3 =
n−1∑
i=0

∣∣Ti − T ideal
i

∣∣ (44)

with:
T0 = Tn (45)
li ≤ Ti ≤ ui, ∀i = 0, . . . , n − 1
0 ≤ qi ≤ q, ∀i = 0, . . . , n − 1,

where f1 represents heating costs; f2 represents heating energy; f3 represents devi-
ation from the ideal temperature; Ti represents indoor temperature that is a state
variable; qi represents the heating power at time i and is a decision variable; T0 is the
initial indoor temperature; li and ui are the lower and upper bounds of Ti, respectively;
q is the maximum heating capacity of the heating system; pi is the hourly price of
electricity at time i; and T ideal

i is the hourly ideal indoor temperature specified by the
decision maker.

The constraint in Equation (45) specifies that the indoor temperature of the first hour
of the day has to be the same on the following day. This constraint can be managed
by either only accepting solutions that adhere to this constraint or by converting the
constraint to a penalty function.

8.3. Control of a Greenhouse

Ursem et al. [2002] proposed a mathematical model to describe the state transformation
of a greenhouse for crops as a DSOOP. Zhang [2007] proposed a DMOOP to optimisation
of the control of a greenhouse sytem based on the model proposed by Ursem et al. [2002]:

min
U(k)∈Uad

f(U(k)) = (− f1, f2, f3)

f1(U(k)) = 1
l

k+l∑
j=k

vpcrop( j)	x( j)

f2(U(k)) = 1
l

k+l∑
j=k

vpheat( j)uheat( j)

f3(U(k)) = 1
l

k+l∑
j=k

vCO2 ( j)upCO2 ( j) (46)
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subject to:

xtemp(k + 1) = xtemp(k) + 	xtemp(k), xCO2 (k + 1) = xCO2 (k) + 	xCO2 (k)
xcrop(k + 1) = xcrop(k) + 	xcrop(k), yout(k + 1) = 	xcrop(k)

xtemp(0) = 18; xCO2 (0) = 1; xcrop(0) = 4; 16 ≤ xtemp(k) ≤ 35,∀k (47)

	xtemp(k) = uheat(k − 1) + t1 + uvent(k − 1)
[
vtemp(k − 1) − xtemp(k − 1)

]+ k2vsun(k − 1)
	xcrop(k) = min(max(k5 − |xtemp(k − 1) − k6|, 0), min(xCO2 , k7), min(vsun(k − 1), t8))

− k9 min(k5 − |xtemp(k − 1) − k6|, 0)

with:

Uad = {U(k) = (u0(k), u1(k), . . . , ul−1(k)
) |u j(k) = (uheat(k + j), uvent(k + j), uCO2 (k + j)

)
,

u j(k) ∈ [0, 5]x[0, 1]x[0, 4]; 0 ≤ j ≤ l − 1}
vtemp(k) = 10 + vtemp,p(k) + vtemp,st(k), vsun(k) = 1.0 + vsun,p(k) + vsun,st(k)
vpcrop(k) = 22.0 + vpcrop,p(k) + vpcrop,st(k), vpheat(k) = 2.5 + vpheat,st(k), vpCO2 (k)

= 2.5 + vpCO2,st(k), t0 = −10

vtemp,p(k) = 7 cos(2π10−2tk) + 9 cos(2π10−3tk)

vsum,p(k) = 4 cos(2π10−2tk) + 9 cos(2π10−3tk)

vpcrop,p(k) = −3cos(2π10−3tk)
vtemp,st(k) = min(max(vtemp,st(k − 1) + U (−0.5, 0.5),−4), 4)
vsun,st(k) = min(max(vsun,st(k − 1) + U (−0.25, 0.25),−1, 1)

vpcrop,st(k) = min(max(vpcrop,st(k − 1) + U (−10−2, 10−2), −5), 5)

vpheat,st(k) = min(max(vpheat,st(k − 1) + U (−10−3, 10−3),−0.5), 0.5)

vpCO2,st(k) = min(max(vpCO2,st(k − 1) + U (−10−3, 10−3),−0.5), 0.5)
vtemp,st(0) = 0; vsun,st(0) = 0; vpheat,st(0) = 0; vpCO2,st(0) = 0; vpcrop,st(0) = 0
uheat ∈ [0, 5]; uvent ∈ [0, 1]; uCO2 ∈ [0, 4]
vtemp ∈ [−20, 40]; vsun ∈ [0, 8]; vpcrop ∈ [0, 30]; vpheat, vpCO2 ∈ [0, 3]
xtemp ∈ [−20, 50]; xCO2 ∈ [0, 10]; xcrop ∈ [0, ∞),

where tk is the time when the greenhouse is in the k-th step, U (a, b) is a stochastic
variable with an uniform distribution over [a,b], l is the prediction timestep size, k1
is the smallest coefficient of heat transformation, k2 is the sun absorption rate of the
greenhouse, k3 is the increment rate at which the crop consumes CO2, k4 is the density
of CO2 outdoors, k5 is the maximum crop output, k6 is moderate temperature that
results in the best crop growth, k7 is the maximum quantity of CO2 that the crop
consumes, k8 is the maximum intensity of the sun that results in crop growth, and k9
is the loss rate that results in severe temperatures. The controller consists of three
variables, namely heat (uheat), ventilation (uvent), and CO2 (uCO2 ). Five variables are
considered for the environmental system, namely environmental temperature (vtemp),
intensity of the sun (vsun), prices of the crop (vpcrop), heat (vpheat), and CO2 (vpCO2 ). In
addition, the greenhouse has three indoor state variables, namely temperature (xtemp),
density of CO2 (xCO2 ), and crop quantity (xcrop).

33



The constraint, 16 ≤ xtemp ≤ 35 (refer to Eq. (47)), is transformed into a subobjective
function:

f4(U(k)) =
k+l∑
j=k

{
[max(16 − xtemp( j), 0)]2 + [min(35 − xtemp( j), 0]2} (48)

Therefore, the DMOOP of Equation (46) is converted to the following four-objective
DMOOP:

min
U(k)∈Uad(k)

(− f1(U(k)), f2(U(k)), f3(U(k)), f4(U(k))
)

(49)

The following parameter values are suggested in Zhang [2007]: k1 = 0.1, k2 = 0.2,
k3 = 1, k4 = 4, k5 = 8, k6 = 26, k7 = 8, k8 = 7, and k9 = 0.1.

8.4. Hospital Resource Management

Hutzschenreuter et al. [2009] proposed a DMOOP to model the management of hospital
resources, defined as follows:

min f(π ) = (− f1(π ), f2(π ), f3(π ))

f2(π ) =
∑∑

cuπu(ti, su) + cCT S−ORucCT S−OR(π )

(50)

with:

su(ti) = utilised capacity at unit u at start of day ti
ru(t−

i )

pi =
⎧⎨
⎩

max
{
rmin

u , ru(t−
i ) − rdecr

u

}
, if su(ti) < UTdecr

u
ru(t−

i ), if su(ti) ∈ [UTdecr
u , UTincr

u

]
min
{
rmax

u , ru(t−
i ) + rincr

u

}
, otherwise

πu(t0, su) = rbase
u

rbase
u ∈ N

⋂∣∣rmin
u , rmax

u

∣∣ , ∀u ∈ U

su(ti) ∈ R+
0 , ∀u ∈ U, ∀ti ∈ T

′

rdecr
u , rincr

u ∈ [0, 5], ∀u ∈ U

UTdecr
u ∈ [0, 1], UTincr

u ∈ [UTdecr
u , UTdecr

u + 1
]
, ∀u ∈ U,

where T is the time horizon with discrete time units t and n equidistant decision5
moments denoted by ti ∈ T ′ with ti−1 < ti∀i = 1, . . . , n− 1 (typically t will be in steps of
hours and ti will be in steps of days), π is a resource allocation policy, f1(π) is the mean
total throughput of patients under π defined as the number of patients discharged
from the hospital after treatment, f2(π ) is the mean total resource cost, f3(π ) is the
mean total weighted backup capacity usage under allocation π , ucCT S−OR is the unused
Cardio-Thoracic Surgery Operating Room (CTS-OR) capacity due to cancelled surgeries
resulting from unavailable postoperative care beds give π , su(ti) is the state at unit u at
decision moment i, ru(t−

i ) is the resource capacity of unit u at time t−
i that is just before

the adjustment at time ti, rbase
u is the base resource allocation, rdecr

u and rincr
u are resource

adjustments, UTdecr
u and UTincr

u are utilisation adjustments with UTdecr
u ≤ UTincr

u , and
πu(ti, si) ∈ [rmin

i , rmax
i ]∀ti ∈ T ′, u ∈ U .
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9. CONCLUSION

In recent years, many DMOOPs have been proposed in the DMOO literature. In addi-
tion, no standard benchmark functions exist to evaluate the performance of DMOAs.
However, no comprehensive overview of the proposed DMOOPs exists. Therefore, it is
a daunting task to select DMOAs for empirical studies.

This article seeked to address this gap in the literature by providing a comprehensive
overview of the benchmark functions that have been used in the DMOO literature.
In addition, characteristics that an ideal DMOO benchmark function suite should
exibit were proposed, and DMOOPs were suggested for each of these characteristics.
The suggested ideal benchmark function suite should enable a uniform comparison of
DMOAs.

The investigation of the DMOOPs presented in the literature highlighted the fol-
lowing shortcomings of DMOOPs: no DMOOPs have a deceptive or isolated POF, for
most DMOOPs the POS is the same for each decision variable and the POS is a simple
function (such as xi = | sin(0.5πt)|).

To address these shortcomings, this article presented an approach to adapt existing
DMOOPs in such a way that the DMOOPs have either a deceptive or an isolated POF.
Furthermore, new DMOOPs were proposed where the POS is a nonlinear function and
the POS varies for each decision variable.

In addition, DMOO application areas were highlighted, and four real-world DMOOPs
were discussed in more detail, namely the regulation of a lake-river system, the op-
timisation of a heating system, the control of a greenhouse, and the management of
hospital resources.

      APPENDIX

B. CALCULATING THE TRUE POS AND POF

This section discusses how POS and POF are determined for DMOOPs. One example
is provided, namely FDA2 modified by Cámara et al. [2009, 2010] and Cámara Sola
[2010] referred to in this section as FDA2Cámara.

The FDA2Cámara DMOOP has two objective functions (refer to Section 4) and is
defined as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimise: f (x, t) = ( f1(xI), g(xII) · h
(
xIII, f1(xI), g (xII) , t

)
)

f1(xI) = x1
g(xII) = 1 +∑xi∈xII

x2
i

h(xIII, f1, g, t) = 1 −
(

f1
g

)H2(t)

where:
H(t) = z− cos(πt/4), t = 1

nt

⌊
τ
τt

⌋
H2(t) = H(t) +∑xi∈xIII

(xi − H(t)/2)2

xI ∈ [0, 1]; xIIi , xIIIi ∈ [−1, 1]

The goal when solving FDA2Cámara is to minimise the two objective functions, namely
f1 and f2 = gh. Since f1 only depends on x1, the true POF depends on f2. In order to
minimise gh, both g and h have to be minimised. h will be minimised if the term f1

g
H2(t)

is maximised (since this term is subtracted from 1). The term f1
g

H2(t)
is maximised

if g is minimised (since f1 is divided by g). g is minimised if the term
∑

xi∈xII
x2

i is
minimised—that is, if

∑
xi∈xII

x2
i is zero. Therefore, the optimal values for xi ∈ xII is

35



xi = 0. If
∑

xi∈xII
x2

i = 0, g = 1. Replacing g = 1 into f2 = gh results in f ∗
2 = 1 − f H2(t)

1 .
In order to minimise f ∗

2 , H2(t) has to be minimised. H2(t) is minimised if the term∑
xi∈xIII

(xi − H(t)/2)2 is minimised, which results in H∗
2 (t) = H(t). Therefore, the optimal

values of xi ∈ xIII is xi = H(t)
2 . Replacing H2 in f ∗

2 with H∗
2 results in f2 = 1 − f H(t)

1 .
Therefore, POF is 1 − f H(t)

1 . The decision variable values that lead to POF is POS,
namely xi = 0,∀xi ∈ xII and xi = H(t)

2 , ∀xi ∈ xIII.
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R. P. Hämäläinen and J. Mäntysaari. 2001. A dynamic interval goal programming approach to the regulation
of a lake-river system. Journal of Multi-criteria Decision Analysis 10, 2 (2001), 75–86.
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