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ABSTRACT 

A new numerical methodology combining Fourier pseudo-

spectral and immersed boundary methods - IMERSPEC – has 

been developed for fluid flow problems modeled using the 

Navier-Stokes, mass and energy equations, for incompressible 

flows. The numerical algorithm consists in a Fourier pseudo-

spectral methodology using the collocation method, where 

every kind of thermal boundary condition can be modeled using 

an immersed boundary method (Multi Direct Forcing Method). 

The IMERSPEC methodology was presented by [7]. The 

formulation for first (Dirichlet), second (Neumann) and third 

(Robin) kind of boundary condition for energy equation were 

developed and verified. Preliminary results are presented in the 

present paper. 

  

INTRODUCTION 
 

In the last two decades a lot of effort has been spent by the 

fluid dynamic scientific community to address two crucial but 

conflicting key issues in the science of computational fluid 

dynamics (CFD). These are associated with the need to model 

increasingly complex boundary conditions in one hand, and, at 

the same time, requiring high accuracy [1]. The great majority 

of engineering and geophysical fluid flow problems are 

characterized by very complex geometries that arise mainly 

from the irregular domain frontiers. This is often associated 

with the presence of moving and deformable geometries.  

The methods used to solve flow problems over complex and 

moving geometries require moving and deforming meshes or 

even remaking the mesh after a given number of time steps. 

These procedures cause the methodologies to have a high 

computational cost and have a more complex implementation 

[2].  

 

There are several methodologies to impose boundary 

conditions. A lot of works were carried out on volume 

penalization method, [18], [19], [20] and [21], some of them 

was used with the Fourier pseudo-spectral method [20] and 

[21], but in the present paper the immersed boundary 

methodology was used to impose the boundary conditions. 

The immersed boundary methodology has been developed 

since 1970 by several researchers [3, 4, 5, 6]. This method 

reach a portion of the requirements described above; 

specifically, it can handle complex and moving geometries, 

using Cartesian mesh. 

This methodology was applied by [7] to solve the flow over 

a driven cavity and over a backward facing step. The cavity 

flow was also simulated by [17], using a Chebyshev collocation 

method. This work was developed and applied for isothermal 

flows. Flows with heat transfer effects was simulated using 

immersed boundary methodology for boundary conditions of 

first, second and third type by [8], [9], [10], [11] and [12]. 

In special [10] used the multi-direct forcing scheme to 

ensure the temperature Dirichlet boundary conditions at the 

immersed boundary and the finite difference scheme was 

applied to solve heat transfer problems, the results showed 

second-order spatial accuracy when applied to solve the Taylor-

Green vortices.  

An accurate Navier-Stokes equations solver allows to obtain 

a better solution of a given flow problem in a given grid, as 

compared with a less accurate numerical method. In terms of 

high order accuracy, the family of the so called spectral 

methods [13] has been virtually unsurpassed. Spectral methods 

are characterized by exponential convergence to the exact 

solution with increasing grid size. 

Within the family of spectral methods, the classical Fourier 

pseudo-spectral collocation method is probably the most 

impressive, due to its extremely high accuracy and its low 
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computational cost. Moreover, the pressure terms in the Navier-

Stokes equations can be lumped together with the non-linear 

term, for incompressible flows. So, the Fourier pseudo-spectral 

collocation method does not requires the solution of a pressure 

Poisson equation. It results in an unusually fast time stepping 

procedure. These classical methods, however, are in general not 

applicable for over complex geometries. The Fourier 

collocation method, in particular, can only be used in flows 

with periodic boundary conditions.  

The goal of the present work is to show a new methodology 

for incompressible flows with heat transfer and with three kinds 

of boundary conditions. It has been looked to combine the 

accuracy and low computational cost of the classical Fourier 

pseudo-spectral method [13] with flexibility in handling 

complex geometries allowed by the immersed boundary 

methods. Was introduced, specifically, the IMERSPEC method 

[7], which combines a classical Fourier pseudo-spectral 

method, with an immersed boundary method. The main goal is 

to take into account the effects arising from the presence of 

complex boundaries. Also, any spatial derivative is computed 

with spectral accuracy. In the present paper, a new model for 

boundaries conditions of first (Dirichlet), second (Newman) 

and third (Robin) types were developed, implemented and 

verified, using synthesized solutions for the Navier-Stokes and 

energy equations. 

 

NOMENCLATURE 
 

PC  [kJ/kgK] Heat capacity 

dA [m2] Area 

f


 
[N/m3] Forcing source term for the N-S equations 

at the domain   

F


 [N/m3] Forcing source term for the N-S equations 

at the domain   

T
f


 
[N/m3] Forcing source term for energy equation at 

the domain   

T
F


 [N/m3] Forcing source term for energy equation at 

the domain   

ssf


 
[N/m3] Source term to a synthetized solutions for 

Navier-Stokes equation 

SSTf


 
[N/m3] Source term to a synthetized solutions for 

energy equations 

IBTf


 
[N/m3] Source term to a Immersed Boundary for 

energy equations at the domain   

h  [-] Mesh size 

rL  [m] Characteristic length 

n


 [-] Normal vector 

Nx, Ny [-] Total mesh points in x and y direction 
p  [kgPa] Pressure of fluid 

''q


 [W/m2] Heat flux 

RHS  
[N/m3] Right hand side of the N-S equations 

T
RHS  [N/m3] Right hand side of the energy equations 

LrRe  [-] Reynolds number 

T  [K] Flow temperature 

t  [s] Time 

rT  [K] Maximum temperature 

u  [m/s] Velocity components in x direction 

rU  [m/s] Maximum velocity 

  [m/s] Velocity components in y direction 

V


 [m/s] Velocity of fluid 

x


 [m] Particle position at the   domain 

X


 [m] Particle position at the   domain 

 
Special characters 

  

a [-] Constant 

b [-] Constant 

k


 
[m-1] Wave number vector 

TF [-] Fourier transform 
   

Greek letters   
  [m2/s] Diffusion coefficient of internal energy 

  [-] Dirac delta function 

t  [s] Time step 

  [-] Lagrangian domain 

i  [-] Imaginary number 

  [W/mK] Thermal conductivity 
  [kg/ms] Dynamic viscosity of fluid 
  [m2/s] Cinematic viscosity of fluid 
  [kg/m3] Fluid density 

  [-] Whole computational domain 

   Generic field 

   

Subscript   
∞  Environment 

PhD  Physical domain 

ref  Reference domain 

T   Temperature 

 
Superscripts 

  

  Time level 
n  Present time level 

^  Fourier spectral space variable 

*  Temporary variable 
num  Numerical solution 

an  Analytical solution 
   

 

MATHEMATICAL MODELING 
 

The presented methodology is based on the merging process 

of the immersed boundary method with a classical Fourier 

pseudo-spectral method. Was started writing the equations in 

physical space. Then, the pseudo-spectral and immersed 

boundary methods are described. Finally, models for several 

kinds of boundary conditions are presented. 

The mathematical model for incompressible flows of 

Newtonian fluids, with heat transfer is established with the 

energy, the Navier-Stokes and mass equations. These equations 

present source terms that model the boundary conditions for 

momentum and heat transfer. These equations are presented 

below:  

 

0V 


, (1) 

fRHS
t

V 






 , (2) 

TTp fRHS
t

T
C 




 , (3) 

  ss
2 fVpVVRHS


  , (4) 

 

  Tss
2

T fTTVRHS  


, (5) 
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where  txf ,


 is the source term for Navier-Stokes equations 

and  t,xfT


 is the term source for the energy equation 

respectively. The terms  t,xf ss


 and  t,xfTss


 are the source 

term related to the synthetized solutions for Navier-Stokes and 

energy equations. These source terms model the boundary 

conditions as well as others kind of physical effects. 

The main goal of the present work is to present a new model 

for the IMERSPEC methodology [7] extended for flows with 

heat transfer effects. In the following topic the models for 

 t,xf


 and  t,xfT


 source terms are presented. Particularly, a 

model for the energy source term is proposed for the boundary 

conditions of first, second and third types. 

 

 

 

1. Boundary condition for the Navier-Stokes equations 

 

In the present paper, only the Dirichlet boundary condition 

is presented for fluid flows. This boundary condition is 

characterized by the no slipping physical condition. So, a 

reference velocity is defined as:  

 

   , ,refV X t V X t ,  (6) 

 

where  ,V X t
 is the velocity of a material particle placed at 

an immersed boundary described by X


. The vector x


 is the 

particle position at the domain PhD as illustrated by Figure 1. 

This boundary condition, Equation (6), is transformed in a 

source term  t,xf


, as presented by [7]. The Equation (2) is 

discretized in time using a first order Euler method, only as 

illustration purpose:  

 

   
   xfxRHS

t

xVxV 1n
nn1n 










 . (7) 

 

A guess velocity  * ,V x t  is added and subtracted to the 

Equation (7), which results:  

 

       
   xfxRHS

t

xVxV

t

xVxV 1n
n1n*1n*n1n 
















 . 

        (8) 

 

Equation (8) can be decomposed in the following two 

equations: 

 

   
 xRHS

t

xVxV nn1n* 






  , (9) 

 
   

t

xVxV
xf

nn
n










 1*1

1  .    (10) 

Equation (10), was written for a material particle placed 

at x


. It can also be written for a particle that is placed at X


, 

over the immersed boundary: 

 

     
t

XVXV
XF

1n*1n
ref1n





 




 , (11) 

 

where  XV n
ref


1  is given by the first type or Dirichlet boundary 

condition and  XV n


1*   is obtained by interpolation of  t,xV * 
 

which is calculated using Equation (9). So, since  XF 1n


  is 

obtained, it is distributed to the neighbouring of the interface 

and an approximation of  t,xf


 is recuperated:  

 

      XdXxtXFtxf





 ,, . (12) 

 

Known the force  t,xf


, the velocity  xV 1it,1n* 
  is 

updated using Equation (9), rewritten as follows:   

 

     xf
t

xVxV nitnitn 
1,1*1,1*  




. (13) 

 

 
 

Figure 1 Illustration of the physical domain, PhD , and of the 

immersed boundaries i  placed inside the physical domain. 

 

2. Boundary conditions for the energy equation 

 

Three kinds of boundary conditions will be proposed. 

 

2.1. Dirichlet boundary condition (first type)  

 

For this type of boundary condition the temperature  txT ,


 

is given over the immersed boundary, which gives the reference 

temperature, defined as: 

 

   t,XTt,XTref


 , (14) 

 

where  tXTref ,


 is used in order to calculate the forcing term 

 t,xfT


. In the present paper, this forcing term is calculated 

using the direct forcing, with a procedure similar to that used 

for the velocity. So, if we discretize Equation (3) using the 
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Euler time discretization method, as a guise of demonstration, 

we obtain: 

 

   
   xfxRHS

t

xTxT
C 1n

T
n
T

n1n

p











 . (15) 

 

Adding and subtracting  xT 1n*   (guess of the temperature) 

on the left hand side of Equation (15), it gives: 

 

       

   .xfxRHS

t

xTxT
C

t

xTxT
C

1n
T

n

1n*1n*

p

n1n

p























 (16) 

 

This equation can be decomposed in the following two 

equations: 

 

   
 xRHS

t

xTxT
C n

T

n1n*

p








 , (17) 

 

 
   

t

x*TxT
Cxf

1n1n

p
1n

T





 

 
 . (18) 

 

Equation (18) can be rewritten for a material particle placed 

at the immersed boundary: 

 

     
t

X*TXT
CXF

1n1n

p
1n

T





 

 
 , (19) 

where    XTXT 1n
ref

1n


   is given by the physical 

characteristic of each problem. On the other hand  tXT n ,* 1


  is 

obtained by the interpolation of  x*T 1n  , which is given by 

the solution of Equation (17). This interpolation is given by the 

following equation:  

 

      .xdXxxTXT 1n*1n* 
  



  (20) 

 

where x


 and X


, as illustrated by Figure 1. 

Known  XF 1n
T


 , given by Equation (19), it can be distributed 

using the following equation: 

 

     

   




 












Xd
t

x*TxT
C

XdXxXFxf

1n1n

p

TT





. (21) 

 

2.2. Newman boundary condition (second type) 

 

For this type of boundary condition, the heat flux is given, 

or equivalently, the temperature gradient is known.  

 

   tXTfktXq ,,


 . (22) 

 

We are looking to calculate  xf 1n
T

  using the boundary 

condition given by Equation (22). Applying the gradient 

operator to Equation (18), it gives: 

 

      x*TxT
t

C
xf 1n1np1n

T


 




. (23) 

 

This equation can be applied to a material particle that is 

placed beside an immersed boundary Γ: 

 

      

    .X*T
k

Xq

t

C

X*TXT
t

C
XF

1n

f

1n
p

1n1np1n
T







































 (24) 

 

The quantity 
 

f

1n

k

Xq
 

is given by the physical nature of the 

problem. On the other hand,  X*T 1n


  is obtained by the 

interpolation of  txT n ,* 1 
  which is calculated after the 

solution of Equation (17): 

 

      xdXxxTXT
1n*1n* 

 




 . (25) 

 

Equation (24) can be rewritten for a material particle placed 

at PhDx 


, given, approximately, by: 

 

     

      XdXxXT
k

Xq

t

C

XdXxXFxf

n

f

n
p

n
T

n
T






 



















 















1
1

11

*

. (26) 

 

Applying the divergent operator to Equation (26), the 

following equation is obtained: 

 

 
 

 
 

 

 .xI

XdXx

X*T

k

Xq

t

C
xf

1n

xI

1n

f

1n

p1n
T

2

1n



  


























































 (27) 

 

There are many methods to solve Equation (27). 

Particularly, it is possible to solve this equation using the 

Fourier spectral method. It is possible even for non-periodical 

problems, as shown by [7]. Transforming this equation to the 

Fourier space, it gives: 
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    t,xITF
k

1
t,kf̂ 1n

2

1n
T


  . (28) 

 

So, from Equation (28),  kf̂ 1n
T


  or  xf 1n

T

 , can be 

obtained and used to solve Equation (3). 

 

2.3. Robin boundary condition (third type) 

 

This is a hybrid boundary condition, which takes into 

account at the same time the temperature and its gradient at the 

immersed boundary. A differential equation can be obtained 

making an energy balance over the boundary. So, the heat flux 

given by diffusion in side of the boundary must be equals to the 

heat flux given by convection on the other side of the boundary, 

as illustrated by Figure 2. It gives the following equation: 

 

        XdAXnTtXThtXTk ff


 ,, , (29) 

 

which can be rewritten as follow: 

 

       XnTXnt,XTt,XT


  , (30) 

 

where dA
fk

fh
 . From Equation (18) we have: 

      x*TxT
t

C
xf 1n1np1n

T

  



  (31) 

and 

      x*TxT
t

C
xf 1n1np1n

T


 




. (32) 

 

Equation (31) can be rewritten for a material particle placed 

at an immersed boundary. The resultant equation is still 

multiplied by the normal vector n


. This gives the following 

equation:  

 

        t,Xnt,X*Tt,XT
t

C
nt,XF 1n1np1n

T


 




 .

 (33) 

 

Similarly, Equation (32) is rewritten at the immersed 

boundary, resulting: 

 

      X*TXT
t

C
XF 1n1np1n

T


 




. (34) 

 

Adding Equation (33) and (34), results: 
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 (35) 

 

Equation (35) can be rewritten in a convenient form: 
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 (36) 

 

So, using Equation (30), it gives: 
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 (37) 

 
Figure 2 Balance of energy over an immersed interface. 

 

Equation (37) can be formally rewritten in the Ω domain, 

giving approximately: 
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 (38) 

 

Applying the divergent operator to Equation (38), it gives:  

 

     xIxIxf 1n
2

1n
1

1n
T

2    , (39) 

where  

 

         



 XdXxXnXFxI 1n
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1n
1
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,  (40) 
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 (41) 
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Equation (39) can be solved by several methods. 

Particularly it is possible to be solved using a Fourier spectral 

method. In this case the periodical boundary condition must be 

used, as commented before. Applying the Fourier transform to 

Equation (39), it gives:  

 

     kI
ˆ

kkI
ˆ

kkf̂k 1n
2

1n
1

1n
T

2


  ,  (42) 

 

from which the following equation is obtained:  

 

     





   kI
ˆ

kkI
ˆ

k
k

1
kf̂ 1n

2
1n

12

1n
T


. (43) 

The solution of Equation (39) requires the integral  xI 1n
1


 , 

which requires  XF 1n
T


 . So it must be explicitly given and 

 XF 1n
T


  is replaced by  XF n

T


. 

 

3. Mathematical model in the Fourier spectral space 

 

Given the mathematical model in the physical space, the 

next step is to transform it to the Fourier spectral space. For 

instance, the Fourier transform of the continuity equation gives: 

 

  0t,kV
ˆ

k 


 , (44) 

where  t,kV
ˆ 

 stands for the Fourier transform of the velocity 

field  t,xV


. Equation (44) shows that the transformed velocity 

field is orthogonal to the wave number vector. The 

transformation of Equation (9) gives the estimated 

velocity  t,xV* 
: 

 

   

     























t,kf
ˆ

pdt,pkVt,pV

t,kVk
t

t,xV

ss
*

qpk

*

*2
*









,  (45) 

 

where 
 
is the projection tensor presented by [13].  

The transformation of Equation (17), gives the following 

equation: 

 

   

     t,kf̂pdt,pkV
ˆ

t,pT̂k

t,kT̂k
t

t,kT̂
C

SST

*

qpk

*2
*

p


















. (46) 

 

The non linear terms that appear at the right hand side of 

Equation (46) is given by the convolution integral, which is 

very expensive to be solved. Otherwise, they can be solved 

using the pseudo-spectral method, presented by [13]. It consists 

to make the product in the physical space and then transformed 

it to the Fourier spectral space. The FFT (Fast Fourier 

Transform) numerical algorithm, implemented by [16], is being 

used. It is worth to be emphasized that the pressure was 

eliminated from Navier-Stokes equations as can be seen in 

Equation (45). Nevertheless the pressure can be recuperated 

from the calculated velocity field, as shown by [7]. Note that 

this is only a pos-processing procedure. 

 

4. The IMERSPEC methodology  

 

The proposed algorithm is shortly presented by the next 

steps: 

 

1. Solve Equation (45), using a low dispersion and low 

storage Runge-Kutta method proposed by [13], in order to 

obtain  *ˆ
,V k t . 

2. Use an inverse Fourier transform in order to obtain 

 * ,V x t . 

3. Interpolate  * ,V x t  to obtain  * ,V X t  and then 

calculate  ,F X t . 

4. Make the distribution of  ,F X t  in order to 

obtain  ,f x t . 

5. Update the velocity field  t,xV * 
 and return to step (3). 

 

The multi-forcing process, from step (3) to the step (5), is 

done up to a given maximum value of the L2 norm is attained. 

Note that this norm measures how good is the model for the 

boundary condition, which is virtually imposed over the 

immersed boundary by the multi-forcing process. 

 

6. Solve Equation (46) to obtain  *ˆ ,T k t . Perform the 

inverse Fourier transform to obtain  * ,T x t . 

7. Calculate  ,TF X t  and after obtain  ,Tf x t . 

8. Update the temperature field to obtain  ,T x t . 

 

5. Synthesized solution for Navier-Stokes and energy 

equations 

 

A synthesized or manufactured solution consists to 

determine a source term, given an analytical solution to the 

velocity, temperature and pressure field. The following 

equations, proposed by Green-Taylor [15], and a similar 

analytical solution for the energy equation, Equation (3), were 

used in the present work: 
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  (47) 
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, (49) 

 

where, anu , an , anp  and anT  are, respectively, the 

analytical solution for the velocity components, the pressure 

and the temperature. The terms a and b are constants, rL  is a 

characteristic length,   is the diffusion coefficient of internal 

energy, x and y are the components of the coordinates system, t 

is the time,  and   are the fluid density and the cinematic 

viscosity respectively. It should be observed that when u,  and 

p in Equation (2) (Navier-Stokes equations) are replaced by 

Equations (46), (47) and (48), results in a source term 

  0t,xfss


 . This is the main characteristic of the Green-

Taylor analytical solution. The source term  t,xfTss


, due to the 

synthetized solution for the energy equation is obtained 

replacing Equation (46), (47) and (49) at Equation (3) results: 
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 (50) 

 

In order to compare the numerical simulation with 

analytical solution, the initial and boundary conditions were 

determined using this analytical solution. This procedure results 

in periodical boundary conditions, which is appropriated as a 

reference for the Fourier pseudo-spectral method. 

The control parameters, as suggested by [7], are: the 

diameter of vortices, rL [m], the maximum velocity 

    0,0max  ttuU anan
r   which is chosen as 1 [m/s]. 

The reference time is given by 
r

r

U

L
 [s]. The Reynolds 

number is defined by the following equation: 

.
LU

Re rr
Lr


  (51) 

As the viscosity is taken equals to 1, the Reynolds number 

assumes also the value 1. The dimensionless constants a=1 and 

b=1 was taken.  

The main goal of this simulation is to perform the 

verification of the proposed methodology and its numerical 

implementation. For that, the velocity and temperature fields 

were obtained numerically. The pressure field was recuperated 

as a post-processing procedure, as shown by [7]. Then, the 

velocities components, the temperature and the pressure fields 

were compared with the analytical solution (Equations (46), 

(47), (48) and (49)) and the norm L2 was obtained using the 

following equation: 

 

 
2

2 ,

x xN N
num an

ij ij

i j

x y

L
N N



 




 (52) 

where num  and an  stand, respectively, for the numerical and 

the analytical solution of the generic field,  , i.e., p,,u   and 

T . The global error of the simulation can be determined using 

the norm L2, calculated over the entire domain at each time. 

The solution and the domain present a periodical behavior. In 

order to use the boundaries conditions, modeled by the 

immersed boundary methodology, it is possible to insert, inside 

this domain, an immersed boundary over which all kind of 

boundary condition can be modeled and simulated using the 

forcing method. 

 

RESULTS  
 

1. The Green Taylor problem with thermal effects, 

without immersed boundary 

 

The first case that was simulated and used to verify the 

numerical pseudo-spectral code was the Green-Taylor problem, 

with thermal effects. So, Equation (45) and (46) were solved, 

using the pseudo-spectral method, considering the immersed 

boundary source terms   0t,kf
ˆ 

  and  tkf
SST ,ˆ


. The term 

 t,kf̂
SST


 is given by Equation (50). The boundary and initial 

conditions are given by the analytical solutions. Figure 3 shows 

the velocity, the pressure and the temperature field. All them 

are periodical. The errors between the numerical solution 

(pseudo-spectral method) and the analytical solution for 

velocity, pressure and temperature were obtained using the 

Equation (52) and they are shown at Figure 4. 

 

2. The Green Taylor problem with thermal effects, with 

immersed boundary 

 

This case is characterized by the presence of an immersed 

boundary   inside the complete domain ; a continuous 

initial condition is given by Equation (49); the thermal source 

term  t,xf
SST


, for the synthesised solution is given by 

Equation (50).  

The source term ),(ˆ tkf
IBT


, for the proposed immersed 

boundary method, is given by the first type boundary condition 

(Dirichlet), Equation (18), by the second type boundary 

condition (Newman), Equation (28) and by the third type 

boundary condition (Robin), Equation (43). 
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Figure 3 The Green-Taylor vortices; NxxNy=64x64 collocations 

nodes: (a) the horizontal velocity component (v); (b) pressure 

(p) and (c) temperature (T). 

 

 
       (a) 

 
          (b) 

Figure 4 The errors (L2) for the Green-Taylor NxxNy=64x64 

collocations nodes: (a) velocities and temperature and (b) 

pressure. 

 
Figure 5 The temperature field; immersed boundary   inside 

the complete domain  . 

 

 
 

Figure 6 The errors (L2) of the temperature for the Green-

Taylor problem, with thermal effect and with immersed 

boundary; NxxNy=64x64 collocations nodes: first, second and 

third type thermal boundary condition. 

 

Figure 5 shows the temperature field and the immersed 

boundary inside the global domain. The global error, given by 

Equation (52) is shown by Figure 6, for the boundary 

conditions of first, second and third type. It can be seen that the 

boundary conditions keep the accuracy of the spectral method 

when the immersed boundary methodology is used. 

The rate of convergence was approximately 8 to the 

NxxNy=8x8, 16x16 and 32x32 collocations points.  Above this 

resolution, it reaches round-off truncation error. 

 

 

 

467



    

CONCLUSION  
 

A new kind of immersed boundary methodology for fluids 

flows with thermal effects was proposed. Mathematical model 

for thermal boundary conditions of first, second and third types 

were proposed. They were implemented in a pseudo-spectral 

numerical code. The implementation was verified using a 

synthetized analytical solution for the Navier-Stokes and 

energy equations. The simulations that are presented in the 

present paper show that the proposed methodology is very 

accurate, at least for the simulated problem.  
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