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ABSTRACT 

This paper presents an analytical method of 
determining optimum PID parameters using the pole 
placement approach followed by the closed-loop 
analysis of Pebble-Bed Modular Reactor (PBMR) 
reactor temperature control employing thermo-fluid 
simulation software. The proposed method is a reliable 
alternative to the Ziegler Nichols, Cohen-and-Coon 
and other approaches that normally suggest initial 
controller parameters that would require further 
optimization. The pole placement approach forces the 
positions of the poles of the closed-loop characteristic 
equation to the stable region in the z-domain. In this 
approach the plant model is represented by an Auto-
Regressive Moving Average (ARMA) black box 
model and the parameters of the model are determined 
by employing the Batch Least Squares approach. The 
pole-placement method reduces the determination of 
PID parameters to the setting of only a single 
parameter referred to as the tailoring coefficient of a 
first order tailoring polynomial. The controller settings 
can be selected with the value of the tailoring 
coefficient migrating from zero towards the unit circle 
at -1 in the z-domain. This progression results in 
closed loop responses that range from underdamped 
( 01 =t ) to overdamped as 1t approaches -1. Although 
the mathematics behind the approach is quite 
involved, in this work the methodology has been 
transformed into a user-friendly MATLAB© based 
calculation. The above method is applied to the control 
of pebble-bed modular nuclear reactor (PBMR) 
temperature by manipulating the reactor activity. The 
closed loop transients are generated from a Flownex© 
thermal-hydraulics modelling/simulation environment.  

 

INTRODUCTION 
When The main thrust of model identification 

involves the derivation of a model reflecting all the 
available information concerning the process, the 
nature of the load disturbance, whether the system is 
linear or nonlinear, whether the system is time varying 
or not, and as well as the correct choice of the model 
order [Mazana 1995]. Depending on the dynamics of 
the process and on the quality of the control required, 
the lowest possible model order is normally chosen. 
First and second order models are normally used for 
control design purposes since further increase in 
model order is generally found to provide little 
improvement in controller performance whilst 
substantially increasing the computational burden. In 
this work we have adopted a second order 
deterministic model as the basis for our investigations. 

The most widely employed approach in model 
identification is the identification of an estimate of the 
unknown parameter vector which maximizes or 
minimizes a function determined by a chosen 
criterion, e.g. the sum of least squares of the residuals 
in the case of the least squares method. It may be 
sufficient to collect the input/output data and carry out 
an offline batch regression of the data but, for 
processes with time-varying dynamics, adaptive 
control algorithms should be applied which employ 
online inference of system properties through 
recursive parameter estimation. 

The most important factors influencing the success 
of identification processes are [2]: 
(i) The type of excitation applied to the system, 
(ii) The choice of the output variables which can be 

measured and the precision of the   
measurements, 



  

(iii) The signal to noise ratio, 
(iv) The properties of the noise, 
(v) The method of identification, 
(vi) The numerical procedure underlying the 
calculation of the parameter estimates, 
(vii) The redundancy of parameters in the regression 
model, and 
(viii) The sampling period and the number of bits in 
computer word employed. 

To the above should be added the experience of the 
operator with the system and the operator’s own 
intuitive judgment during on-line identification 
procedures.  

In this work we will employ the least squares (LS) 
parameter estimator for the identification of the 
controller parameters.  
 
NOMENCLATURE 
 
A(z-1) [-] Monic polynomial in the z-domain representing 

the poles of the discrete-time system 
B(z-1) [-] Polynomial in the z-domain representing the 

zeros discrete-time system 
C(z-1) [-] Monic polynomial in the z-domain representing 

the zeros of the discrete-time noise 
A-1 [-] Inverse of matrix A 
AT [-] Transpose of matrix A 

)(tθ  [-] Model parameter vector 
R(z-1) [-] Differencing factor 
T(z-1) [-] Tailoring polynomial  
Φ(t) [-] Matrix of past process outputs and inputs 
ξ(t) [-] Noise term  
 
Special characters 
na [-] Process model order 
nb [-] Length of process input data  
KI [-] Integral gain  
KC [-] Proportional gain 
KD [-] Derivative gain 
 
Subscripts 
k  Process dead time 
 
 
BATCH LEAST SQUARES PARAMETER 
ESTIMATION 

System parameter estimation entails the use of 
observed input/output process data online or offline to 
estimate the ia and ib coefficients of a CARMA model. 
The most widely employed approach is the 
identification of an estimate of the unknown parameter 
vector which maximizes or minimizes a function 
determined by a chosen criterion e.g. the sum of the 
squares of the residuals in the case of the least squares 
method. It may be sufficient, as is the case in the 
current work, to collect the input/output data and then 
carry out an offline batch regression of the data. The 
CARMA  model that is adopted as the black box 
model representation of the process to be controlled is 
as follows [2], [3]: 
 )()()()()()( 111 tzCtuzBztyzA k ξ−−−− +=                       (1) 

Consider the ARMA model represented by the 
following equation [1]: 
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where: 
aniity ...0:)( =− ,   are the actual present and past plant 

outputs, 
bniitu ...0:)( =− ,   are the inputs to the plant, 

)(tε   is the error between the model and the plant 
outputs, and )()( tt φθ  is the estimated model. 
 
For the ARMA model described by equation (1) we 
take: 
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Given the input/output data for measurements 

carried out over time t, the estimate of the parameter 
vector )(tθ which minimizes the least squares 
optimization criterion is: 
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provided that the matrix )(tΡ is positive definite or is 
capable of being inverted.  

The ARMA model (2) employed in this work is 
adopted in its second order version which reduces the 
parameter estimation process to the identification of 
three parameters: 1a , 2a  and 0b  as shown in Equation 
(8) below: 
 

)()2()1()( 21 ktubtyatyaty b −+−−−−=          (8) 
where 6866.01 =a , 2982.02 −=a ,  
and 2982.28=kb  are process model parameters 
and 1=k  is the process dead time. 
 

Past experience [7] has shown that the calculated 
parameters get closer to their ideal values as the length 
of the process response data matrix becomes larger. 
This is a reasonable observation, as the larger data 
matrix provides the estimator with more historical data 
for curve fitting. However, extremely large data 
vectors have been seen to cause deterioration of the 
parameter values as the effect of ancient historical data 



  

becomes more and more significant. The manipulation 
of matrices of such large order in equation (7) may 
also not be very attractive when using less powerful 
computers. The resultant deterioration of parameter 
convergence for certain large data vectors may 
indicate that the use of some form of forgetting factor 
of past data may be required in order to improve 
parameter convergence in the recursive form of the 
recursive least squares (RLS) routine. The reader is 
referred to [7] for an in-depth discussion of various 
versions of the least squares routine. 
 
 
THE POLE-PLACEMENT ALGORITHM 

Consider a process represented by a discrete-time 
CARMA model of the form [4]: 
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and n nα β= =2 0,  are the orders of the A and B 
polynomials. 
 
The general structure of the self-tuning PID (STPID) 
algorithm is given by: 
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where R is the differencing factor 
(i.e. R z u= − =−1 1 Δ ) and w(t) is the reference set 
point. S is the error filtering polynomial of the form: 
 

.....)( 2
2

1
10

1 +++= −−− zszsszS  
 
Δu t s t s t s t( ) ( ) ( ) ( ) ........= + − + − +0 1 21 2ε ε ε             (12) 
 
Taking S to be second order, and ε (t) = w(t) - y(t) 
Equation (12) becomes: 
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Substituting Equation (11) into Equation (9) yields the 

closed-loop equation: 
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Figure 1   Structure of the feedback loop 
 

The pole-placement approach implies the 
movement of the closed-loop poles of the 
characteristic equation in Equation (14) from their 
open loop locations to prescribed values given by a 
preset tailoring polynomial: 
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and for the NNW-PID control strategy the following 
pole placement algorithm is used: 
 

TBSzAR k =− −      (16) 
 

The polynomial T is chosen to be of order 
corresponding to the desired controlled response. The 
roots of this polynomial are set to within the unit circle 
in the z-domain for stable control. In this work a first 
order polynomial was found to be adequate.  

The solution is arrived at by treating this as an 
identity and equating coefficients of like powers of z. 
For a maximum order of T equal to 3: 
 
 n n n ka b s≤ = = =2 0 2 1; ; ;  [1]. 
 
where na, nb, and ns are the orders of the A, B, and S 
polynomials respectively, and k is the dead time. This 
gives the following polynomials in the identity in 
equation (16): 
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The solution to Equation (16) gives the following set 
of simultaneous equations for k=1: 
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The digital incremental PID control law has the form 
[6]: 
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where KC, KI, and KD are the proportional, integral and 
derivative PID controller gains. TC is the control 
period. Comparing Equations (13) and (18) we get: 
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and hence: 
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The procedure of implementing the Pole-Placement 

PID algorithm is therefore as follows: 

1.  Carry out an LS estimation to determine the A and 
B  polynomial parameters in Equation (9). 
2. Calculate the values of the S polynomial 
coefficients s0, s1 and s2 from the A and B polynomial 
parameters and the preset T parameters employing 
Equations (20). In the case of a first order tailoring 
polynomial 1

11 −+= ztT  the value of t1 is fixed 
between 0 and –1 depending on the desired closed 
loop response. The response becomes more damped as 
the value of t1 approaches –1. 
3.  Determine the controller gains KC, KD, and KI from 
the values of the S polynomial coefficients and the 
control period TC using Equations (21). 
4. Calculate the control increment )(tuΔ using the 
velocity PID expression in Equation (19). 

THE PEBBLE BED MODULAR REACTOR 
MODEL 

The PBMR is a high temperature reactor (HTR), 
with a closed Brayton thermodynamic cycle and gas 
turbine power conversion system. The system has 
been designed to generate electricity without 
compromising the high levels of passive safety 
expected of advanced nuclear designs. 
 

 

      

 
Figure 2   PBMR Main Power System Cycle 

 
 
Figure 3   PBMR Fuel Spheres 

 
 
Main components and processes 

The PBMR [5] essentially comprises of a steel 
pressure vessel which holds about 450 000 fuel 
spheres. The fuel consists of low enriched uranium 
triple-coated isotropic particles contained in a molded 
graphite sphere. A coated particle consists of a kernel 
of uranium dioxide surrounded by four coating layers. 
The PBMR system is cooled with helium. The heat 
that is transferred by the helium to the power 
conversion system, is converted into electricity 
through a turbine. To remove the heat generated by the 
nuclear reaction, helium coolant enters the reactor 
vessel at a temperature of about 500 ºC (932 ºF) and a 
pressure of 9 MPa or 1 323 pounds per square inch 
(psi). The gas moves down between the hot fuel 
spheres, after which it leaves the bottom of the vessel 
having been heated to a temperature of about 900 ºC 
(1 652 ºF). The hot gas then enters the turbine which is 
mechanically connected to the generator through a 
speed-reduction gearbox on one side and the gas 
compressors on the other side. The coolant leaves the 
turbine at about 500 ºC (932 ºF) and 2.6 MPa (377 
psi), after which it is cooled, recompressed, reheated 
and returned to the reactor vessel. 

Reactor 

Turbine 

Heat Exchanger 

Generator 

Subsystems 

PBMR Fuel Spheres 



  

Reactor Temperature Control using Reactivity  
The controller reactivity is amongst others a 

function of the control rod position. When the control 
rods are inserted, more neutrons will be absorbed and 
thus the reactivity will be reduced. The opposite will 
happen if the control rods are withdrawn. If the 
reactivity of the reactor is reduced, less heat will be 
generated and the reactor outlet temperature will 
decrease. Similarly, an increase in the reactivity will 
increase the temperature.  In practice, the control rod 
position will therefore be used to control the reactor 
outlet temperature. Since in the model used for the 
simulation the reactivity can be manipulated directly, 
the reactivity was used to control the reactor outlet 
temperature. 
 
Flownex® Thermo-Hydraulic Modelling 

Flownex® is a software package developed by M-
Tech Industrial used for solving thermal-fluid systems 
using one-dimensional CFD (computational fluid 
dynamics) calculations. It has a wide range of build-in 
components that can be used to build up a network to 
represent a complex circuit. Steady state as well as 
transients simulations (simulations over time) can be 
performed. The transient simulation option is useful in 
testing the dynamic behaviour of the circuit required 
for developing and testing controllers. This 
functionality, together with the fact that Flownex® 
can easily be linked with Simulink® (Matlab®) [10], 
was used to design and test the controller for this 
paper. 
 
 
RESULTS 

The data employed in the determination of the 
parameters was obtained from an open loop transient 
generated from a Flownex® [8] model after inducing a 
0.2978 step change in the reactivity. The original open 
loop response of 4001 samples has been employed for 
model parameter estimation. The open loop response 
is shown in Figure 4. 
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Figure 4: Reactor open-loop response: ΔT = 1s 

Table 1 shows the second order model parameters and 
controller parameters which are obtained for a PBMR 
reactor outlet temperature as the process variable 
versus reactivity as the control input for different 
values of the tailoring coefficient t1. 
 
   Table 1 Pole Placement PID Parameters 

Option 
1t  KC KI KD 

1 0 0.05169 0.03481 -0.010382 
2 -0.2 0.04821 0.02785 -0.010382 
3 -0.4 0.04473 0.02089 -0.010382 
4 -0.6 0.04125 0.01393 -0.010382 
5 -0.8 0.03777 0.006963 -0.010382 
6 -0.9 0.03603 0.003481 -0.010382 
7 -0.95 0.03516 0.001741 -0.010382 
8 -0.99 0.03446 0.0003481 -0.010382 
9 -0.9999 0.03429 0.000003482 -0.010382 

 
 

The closed loop responses depicted in Figure 5 
show that the response becomes more damped as the 
tailoring coefficient approaches the unit circle at -1. 
The controller designer therefore has at his disposal 
the facility to select any desired stable response 
depending on the value of 1t . The parameter 
optimization problem is thus simplified to the pegging 
of a single parameter ( 1t ) in order to obtain the 
corresponding set of PID controller parameters. Figure 
5 shows the effect on the controller parameters:

CK , 

IK  and DK  as the tailoring coefficient 1t   
approaches the unit circle at -1. Whilst the tailoring 
coefficient has no effect on the derivative time 
constant and a noticeable but relatively weak lowering 
effect on the proportional gain, it has the effect of 
substantially lowering the integral component

IK  
(Figure 6). This effect explains the resultant damping 
of the closed loop responses as 1t  approaches -1. 
 
 

 
  Figure 5 Closed loop responses 
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        Figure 6: Effect of 1t  on PID parameters 
 
 
CONCLUSIONS 

This paper has presented a mathematical approach to the 
optimization of PID controller parameters employing the pole-
placement approach in conjunction with process model 
parameter identification by means of a batch least squares 
routine. The closed loop transients were generated from a 
Flownex© thermal-hydraulics modelling and simulation 
environment. An example has been included for optimizing 
rector-outlet-temperature/reactivity controller parameters and a 
program to execute the calculation using MATLAB is also 
included in the Appendix. 

This method is particularly important as a scientific tool that 
can be used by engineers to analytically set PID parameters 
with a high degree of accuracy and confidence. As a result the 
design engineer will be able to tune the PID parameters to 
achieve a preset closed loop response. 
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APPENDIX A 
 
 
%% It is assumed that the following historical data 
%% vectors have been 
%% constructed in Excel and can be imported to the  
%% MATLAB© workspace: 
%% )(tX θ= ; )(tF TΦ= ; )(tYY =   

 
%% Set the sampling period for calculation 
SamplingPeriod = 1 
 
%% Set the tailoring polynomial coefficients for first order model 
%% t1 is set to between 0 and -1 in order to force the poles of the   
%% characteristic equation (15) to the stable region within the unit 
%% circle in the z-domain 
 
t1=-0.80;         %% The value of t1 is manipulated between 0 and -1 
t2=0;               %% t2 = 0 for a first order tailoring polynomial 
t3=0;               %% t3 = 0 for a first order tailoring polynomial 
 
%% Determine the model parameters for the first order ARMA  
%% process model in equation (7) 
%% [ ] )()( P(t) )()()()()( T1 tYtttttt Φ=ΥΦΦΦ= Τ−Τθ   
 
X =inv(F'*F)*F'*Y;         %% X = )(tθ ; F = )(tTΦ ; Y = Y(t) 
 
%% The vector )( tθ gives the following as the first order model 
%% parameters (see equations (1) and (8) 
 
A1=-X(1,1) 
A2=-X(2,1) 
B0=X(3,1) 
 
%% The controller parameters are determined as follows from equations 
%% (20) and (21): 
 
S0=(T1-A1+1)/B0; 
S1=(T2-A2+A1)/B0; 
S2=(T3+A2)/B0; 
  
KC = (S0-S1-3*S2)/2                                    %% Proportional gain 
KI = (S0+S1+S2)/SamplingPeriod                %% Integral constant 
KD = S2*SamplingPeriod                             %% Derivative constant 
 
 


