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ABSTRACT 

Numerical investigation is carried out to predict the entropy 

generation for combined natural convection heat and mass 

transfer in a two dimensional porous cavity subjected to a 

magnetic field. The Darcy model is used in the mathematical 

formulation of the flow in porous media. The mathematical 

model is derived in dimensionless form. The governing 

parameters arise in the mathematical model are the Rayleigh 

number, Lewis number, buoyancy ratio and Hartmann number. 

The entropy generation is obtained as a function of velocity, 

temperature, concentration gradients and the physical properties 

of the fluid. The results are presented as average Nusselt 

number, Sherwood numbers and dimensionless form of local 

entropy generation rate for different values of the governing 

parameters.The numerical results show that increasing the 

magnetic field parameter (Hartmann number) leads to reduce 

the flow circulation strength in the cavity and this leads to a 

decrease in the rate of entropy generation. 

 

INTRODUCTION 

The natural convection in porous media has been studied 

and analysed widely in recent years. This interest was estimated 

due to many applications in, for example, packed sphere beds, 

high performance insulation for buildings, chemical catalytic 

reactors, to name of a few. Representative studies in this area 

may be found in the books by Kaviany [1], Nield and Bejan [2] 

and Ingham and Pop [3]. Double-diffusive convection in porous 

media concerns the processes of combined (simultaneous) heat 

and mass transfer which are driven by buoyancy forces. The 

buoyancy force not only affected by the difference of 

temperature, but also affected by the difference of 

concentration in the fluid. A detailed review of double-diffusive 

natural convection in porous media can be found in Mojtabi 

and Mojtabi [4]. Natural convection in a cavity saturated with 

porous media in the presence of magnetic a field is relatively a 

new topic and needs more investigation. The heat, mass and 

fluid flow can be described by means of the hydrodynamics, the 

convective heat and mass transfer mechanism and the 

electromagnetic field as they are linked together. In such cases, 

the fluid experiences a Lorentz force, which tends to oppose the 

fluid flow and hence reduce the flow velocities [5-6]. The 

irreversibility phenomena which are expressed by entropy 

generation are of important interest during the design of any 

thermodynamic system. Many studies concerning entropy 

generation in natural convection in porous media have been 

carried out [6-8]. However, the entropy generation during the 

double diffusive convection in enclosed cavities submitted to a 

magnetic field has not received much attention. The aim of this 

paper is to study numerically the problem of entropy generation 

in heat and mass transfer in square porous cavity filled with 

electrically conducting fluid and subjected to a magnetic field. 

A schematic diagram of the porous cavity and coordinate 

system is shown in Figure 1. Horizontal temperature and 

concentration differences are specified between the vertical 

walls and zero mass and heat fluxes are imposed at the 

horizontal walls. 
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Figure 1 Schematic diagram of the physical model and 

coordinate system. 
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MATHEMATICAL FORMULATION 

The mathematical model in the present problem is 

formulated based on the following assumption:  

1. The convective fluid and the porous media are in local 

thermal equilibrium. 

2. The properties of the fluid and the porous media are 

constants. 

3. The mass flux produced by temperature gradients 

(Soret effect) and the heat flux produced by a 

concentration gradient (Dufour effect) are neglected. 

4. The viscous drag and inertia terms of the momentum 

equations are negligible, which are valid assumptions 

for low Darcy and particle Reynolds numbers. 

5. The Darcy law is applicable. 

Under these assumptions, the conservation equations for steady 

flow can be written as: 
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where V
r

[ms
-1

] is the velocity vector, K [m
2
] is the 

permeability of the porous medium, µ  [kg.m
-1

.s
-1

] is the 

dynamic viscosity, p [Nm
-2

] is the pressure, ρ [kg.m
-3

] is the 

density, g
r

[ms
-2

] is the acceleration vector, B
r

[Wbm
-2

 or Tesla] 

is the external magnetic field vector, I
r

[A] is the electric current 

vector, σ [Ω
-1

 m
-1

] is thefluid electrical conductivity, ϕ [V], is 

the electric potential, T [K] is the fluid temperature, C [mol.m
-3

] 

is the concentration, α  and D [m
2
s

-1
] are diffusivity of heat and 

constituent through the fluid saturated porous matrix 

respectively. 

 

Garandet et al. [9] proposed an analytical solution of the 

equations of magnetohydrodynamics that can be used to model 

the effect of a transverse magnetic field on buoyancy driven 

convection in a two-dimensional cavity. According to Garandet 

et al. [9] equation (3) can be reduced to 02 =ϕ∇ .The unique 

solution is 0=ϕ∇  since there is always an electrically 

insulating boundary around enclosure, where the gradients 

normal to the walls are zeros ( 0=∂ϕ∂ n ). It follows that the 

electric field vanishes everywhere as discussed by Alchaar et 

al. [10]. 

 

The solution that saturates the porous matrix is modelled as a 

Boussinesq incompressible fluid whose density variation can be 

expressed using the Oberbeck–Boussinesq approximation: 

( ) ( ){ }ocoTo CCTT −β−−β−ρ≅ρ 1   (6) 

Where Tβ  and cβ  are the thermal and concentration expansion 

coefficients. Subscript o stands for a reference state. For two-

dimensional flow the pressure p in equations (2) can be 

eliminated by cross differentiation and a single momentum 

equation can be derived. The governing equations may be 

written in dimensionless form using the following non-

dimensional variables: 
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where ( )ch TTT −=∆  and  ( )ch CCC −=∆ . The dimensionless 

forms of the governing equations (1) to (5) become: 
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Where the stream function defined as YU ∂Ψ∂= and 

XV ∂Ψ∂−= , and the governing parameters are Rayleigh 

number,  Buoyancy ratio,  Lewis number and Hartmann 

number defined, respectively as: 
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where Bo is the magnitude of B
r

. The governing equations in 

the present problem are subjected to the following boundary 

conditions: 
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The results will be presented in terms of the average Nusselt 

number Nu and the average Sherwood number Sh  on the 

vertical walls, which are defined as follows: 
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ENTROPY GENERATION 

In convection heat transfer problems, fluid friction and 

heat transfer in addition to magnetic field effects contribute to 

the rate of entropy generation. This entropy generation is due to 

the irreversible nature of heat transfer and viscosity effects, 

within the fluid and at the solid boundaries. For heat and fluid 

flow in porous media, which follows the Darcy model, the local 

rate of entropy generation can be calculated from the known 

temperature and velocity fields as [11]: 
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Dimensionless form of equation (14) can be obtained by 

utilising the dimensionless variable defined in (7) as: 
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where µN is the irreversibility distribution ratio related to 

velocity gradients, defined as: 

( ) 
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The local entropy generation number would be integrated over 

the whole cavity to obtain the entropy generation number for 

cavity volume as: 

∫ ∫=
1

0

1

0
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NUMERICAL METHOD 

         The dimensionless governing equation (8)-(10) subjected 

to the boundary conditions (12) are integrated numerically 

using the finite volume method [12, 13]. The power law 

scheme [12] is used for the convection terms formulation of the 

energy and mass transfer equations. The resulting algebraic 

equations were solved by line-by-line using the Tri-Diagonal 

Matrix Algorithm iteration.  The iteration process is terminated 

under the following condition: 
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n
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n
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where φ  is the general dependent variable which can stands for 

either S,θ  or Ψ  and n denotes the iteration step. The 

developed code is an extension of the code verified and 

validated in previous studies [14, 15]. The present numerical 

results are compared with the results obtained by Mahmud and 

Fraser [6] for the effect of magnetic field on the convective heat 

transfer in porous cavity. The results presented in Table 1 

reflect the accuracy of the present results using uniform mesh 

of 40×40 cells. 

 

Table 1 Comparison of Nu  with Mahmud and Fraser [6] 

results (Ra=250 and N=0) 

Ha 0 2 4 6 10 

Present results 5.883 3.195 1.516 1.140 1.021 

Reference [6] 5.90 3.15 1.50 1.15 1.05 

 

  

RESULTS AND DISCUSSION 

           The results are generated to show the effect of the 

following governing parameters 100 ≤≤ Ha , 55 ≤≤− N , 

1001.0 ≤≤ µN and  10001 ≤≤ Ra  on the average Nusselt 

number, the average Sherwood number and the entropy 

generation number. In order to reduce the parameters, the 

Lewis number is kept constant at unity. It is important to note 

that the dimensionless temperature and dimensionless 

concentration distributions are identical for the case of Le =1, 

which leads to Nu = Sh . 

 

The classical natural convection in porous cavity without mass 

transfer and zero magnetic field effects is considered first as a 

reference case. The variation of the average Nusselt number 

( Nu ) and the local entropy generation number (Ns) with 

Rayleigh number (Ra) are shown in Figure 2 with fixed values 

of  N = 0 and Ha = 0.  Figure 2a shows the classical variation of 

Nu  with Ra. The effect of the irreversibility distribution ratio 

( µN ) on the entropy generation number (Ns) with Rayleigh 

number (Ra) is shown in Figure 2b. The results show that 

increasing µN  lead to higher entropy generation in the cavity. 

From the definition of µN , in order to reduce the rate of 

entropy generation, it is necessary to reduce the reference 

temperature and reduce the viscosity and the thermal diffusivity 

of the fluid. The rate of entropy generation can be minimized 

for the flow through a high permeable porous medium. 

 

0

2

4

6

8

10

12

14

1 10 100 1000

A
v

e
ra

g
e

 N
u

 

Ra

All values of N-emu

  
(a)

 

1

10

100

1000

10000

1 10 100 1000

N
s

Ra

N-emu = 1

N-emu = 0.1

N-emu = 0.01

N-emu = 0.001

 
 (b)  

Figure 2       Variation of Nu and Ns with Ra with constant N=0 

and Ha=0. 
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The variation Nu  and Ns with buoyancy ratio (N) are shown in 

Figure 3 with fixed values of  µN  = 0.1 and Ha=0. The results 

depicted in Figure 3 show a minimum values of Nu  and Ns are 

observed at N = -1 for all the values of Ra. Negative values of 

N means that the buoyancy forces generated due to temperature 

and concentration differences are in opposite directions. For Le 

=1, Ha = 0 and N = -1, equation (8) reduced to 0
2 =Ψ∇ with 

0=Ψ  at the importable walls, leads to a stagnate fluid with 

0=Ψ  everywhere in the cavity. In this case the heat and mass 

transfer is a pure diffusion process, in which the values of Nu  

and Ns are the minimum. Increasing or decreasing the value of 

the buoyancy ratio parameter (N) leads to enhance the fluid 

circulation due to the increase of the resultant buoyancy force 

in the cavity. This leads to the increase the values of Nu  and Ns 

as shown in Figure 3. 

 

0

5

10

15

20

25

30

-5 -3 -1 1 3 5

A
v

e
ra

g
e

 N
u

N

Ra = 750

Ra = 500

Ra =250

Ra = 100

 
(a) 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

-5 -3 -1 1 3 5

N
s

N

Ra = 750

Ra = 500

Ra = 250

Ra =100

 
(b)                                                                   

Figure 3      Variation of Nu and Ns with N at constant µN  = 

0.1 and Ha= 0. 

 

The effect of the magnetic field on the variation of Nu and Ns  

is show in Figure 4 for different values of Ra and fixed values 

of µN  = 0.1 and N= 1. Maximum rates of heat transfer as well 

as entropy generation are observed at Ha = 0. Increasing the 

magnetic field leads to increase the Lorentz forces and 

slowdown the fluid flow which leads to decrease Nu  rapidly as 

shown in Figure 5a. For high values of Ha (Ha > 10), the effect 

of Ra on the heat and mass transfer process is vanished and the 

values of Nu  approaching unity. The heat and mass transfer 

process is associated with the entropy generation and again the 

rate of entropy generation is maximum when the rate of heat 

and mass transfer is maximum as shown in Figure 4b. 
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Figure 4  Variation of Nu and Ns with Ha at constant µN  

= 0.1 and N= 1.  
 

CONCLUSION  

 

The entropy generation for the combined natural convection 

heat and mass transfer in a porous cavity subjected to a 

magnetic field is considered for investigation in the present 

study. In order to reduce the rate of entropy generation, it is 

necessary to reduce the reference temperature and reduce the 

viscosity and the thermal diffusivity of the working fluid. The 

rate of entropy generation can be minimized for the flow 

through a high permeable porous medium. The numerical 

results for Le =1, Ha = 0 and N = -1, show a stagnate fluid 

everywhere in the cavity. In this case, the heat and mass 

transfer is a pure diffusion process, in which the values of Nu  

and Ns are the minimum. The numerical results show that 

increasing the magnetic field parameter (Hartmann number) 

leads to reduce the flow circulation strength in the cavity and 

this leads to a decrease the rate of heat and mass transfer as 

well as the rate of entropy generation.  
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