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ABSTRACT 

Asphaltene deposition on the walls of wellbore or pipeline 

during oil production and processing will cause dire 

consequences if left untreated. A better understanding of this 

phenomenon is required. This study presents a general 

modelling framework based either on the level-set approach or 

the concentration approach for modelling asphaltene deposition 

processes. Both the level-set method and the total concentration 

approach belong to the family of front capturing methods. 

Therefore, the dynamics of the depositing front can be captured 

implicitly on fixed mesh. The presented frameworks are 

validated against each other for general deposition process. 

Preliminary parametric studies are then performed to study the 

influences of various factors on the deposition process. 

 

INTRODUCTION 
Figure 1 shows an oil reservoir connected to a wellbore. 

Crude oil contains various heavy organics such as asphaltene. 

Asphaltene is the heavy fraction of crude oil which is soluble in 

some species like aromatics but insoluble in others [1]. At 

reservoir condition, dissolved asphaltene is stable. During oil 

production, dissolved asphaltene is carried by the flowing oil 

along the wellbore. There is a drop in both pressure and 

temperature along the wellbore. At a certain location of the 

wellbore, dissolved asphaltene becomes unstable and 

precipitates out of the oil in the form of particles. Some of these 

particles will be carried by the oil downstream but some would 

stick and deposit onto the wall of the wellbore, forming a layer 

of asphaltene deposit. The formation of asphaltene deposit on 

the wall of the wellbore reduces the cross sectional area for oil 

to flow and increases pressure drop. If left untreated, the whole 

wellbore can be blocked. 

The problem of asphaltene deposition in the oil/gas industry 

has been investigated for more than three decades. The 

understandings gained though substantial, is still far from being 

satisfactory. Modeling of asphaltene deposition in well-bore or 

pipeline is currently still being actively pursued. 

Modeling of asphaltene deposition requires two essential 

components. These are (1) thermodynamic model and (2) 

transport model. Thermodynamic model serves to provide 

information on precipitation of dissolved asphaltene. This was 

pursued for example in [2]-[5]. The transport of precipitated 

asphaltene particles and their subsequent deposition on surfaces 

are described in the transport model. Given the lacking in the 

understandings of the rich physics involved in the deposition 

process, the transport model is frequently of a mechanistic 

nature. It relies heavily on experimental data and therefore 

applicable within a very limited range [6]-[10]. A more 

complete treatment of the transport model requires a 

computational fluid dynamic approach (CFD) and this is 

however not pursued actively in the existing literatures. The 

model of [11] and its one-dimensional version of [12] have 

strong flavour of CFD, although fluid flow modeling is not 

considered. 

The evolving depositing front is one of the most important 

features in modeling of asphaltene deposition. It dictates the 

structure and thickness of the layer of asphaltene deposit. 

Common to most existing transport models for asphaltene 

deposition is the assumption of a static depositing front, i.e. the 

depositing front does not evolve during the deposition process. 

Such an assumption is understandable given the complications 

arise with an evolving depositing front, leading to a moving 

boundary problem. This assumption is generally not 

appropriate as the deposited asphaltene layer is not thin 

compared to the size of the well-bore or pipeline. A more 

accurate transport model therefore requires such an assumption 

be removed. This leads nicely to the aim of the present study. 

This study presents a general framework of modelling 

asphaltene deposition process. It focuses at the CFD transport 

model and emphasizes on the evolving depositing front that is 

strongly coupled to the associated fluid, mass and energy 

transport. The present study, however, does not aim to delve 

deeply into the rich physics involved in asphaltene deposition 
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processes but rather to provide a means to facilitate the 

investigation of such phenomena. 

The remaining article is divided into 6 sections. The 

problem description is given in Section 2. A general CFD 

framework is described in Section 3. This is followed by the 

mathematical formulation in Section 4. The solution procedure 

is then briefly outlined in Section 5. In Section 6, the results are 

presented and discussed. Finally, the article concludes with a 

few remarks.  

 

 
Figure 1: Oil flowing from an oil reservoir into a production 

well [11]. 

NOMENCLATURE 
C  particle concentration 

DC  concentration of particles in the form of deposit 

oC  the concentration of asphaltene in solution at inlet condition  

TC  total concentration 

D  diffusion coefficient 

DDa  Damkoler number 

Dk  reaction rate for deposition 

in̂  unit normal vector at the depositing front 

p  pressure 

Pe  Peclet number 

q


 deposition flux 

Re   Reynolds number 

S  source/sink of the particles 

t  time 

iu


 velocity of the depositing front 

extiu ,


 velocity extended from iu


  

x


  position vector 

 

  modified Dirac delta function  

  level-set function 

  viscosity of fluid 

  density of fluid 

D   density of the particle deposit 

  depositing front 

  domain of interest 

   fluid region 

  deposit region 

 
Superscript 

* dimensionless quantity 

PROBLEM DESCRIPTION 
From a modeling point of view, an asphaltene deposition 

problem in a wellbore can be view as follows. Shown in Fig. 2 

is a schematic of the domain of interest  , i.e. a wellbore with 

an inflow and an outflow. It consists of a fluid region F  (oil) 

and a deposit region D  (asphaltene deposit), i.e. 

)()( tt DF  . These two regions are separated by the 

depositing front )(t . Oil flows into the wellbore at the inlet. It 

carries both dissolved asphaltene and precipitated asphaltene 

particles. Additional asphaltene particles can precipitate along 

the wellbore. In the wellbore, asphaltene particles aggregate to 

form larger particles. These particles gradually deposit onto the 

depositing front. As a result of the deposition, the depositing 

front evolves with a velocity of iu


 and the deposit region 

formed by asphaltene particles grows. After t , additional 

layer of asphaltene particle deposit forms.  

 

 
Figure 2: Mathematical modeling of an asphaltene deposition 

process. 

GENERAL MODELING FRAMEWORK 
Depicted in Figure 3 is a general framework of an 

asphaltene deposition model. It consists of two components: (1) 

the thermodynamic model and (2) the CFD model. The 

thermodynamic model determines the condition at which 

dissolved asphaltene becomes unstable and precipitates out of 

oil to form asphaltene particles. The CFD model on the other 

hand describes if these asphaltene particles are deposited on the 

wall of the well or just carried by the flowing oil downstream.  

The focus of the current work is on the CFD model. The 

CFD model needs to have the following features. Since the 

asphaltene particles are transported in the well, a particle 

transport model is required to describe the temporal and spatial 

distribution of the asphaltene particles. Such a transport process 

is governed by species conservation equation. One of major 

transport mechanisms of these asphaltene particles is of course 

convection by the flowing oil. The flow of oil can be modeled 

using the Navier-Stokes equations. If needed, non-Newtonian 
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behavior of oil should be incorporated accordingly. Some of the 

asphaltene particles will stick and deposit onto the wall of the 

wellbore initially and at a later stage onto the depositing front. 

This deposition process at the depositing front needs to be 

modeled. Analogy with surface chemical reaction can be made 

use of. The deposition of asphaltene particles onto the 

depositing front can be modeled as a 1st order reaction. Once 

deposition occurs, the deposit layer grows and depositing front 

moves. This dynamically evolving depositing front needs to be 

tracked or captured. Here in this article, the depositing front is 

captured via two different methods: (1) The level-set method 

[13] and (2) the total concentration method [14]. The total 

concentration method for deposition process was recently 

developed. Both of these methods are of the front-tracking 

family, as such a fixed mesh can be employed for numerical 

solution. The asphaltene deposit can be modeled as an 

impermeable solid. 

 

 
Figure 3: Model of an asphaltene deposition process. 

MATHEMATICAL FORMULATION 
In the current form of the model, the thermodynamics 

model has yet been incorporated into the model. In the 

following sections, the governing equations for the CFD model 

will be given. We delay presenting the species conservation 

equation to the end of this section, as the form of this equation 

is intimately related to the front capturing approach adopted. 

 

Models for Fluid Transport 

The particles are carried by a flowing fluid. Fluid flow is 

modeled using the continuity and the Navier-Stokes equations 

for the whole domain  .  

  



xu

t


,0


 (1) 

 
     




xuupuu

t

u T 


,


 (2) 

where   and   are the fluid density and viscosity 

respectively. For the velocity, the boundary condition can be a 

combination of inlet velocity, outflow boundary and no slip.  

 

Model for Deposition at the Depositing Front  

The deposition process for the asphaltene particles at the 

depositing front is modeled as a first order reaction with the 

deposition flux expressed as 

 txnCkuq iDiD 


,ˆ  (3) 

where D , Dk , C  and in̂  are the density of the deposit, the 

deposition reaction rate, the particle concentration and unit 

normal vector pointing into the fluid region respectively. If the 

deposition process is instead modeled as a second order 

reaction, Eq. (3) needs to be modified accordingly. However, 

the methods presented here can account for a second order 

reaction easily by including some minor modifications.  

 

Methods to Capture the Depositing Front 

Capturing the evolving depositing front is the main 

challenge of a deposition model. For this purpose, two separate 

methods are used. These are the level-set approach and the 

newly developed total concentration approach. The 

conservation equation governing the transport of particles is 

slightly different depends on the approach used in capturing the 

depositing front. 

 

Level-Set Approach 

In the level-set approach [13], the depositing front is 

represented using a level-set function defined as   

 
 
 




















tx

tx

tx

d

d

F

D







 if

 if

 if

,

,0

,

  (4) 

where d  is the shortest distance from the depositing front. 

Under such a representation, the depositing front is given by 

0 . The movement of the depositing front can be captured 

by  





xu

t
exti


,0, 


 (5) 

where extiu ,


 is the extended velocity of the depositing front 

iu


. The conservation equation governing the transport of 

asphaltene particles is given by 

      



xCkSCDCu

t

C
D


,  (6) 

where u


, D  and    are velocity of the fluid, diffusion 

coefficient and the Dirac delta function respectively. In Eq. (6), 

S  is the source/sink of the particles. The last term in Eq. (6) 

accounts for the particle consumed during the deposition 

process. The following initial and boundary conditions are 

enforced. 

Initial Condition 

 
 









F

D

o x

x

xC
xC 






 if

 if

,

,0
0,  (7a) 

Boundary conditions 

    0,,,  txxCtxC CP 
 (7b) 

    0,,ˆ,  txxqntxCD qnP
n


 (7c) 

where  qnC ,  qnC  and  C . 

 

Total Concentration Approach 

In the total concentration approach [14], the species 

conservation equation for the asphaltene particles is derived in 
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terms of the total concentration TC . It is defined as the the sum 

of the concentration of the to-be-deposited (particles, C ) and 

deposited materials (deposit, DC ), i.e. 

DT CCC   (8) 

With this definition, the conservation equation for the particles 

is given by 

    



xSCDCu

t

CT 
,  (9) 

or 

    








x

t

C
SCDCu

t

C D 
,  (10) 

DC  is evaluated by incorporating the interfacial condition at 

the depositing front into a discretized form of Eq. (10). With 

this the devolving depositing front is captured implicitly by 

DC . It has a value of DDC 0  with 0DC  for a control 

volume with no deposit and DDC   for a control volume 

with fully filled deposit. In the solution of Eq. (10), the 

following initial and boundary conditions apply. 

Initial Condition 

 
 









F

D

o x

x

xC
xC 






 if

 if

,

,0
0,  (11a) 

 
 









D

F

Do
D

x

x

xC
xC 






 if

 if

,

,0
0,  (11b) 

Boundary conditions 

    0,,,  txxCtxC CP 
 (11c) 

    0,,ˆ,  txxqntxCD qnP
n


 (11d) 

where  qnC ,  qnC  and  C . 

The boundary condition for DC  is not required. 

SOLUTION PROCEDURES 
 

Numerical Implementations 

The conservation equations (Eqs. 1, 2, 6 and 10) can be 

written in the form of a generic transient convection-diffusion 

equation. This generic equation is solved using the finite 

volume method [15]-[16] on a staggered mesh arrangement. 

Scalar variables are defined at the node of the CVs. The 

staggered velocity components are defined at the surface of the 

CVs. The combined convection-diffusion effect is modeled 

using the Power Law. A fully implicit scheme is used for time 

integration. The velocity-pressure coupling of the Navier-

Stokes equations is handled with the SIMPLER algorithm. 

The level-set approach requires higher order numerical 

schemes to capture the evolving front accurately. The evolution 

of the level-set function (Eq. 5) is spatially discretized with 

WENO5 [17] and integrated using TVD-RK2 [18]. These 

schemes are computationally intensive. To reduce the 

computational effort, the level-set method is implemented in a 

narrow-band procedure [19] where the level-set function is 

solved only within a band of certain thickness from the 

interface. This reduces one order of computational effort. 

Computer programs for both the level-set approach and the 

total concentration approach were written on Fortran 77 

platform. At this stage, the applicability of the presented 

approaches is of utmost importance. Therefore, 

implementations were made for two-dimensional Cartesian 

mesh. 

 

Solution Algorithms 

The overall solution procedure for the level-set approach can be 

summarized as follows: 

(1) Specify the initial conditions (i.e. 0t ) of  u


, p ,   and 

C .  

(2) Advance the time step to tt  . 

(3) Solve Eqs. (1) and (2) for 
tt

u



 and 

tt
p


. 

(4) Solve Eq. (6) for 
tt

C


. 

(5) Calculate 
ttiu




 from Eq. (3) and then calculate 

ttextiu
,


. 

(6) Solve Eq. (5) for 
tt 

 . 

(7) Repeat steps (3) to (6) until the solution converges. 

(8) Repeat steps (2) to (7) for all time steps. 

 

The solution procedure for the total concentration approach is 

slightly different and is summarized as follows: 

(1) Specify the initial conditions ( 0t ) of  u


, p , C  and DC . 

(2) Advance the time step to tt  . 

(3) Solve Eqs. (1) and (2) for 
tt

u



 and 

tt
p


. 

(4) identify the depositing control volumes. These are control 

volumes of the fluid region adjacent to the deposit region. 

(5) calculate 
ttDC


 for the depositing control volumes. 

(6) if 1
 ttDC , set 1

 ttDC . 

(7) solve for 
tt

C


 from Eq. (10). 

(8) repeat steps (3) to (7) until the solution converges. 

(9) repeat steps (2) to (8) for all time steps. 

 

RESULTS AND DISCUSSIONS 
Representative test cases for deposition process are given in 

this section. As these exercises aim to establish the validity of 

the implemented approaches in capturing the evolving 

depositing front with the fluid flow coupled, the source term in 

the species conservation equation is temporarily switched off, 

i.e. 0S .   

For the ease of discussions, the following dimensionless 

parameters are used in the remainder of the article. These are 

the dimensionless particle concentration, Peclet, Damkohler 

and Reynolds numbers defined respectively as 

D

o
o

C
C


*

 (12) 

D

Lu
Pe o  (13) 
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D

Lk
Da D

D   (14) 



 LuoRe  (15) 

where L  and ou  are the characteristic length and velocity 

respectively. The dimensionless time, coordinates and 

concentration are given respectively by 

L

tu
t o*  (16) 

L

x
x *  (17) 

L

y
y *  (18) 

D

C
C


*  (19) 

In the case when there is no fluid flow, the characteristic 

velocity is redefined as LDuo /  and therefore the Peclet 

number reduces to 1Pe . 

 

Deposition in a One-Dimensional Semi-Infinite Domain 

Figure 4a shows a schematic of a deposition process in a 

one-dimensional semi-infinite domain. At 0* t , the particle 

concentration in the fluid region is uniformly set to *
oC  and the 

depositing front is located at 0* x . As there is not fluid flow 

involved, diffusion is the sole mechanism of transporting the 

particles. During the deposition process, particles are deposited 

onto the depositing front resulting in the movement of the 

depositing front. For a given 0* t , the depositing front is 

located at ** x  after an additional deposit layer of thickness 

*  formed on the existing depositing front. Since particles are 

consumed in the process, the particle concentration decreases. 

The initial and boundary conditions correspond to this problem 

are 

Initial condition: 
**
oCC   for  *0 x  (20a) 

Boundary conditions: 

0
*






x

C
 for 0* x  (20b) 

**
 CC  for *x  (20c) 

Figure 4b shows the effect of DDa  on the thickness of the 

deposit layer obtained from the level-set approach (LS) and the 

total concentration approach (TC). For these cases, the initial 

particle concentration is set to 5.0* oC . Although not shown 

here, these are grid independent solutions. To enforce the 

boundary condition of Eq. (20c), solutions were obtained for 

5* x  and 10. These solutions are identical. Therefore, 5* x  

is sufficient numerically to represent a semi-infinite domain. 

Generally, *  grows faster with a larger DDa . The predictions 

of are in good agreement.   

 

 
(a) 

 

 
(b) 

Figure 4: One-dimensional deposition, (a) domain of interest 

and (b) effect of DDa  with 5.0* C . 

 

Deposition in a Two-Dimensional Square Enclosure  

Figure 5a shows a two-dimensional square enclosure 

containing a uniform suspension of particles. Driven solely by 

diffusion, these particles deposit gradually on the four walls. 

Due to symmetry, the lower left quarter of the enclosure is 

modeled with the following initial and boundary conditions.  

Initial condition: 
**
oCC   for 10 *  x  and 10 *  y  (21a) 

Boundary conditions: 

0
*






x

C
 for 1 ,0* x  (21b) 

0
*






y

C
 for 1 ,0* y  (21c) 

Solutions were obtained using LS and TC approaches. Figures 

5b and 5c show the solutions for the case of 1DDa  and 10 

respectively. The predictions of the two approaches are in good 

agreement. Again, this comparison verifies the presented 

approaches. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5: Deposition in a two-dimensional square enclosure 

with 5.0* oC , (a) domain of interest, (b) 1DDa  and (c) 

10DDa . 

 

Deposition in Two-Dimensional Channel with Flowing 

Fluid 

A fluid carrying particles in the form of suspension flows 

into a two-dimensional channel as shown in Fig. 6a. The 

dimensionless length and height of the channel are 3 and 1 

units. Initially, there is no deposit in the channel. As the fluid 

flows, the particles deposit onto the walls of the channel, 

forming deposit layers. Since the deposit is impermeable, it 

changes the flow field. The flow field and the concentration 

field are therefore coupled together. Making use of the 

symmetry of the problem, solution was computed only for the 

lower half of the domain. The following initial and boundary 

conditions apply. 

 

Initial conditions: 

0 *


u , 0* C  for 30 *  x  and 5.00 *  y  (22a) 

 

Boundary conditions: 

At the inlet ( 0* x ) 

1 * u , 0 * v , 
        otherwise,

5.025.0,

0

**
* 








yC

C o  (22b) 

At the outlet ( 3* x ) 

0
*

*






x

u
, 0 * v , 0

*

*






x

C
 (22c) 

At the wall ( 0* y ) 

0 *


u , 0
*

*






y

C
  (22d) 

At the symmetric plane ( 5.0* y ) 

0
*

*






y

u
, 0* v , 0

*

*






y

C
 (22e) 

Figure 6b shows a comparison for the LS and TC 

approaches. The predictions of the two approaches are in good 

agreement. To investigate the effect of DDa , the cases of 

10DDa  and 5DDa  are considered. The profiles of the 

depositing front together with the flow field for these cases are 

given in Figs. 7a and 7b. Only one in every three vectors in the 
*x –direction is shown to avoid overcrowding the figures. A 

larger DDa  corresponds to a higher deposition reaction rate. 

Under such a condition, the deposit layer grows faster. 

Generally, the deposit layer is thickest near the inlet. This 

region has a much higher particle concentration. Most of the 

particles carried by the flow get deposited on the wall near the 

inlet. As the deposit layer grows, it blocks a larger cross 

sectional area of the channel and in effect increases the fluid 

velocity. The fluid velocity is in fact highest at the location of 

thickest deposit layer. This convects more particles to the 

region adjacent to this portion of the depositing front. The 

deposit layer grows even faster. This amplifying effect 

continues until the deposit layer blocks the entire channel. On 

the other hand, a smaller amount of particles make it to 
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downstream, so the thickness of the deposit layer decreases 

along the flow direction.  

The effect of Pe  can be investigated by examining Figs. 7a 

and 7c. Upon increasing Pe  to 20 shown Fig. 7c, very similar 

profile of the depositing front though with the deposit layer 

growing slightly slower is obtained. With a larger Pe , instead 

of being deposited on the depositing front near the inlet, more 

particles are carried by the flow downstream due to a stronger 

convective transport. 

 

 
(a) 

 

 
(b) 

Figure 6: Deposition on the walls of a two-dimensional channel 

with flowing fluid, (a) domain of interest and (b) evolution of 

the depositing front for 1Re  , 1.0* oC  15Pe  and 

10DDa . 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 7: Evolution of the depositing front in a channel with 

flowing fluid with 1Re   and 1.0* oC  for (a) 15Pe  and 

10DDa , (b) 15Pe  and 5DDa  and (c) 20Pe  and 

10DDa . 
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CONCLUDING REMARKS 
This article presents a general CFD framework for modeling 

of asphaltene deposition. The deposition front can be captured 

using either a level-set approach or a total concentration 

approach. As such a fixed mesh can be employed. The 

deposition process occurring at the depositing front is modeled 

as a first order reaction. Fluid flow is modeled using the 

incompressible Navier-Stokes equations. The presented 

approaches are validated against each other. It is then employed 

to study preliminarily the deposition process of asphaltene 

particles occurring in the flow of a two-dimensional channel. 
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