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A ground vehicle is a dynamic system containing many non-linear components, ranging from
the non-linear engine response to the tyre-road interface. In pursuit of developing driver-
assist systems for accident avoidance, as well as fully autonomous vehicles, the application of
modern mechatronics systems to vehicles are widely investigated. Extensive work has been
done in an attempt to model and control the lateral response of the vehicle system utilising a
wide variety of conventional control and intelligent systems theory. The mgjority of driver
models are however intended for low speed applications where the vehicle dynamics are
fairly linear. This study proposes the use of adaptive control strategies as robust driver
models capable of steering the vehicle without explicit knowledge of vehicle parameters. A
Model Predictive Controller (MPC), self-tuning regulator and Linear Quadratic Self-Tuning
Regulator (LQSTR) updated through the use of an Auto Regression with eXogenous input
(ARX) model that describes the relation between the vehicle steering angle and yaw rate are
considered as solutions. The strategies are evaluated by performing a double lane change in
simulation using a validated full vehicle model in MSC ADAMS and comparing the
maximum stable speed and lateral offset from the required path. It is found that al the
adaptive controllers are able to successfully steer the vehicle through the manoeuvre with no
prior knowledge of the vehicle parameters. An LQSTR proves to be the best adaptive strategy
for driver model applications, delivering a stable response well into the non-linear tyre force
regime. This controller is implemented on a fully instrumented Land Rover 110 of the
Vehicle Dynamics Group at the University of Pretoria fitted with a semi-active spring-
damper suspension that can be switched between two discrete setting representing opposite
extremes of the desired response namely: ride mode (soft spring and low damping) and
handling mode (stiff spring and high damping). The controller yields a stable response
through a severe double lane change (DLC) up to the handling limit of the vehicle, safely
completing the DLC at a maximum speed of 90 km/h all suspension configurations. The
LQSTR also proves to be robust by following the same path for al suspension configurations
through the manoeuvre for vehicle speeds up to 75 km/h. Validation is continued by
successfully navigating the Gerotek dynamic handling track, as well as by performing aDLC
manoeuvre on an off-road terrain. The study successfully developed and validated a driver
model that is robust against variations in vehicle parameters and friction coefficients.
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Chapter 1
Introduction and Literature Survey

Throughout the existence of the automobile, researchers have attempted to improve the safety
of all road users by augmenting the vehicle with support systems. A driver model is a good
example of a system that could potentialy save millions of lives if implemented on vehicles
as an augmentation during severe manoeuvres.

1.1 Introduction

Vehicle automation has always been a very active research field usually aimed at increasing
the safety of the driver and occupants. Manufactures, such as BMW, Mercedes-Benz and
Audi among others, first started implementing intelligent system such as Radio Detection and
Ranging (RADAR) in the early 90's [1]. Although these early systems would only tension
seatbelts, it was the first step to the advanced Collision Avoidance (CA) systems of today.

Modern CA systems employ a variety of techniques aimed at improving the safety of the
vehicle. These include assistive braking and Active Cruise Control (ACC), al of which is
designed to control the distance between the vehicles. Although extensive research has been
done on longitudinal CA, lateral CA has largely been limited to driver feedback and other
warnings. Statistics by the National Highway Traffic Safety Administration (NHTSA) of the
USA show that head on and rear-end collisions make up 34.3% of the total number of
collisions, while angled and sideswipe collisions make up 32.5%. Despite this, head on and
rear-end collisions are responsible for only 15.3% of al collision fatalities, while angled and
sideswipe collisions are responsible for 20.3% of all collisions fatalities. Furthermore, a tota
of 21.7% of all fatal collisions occurred while the vehicle was negotiating a curve [2]. These
numbers demonstrate the effectiveness of longitudinal CA systems and emphasize the need
for alateral CA system, as no active systems are currently available.

Lateral CA systems can be divided in two groups:

1. Object detection and avoidance strategy (known as path planning)
2. Following a predetermined path to avoid an identified obstacle (known as path
following)

Extensive work has been done on object detection algorithms and avoidance strategies for
automotive applications employing visual or scanning sensors. Researchers from the
Technische Universitdét Darmstadt in Germany developed a collision avoidance system
known as PRORETA [3]. The system utilizes a fusion of Light Detection and Ranging
(LIDAR) and camera data to detect a possible collison with another vehicle. Upon
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triggering, the system either reduces the vehicle speed or calculates an evasive trgjectory in
an attempt to prevent the collision. Another example of such a system with path following
capabilities was developed by Yoon et a. and utilizes a model-predictive controller to steer
the vehicle on the calculated path [4]. Despite being able to detect obstacles and plan
avoidance trgjectories, these systems normally rely on the assumption of linear vehicle
dynamics leading to inadequate performance at higher vehicle speeds and during severe
Manoeuvres.

Path following systems are responsible for determining the vehicle steering input required to
follow a predetermined path with minimal deviation. These systems are designed using a
driver model which characterises the lateral response of a vehicle to some input (usually a
lateral position error or trgjectory error) and may also be termed a steering controller.
Although many models exist, few have been successfully validated at highway speeds and
high lateral accelerations where the effect of the non-linear tyre-road interface becomes
significant. Among the few that does consider the non-linear response effects in thisregimeis
the non-linear model described by Edelmann and Pldchl which uses a preview controller [5].
Gain scheduling can be used to allow these types of controllers to compensate for the non-
linearity at higher lateral accelerations by linearizing about a range of operating points. Not
only are these controllers limited to a specific operating environment, determining the various
gainsthat deliver stable performance proves to be a tedious process.

Some models attempt to physically model the vehicle using a set of parameters as opposed to
determining the transient response of the system empirically. This is demonstrated by the
driver model developed by Canale et al. [6]. Physica models are usualy computational
complex and cannot be used on-line to control the vehicle. They also require parameters that
cannot be easily determined while the vehicle is in operation (such as the position of the
center of mass), which poses a problem for practical control of avehicle.

In an effort to model the tyre-road interface and its non-linearity, Bakker and Pacgka
proposed the Magic Tyre Formula [7]. The formula performs a curve fit on measured data to
characterize the forces generated by the tyre and has been used by many to develop non-
linear driver models. While providing satisfactory results on manmade surfaces, the curve fit
coefficients are only valid in the environment that the initial measurements were performed
in. When the vehicle is driven in different conditions, the controllers must rely on their
disturbance rejection properties to follow the required path.

Thus there exists a need for a robust driver model that can compensate for the non-linear
dynamics of the vehicle at high lateral accelerations without being bound to a specific
operating environment.
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1.2 Non-linearity in vehicle dynamics

When considering the vehicle system, many non-linear components can be identified. This
ranges from a non-linear engine curve and backlashing of gears in the driveline to the
temperature dependent deceleration of the wheels during braking. Perhaps the largest
contributor to the non-linearity of vehicle dynamics is the tyre-road interface and the manner
in which lateral force is generated by arolling tyre.

A rolling tyre generates lateral force by manner of deformation. Figure 1 demonstrates this
effect, in which the aignment of the contact area of the tyre is offset by an angle from the
longitudinal axis of the tyre. This angle is more commonly known as the side-slip angle. At
low side-slip angles, the lateral deformation of the tyre is minimal and almost no lateral force
is generated. However as the side-dlip angle increases so does the amount of lateral force.

"
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Figure 1: Theside-slip angleof atyre[8]

Figure 2 shows plots of latera force vs. side-dlip angle and longitudinal force vs. longitudinal
slip to demonstrate the non-linearity present in the tyre-road interface.
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Figure 2: Typical lateral and longitudinal force generation of a tyreunder different vertical loads[9]
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The lateral force generation of the tyre is mostly linear at low dlip values, but becomes non-
linear as the amount of side-dlip increases and the lateral force saturates. A similar
observation can be made when considering the longitudinal force generation, where a
maximum is reached at approximately 20% dlip. It should also be noted that the amount of
force generated and the point at which the lateral force saturates is largely dependent on the
vertical load of the tyre. This implies that vehicle roll, pitch and general load-transfer
between the wheels of the vehicle add to the non-linearity of the problem.

Many have attempted to model the tyre-road interface with varying levels of success.
Existing tyre models can be classified as physical, semi-empirical or empirical models and
can model either the force generation or the vertical dynamics of the tyre. As this study does
not consider ride comfort, only the lateral and longitudinal force generation aspects will be
discussed.

Physical tyre models are aso known as white box models and attempt to describe the force
generation of the tyre by means of physical laws and wheel-ground interaction models. These
models are known to be very complex and take some time to solve, making them impractical
for online applications [10]. These include Finite Element Modelling (FEM) based models.
Contrasting this is the so-called black box or empirica models, in which a range of
measurements are taken and used to construct a lookup table. Although this could provide a
simple, quick solving solution, the conditions in which such amodel isvalid are limited.

The most popular modern tyre model is an example of a grey box or semi-empirical model.
The Pacglka Magic Tyre Formula [7] performs a curve fit to measured data in an effort to
describe the tyre-road interface. Although similar to the black box approach the coefficients
used were chosen to have some physical meaning, thereby easing the task of identifying the
initial model parameters. Having some initial parameters eases the task of optimizing the
curve fit. The model is however still only valid on man-made surfaces similar to those on
which the original data was obtained, although the estimated friction coefficient can be
adjusted in the curve fit parameters.

1.3 Driver models

A wide range of driver models have been developed in the past. These range from human
based models, which emulate the biological response and neuromuscular delays of the driver,
to advance physical models based solely on the geometry and dynamics of the vehicle. Work
has al so been done on devel oping behavioural driver models which try to replicate the human
thought and learning processes and incorporate it into the control of the vehicle.

1.3.1 Vehiclebased driver models

Vehicle based driver models can be divided into three categories (with increasing
complexity): geometric models, kinematic models and dynamic models. Conventionaly, in-
plane geometric and kinematic models are favoured for their simplicity. As this smplicity is

4
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achieved by neglecting the effect of dlip, these models tend to become less accurate during
higher lateral accelerations in the non-linear tyre regime. Dynamic models, based on
Newton’s second law of motion, are preferred in this instance.

Geometric and Kinematic Driver Models

Geometric driver models are designed by taking into account only the geometry of the
vehicle, more specifically the wheelbase and steering angle that alows the vehicle to move
on a constant radius. A geometric controller incorporates no additional information about the
vehicle being controlled.

An example of a geometric driver model is the pure pursuit method, based on simplified
Ackerman steering geometry. The pure pursuit method cal culates the steering angle required
to have the rear whedl intersect a predetermined goal point on the path assuming a constant
radius curvature and a specified preview distance [11]. An illustration of the pure pursuit
model is shown in Figure 3, along with the Stanley method path follower. Stanford
University developed the Stanley method based on their autonomous vehicle competing in
the Defence Advanced Research Projects Agency (DARPA) Grand Challenge [12]. Stanley,
the autonomous Volkswagen Touareg, won the 2005 DARPA Grand Challenge using the
Stanley method controller to steer the vehicle. The Stanley method controller regulates the
heading of the vehicle and incorporates a non-linear penalty function to minimize the cross
track error.

A study performed by Snider using the CarSim software package and a simple proportional
controller with the geometric driver models showed that reasonable path following can be
achieved at low speeds [13]. It was however found that the controller gains used caused it to
become unstable at higher speeds and had to be re-tuned to achieve path following at these
speeds. This illustrates the compromise between path following accuracy at low speeds and
high speed stability when using geometric driver models.

2

Figure 3: The Pure Pursuit model (left) and the Stanley model (right) [13]
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A kinematic driver model can be considered the most basic form of a vehicle model. These
driver models are based on the linear equations of motion and operate under the assumption
of no whedl dlip. Figure 4 illustrates the kinematic bicycle model (also referred to as a yaw
planar model) in which the left and right tyres are represented as one with the average
steering angle at the front whesl.

Y 0

(x¥:)

Figure 4: A kinematic driver model [13]

Kinematic models use the steering angle and vehicle geometry to calculate the vehicle
velocity component in each direction, as well as the in-plane rotation of the vehicle. Simple
integration yields the estimated position of the vehicle. Apart from the wheelbase of the
vehicle, no additional vehicle dynamics are incorporated in the models. Although kinematic
driver models yield better results at low speed than their geometric counterparts, a trade-off
between path following accuracy and path following speed is still required when using a
single gain controller.

Dynamic Driver Models

Unlike the geometrical and kinematic driver models, dynamic driver models do not disregard
the tyre-road interface. Instead the response of the vehicle is estimated by considering the
dynamics of the vehicle system, either explicitly through mathematical equations or through
intelligent system techniques such as neural networks (NN). The introduction of the
additional dynamics does however increase the complexity of the system and the
computational effort required to solve it. In an attempt to reduce this complexity, many
models linearize the dynamics of the tyre-road force generation. Although satisfactory results
are achieved at low to medium lateral accelerations, the non-linear tyre force generation and
tyre force saturation causes these models to deviate significantly at high lateral accelerations.

Basic driver models use Newton’s second law and the forces generated by the tyres directly
to estimate the vehicle acceleration and yaw-rate. A ssimple dynamic model is formulated by
expanding the bicycle model discussed earlier and is illustrated in Figure 5 [13]. Here the

6
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introduction of tyre forces and vehicle dynamics to the model alows the concept of side-dlip
and tyre dlip angles to be addressed. Ackermann et al. developed a similar dynamic driver
model for the lateral control of a city bus [14]. The model incorporated vehicle dynamics,
such as dlip, but the tyre-road interface was modelled using the linear tyre model of Riekert
and Schunck [15] and was found to be valid only at low lateral accelerations.

Figure5: A simple dynamic driver model

In an attempt to overcome the instabilities of the controllers at high speeds caused by
linearization of the tyre-road interface, many researchers proposed sliding-mode control as a
solution. In a sliding-mode algorithm, the control structure is modified based on the current
state of the system. In other words, more than one controller is designed and the correct
variant is selected based on the lateral acceleration of the vehicle. This was implemented by
Ackermann at a. as a successor to the initial linear city bus controller discussed earlier.
Ackermann found that, although no noticeable difference was observed in controller settling
time, the dliding-mode controller yielded smaller deviations from the set guideline than the
previous linear controller [16].

Falcone et a. proposed a Model Predictive Control (MPC) scheme for the active steering
control of avehicle [17]. The controller was based on a non-linear vehicle model, as opposed
to the linear model of Y oon et al. [4], and tasked with determining the optimal steering angle.
The steering angle was required to steer the vehicle with a calculated trgectory and was
implemented over a finite preview horizon. Results showed that, as with many optimal
control problems, the computational complexity of the optimisation limited the
implementation to very low vehicle speeds. This was overcome by implementing alow order
linear time varying controller designed to perform online linearization of the vehicle model.
Despite being able to stabilize the vehicle at speeds of up to 21 m/s, the controller is based on
adetailed vehicle model and cannot be easily transferred to a different platform. Furthermore,
the non-linear tyre-road interaction is based on the Magic Formula tyre model [7]. While this
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model provides a good approximation of the tyre characteristics on manmade surfaces, it is
limited to the surface on which the initial model was generated.

Sharp et a. suggested a modified optimal controller that utilises more than one preview point
[18]. The multi-point preview approach alows the controller to weigh each error
appropriately, along with the current state feedback, in order to determine the required steer
angle. The introduction of saturation functions in the model attempts to mimic the tyre force
saturation that occurs during vigorous manoeuvring. Even though these gain parameters are
difficult to tune Sharp notes that, although the system is based in linear optimal control
theory, the structure is similar to that of a NN. He argues that the model parameters can be
found using NN learning approaches. This indicates that the use of intelligent system
techniques might be necessary to capture the highly non-linear dynamics present in the lateral
control of avehicle.

Neural networks are designed to mimic the learning response of a human to a specific
situation by using a set of training data and identifying input-output scenarios. The possibility
of using a NN as a driver model was already investigated in the early 90's, as demonstrated
by the NN steering controller of Mecklenburg et al. Although the controller was trained
offline using a linear plant model, simulations proved it superior to the classical vehicle
control techniques of the time [19]. A feedforward NN was also used by Botha to characterise
the steering angle required to steer atest vehicle with a specified yaw rate at a certain vehicle
speed. Results from the study showed that performance similar to the mathematical model
could be achieved at a fraction of the computational cost [20]. However, as the model was
trained using the Inverse Magic Formula proposed by Thoresson [21], its performance is
limited by its operating environment and is bound to the test platform used.

A drawback of NNs is the amount of training data required to successfully develop the
system. The response of a NN is aso limited to the scope of training data used and cannot
handle situations that the system was not trained for. In many cases, especially when training
a vehicle controller, the gathering of training data can be a time consuming and unpractical
process. A compromise has been proposed in the form of Fuzzy Logic Controllers (FLC).

The concept of fuzzy logic has already been introduced in the 60's by Zadeh [22], but only
became popular in the late 80's. FLCs attempt to mimic human reasoning by moving away
from precise measurements and by labelling a situation in a so-called ‘fuzzy manner’. These
controllers are known for being able to control complex non-linear systems of which a
mathematica model is not easily available through the use of linguistic techniques.
Conventional FLC implementations was limited to basic tasks, such as determining optimal
settings for household appliances based on load parameters [23]. The use of FLCs as vehicle
support systems was suggested by Li et al., who implemented a FLC as a stability control
system. A FLC was used to minimise the side dlip angle of the vehicle during a range of
steering manoeuvres [24].
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Hessburg and Tomizuka showed that a FLC deivered the same performance as a
conventional Proportional Integral Derivative (PID) controller when autonomously
performing manoeuvres up to 50 km/h [25]. While the PID loop was tuned using an explicit
linear vehicle model, the FLC was designed using an implicit model and contained only
simple logic instructions. Another comparison with a conventional PID system was done by
Kodagoda et a. who proposed a FLC based on variable structure systems theory applied to
the control of an electric golf cart. Results from this study showed the FLC to outperform
conventional PID control in both tracking and robustness. The study indicated that the lateral
FLC can be implemented along with a longitudinal FLC without any coupling between the
systems while still maintaining the robustness of the individual controllers[26].

Even though FLCs are capable of controlling non-linear systems, the construction of the
membership functions that lead to a stable response can be a tedious process. To overcome
this, a neuro-fuzzy controller (NFC) was first proposed by Lee and Berenji [27]. The purpose
of the NFC is to modify the membership functions through machine learning; much like a
human operator would modify inputs to the system based on previous experiences. This
increases the robustness of the controller, as demonstrated by Perez et al., who implemented a
NFC to perform the longitudina control of a gasoline vehicle [28]. Lateral control of a
vehicle using a NFC has been performed in a study by Ryoo and Lim where the NFC was
tasked with following the curvature of aroad [29]. Despite the fact that this was demonstrated
using a small wheeled robot at low speeds, the path following capabilities of the system
proved promising. A different study by Ting and Lui showed that a NFC is superior to a
conventional linear controller at high vehicle speeds where the tyre-road interface becomes
non-linear [30].

Adaptive controllers are frequently implemented to deal with a non-linear process model and
have been successfully implemented in ship navigation [31]. Similar to the sliding mode
controllers discussed earlier, an adaptive controller evolves according to the current state of
the plant. Peng and Tomizuka suggested an adaptive controller in the form of a frequency-
shaped linear quadratic controller of which the performance function is modified to include
factors such as ride quality and robustness to wind gusts. The controller was designed using a
linearized vehicle model [32]. An adaptive lateral vehicle controller was aso designed by
Netto et al. [33]. The controller was constructed using self-tuning regulator theory and a
vehicle model proposed by Ackerman, containing a set of bounded uncertain vehicle
parameters. Simulations showed a robust response up to 25 m/s (90 km/h) with minimal
deviations from the setpoints. Similar to Netto's driver model, Fukao et al. suggested a Model
Reference Adaptive Controller (MRAC) to solve the active vehicle steering problem [34].
The MRAC approach was also followed by Byrne and Abdallah, who design and verified a
MRAC on avehicle road following in simulation [35]. During the study, Byrne noted that the
saturation of the steering angle posed a problem when using MRAC theory which in turn
required the adaption gains to be adjusted. Although promising results were achieved, the
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analysis was based on a simple bicycle model for speeds up to 25 m/s and remains to be
verified experimentally.

Although these driver models attempt to compensate for the non-linear dynamics of the
vehicle with varying rates of success, all are designed using a fixed vehicle model. This
implies that any significant changes in the vehicle parameters or operating environment are
treated as disturbances and may impact the performance of the controller. In order to
successfully account for the non-linear dynamics, the effect of the environment on the vehicle
needs to beincluded in the vehicle mode.

1.3.2 Human based driver models

Human based driver models are generated by considering the human driver as a controller
responsible for safely operating the vehicle. This leads to models that consider common
biological limitations such as the neuromuscular time delays and threshold limitations [36].
Emphasis is also placed on the sensory aspects of human modelling including visua,
vestibular, auditory and tactile information. Some of these driver models even attempt to
model driver skill as a response to task difficulty and try to emulate the actua sub-optimal
response of a human being.

The sub-optimal nature of these models is not ideal when considering autonomous systems,
as the purpose of an autonomous vehicle controller is to improve the safety and performance
of the vehicle above the capabilities of the conventiona driver. Despite these attributes, a
human driver is able to adapt to different driving conditions and use a preview of the path to
anticipate future control moves. A model of this adaptive control behaviour can prove useful
in an autonomous vehicle controller asit is not bounded by its operating conditions.

1.3.3 Behavioural driver models

The concept of behaviour driver models is generaly ill defined and is usually included in
dynamic or human based driver models. It is described by Abe and Manning as the human
driver’s ability to adjust its control and sensing strategy according to the current vehicle
parameters [37]. For example, as the vehicle speed increases a human driver would increase
the preview distance and decrease the severity of steering inputs to the vehicle. Thisis similar
to the FLCs, NFCs and sliding mode controllers discussed earlier, but is more heavily based
on human reasoning than on prior knowledge of basic vehicle dynamics. However, as human
reasoning is difficult to define mathematically, most designers prefer the more structured
approach of FLCs and NFCs to solve the path following problem using human-like logic.

10
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1.4 Conclusion

A ground vehicle is a dynamic system containing many non-linear components, ranging from
the non-linear engine response to the tyre-road interface. Extensive work has been donein an
attempt to model and control the vehicle system utilising a wide variety of conventional
control and intelligent systems theory.

The use of geometric and kinematic driver models are found to be inadequate, while the
majority of dynamic driver models are based on linear vehicle dynamics and are limited to
either low speed or high speed applications respectively. This can be attributed to the non-
linear tendency of the tyre-road interface at high lateral accelerations, as conventional linear
control struggles to capture the tyre force saturation that occurs in this region. Thus a
compromise is required between low speed accuracy and high speed stability when
implementing conventional driver models. Current driver models are aso sensitive to
changes in the vehicle parameters, as well as the operating environment of the vehicle.

Although some models do account for the non-linearity in an attempt to facilitate low speed
and high speed path following, these are found to be either computationally inefficient or to
require avast amount of training data to synthesize. The use of FLCs as driver models seems
promising, but in-depth knowledge of the problem is required to set up the required fuzzy
rules and proves to be a tedious design process. Adaptive control adapts the control action
according to the current state of the process and is largely dependent on an accurate estimate
of the plant model. Up to date, only linear models have been used to implement adaptive
control in the field of vehicle dynamics.

The gap in lateral driver models has limited the progress made in the development of lateral
CA systems, which could potentially reduce the number of fatalities caused by vehicle
collisions. It can thus be concluded that a need exists for a robust driver model capable of
performing path following at both low and high lateral accelerations through the non-linear
tyre regime without being sensitive to changes in vehicle parameters and operating
environment. Development of such a driver model would aid the design of latera CA
systems, thereby increasing the safety of all road users.

1.5 Research focus

It is evident from the literature reviewed that more work is necessary in the field of lateral
CA systems, as the current available driver models are limited by the non-linearity of the
tyre-road interface. Although some do account for this non-linearity, these models are
normally based on a semi-empirica model, restricting the operating environment of the
vehicle. This study aims at developing a driver model that allows an off-road vehicle to
perform robust path following in different environments, assuming that the required path is
known a-priori.

11
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The resulting driver model will use an implicit vehicle model to account for the non-linearity
at high lateral accelerations. It should be able to perform stable path following at both low (<
60 km/h) and high vehicle speeds (> 70 km/h). The driver model should be able to safely
steer the vehicle through manoeuvres resulting in high lateral accelerations (> 4 m/s?) in
the non-linear tyre force regime.

Development of the driver model will be done by considering various adaptive controllers,
each following a different approach in controlling a non-linear process. The performance of
these controllers will be evaluated in ssimulation, after which the best performing controller
will be implemented and validated experimentally.

Although Electronic Stability Control (ESC) systems are common on modern vehicles and
can improve their handling characteristics, this study is performed without such a system.
Thisis not only done to ensure better repeatability of tests, as the ESC system might not react
in the same manner each time, but also because the experimental vehicle used in this study is
not fitted with an ESC system. The adaptive nature of the proposed control algorithms should
however also allow implementation on vehicles with ESC systems as the response of the
vehicleis determined on-line by considering measured input-output data. This captures the
response of the vehicle with the effect of its driving aids included.Experimental validation is
done by autonomously performing, amongst others, an 1SO3888-1 severe Double Lane
Change (DLC) [38]. To achieve the required lateral acceleration, the test will be performed at
the same speed at which an experienced human driver can complete the task in the test
vehicle. Evaluation of the driver model performance is done using both the overall stability of
the vehicle and the driver model, as well as the path following accuracy that can be achieved.

12
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Chapter 2
Vehicle Platform and Multi-Body Dynamics
M odel

This study is performed using a Land Rover Defender 110 TDi from the Vehicle Dynamics
Group (VDG) of the University of Pretoria. The test platform has been used in various studies
performed by the group, including the development of afull vehicle model in MSC ADAMS
by Thoresson [21] and Uys et a. [39]. A model of the platform will be used extensively in
developing and testing a robust driver model for the vehicle and is also discussed in this
section. Validation of the driver model will be done experimentally using the instrumented
Land Rover Defender fitted with the controller hardware and software.

2.1 Test platform

The Land Rover Defender 110 of the VDG is equipped with various systems that enable
modification of the vehicle's dynamics, as well as measurement equipment. These will be
reviewed in this section.

2.1.1 4S,Suspension system

In an effort to improve the ride-handling compromise, Els [40] developed the 4-State Semi-
active Suspension System (4S,) hydro-pneumatic suspension system. This system enables
switching between a ride mode (soft spring and low damping) and a handling mode (stiff
spring and high damping). The ride mode settings have been optimised for ride comfort
ignoring handling requirements. Handling mode on the other hand has been optimised for
handling and reduced roll-over propensity and result in an uncomfortable ride over rough
terrain. The ride and handling settings therefore lie at opposite ends of the design spectrum
and are vastly different. By automatically switching between a handling mode with high
spring stiffness and damping and a comfort mode utilising low spring stiffness and damping a
compromise is found between ride and handling using a single suspension system. The 4S5, is
also capable of switching between four discrete spring-damper combinations on each
suspension strut. This versatility will be used to modify the yaw response of the test platform
and will aid in determining the robustness of the driver model.

2.1.2 Vehicleinstrumentation

Although the test platform is equipped with various sensors, only those pertaining to the
lateral dynamics of the vehicle and the measurements required by the driver model will be
considered in this section. These are tabulated in Table 1 for reference. Figure 6 provides the
locations of the sensors on the test platform. The vehicle position is provided by a globa
positioning system (GPS).
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Table 1: Vehicletransducers

M easur ement Transducer
Vehicle position
Vehicle heading

Vehicle speed SPAN-CPT (NovAtd)

Vehicle yaw rate

Vehicle lateral acceleration

CG latera acceleration Crosshow accelerometer
Steering kingpin angle Absolute encoder (Eltra)
SPAN-CPT
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Figure 6: Transducer locations on the vehicle platform (I mage adapted from [41])

2.1.3 Control system hardware

Figure 7 provides the proposed structure for the implementation of the control system on the
vehicle platform. The analogue signals from the absolute encoder and CG accelerometer are
passed directly to the processing block, while the SPAN-CPT measurements are transferred
using RS-232 seriad communication. All processing, including sampling of the required
analogue channels and providing the analogue control signal to the steering motor controller,
is performed using a Helios single board computer from Diamond Systems [42] running a
Slackware version of Linux. The Helios computer is powered using the on-board 12V power
supply and contains a Vortex86DX CPU running at 1GHz, as well as 256MB RAM. The on-
board input-output interfaces available include RS-232 serial ports, sixteen single-ended 16
bit analogue to digital converters, four 12 bit digital to analogue converters and forty general
purpose digital input-output pins. This should provide enough computing power, as well as
sampling capabilities, to successfully implement and test adriver model experimentally.
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Figure 7: Block diagram of controller hardware

Actuation of the steering system is done using a FESTO EMMS-ST-87L stepper motor
controlled by a FESTO CMMS-ST-GL1 stepper motor controller in analogue tracking mode
[43]. The steer angle of the front wheels (referred to as the steer or steering angle in this
study) is driven through a belt system on the steering column using the stepper motor. In
analogue tracking mode the speed and direction of the stepper motor is set proportional to the
reference voltage, alowing the use of the proportional steer rate controller discussed in the
next section of this report.

Installing the stepper motor in parallel with the existing steering system allows driver
intervention should a malfunction occur. The actuator system is depicted in Figure 8, while
Figure 9 illustrates the system installed in the vehicle. The steering actuator is able to achieve
amaximum steer rate of 15°/s, while the steer angle of the vehicle is mechanically limited to
30° to each side by the steering geometry. These parameters are aso included in the
simulation to allow for an accurate representation of the real vehicle.

Figure 8: Stepper motor assembly [20]
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Figure 9: Top view of the stepper motor assembly installed in the engine bay

2.2 Vehiclemodel

The vehicle is represented in simulation using a 16 degree of freedom non-linear model in
MSC ADAMS. Development of the model was done using experimentally determined body
torsion, moments of inertia and suspension characteristics. The spring force of the hydro-
pneumatic suspension is modelled using diabatic process theory, while the dampers and
bump stops are modelled using look-up tables. A representation of the full vehicle model as
shown in ADAMS s provided in Figure 10.

The tyre-road interface is modelled using the Pacegjka ‘89 tyre model [44] fitted using data
obtained by Thoresson [21]. This is incorporated into the model using the ADAMS Tyre
package. It should be noted that the self-aligning moment and longitudinal characteristics of
the tyre are excluded from the model to keep the model ssmple and to decrease the solving
time.

The suspension kinematics is modelled using solid axles and joints similar to those found on
the test platform, as shown in Figure 11 and Figure 12. It consists of a leading arm front
suspension system with a Panhard rod, while the rear suspension is constructed using trailing
arms. A single A-arm constrains the rear axle laterally. The torsiona spring in the model
represents the effect of the front anti-roll bar of the vehicle.

16

© University of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Yu

NIBESITHI YA PRETORIA

Figure 10: ADAM S vehicle model [20]

Figure 11: Model front suspension [20]
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Figure 12: Model rear suspension [20]

The full vehicle model is implemented in Simulink using an ADAMS controls plant for co-
simulation. This is done to easily include the non-linear suspension characteristics of the 4S5,
suspension system and to streamline the process of developing a steering controller through
simulation.

Validation of the vehicle model used was performed in a study by Botha [20] in which a
series of DLC [38] manoeuvres were performed at various speeds, both experimentally and in
simulation, using the ADAMS vehicle model. The values are compared using a maximum
relative error approach, where the maximum discrepancy between the simulated and
measured data in expressed as a percentage of the measured value. Upon comparing the
experimental and simulation results, Botha concluded that the vehicle moddl is an accurate
representation of the test platform for use in vehicle handling studies. Botha did note that the
suspension friction is not accurately modelled and may cause the model to deviate from
experimental results, but argued that this should not be a problem in handling studies and can
be eliminated by performing a vertical shift on the data. A summary of the correlation data as
compiled by Bothais provided below for reference.

Table2: Maximum relative error on peaks of correlation data [20]

Maximum Relative Error [%]
Suspension
Yaw Yaw Lateral Suspension | _. ¥
Speed . Displacement Path
Rate Angle | Acceleration | ForceRR LR
55km/h 16.07 15.06 17.00 10.67 60 5.16
73.5km/h 5.05 0.27 15.38 7.67 26.20 7.20
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Simulation of the vehicle modd is performed using a co-ssmulation setup between MSC
ADAMS and Simulink. Figure 13 illustrates the input, communicated and measured variables
in the smulation used to verify and validate the driver models. The driver model and
suspension characteristics are solved in Simulink, while the multi-body dynamicsis solved in
MSC ADAMS. Measurements are also performed in Simulink.
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Figure 13: Simulation structure overview

2.3 Conclusion

Access to a validated full vehicle model, implemented using ADAMS and Simulink co-
simulation, eases the process of developing a driver model and allows efficient debugging of
the system before it isimplemented experimentally. The good correlation between the vehicle
model and the test platform also implies that the developed model can be transferred to the
platform without modification of the algorithm. This validated full vehicle model will be used
in the development of an intelligent driver model capable of performing autonomous path
following.

The fully instrumented vehicle test platform allows experimental validation of the robust
driver model on various terrains, some which cannot be accurately modelled in software.
Implementation of the driver model in the presence of random noise and disturbances also aid
in determining the robustness of the controller. Lastly, implementation of the driver model on
the test platform in real-time should support the feasibility of a latera CA system based on
this driver model.
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Chapter 3
General driver modd structure and
perfor mance evaluation methodology

Successful comparison of the adaptive strategies requires a set structure and testing
procedures. This section provides an overview of the general driver model approach used in
this study, as well as the methodologies used to determine and quantify the performance of
the adaptive controllers.

3.1 Driver model structure
The general structure of the driver model used to verify the performance of the adaptive
controllers will be discussed here. Some important parameters are also defined in this section.

3.1.1 Overview

Vehicle path following can be separated into two control problems: yaw angle control and
lateral position control. In order for the vehicle to perform stable path following, yaw angle
control is responsible for aigning the vehicle with the heading of the required path. This
prevents oscillation of the vehicle around the path and a potentially unstable situation. The
second controller is of secondary importance and is tasked with removing small lateral offsets
or cross-track errors that might arise during a dynamic manoeuvre. The errors and yaw angles
of importance are defined in Figure 14.

v

Desired path

Figure 14: Definition of thedesired yaw and lateral error parameters

Figure 15 demonstrates the genera structure that will be used during the implementation of
adaptive control on the vehicle platform. A yaw angle reference is passed to the driver model,

20

© University of Pretoria



UN\VERS\H’:IT VAN PRETORIA
UNIVERSITY OF PRETORIA
UN\BESHHI YA PRETORIA

(02%

after which the estimator and adaptive controller attempts to safely achieve this. The lateral
control of the vehicle is incorporated through a proportional controller that adds to the yaw
reference signal. This strategy prevents the possibility of contradicting controllers which may
occur if separate controllers are implemented for yaw and lateral position control. Through
various simulation runs it was determined that the optimal proportional gain for the lateral
error is 1°/m when a preview of 0.1sis used.

Desired ' S B Yawrate |
- » Yaw Desired = . r Steer Yaw rate l X
Yaw angle [ | angle CD”VE'T yaw rate ’ ngle ;
\ referen?:e i L Ll Controller Vehicle ;
. ¢ VaW rate l Lateral position ) ) )
' | Lateral
ot position )
Path Y o \ Lateral
\ Lateral position J ™\ \) & gain

A

|-1

Figure 15: Driver model layout

As opposed to controlling the yaw angle directly, the yaw rate of the vehicle is controlled.
Thisis discussed in more detail in Chapter 4. The conversion from yaw angle to yaw rate is
performed assuming a constant acceleration over a small period of time, allowing the use of
the general equation of motion for the rotation of a rigid body in plane motion provided in
equation (1).

d
Mp = —=At + o —— At? 1)

The controller block is defined in the following chapters, as the structure of this block varies
according to the type of adaptive strategy used. Figure 16 depicts the general steering
actuator control approach for the vehicle that will interface with the designed driver models.

: Stepper - e
I s?e?luérne{ie > > r1I:;r:': gL » lb'llu't:]r ™ l_W_TI
g g controller L 20die

Figure 16: Steering actuator control structure

A steering rate controller is implemented using proportional control in conjunction with the
FESTO stepper motor controller previously discussed. This alows for a quick responding
steering controller that should provide a steer angle with minimal offset and oscillation. This
also ensures that the steering actuator control is much faster than the vehicle dynamics of the
vehicle and should thus not influence the adaptive control strategy of the driver model.
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3.1.2 Mode preview

Preview is required in the driver model due to restrictions in the movement of the vehiclei.e.
the vehicle needs to move longitudinally to change its heading and lateral position. The
structure of the driver model requires three previews (see Figure 14). These are the path
preview, the lateral error preview and the yaw rate preview. The values for these preview
distances are speed dependent and are defined as atime constant to allow for adjustment with
vehicle speed.

The path preview is used to determine the yaw reference, while the lateral error preview
indicates where the projected lateral error should be calculated. The yaw rate reference is
used in the general equation of motion to determine the yaw rate required to achieve the
desired yaw angle some point in the future. As these are expected to be different for each
adaptive strategy, the values are quoted along with the adaptive controller parameters in the
following chapters.

3.2 Performance evaluation

The performance of the driver model is evaluated using two criteria: vehicle stability and path
following accuracy. Vehicle stability is regarded as the primary objective and path following
accuracy is allowed to be sacrificed (within reason) to safely complete a desired manoeuvre
without inducing rollover. Navigating the 1ISO3888-1 DLC [38] safely is set as the minimum
performance requirement for adriver model.

3.21 Stability

The stability of the driver model is not only defined by safely navigating a required
manoeuvre, but also by its ability to move in a straight line without constant oscillations of
the steering and/or yaw angle. Both these requirements will be evaluated visually after the
vehicle has navigated the evauation paths. At low speeds, steady state oscillations are
particularly unwanted, while the high speed stability will be under consideration for speeds
greater than 60km/h.

3.2.2 Path following accuracy

The path following accuracy of the controllers is evaluated using both the maximum path
deviation and the lateral root mean square error (RMSE) in the global axis system throughout
the manoeuvre. A higher RMSE will point to a worse average path following performance,
while the maximum path deviation provides an indication of the dynamic cross-track
accuracy of the system. The RMSE is given by equation (2).

2 2 2
?,:1 (min <\/(Ypathi - Cyi) + (xpathi - Cxl-) )) (2)

N
This error is not determined at a preview distance as required by the controller, but rather
taken as the lateral deviation of the vehicle CG from the path. Doing so eliminates the effect

RMSE =
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of the vehicle heading on the lateral error value. The RMSE will also only be considered in
stable cases, as diding out of the vehicle will skew the RMSE value.

3.2.3 Vehicle speed through the manoeuvr es

As the driver model should be able to safely steer the vehicle in all operating conditions, the
adaptive controllers will be tested at low, as well as high speeds. For low speed driving, a
speed of 30 km/h will be used to evaluate the performance of the driver model. Here the path
following accuracy and steady state stability are of main concern. An intermediate speed of
60 km/h will also be considered, representing the transition zone where the vehicle dynamics
are non-linear when driving on a conventiona tar road with the test platform. High speed
steering will be done at 80 km/h.

In the saturation region of the tyre high speed stability of the vehicle is more important.
Should the driver model be able to successfully complete the manoeuvre at 80 km/h, the
vehicle speed will be incrementally increased to determine the highest safe operation speed of
the adaptive controller when used in the driver model structure.

3.24 Evaluation of controller robustness

Robustness of the controllers is a crucia requirement in evaluating the performance of the
system in different environments and on varying surfaces. The vehicle dynamics of the test
platform are modified using the semi-active suspension (4S,) fitted to the vehicle. By
switching the suspension between the handling mode and comfort mode configurations, the
vehicle dynamics can be varied sufficiently to show the robustness of the particular
controller. The largely different yaw responses observed between the handling mode and
comfort mode setting poses a challenge to most driver models. Thus the simulations and
validation experiments will be performed using both the handling mode and comfort mode
settings of the 4S, system. During experimental validation, the vehicle will also be driven on
a uneven gravel terrain. As the terrain cannot be accurately simulated at this stage, this test
will not be performed in simulation.

3.3 Evaluation paths

The paths used to evaluate the performance of the driver model are the ISO3888-1 DLC and a
sinusoidal path with increasing frequency. These paths are designed to excite most by yaw
dynamics of the vehicle and to excite the tyre both in the linear and saturation regions.
During testing, these paths will be followed on a hard, man-made surface, as well as on
gravel.

3.3.1 1S03888-1DLC

The 1SO3888-1 DLC [38] describes the test track and procedure for performing a severe
double lane change manoeuvre for the purpose of evaluating the handling characteristics of a
vehicle. A severe double lane change, as described in the standard, has been used in previous
studies by the VDG in evauating and validating vehicle and driver models for handling
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manoeuvres. This study will also use this testing procedure to evaluate the performance of the
driver model and adaptive strategies considered. Figure 17 depicts the DLC and its
parameters [20]. It should be noted that the DLC depicted here is intended for use with left
hand drive vehicles. As the test vehicle used in this study is a right hand drive vehicle,
mirrored version of the manoeuvre will be completed (i.e. turning right upon entering as
opposed to left) for both the simulation studies and experimental implementation.

The purpose of the severe DLC change is to test the response of the vehicle both in its stable
state (when entering the section 2) and its potentially unstable state (sections 4 and 5). It also
represents the vehicles ability to avoid a sudden obstacle in the road while maintaining the
safety of the vehicle occupants and returning to a stable state after the manoeuvre. The
maximum speed at which an experienced driver is able to complete the manoeuvre using the
test vehicle is known to be between 80 km/h and 90 km/h. This will also be used as a
benchmark in the evaluation of the driver mode.

pd S
" Lane Offset]
Driving Direction
| | / Vi /|
s / / - r / / . -/ # / . 4 / ,'/ /
Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

1.1xVehicle Width + 0.25m
1.2x\Vehicle Width + 0.25m
1.3x\/ehicle Width + 0.25m
Lane Offset = 3.5m

Lane Offset * * 2 ®
rar—— c
Al Driving Direction 1
[ [ L] ® [ [ ®

A
B
c

Figure 17: The1SO 3888-1 severe double lane change [20]

The desired paths through the manoeuvre as used in this study are provided in Figure 18. The
simulated path is generated to steer the vehicle through the center of the coned track, while
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the experimental path is recorded (using GPS receiver mounted on the vehicle) by a human
driver attempting to steer the vehicle through the middle of the coned track. These paths were
also used in previous studies [20,45] to evaluate the performance of a proposed driver model.
Although a path of minimum curvature should allow higher speeds through the manoeuvre,
these paths are deemed adequate to evaluate the performance and stability of the proposed
driver models when tasked with following a pre-determined path.

5 T T

—— Simulation Path
—-—-Experimental Path

__________________

Lateral Position [m]

- i | | i \ \ |
o 20 40 B0 80 100 120 140 160
Longitudinal position [m]

Figure 18: Simulation path and experimental path through the DLC

3.3.2 Increasing frequency sinusoidal path

In contrast to the DLC that requires the vehicle to return to a stable state, the increasing
frequency sinusoidal path with constant amplitude determines the point at which the vehicle
becomes unstable. As the frequency of the path increases, the required lateral acceleration
required to navigate the path increases up to the point where the vehicle limit is reached. This
parameter is vehicle speed dependant. The further a driver model is able to steer the vehicle
into the path while maintaining an adequate compromise between path following and vehicle
stability, the better the performance of the driver model will be.

A sinusoidal path with constant amplitude of 0.5 m and a spatia frequency ranging from
pi/50 to pi/20 cycles per meter is used in this study. The sinusoidal path will only be used in
simulation as accurate recording of the path in real time is a tedious process, especially with
the navigation system fitted to the vehicle (discussed in Chapters 2 and 8). Figure 19 provides
an XY plot of the sinusoidal path.
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Figure 19: Sinusoidal path

3.3.3 Gerotek dynamic handling track

The dynamic handling track at the Gerotek Test Facilities [46] is used to determine the high-
speed handling characteristics of light vehicles. This will be used to test the driver model’s
response to changing vehicle speeds while performing dynamic manoeuvres, including
increasing and decreasing radius turns as well as off-camber turns and changes in the
elevation of the road. The track consists of an asphalt surface with a high friction coefficient.
Figure 20 provides a birds-eye view of the track. Due to limited GPS visibility, only the
highlighted portion of the track can be driven with the test platform.

Figure 20: Gerotek dynamic handling track [47]
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3.3.4 Gerotek gravel surface

Safely testing the robustness of the driver modéd is a difficult task. This study will determine
the designed driver model’s robustness to changes in the operating environment using a
gravel road section at the entrance of the rally track at the Gerotek Test Facilities. The surface
of the track is uneven and inconsistent and is made up of natural soil, gravel and stones which
should provide significantly different vehicle dynamics than experienced on hard surfaces.
Driving on this surface also renders the Magic tyre formula and similar tyre models obsolete
and requires an intelligent driver model to navigate a path successfully. A DLC manoeuvre
will be performed on the gravel surface to verify the performance of the driver model on
natural terrains.
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Chapter 4
Autoregressive M odel

It is common practice in controller design to linearize the plant around a stable operating
point to allow the use of linear control theory. Although an operating point may be easily
determined for most industrial processes, the nature of the vehicle system and its operating
environment do not allow for a single operating point. The use of linear control theory will
thus require constant linearization of the plant depending on the current state of the vehicle.
An accurate vehicle model describing both the response of the vehicle and the effect of the
current driving environment are required to achieve this successfully. As opposed to
performing a linearization on a complex mathematical model, it might be more efficient to
estimate and model the current plant model asit evolves.

4.1 Overview

Autoregressive (AR) models are commonly used to describe time-varying random processes,
especialy in the field of econometrics. In an AR model, the output is described as a linear
function of its own previous vaues. An extension of the AR model is known as the
autoregressive model with exogenous input (ARX), which incorporates the effect of an
external excitation signal [31,48]. The ARX model is described by Equation (3), where p is
the number of autoregressive terms and b the number of exogenous input terms. An error
term is used to describe the un-modelled residuals.

14 b
17t = Z QY + Z Nile—; + & (3)
i=1 i=0

Although ARX models are intended to be applied to linear systems, the response of the
vehicle can be assumed to be approximately linear over a short period of time. This implies
that the yaw rate at the next time step can be determined by the previous values (due to the
angular momentum) and the excitation by the current steering angle generating lateral force.
Thisis performed under the assumption that the tyres remain in the same operating region for
this time period. If the model is updated at a high enough frequency, the vehicle dynamics
can be estimated and controlled over an infinite number of operating regions.

4.2 ARX model order

Before determining the order of the model, it should be noted that the ARX model can be
written as a discrete transfer function H(z). The parameter n denotes the number of samples
delay in the system.

V() _ Bhoma ™
U@~ 3L,z

H(z) = (4)

28

© University of Pretoria



(@

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Considering the transfer function above, the model order should be chosen according to the
expected dynamics of the input-output pair of measured variables. In the neura network
implementation of Botha [20], control was performed using the steer rate and yaw
acceleration response of the vehicle. The study argues that the yaw accel eration of the vehicle
is linearly dependent on the steering rate of the vehicle in the linear tyre regime, yielding an
eguation of the form:

The acceleration measurement is however prone to noise generated by the various sub-
systems of the vehicle and needs to be extensively filtered before using it as feedback to the
controller. Control of the yaw rate of the vehicle will be implemented here, as the gyroscope
measurements are generally less prone to noise contamination. Considering Equation (5), the
yaw response of the vehicle can be written as:

dy

—=f(® (6)
This illustrates that manipulating the steering angle of the vehicle should yield a first order
response when observing the vehicle yaw rate. In the discrete domain, this implies a transfer

function as shown below.

OZ—Tl + nlz—l—n

14+ @zt )
Such a process model should prove adequate to predict the response of the vehicle while the
tyre is operating in the linear region, but may yield errors at higher vehicle speeds when the
non-linearity becomes significant. For this reason, a discrete pole is added to the system to
increase its dependency on previous samples in an attempt to capture these dynamics when
the effect of the steer angleis reduced at higher lateral accelerations. The input dependency is
also reduced from two samples to only the current steering angle to accommodate operation
in the saturated tyre-force region. The second order discrete transfer function provided below
is used to estimate the yaw dynamics of the vehicle.

H(z) ="

Noz "

8
1+ @zt + @272 ®
Converting to the difference equation form, the ARX model will have a regressive order of
two and an input order of one:

H(z) =

(k +1) = poy(k) + @1y(k — 1) + nou(k — n) ©)
The model delay n is chosen as 1 sample to absorb any higher order dynamics and unknown
time delays in the steering system. This value may be adjusted according to the sampling and
update rate of the model.
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4.3 Sampling of estimation data and the process model

Application of the Nyquist criteria on the yaw rate response is nontrivial. The yaw rate
response is influenced by many factors such as vehicle speed, road surface, suspension
stiffness and geometry and the mass of the vehicle. In order to perform the necessary control,
the ARX model should be able to capture the yaw natura frequency of the vehicle for a
realistic range of these vehicle parameters.

Robert Schilling from the GM Proving Ground published a study in 1938 in which he
described the natural modes expected during transient cornering through linear analysis [49].
Schilling found that the first mode involved yawing and side dlip, while the second mode
described the roll of the vehicle. The analysis was performed with both a fixed input (cases 1
and 2) and an impulse input where the steering whed is free after the initial turn (cases 3 and
4). Table 3 below shows Shilling’s findings for the first mode at speeds of 65 km/h and 131
km/h.

Table 3: Shilling's findings on the yaw natural modes (Adapted from [49])

. Natural -
Steering Speed Specific

Case Frequency .
Mode [km/h] Damping

[HZ]

1 Fixed 65 0.72 0.69

2 Fixed 131 0.57 0.44

3 Free 65 0.73 0.34

4 Free 131 0.78 0.17

As the speed of the vehicle is increased, the yaw natura frequency of the vehicle tends to
decrease. The same is observed for the specific damping of the system. Similar results were
observed by Botha [20] in his study, where the yaw natural frequency drastically decreases
with vehicle speed. Figure 21 provides results obtained by Botha from an analysis using the
parameters of the test platform.
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Damping Ratio vs Velocity
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Figure 21: Yaw damping ratio and natural frequency asa function of vehicle speed [20]

The yaw natural frequency of the vehicle is high at low speeds, but is too high to have any
significant effect on the handling of the vehicle. Assuming that the first mode will have an
effect at vehicle speeds greater than 20 km/h, the highest frequency that needs to beisin the
range of 5 Hz. For this reason, the data used for model estimation is sampled at 20 Hz to
ensure reliable estimation and a robust model.

A model update frequency of 5Hz is chosen. This was determined during simulation studies
as the lowest frequency at which areasonable model is estimated and indicates the period for
which the vehicle dynamics remain within the same region through the simulated
manoeuvres. Although the update frequency can be reduced during low lateral acceleration
manoeuvres where the response remains fairly linear, the current rate is able to estimate the
current vehicle state with greater accuracy.

The length of the estimation data is chosen to be 20 samples or one second, under the
assumption that the vehicle system will not undergo any significant changes in this time
frame, in turn causing the controller to become unstable. Although shortening this time would
make the assumption more valid, it might skew the results by observing only a portion of the
current vehicle dynamics.

4.4 Linear Least Squares Estimation

The principle of least squares estimation has been formulated by Karl Friedrich Gauss at the
end of the eighteenth century [31]. Used to determine the orbits of planets, Gauss argued that
amathematical model should be chosen such that the sum of the squares of the error between
the computed and observed parameters is a minimum. In order to do so, the model is required
to have the following form, with y the predicted output and 6 the parameters to be estimated
by the model.
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m
y=) u6 (10
i=1
The least squares estimation can thus be described as the minimisation of the sum-of-squares
error (SSE), with y the actual output of the system.

N
min(SSE) = Z(ziei —yi)? (11)
i=1

This estimation technique is applied to the regression model estimation by rearranging the
ARX parameters in a vector and estimation data in a regression vector @ to create the
equation below, with Y; avector of output values such that Y; = [y(k), y(k — 1) ...].

Y, = ®0 (12

Where
Dy = Y1 - Vie—p Uk—n] (13)
0 = [-¢1—@o No] (14)

The least squares estimate can now be calculated by:

0 = (' d)1d'Y, (15)
Even though the least squares estimation can be calculated by using recursive techniques, the
inversion needs to be done for a relatively small matrix. The calculation of the least squares
estimation is performed using the matrix inversion technique and should solve at the required
rate of 5 Hz.

45 Tracking smulation

A simple tracking simulation is performed to verify the validity of the ARX model. While the
vehicle is guided by Botha's NN driver model [20] through a sinusoidal path with constant
amplitude and increasing frequency, the input-output data is recorded and the ARX model
calculated. The prediction quality of the model is evaluated by comparing the model
prediction with the actual values obtained from the multi-body dynamics simulation. The
path of the vehicle during the manoeuvreis provided in Figure 22.

The ARX model is evaluated by considering two methodologies. The first is known as one-
step-ahead prediction. In this case the model is used along with a measured yaw and steering
angle history to estimate the value of the yaw rate at the next time step. This determines the
ability of the model to successfully estimate the model while it is evolving, as will be done
during the control of the vehicle.
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Path of Vehicle at 60km/h
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