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Abstract

Let CCd,k be the largest possible number of vertices in a cyclic Cayley graph
of degree d and diameter k, and let ACd,k be the largest order in an Abelian
Cayley graph for given d and k. We show that CCd,2 ≥ 13

36
(d + 2)(d− 4) for

any d = 6p − 2 where p is a prime such that p 6= 13, p 6≡ 1 (mod 13), and
ACd,3 ≥ 9

128
(d + 3)2(d− 5) for d = 8q − 3 where q is a prime power.
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Let G be a group and let X be a set of generators for this group. Then
the vertices of a Cayley graph C(G,X) are the elements of G and there is
an edge between two vertices u and v in C(G,X) if and only if there is a
generator a ∈ X such that v = ua. In this paper we consider undirected
Cayley graphs, hence if a ∈ X, then a−1 is also in X. If G is an Abelian
group (a cyclic group), then the graph C(G,X) will be called an Abelian
Cayley graph (a cyclic Cayley graph).

Let ACd,k be the maximum number of vertices in an Abelian Cayley graph
of degree d and diameter k, and let CCd,k be the largest order of a cyclic
Cayley graph of degree d and diameter k. The degree-diameter problem for
Abelian Cayley graphs and cyclic Cayley graphs is to determine or bound
ACd,k and CCd,k for given d and k. It is well-known that the number of
vertices in a graph of degree d and diameter k can not exceed the Moore
bound 1 + d + d(d − 1) + . . . + d(d − 1)k−1. However there is much better
upper bound for Abelian Cayley graphs. For d → ∞ and fixed k we have
CCd,k ≤ ACd,k ≤ dk

k!
+ O(dk−1); see [7]. Thus ACd,2 ≤ d2

2
+ O(d) and

ACd,3 ≤ d3

6
+ O(d2). On the other hand it is easy to construct Abelian

Cayley graphs of order ( d
k
)k + O(dk−1), hence for d → ∞ and fixed k we

have ACd,k ≥ ( d
k
)k + O(dk−1); see [1]. Let us also mention a work of Garcia
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and Peyrat [2] who proved that ACd,k ≥ dk−2.17

21k!
for sufficiently large d and

k ≤ d. Dougherty and Faber [1] presented a number of results on Abelian
Cayley graphs for small d and large k. Constructions of Cayley graphs of
non-Abelian groups can be found for example in [4] and [5].

We will focus on Abelian Cayley graphs and cyclic Cayley graphs of small
diameter. Macbeth, Šiagiová and Širáň [3] showed that ACd,2 ≥ 3

8
(d2 − 4)

for d = 4q − 2, where q is an odd prime power, and they constructed two
families of cyclic Cayley graphs of diameter 2 as well. The first family gives
the bound CCd,2 ≥ 9

25
(d + 3)(d− 2) for d = 5p− 3, where p ≡ 2 (mod 3) is

a prime. The other family was also constructed for an infinite set of degrees
d and the order d2

3
+ O(d

3
2 ). These results were generalized in [6], where

it is proved that ACd,2 ≥ 3
8
d2 − 1.45d1.525 for any sufficiently large d, and

CCd,2 ≥ 9p(p− 1) for all d ≥ 12 and p ≡ 2 (mod 3) such that d
6
≤ p ≤ d+3

5
.

We present cyclic Cayley graphs which yield a better bound than lower
bounds on CCd,2 given in [3] and [6].

Theorem 1. CCd,2 ≥ 13
36

(d+ 2)(d− 4) for any d = 6p− 2 where p is a prime
such that p 6= 13, p 6≡ 1 (mod 13).

Proof. Let F ∗ be the multiplicative group and let F+ be the additive group
of the Galois field GF (p), where p is a prime such that p 6= 13, p 6≡ 1 (mod
13). Let G = F ∗ × F+ × Z13. Since F ∗, F+ and Z13 are cyclic groups, and
the orders of any two of them have no common divisor greater than 1, the
group G is also cyclic. We denote the identity element in F ∗ by 1, and the
identity in F+ and Z13 will be denoted by 0.

Let a0 = (1, 0, 1), a(x) = (x, x, 1), b(x1) = (x1, 0, 3) and c(x2) = (1, x2, 4),
where x, x1 ∈ F ∗ and x2 ∈ F+. Then a−1

0 = (1, 0,−1), a(x)−1 = (x−1,−x,−1),
b(x1)

−1 = (x−1
1 , 0,−3) and c(x2)

−1 = (1,−x2,−4). We use the generating set
X = {a0, a−1

0 , a(x), a(x)−1, b(x1), b(x1)
−1, c(x2), c(x2)

−1 | for any x, x1 ∈ F ∗

and x2 ∈ F+}. The Cayley graph C(G,X) is of degree d = |X| = 6p− 2 and
order |G| = 13p(p− 1) = 13

36
(d + 2)(d− 4).

In order to prove that the diameter of C(G,X) is 2, it suffices to show
that any non-identity element of G which is not in X can be obtained as a
product of 2 generators of X. It follows from [3] that if x1 6= 1 and x2 6= 0,
then

(x1, x2, 0) = a(x1x2u)a(x2u)−1 = (x1x2u, x1x2u, 1)((x2u)−1,−x2u,−1),

where u = (x1 − 1)−1. It is easy to see that
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(x1, 0, 0) = b(x1)b(1)−1 = (x1, 0, 3)(1, 0,−3) for any x1 ∈ F ∗ and

(1, x2, 0) = c(x2)c(0)−1 = (1, x2, 4)(1, 0,−4) for any x2 ∈ F+.

We consider all the other elements of G. For any x1 ∈ F ∗, x2 ∈ F+ and
i, j ∈ {−1, 1}, we have

(x1, x2, 3i + 4j) = b(xi
1)

ic(jx2)
j = (x1, 0, 3i)(1, x2, 4j),

(x1, x2, i + 4j) = a(xi
1)

ic(jx2 − ijxi
1)

j = (x1, ix
i
1, i)(1, x2 − ixi

1, 4j),

(x1, 0, i + 3j) = ai0b(x
j
1)

j = (1, 0, i)(x1, 0, 3j),

Finally, if x2 6= 0,

(x1, x2, i + 3j) = a(ix2)
ib(ixj

1x
−ij
2 )j = (ixi

2, x2, i)(ix1x
−i
2 , 0, 3j).

Hence any element of G can be expressed as a product of at most 2 generators
in X. The proof is complete. 2

Much less is known about large Abelian Cayley graphs of diameter 3. We
mentioned above that for d → ∞ and fixed k, d3

27
+ O(d2) ≤ ACd,3 ≤ d3

6
+

O(d2). The following result improves the lower bound on ACd,3 considerably.

Theorem 2. ACd,3 ≥ 9
128

(d + 3)2(d − 5) for any d = 8q − 3 where q is a
prime power.

Proof. Let G = F ∗ × F+ × F+ × Z36, where F ∗ is the multiplicative group
and F+ is the additive group of the Galois field GF (q); q is a prime power.
Again, the identity element in F ∗ is 1, and the identity in F+ and Z36 is
denoted by 0. Let

a0 = (1, 0, 0, 1) and b0 = (1, 0, 0, 3).

For x, x̄, x1, x2 ∈ F ∗ and x3 ∈ F+ we define

a(x) = (x, x, 0, 1), b(x̄) = (x̄, 0, x̄, 3), c(x1) = (x1, 0, 0, 9),

d(x2) = (1, x2, 0, 0) and e(x3) = (1, 0, x3, 18).

Then

a−1
0 = (1, 0, 0,−1), b−1

0 = (1, 0, 0,−3),

a(x)−1 = (x−1,−x, 0,−1), b(x̄)−1 = (x̄−1, 0,−x̄,−3),

c(x1)
−1 = (x−1

1 , 0, 0,−9), d(x2)
−1 = d(−x2) and e(x3)

−1 = e(−x3).

The generating set X = {a0, a−1
0 , b0, b

−1
0 , a(x), a(x)−1, b(x̄), b(x̄)−1, c(x1),

c(x1)
−1, d(x2), e(x3) | for any x, x̄, x1, x2 ∈ F ∗ and x3 ∈ F+}. The Cayley

graph C(G,X) is of degree d = |X| = 8q − 3 and order |G| = 36q2(q − 1) =

3



9
128

(d+ 3)2(d− 5). It remains to prove that the diameter of C(G,X) is equal
to 3. We have

(x1, x2, 0, 0) = a(x1x2u)a(x2u)−1 where u = (x1−1)−1, x1 6= 1 and x2 6= 0,

(x1, 0, 0, 0) = c(x1)c(1)−1 for any x1 ∈ F ∗.

Since (1, x2, 0, 0) is in X for x2 ∈ F ∗, we can obtain any element (x1, x2, 0, 0)
where x1 ∈ F ∗ and x2 ∈ F+ as a product of at most 2 generators of X.
Similarly, it is possible to show that any element (x1, 0, x3, 0), x1 ∈ F ∗,
x3 ∈ F+ can be obtained as a product of 2 generators of X. This helps us
to show that we can express any element (x1, x2, x3, s) of G for s = 0, 1, 3 or
18 as a product of at most 3 generators of X. We have

(x1, x2, x3, 0) = (x1, 0, x3, 0)d(x2) if x2 6= 0,

(x1, x2, x3, 1) = (x1x
−1
2 , 0, x3, 0)a(x2) if x2 6= 0,

(x1, 0, x3, 1) = (x1, 0, x3, 0)a0,

(x1, x2, x3, 3) = (x1x
−1
3 , x2, 0, 0)b(x3) if x3 6= 0,

(x1, x2, 0, 3) = (x1, x2, 0, 0)b0,

(x1, x2, x3, 18) = (x1, x2, 0, 0)e(x3).

Now we consider the other elements of G. Let i, j ∈ {−1, 1}.
(x1, x2, x3, 3+i) = a(xi

1x
−i
3 )ib(x3)d(x2−ixi

1x
−i
3 ) if x3 6= 0 and x2 6= ixi

1x
−i
3 ,

(x1, x2, 0, 3 + i) = a(xi
1)

ib0d(x2 − ixi
1) if x2 6= ixi

1,

(x1, ix
i
1x

−i
3 , x3, 3 + i) = a(xi

1x
−i
3 )ib(x3) if x3 6= 0,

(x1, ix
i
1, 0, 3 + i) = a(xi

1)
ib0,

(x1, x2, x3, 9 + i + 3j) = a(ix2)
ib(jx3)

jc(ijx1x
−i
2 x−j

3 ) if x2, x3 6= 0,

(x1, x2, 0, 9 + i + 3j) = a(ix2)
ibj0c(ix1x

−i
2 ) if x2 6= 0,

(x1, 0, x3, 9 + i + 3j) = ai0b(jx3)
jc(jx1x

−j
3 ) if x3 6= 0,

(x1, 0, 0, 9 + i + 3j) = ai0b
j
0c(x1),

(x1, x2, x3, 9 + 3j) = b(jx3)
jc(jx1x

−j
3 )d(x2) if x2, x3 6= 0,

(x1, x2, 0, 9 + 3j) = bj0c(x1)d(x2) if x2 6= 0,

(x1, 0, x3, 9 + 3j) = b(jx3)
jc(jx1x

−j
3 ) if x3 6= 0,

(x1, 0, 0, 9 + 3j) = bj0c(x1),

(x1, x2, x3, 9 + i) = a(ix2)
ic(ix−1

1 xi
2)

−1e(x3) if x2 6= 0,

(x1, 0, x3, 9 + i) = ai0c(x
−1
1 )−1e(x3),
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(x1, x2, x3, 9) = c(x−1
1 )−1d(x2)e(x3) if x2 6= 0,

(x1, 0, x3, 9) = c(x−1
1 )−1e(x3),

(x1, x2, x3, 15 + i) = a(ix2)
ib(ix−1

1 xi
2)

−1e(ix−1
1 xi

2 + x3) if x2 6= 0,

(x1, 0, x3, 15 + i) = ai0b(x
−1
1 )−1e(x−1

1 + x3)

(x1, x2, x3, 15) = b(x−1
1 )−1d(x2)e(x

−1
1 + x3) if x2 6= 0,

(x1, 0, x3, 15) = b(x−1
1 )−1e(x−1

1 + x3),

(x1, x2, x3, 17) = a(x−1
1 )−1d(x−1

1 + x2)e(x3) if x2 6= −x−1
1 ,

(x1,−x−1
1 , x3, 17) = a(x−1

1 )−1e(x3).

We showed that any element (x1, x2, x3, s) where x1 ∈ F ∗, x2, x3 ∈ F+ and
0 ≤ s ≤ 18 can be obtained as a product of at most 3 generators of X. Since
X is closed under taking inverses, elements (x1, x2, x3,−s) can be expressed
similarly. It is easy to see that it is not possible to express any element of G
with the last coordinate 9 + i + 3j as a product of fewer than 3 generators
of X, therefore the diameter of C(G,X) is exactly 3. 2

It would be desirable to have a similar result for cyclic Cayley graphs of
diameter 3. Unfortunately we have not been able to obtain a construction
of cyclic Cayley graphs of diameter 3 and order close to 9

128
d3 for an infinite

set of degrees d, hence this remains an open problem for future research.
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[5] J. Šiagiová and J. Širáň, Approaching the Moore bound for diameter two
by Cayley graphs, J. Comb. Theory, Ser. B 102, No. 2 (2012) 470–473.
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