Ensuring the production of safe, high-quality food has necessitated the development of extensive food-safety assurance systems that should be implemented throughout the supply chain. We have been exploiting the beneficial properties of microorganisms in food production for thousands of years. Early societies discovered that bacteria and fungi, through fermentation processes, could be used to maintain a safe, long-lasting supply of foodstuffs such as cheese. Today, we consume probiotics and expect that they will have beneficial physiological effects through specific microbial actions. There is, however, also a dark side to food microbiology: the spread and evolution of food pathogens is a growing problem for product yield and consumer safety.

Traditional food safety
Traditionally, food safety and quality has been pursued with a reactive approach. Although these strategies have proved effective, their deficiencies in relation to microbial food safety have long been recognised. This, and the successful adoption of proactive HACCP strategies to ensure the safety of food for astronauts in the 1970s, was, however, insufficient to overcome reliance on the flawed strategies of product testing and random premises inspection in pursuit of safe food. Initially, there was resistance in accepting the HACCP principle, to some extent attributable to the resistance of the scientific community to accept the system.

It is difficult to understand the persistence to retrospective protection strategies over such a long time given their obvious limitations. One possible explanation that accumulating evidence was ignored was possibly because it was believed that good hygiene
practices were adequate, even though in various food sectors it had been shown that prevention of contamination alone was not sufficient in assuring safe food. The oldest evidence was from the dairy industry where all attempts to produce safe, raw milk had consistently failed.

In 1990, four principles were set out that were presented as fundamental to providing safe food for the consumer:

- More rapid adoption of HACCP strategies throughout the entire food chain.
- Implementation of safety assurance measures should become the obligation of the producer at every stage in the industry.
- With a transfer of responsibility to the industry, the role of government agencies would contract to one of responsible verification.
- The consumer would take responsibility too, by seeking relevant information to ensure that safety measures introduced during production were not negated by their own actions.

In order to control the outbreaks of foodborne diseases, many countries regulated HACCP and subsequently implemented food safety management systems (FSMS). An FSMS can be defined as a company-specific system of control and assurance activities to realise and guarantee food safety. Introduction of a HACCP-based system eliminates the fluctuations in microbiological quality and safety intrinsic in uncontrolled practices. Several private quality assurance standards are available, such as ISO 22000 (ISO, 2005b), International Food Standard (IFS, 2007), Global Standard for Food Safety (BRC, 2008) and many others. These standards have been developed for the food processing industries. Once implemented, a company will be able to attain certification, which is mostly demanded by retailers.

The paradox
Microbes can enter the food chain at different stages, are highly versatile and can adapt to the environment allowing survival, growth and production of toxic compounds. Therefore, despite great awareness of food safety internationally, large food safety outbreaks in which microorganisms play a prominent role, continue.

Estimates of the prevalence of foodborne diseases vary greatly, owing to large differences in data sources and surveillance systems. Nevertheless, there is agreement that foodborne disease is one of the principal causes of human morbidity. In industrialised nations, the percentage of people suffering from foodborne diseases each year has
The most common pathogens responsible for foodborne gastroenteritis are pathogenic Campylobacter, E. coli, Norovirus and non-typhoidal Salmonella. The rate of new diseases identified is increasing. In 1978, a new disease was identified every 10 to 15 years, in 1988 every eight to nine years and, today, a new disease is identified every 14 to 16 months.

Factors that may be driving the increase in foodborne diseases:

• doubling of the global demand for food
• significantly increased consumption of certain high-value food commodities such as meat, poultry and fresh produce
• fewer geographical barriers to prevent the spreading of new variants
• the increased demand for convenience foods.

Factors that may contribute to a reduction in the foodborne disease burden:

• ability of governments to take effective regulatory measures
• development and use of new food safety technologies
• development of detection methods may increase the observed risk by the discovery of new pathogens or variants but will ultimately contribute to reduction.

The most important factor in reducing the burden of foodborne disease is our ability to detect and investigate a food safety issue and then to develop effective control measures.

UNIQUE DAIRY BRANDS DEMAND CUSTOMER SERVICES THAT SUIT TAILOR-MADE PACKAGING.

Through advanced, intricate design, Nampak Rigid Plastics specialist divisions produce individualised solutions to enhance your brand.

As Africa’s largest rigid plastics packaging manufacturer, we produce the full range of PET bottles, HDPE bottles, performs, closures, tubes, jars, drums, crates, trays, IBCs, as well as the Pure-Pak range of liquid cartons. Coupled with a world class packaging research and development facility, we have the expertise, award-winning innovation, technology and service to make sure your brand’s packaging has both the right form and function.