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ABSTRACT 
 
The present study focuses on liquid thin film flows on 
vertically rotational disk that is partially immersed in a liquid 
bath. This paper aims to investigate the liquid thin film flow on 
a rotational disk using CFD modelling approach and employing 
the mathematical model as proposed by Afanasiev et. al. [1], 
and to define the stability and shapes of the thin film thickness 
profiles. The dominant factors that determine the film thickness 
are identified with proposing a correlation equation to predict 
the film thickness as a function of angular position, radius, 
rotating speed, viscosity and surface tension. The thin film 
thickness variation in the angular direction (θ) and the film 
dragged into the liquid are particularly investigated since they 
have been overlooked in previously documented researches.  
 
INTRODUCTION 
 
Thin film flows are encountered in a wide range of industrial 
applications [2,3]. An example is the synthesis of 
polyethylenterephthalat (PET) in polycondensation reactors in 
which a series of vertically rotational disks are partially 
immersed in highly viscous polymer liquid, thus picking up and 
spreading the melt in the form of thin film on the surface of the 
disks. Unlike the thin film flow on a horizontally rotational 
disk, the thin film flow on a vertically rotational disk partially 
immersed in liquid is always associated with a meniscus region 
where the liquid is dragged out by the disk moving and a 
specially oscillating region where the film formed on the disk is 
dragged into the liquid. While a lot of studies on the thin flow 
on horizontal rotational disk have been documented in the open 
literature, there have been limited studies on vertical setup and 
the fluid dynamical aspects are still not fully understood 
although there are some discussion and general solutions of 
film thickness profiles for the problem of liquid drag out [4, 5]. 
In this research the proposed mathematical model by Afanasiev 

et.al. (2008) is further extended to define the film pattern 
formed on the vertically rotational disk and Volume of Fluid 
(VOF) method is employed for solving this kind of problem 
using CFD code – ANSYS Fluent. For the problem of the film 
formation on the vertically rotating disk partially immersed in 
liquid, the force balance is important as the shape and stability 
of the thin film is controlled by various forces acting on it 
including viscous, inertial, surface tension, centrifugal, coriolis 
and gravitational forces. For a vertically rotating disk the 
coriolis force can be neglected at the leading order as the term 
of the coriolis force has the same order as the terms of the 
inertial forces due to the restriction of the lubrication theory [6, 
7, 8]. 

NOMENCLATURE 
 
Ca [-] Capillary number 
D [m] Immersion depth 
d' [-] Dimensionless immersion depth 
Fr [-] Froude number 
G [m/s2] Gravitational acceleration 
H [m] Thin film thickness 
h' [-] Dimensionless film thickness 
R [m] Disk radius  
R' 
Re 
T 

[-] 
[-] 
[s] 

Dimensionless disk radius 
 Reynolds number 
Time 

We [-] Webber number  
 
Special characters 
α [-] Aspect ratio of the flow 
θ [⁰] Angular coordinate  
Ω [rpm] Rotating speed 
υ [m2/s] Kinematic viscosity 
ρ [kg/m3] Density   
µ [Pa.s] Dynamic viscosity 
σ 

ω 

[N/m] 
[rad/s] 

Surface tension 
Angular velocity 

 
Subscripts 
CFD  Computational fluid dynamics 
CFL  Courant-Friedrich-Lewy number 
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PET  Polyethylene terephthalate  
VOF  Volume of fluid 

MATHEMATICAL MODELLING  
 
The physical set up for the vertically rotating disk partially 
immersed in liquid is shown in Figure 1. A disk of radius R is 
rotating at the angular velocity Ω about its horizontal axis 
which has a distance d to the liquid bath. For most of thin film 
flows on vertically rotating disks, the flows can be treated as 
incompressible. For the problem of the vertically rotating disk, 
cylindrical coordinate system is employed for convenience. Let 
the liquid velocity vector to be represented by (ur, uθ, uz) and ωωωω 
denotes the angular velocity vector with components (0, 0, Ω). 
 

 

Figure 1. Configuration of a rotating disk partiall y 

immersed in liquid 

 

Navier-Stokes equations which are used to describe the thin 
film flow on a vertically rotational disk can be expressed as: 
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where ρ, µ, ν and p denote, respectively, the density, dynamic 
viscosity, kinematic viscosity and the pressure of the liquid. 
The only external force acting on the thin film liquid is gravity 

g. Thin film flows on the rotating disks, like other flows, should 
also satisfy the continuity, which gives 
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For the boundary condition at the surface of the disk, i.e. z=0, 
no-slip condition is imposed and the disk surface is assumed to 
be impermeable. Thus, 
 

0,,0 =Ω== zr uruu θ     (3) 

 
The total rate of change of the thin film thickness should be 
equal to zero, which results in the following kinematic 
condition 
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Integration of Equation (2) and substitution into Equation (4) 
by applying Leibritz integration rule yields 
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At the thin film surface, ),,( trhz θ= , the static pressure should 

balance the surface tension force, which requires the normal 
stress condition to satisfy 
 

kσ2=⋅⋅ nn
rr ∏∏∏∏     (6) 

 
while at the interface of the free surface, if the friction due to 
the induced air flow is neglected, the tangential stresses on the 
free surface of the film should disappear, which yields 
 

0.. =itn
rr ∏∏∏∏   (i = 1, 2)  (7) 

 
The normal and the tangential vectors in radial and angular 
direction can be found if the thickness of the thin film can be 
determined based on 
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while the stress tensor Π is defined and given by 
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For most of fluids, the surface tension σ is almost unchanged 
and can be assumed to be constant. Then, the mean curvature of 
the thin film free surface can be estimated by 
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Substitution of equations (9) and (10) into equations into 
(6) and (7) yields the boundary conditions for the normal 
stress, which can be written as 
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and the tangential stress condition in radial direction 
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and the tangential stress condition in angular direction 
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Direct solution of Equation (1) together with the boundary 
conditions (3), (6), and (7) coupled with Equation (5), is 
impossible since the equations involved are highly non-linear. 
However, by introducing reasonable simplifications and 
assumptions, this set of partial differential equations can be 
solved at least numerically. The following section will discuss 
the existing analysis for the thin film flows on a vertically 
rotational disk (Afanasiev et al., 2008) to such problem, which 
will be used for guidance for CFD modelling of the thin film 
flow on the vertically rotating disk. 
 

NONDIMENSIONAL ANALYSIS 
 
For the film formation on the vertically rotating disk, the use of 
lubrication approximation is feasible but the appropriate length 
scale should be considered. Obviously, the typical length scale 
should be R, the radius of the disk while the tangential velocity 
of the rotating disk, U, may be the suitable characteristic 
velocity scale, which is given by 
 

Ω= RU      (14) 
 
and the time scale is chosen as 
 

U
RT =      (15) 

 
Since the liquid film formed on the surface of the rotating disk 
is very thin, a small parameter in the analysis can be 
introduced, i.e. 
 

1<<=
R

Hα      (16) 

 
On this basis, the following dimensionless variables can be 
introduced: 
 

rRr ˆ= , θθ ˆ= , zHz ˆ= , rr uUu ˆ= , θθ uUu ˆ= ,  

zz uUu ˆα= , pPp ˆ= , tTt ˆ=    (17) 

 
The dominant viscous term is balanced with gravitational term 
in the ur-momentum equation so that the characteristic height H 
can be scaled which yields 
 

g

U
H

ρ
µ

=      (18) 

 

234



    

It is expected that the pressure will compete with the dominant 
viscous term so that 
 

2H

UR
P

µ=      (19) 

 
Because the thin film involves the free surface, the surface 
tension plays an important role in controlling the liquid surface. 
It can be precluded that the following scale can be used to 
relate to the normal stress boundary condition, i.e. 
 

2R

H
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Equating Equations (19) and (20) gives the scale for R as 
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When the capillary number Ca is introduced, it can be shown 
that Ca is small for the case of the thin film flow on the 
vertically rotating disk. 
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It is noted that this length scale is appropriate for the thin film 
region away from the liquid bath. The length scale should be 
reconsidered for the balance of gravity and surface tension 
forces. 

gRP ρ=       (23) 

 
The pressure scale can be determined by surface tension 
 

gP σρ=       (24) 

 
From equations (23) and (24) the length scale near the liquid 
bath can be obtained 
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We also define a Reynolds number, Re=ρUR/µ. Non-
dimensionalising Equation (1) yields 
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Here all variables have been non-dimensionalised. The 
boundary conditions at the disk, ,0ˆ =z are 

 

,0ˆ,ˆˆˆ,0ˆ =Ω== zr uruu θ      (29) 

 

The boundary conditions at the free liquid surface )ˆ,ˆ,ˆ(ˆˆ trhz θ=  

are: 
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Because α is very small, Equations (26), (27) and (28) can be 
simplified as 
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with the conditions (4-30), (4-31) and (4-32) to be simplified as 
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Equations (33), (34) and (35) can now be solved with the 
boundary conditions (36), (37) and (38), also coupled with the 
kinematic condition for description of the thin film free surface, 
which is given by 
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It can be seen from Equation (35) that p does not depend on z. 
When velocity components ur and uθ are given, the film 
thickness can be found through (39).  
 
Rearranging Equations (33) and (34), integrating twice and 
applying boundary conditions (29), (37), (38), one can obtain 
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Substitution (40) and (41) into Equation (39) and integration 
yields 
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Equation (42) is the standard equation for film thickness, where 

σρ
µ

g

Ω=Ω̂  

 
It should be noted that boundary conditions (36) to (38) is only 
appropriate far away from the liquid bath.  If the length scale is 
reconsidered in the vicinity of the liquid bath as shown in 
Equation (25) based on the analysis by (Afanasiev et al., 2008), 
then boundary condition (36) becomes 
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Surface tension force has a significant influence on film 
thickness profiles and Equation (42) needs to be solved in 
conjunction with Equation (43), which can be written as 
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where κ is curvature of free surface. Direct solution of Equation 
(2-44) is not possible as this kind of equation is highly non-
linear. For steady thin film flow, Equation (2-44) can be further 
simplified as 
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CFD modelling of the thin film flow on a vertically 
rotational disk  
 
Since the governing equations used to describe the thin film 
flow problem in current study are highly non-linear, seeking for 
full analytical solutions for the problem is impractical. Thus, 
CFD modelling approach has been adopted in this study 
[9,10,11]. The use of a high quality mesh and reasonable 
boundary conditions which are incorporated into CFD 
modelling is crucial to this study [12]. For the numerical 
solution of the thin film free surface flow, CFD code - Fluent 
has been used. 
 
For the fully three dimensional problem of the rotating disk, a 
cylindrical coordinate system is employed where the rotating 
disk is placed in the middle of a cylindrical vessel to rotate 
vertically about the horizontal axis. Following the work done 
by Afanasiev et al. (2008), the disk radius is assumed to be 
R=27.23 mm. The length of the cylindrical vessel should be 
long enough and far away from the disk so that the boundary 
condition, ∂/∂z = 0 can be imposed when the cylindrical vessel 
is partly filled with liquid. The cylindrical vessel has a diameter 
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of 80 mm and a length of 40 mm. Since the film formed on the 
rotational disk is very thin, a fine mesh is required in the 
vicinity of the disk. As shown in Figure 2, a structured grid 
with hexahedral elements was generated with map face meshes 
on the circular surfaces, extended by the cooper volume mesh 
to avoid numerical diffusion as much as possible. The total 
number of mesh used in the CFD modelling is 369,714. The use 
of a refined mesh was also tested but the simulation results 
seem to be independent of the mesh.  
 
Volume of Fluid method (VOF) has been recognised as an 
appropriate numerical technique for tracking and locating the 
free surface of two or more immiscible fluids by calculating the 
volume fractions in each cell of a fixed Eulerian grid [13,14]. A 
volume fraction parameter F for each of the Eulerian grid is 
defined in the VOF method. A cell is assumed to be 
completely filled with liquid when F=1, while empty when 
F=0 and it contains interface of two or more phases if 0<F<1. 
Such function F can be transported by using the advection 
equation. Based on F values, the free surface shape can be 
determined using a particular interpolation technique.VOF 
method is employed in current study for tracking the location 
and the pattern of the thin film on the vertically rotating disk. 
 
One important feature of the VOF method is transient 
simulation, i.e. unsteady simulation. Thus, the simulation itself 
requires a careful selection of the time step so that the 
simulation is stable. The criterion used for determining the time 
step is so-called Courant number. In fact, both real fluid flow 
and numerical simulation of thin film flow requires that the free 
surface front advance cannot exceed a mesh interval. This 
Courant-Friedrichs-Lewy condition (CFL condition) is a 
necessary condition for convergence while solving certain 
partial differential equations numerically. The CFL condition is 
expressed as 

C
x

tU ≤
∆

∆.      (46) 

 
where U is the liquid velocity, ∆t is the time step and ∆x is the 
mesh interval or mesh size. Obviously, U∆t<∆x should be 
ensured in all unsteady simulation to keep stability. In this case, 
a small courant number has been used, which gives a minimum 
time step about 10-3s. 
 

 
 

Figure 2. Grid generation for the rotating disk 

NUMERICAL RESULTS AND DISCUSSION  
 
The CFD simulations have been conducted based on four fluids 
of different viscosities as shown in table 1. The properties of 
the test fluid have been taken the same as Afanasiev et. al. 
(2008), for comparison of the simulation results. 
 

Table 1. Different fluid properties 
 

 µ (Pa.s) σ (N/m) ρ (kg/m3) 

Test fluid 1 0.0727 1000 
PDMS-1 1 0.0211 975 
PDMS-2 5 0.0211 975 
PDMS-3 10 0.0211 975 

 
In the simulations, the disk is assumed to rotate at a constant 
angular velocity Ω while it is half immersed in liquid, i.e. d' = 
0, the immersion depth d is nondimensionalised here by 
dividing with the radius of the disk. In Afanasiev’s et. al. work 
[1], the film thickness profile is only the function of r.  
However, our CFD simulation results have clearly indicated 
that the actual film thickness is not only dependent on r but also 
θ. For case of liquid being dragged out of a bath pool via a 
vertically moving upwards flat plate, Landau and Levich (1942) 
have showed that if the capillary number Ca is small, the film 
thickness can be estimated by 
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where h is the film thickness, U is the velocity of the plate, ρ is 
density, g is gravitational force and µ is the dynamic viscosity 
of the liquid. Wilson (1982) indicated that the approximate 
solution given by Landau and Levich (1942) is only valid when 
the capillary number approaches to zero and he obtained a 
general solution of the film thickness when the flat plate is 
vertically aligned, which is expressed 
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By using similar analysis for thin flow on vertically rotating 
disk, Afanasiev et. al. [1] obtained a steady state solution of the 
film thickness, which is given by 
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The calculated film thickness distribution at different radial 
positions is shown in Figure 3, the dimensionless radius of the 
rotating disk is taken as R'=10. The comparisons are shown at 
R'= 9, 7, 5 and 3. It can be seen from Figure 3 that the film 
formation can be characterised by two regions (indicated in 
Figure 4), 0°<θ<90° as the region for the film drag out and 
90°<θ<180° as the region for the film to be dragged in [15]. It 
was revealed from the simulation that the film is thick and 
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unstable in the drag-out point and it gradually becomes stable 
but the film has a tendency of downwards and significantly 
affected by all the forces acting on the film flow. The force 
balance may play a leading role in controlling the film flow. 
The forces such as viscous force, inertia, gravitational force and 
surface tension force acting on the film flow on the rotating 
disk have been discussed by [16, 17, 18]. It has been indicated 
from the simulation that the viscous force is dominant in the 
drag-out region while the gravitational force is dominant in the 
drag-in region. 
 

 
 

Figure 3. Film thickness profiles at different radial positions 
 

 
Figure 4. Drag out and drag in region 

 
Vijayraghvan and Gupta [19] obtained a correlation for the film 
thickness formed on a vertically rotating disk partially 
immersed in Newtonian liquid based on their experimental 
results, which reads 
 

024.009.3

23.515.093.299.7

χ
η
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h
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where η is dimensionless surface tension number, ℜ is 
dimensionless depth, χ is dimensionless gravitational number 
and Cas is modified capillary number. It can be sees clearly 
from equation (50) that the effect of angular position θ is not 
included in the correlation. However, it has been revealed from 
the simulation that the thin film thickness profile does depend 
on angular position θ as shown in Figure 5. 

    
                    θ=5º          θ=15º          θ=30º          θ=60º 

    
                   θ=90º        θ=120º        θ=150º       θ=175º 
 
Figure 5. Drag-out and drag-in of thin film at different angular 

positions 
 
It should be noted that except for the regions where the film 
just starts to form and re-enters the liquid, the change in the thin 
film thickness is not remarkable (15°<θ<170°) though a slight 
variation in film thickness is observed as can be seen from 
Figure-5. Figure 6 shows the variations of film thickness at 
different angular positions for given radius. Notice that the film 
thickness is non dimensionalised by dividing the radius of the 
disk and multiplied by a factor of 10 in all cases to contrast 
more clearly to reflect the structure of the film patterns. 
 
In order to correlate the simulation results, dimensional analysis 
was conducted. The film thickness is dependent on a number of 
parameters and a functional relationship may be assumed. 
 

( ) ( ),,,,,,,,,, θσµρθ rdtgFrh Ω=    (51) 

 
where ρ is the density of the fluid, µ is the dynamic viscosity, σ 
is the surface tension, g is the gravitational acceleration, Ω is 
the rotating speed, t is the flow time, d is the immersion depth 
of the liquid, r is the radius, and θ is the angular position. Since 
previous studies on thin film flow have clearly indicated that 
the thin film flow can be well characterised by the following 
dimensionless parameters like Capillary number (Ca), Froude 
number (Fr), Reynolds number (Re) and Webber number (We), 
the functional relation (51) is assumed to be able to expressed 
as 

( ) ( )dFtFWeFrCakh kkkk 4321Re0=′    (52) 

 
where h' is the dimensionless film thickness, k0, k1, k2, k3, k4 are 
empirical constants which can be determined from the best 
regression fitting to the simulation results. 
 

Drag out Drag in 

0° 

90° 

180° 
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Figure 6. Film thickness at different radial and angular 
positions 

 
The CFD simulation results as shown in Figure 6 can be curve-
fitted using the least square technique to minimise the total 
error. It has been found through the trials that a combination of 
exponential and polynomial curve fitting can deliver the best 
curve fit, which is given by 
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where, the coefficients x1, x2, a, b0, b1, b2, b3, b4, and c have 
been obtained from the CFD simulation results for any given 
radius. The predicted film thickness at different angular 
positions for given radius is now well expressed based on 
expression (53). 
 

 
Figure 7. Film thickness at different radial direction 

 
It can be seen from Figure 7 that the film thickness decreases 
from the central core towards the fringe of the disk. This is due 
to the gravitation force action which drives the film downward. 
However, as mentioned earlier, the film thickness varies along 
the circumferential direction. Based on our simulation results, 
the following fitted expression for a given radius R'=7 is 
obtained, which is given by 
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Equation (52) has clearly indicated that the film thickness is 
affected by rotational speed, which has been confirmed in our 
simulations, as can be seen from Figure 8. The simulations 
were also compared with the asymptotic solutions of Afanasiev 
et al.[1] and the CFD results are consistent with the solutions as 
obtained by Afanasiev et al.[1], which has been shown in 
Figure 9. 
 

 
 

Figure 8. Film thickness at different rotational speed 
 

 
Figure 9. Comparison of the film thickness profile 

 
It can be seen from Figure 9 that there exist difference between 
the film thickness profile predicted by CFD modelling and that 
obtained by Afanasiev et al. [1] in the drag-out and drag-in 
regions. The reason for this difference is still unclear but very 
likely, the solution as obtained by Afanasiev et al.[1] does not 
fully reflect the influence of the surface tension while our CFD 
modelling has employed the full Navier-Stokes equations for 
the problem. This requires further investigation. 
 
The influence of immersion depth on the formed film thickness 
was also assessed in our CFD simulations. Figure 10 shows the 
film thickness distributions for three different immersion 
depths. It is interesting to note here that except for the regions 
of drag-out and drag in; the film thickness only slightly changes 
for different immersion depths which are in contradiction to the 
results as obtained by Afanasiev et al. (2008). One of 
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explanations is that the immersion depth only affects the drag 
out boundary conditions but the film flow on upper part of the 
rotational disk is only affected by the overall acting force 
balance.   
 

 
 

Figure 10. Film thickness at different immersion depths 
 
The film formation on vertically rotating disk is obviously time 
dependent. Figure 11 shows the CFD results for the film 
thickness variation along the circumferential direction at given 
radius R’=7. It can be seen from Figure 11 that the film 
thickness profile is almost same for different flow time of the 
liquid. When flow time is long enough, the film flow becomes 
steady. Thus, for a given immersion depth, correlation (52) may 
be simplified as  
 

4321Re0
kkkk WeFrCakh =′     (55) 

 
 

Figure 11. Film thickness at different flow time 
 
In order to assess the influence of viscosity on the film flow 
behaviour, four different fluids of different viscosities have 
been selected in the CFD modelling. The density for PDMS-1, 
PDMS-2 and PDMS-3 is 975 kg/m3. By using correlation (55) 
for best fitting to the simulations, it was found that k0, k1, k2, k3, 
k4 take the following values.  
k0=1.08×109, k1=10.204, k2=-14.922, k3=6.536, k4=-4.00.  

Thus, the calculated film thickness can be estimated by 
 

00.4922.14

536.6204.109 Re1008.1
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h
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Figure 12 shows the predicted film thickness profiles using 
correlation relationship (56). It can be seen from Figure 12 that 
the film thickness significantly changes and becomes thicker 
when the liquid viscosity increases.  This can be seen clearly 
from equation (49) since the film thickness is proportional to 
the viscosity to power 3/2.  
 

 
 

Figure 12. Effect of viscosity on film thickness profiles 
 

CONCLUSION  
 
The problem of the film formation on the vertically rotational 
disk partially immersed in liquid has been solved numerically 
to obtain the thin film thickness distributions. Based on CFD 
simulation results, a correlation is proposed to describe the film 
thickness distribution by defining the dominating factors 
controlling the thin film flows. It was found from the 
simulation that the two main dominant factors controlling the 
film thickness profile are the viscosity and rotational angular 
velocity. The film thickness increases significantly with 
increase of the angular velocity of the disk, consistent with the 
findings as reported in the published literature [1]. The change 
in the film thickness and the shape of the thin film can be 
characterized by the Froude number. The simulation also 
indicates that an increase in the viscosity causes the average 
film thickness to increase, indicating Capillary number and 
Reynolds number to be the important dimensionless parameters 
in thin film flow analysis. In addition, the effect of the surface 
tension on the film thickness profile can be indicated by 
incorporating the Webber number. The correlation which 
matches the simulation results requires introduction of a 
position factor to account for the change in the film thickness 
profile in different angular positions of the rotating disk. 
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