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ABSTRACT 

The paradox of instantaneous propagation of energy is 
intrinsic to the classical models of energy transport.  This 
paradox becomes well-pronounced during ultra-short processes.  
To remove the paradox, phase-lagged models of energy transport 
have been proposed.  The analysis of the solutions to the phase-
lagged energy equations suggests that when the characteristic 
time of the process is much less than the lag time, the wave 
mode of transport becomes the main mechanism of energy 
transfer. 

In ultra-short heat transfer processes, the wave transport is 
manifested by an apparent increase (three-four orders of 
magnitude) of the thermal conductivity of the transporting 
medium.  In viscous fluid flow, in addition, an apparent decrease 
of viscosity occurs, so that the liquid behaves as superfluid even 
at high temperatures. 

It has been demonstrated that the lag time is inversely 
proportional to the temperature.  Thus the life span of the super-
transport phenomena should significantly increase at low 
temperatures, which is consistent with observing superfluids at 
lower temperatures for long periods of time. 

From the quantum physics standpoint, the energy 
transporting waves can be viewed as narrow wave packets, 
whose wave functions describe the superfluid state of the liquid.  
This may provide an alternative explanation of the phenomenon 
of superfluidity: the Bose-Einstein condensation may not be 
needed for superfluidity to occur.  

From the phase-lagged model of energy transport, it follows 
that the Schrödinger equation is but a zero-time-lag 
approximation.  Hence, the phase-lagged Schrödinger equation 
must be used to describe ultra-short quantum interactions.  It is 
suggested that the finiteness of Planck’s constant and the 
finiteness of the speed of energy propagation are not 
independent.  This circumstance may shed some light on the 
understanding of processes that took place in the beginning of 
our Universe. 
 

INTRODUCTION 
The assumption hidden behind the classical constitutive 

equations, such as Fick’s or Fourier’s laws, is the one of the 
energy transport speed being infinite.  The application of the 
classical constitutive equations to diffusion problems leads to 
the appearance of the Poisson kernels in the solutions of these 
problems in infinite or semi-infinite domains, that is, 
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where d is the dimension of the domain Ω and D is the 
diffusion coefficient of the domain in question.  It is evident 
from (1) that even if the initial distribution u(r, 0) is such that 

0)0,( ≠ru  as Rr ≤  and 0)0,( =ru  as Rr > , 
0),( >tru  for any values of r and t.  In other words, 

however short the duration of the energy transport process is, 
the influence of the initial disturbance is sensed everywhere 
within the domain.  Hence, the speed of energy transport has 
to be infinite, in order for the solution given by (1) to apply. 

In practice, however, this paradox rarely causes a 
problem, because for a very small value of t, the value of the 
exponential function in (1) becomes practically 
indistinguishable from zero, so that even the most advanced 
means of measurement are not able to detect the difference.  
Yet, there are cases, in which the paradox of instantaneous 
propagation cannot be ignored.  Thus, for instance, if 

Dtr 2≤ , the classical assumptions become no longer valid 
and cannot be applied even in principle.  Consequently, one 
may expect that when the characteristic size of the domain 
becomes small enough, the classical solutions can no longer 
be used and are to be substituted by other models. 

To overcome this difficulty in heat transfer problems, a 
time lag is introduced between the onset of temperature 



gradient and heat flux.  This leads to hyperbolic models of heat 
transport, in which thermal energy is carried not only by means 
of diffusion but also by means of waves [1].  It has been 
demonstrated by many studies and experimentally confirmed 
that the hyperbolic energy equations work well at small scales 
[2-6].  This is likely to be due to the fact that the energy 
equations employed in those methods have direct analogy to the 
equation derived from the principles of statistical physics.  
Another strong argument in favor of the fact that the lag models 
are applicable to energy transport problems at very small scales 
can be provided based on the relationship established between 
the Navier-Stokes equations, diffusion equation and the 
Schrödinger equation [7].  Thus, physical quantities at all scales 
are related to the probability wave function found as the solution 
of the Schrödinger equation.  In particular, the velocity field is 
the gradient of the phase of the wave function associated with 
the wave packet corresponding to the molecules of the fluid in 
question (see [7] for details).  The Schrödinger equation, 
however, is valid at all scales.  

Thermal energy is not the only form of energy to be 
transported during start-up processes.  When a viscous fluid flow 
is to be considered, it is clear that momentum cannot propagate 
at an infinite speed.  Hence, in the case of start-up flows or for 
flows in which the characteristic size of the flow is comparable 
with the molecular mean free path, a time lag between the 
velocity gradient and the resulting shear stress must be 
introduced to account for a finite speed of momentum transport. 
 
GENERALIZED EQUATION OF ENERGY TRANSPORT 

In this section, a generalized model of phase-lagged energy 
transport is presented. 

A generalized energy transport equation with the convective 
term can be obtained from the conservation equation written in 
the differential form 
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where F represents the transported property (such as, for 
instance, temperature, mass concentration, momentum, etc.), φ  
denotes the flux of F, S(r, t) is the source function, whereas r 
and t are the spatial and time independent variables, respectively. 
The conservation equation involves two unknown variables, F 
and φ , and, hence, must be coupled with a constitutive equation 
that would relate these unknown quantities.   

In general, constitutive equations are but assumptions and, 
unlike the conservation equation, cannot be derived from 
fundamental principles.  Therefore, the final form of the 
equation of energy transport depends on the form of the 
constitutive equation used. 

In the present model, the following constitutive equation is 
used: 
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where D is the diffusion coefficient always measured in m2/s 
(it can be, for example, mass diffusivity, kinematic viscosity, 
or the coefficient h/m that appears in the Schrödinger 
equation, where h is Planck’s constant and m is the particle’s 
mass) and u(r, t) denotes the velocity vector – therefore, 
quantity F is transported by both diffusion (the first term in the 
right side of the constitutive equation) and convection (the 
second term in the right side).  The parameter τ represents the 
time lag between the onset of the gradient of the transported 
quantity and the occurrence of the flux of that quantity.  
Hence, unlike Fick’s or Fourier’s constitutive equations, 
equation (3) accounts for a finite speed of the transport process 
and is more general than the latter. 

The left and right sides of the constitutive relation are 
written for two different time moments.  In order to overcome 
this difficulty, the left side of (3) is expanded into the Taylor 
series.  The constitutive equation becomes 
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Upon applying the divergence operator to both parts of 
(4), the latter becomes 
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Now it follows from (2) that 
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into (5) and rearranging the terms, the equation becomes 
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Equation (6) is the generalized equation of phase-lagged 
energy transport.  It reduces to the classical diffusion (heat) 
equation if τ = 0 and 0),( =tru .  If 0),( =tru  and 

1<<τ  (all the terms whose order is larger than one can be 



neglected in the series), the generalized equation of energy 
transport reduces to the classical wave equation, whereas 

τ/Dc =  is the propagation speed of waves (for example, 
speed of light or sound).  Note the presence of the apparent 
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 in (6); it appears due to the 

finite time lag between the excitation and the response to it. 
If the diffusion coefficient and velocity are both constant, 

that is DtD =),(r  and ut =),(ru , equation (6) becomes 
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PROBLEM FORMULATION 

Consider an energy transport process that occurs in a 
homogeneous (no preferred direction), semi-infinite domain 
whose boundary moves with a constant speed u and whose 
diffusion coefficient depends neither on spatial variable nor on 
time.  In this case, the generalized equation of energy transport 
becomes 
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The parameter γ characterizes the domain geometry.  Thus, 

0=γ  corresponds to the domain with the flat boundary (no 
curvature); 1±=γ  represents the spherical case with the 
convex and concave boundary, respectively; whereas 

2/1±=γ  describes the cylinder whose boundary is either 
convex ( 2/1=γ ) or concave ( 2/1−=γ ). 

The spatial variable Rxr ±= , where x is the actual 
distance from the origin and R is the initial radius of curvature.  
Note that the sign of R must be the same as the sign of γ . 

Initially, at t = 0, the domain is in equilibrium with a 
constant value of the transported quantity, F0, throughout the 
domain, +∞<≤ r0 . 

As the energy transport process goes on, the condition 

0),(lim FtrF
r
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 must be imposed in order to comply with the 

principle of energy conservation. 

At this point, the second boundary condition is 
deliberately not imposed.  This issue will be clarified in the 
following section. 

 
SOLUTION PROCEDURE 

In order to treat (8), we now apply the technique that was 
first discussed by Oldham and Spanier [8].  Whilst this 
equation can be solved by using Laplace transforms, the 
technique adopted allows for obtaining integral equations that 
relate local values of energy density (e.g. temperature, mass 
concentration, velocity, etc.) and the corresponding local 
values of energy flux (e,g. heat flux, mass flux, shear stress, 
etc.).  The same method was successfully used in numerous 
applications [9-11].  In recent works, the method was extended 
and applied to problems involving combustion [12], 
hyperbolic heat transfer [13-15], turbulent flows [16], and 
such problems in biomedical engineering as modeling of the 
neural response to an external stimulus [17] and the alveolar 
gas exchange [18].  Some other developments of the method 
are presented in [19-23]. 

Upon introducing the new variable, Dr /=ρ , and the 

excess of the transported quantity 0
ˆ FFF −= , the transport 

equation becomes 
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where 
D
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The initial condition becomes 0)0,(ˆ =ρF , and the 

boundary condition is now 0),(ˆlim =
∞→

tF ρ
ρ

. 

Upon taking the Laplace transform of equation (9), the 
latter becomes 
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where Φ is the Laplace transform of the excess of the 

transported quantity F̂ , s is the Laplace transform variable, 

and ),( sQ ρ  represents the Laplace transform of the source 
function S, provided that this Laplace transform exists. 



The general solution of Eqn. (10) is 
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where 2)( ωτ += ssesf , ),( sP ρ  is a particular solution 

of (10), )(1 sC  and )(2 sC  are two arbitrary functions of the 

Laplace transform variable s, )(, zM µκ  and )(, zW µκ  are 
Whittaker’s functions, defined as 
 

),21,2/1()( 2/12/
, zMzezM z µκµµ
µκ +−+= +−

      (12a) 
 
and 
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where )(2 sfz ρ= , )(/ sfωγκ = , and 2/1−= γµ .  Note 
that the value of z increases as ρ increases.  Functions M and U 
in (12) are Kummer’s confluent hyper-geometric functions, 
defined as 
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where )1)...(2)(1()( −+++= naaaaa n , 

)1)...(2)(1()( −+++= nbbbbb n , and 1)()( 00 == ba  
(see [24, p. 504]). 
Written in terms of Kummer’s functions, equation (11) becomes 
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where ( ))(/1 sfa ωγ −=  and γ2=b . 

Now, since baz
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504]), the first term in (14) becomes unbounded for large 
values of z.  This, however, contradicts the boundary condition 

0);(lim =Φ
∞→

sz
z

.  Hence, for the solution to be bounded, the 

arbitrary function )(1 sC  must be identically zero.  On the 
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Therefore, provided that s > 0 (this is really the case, because 
the Laplace transform variable corresponds to time and is 
always positive), the second term in equation (14) decreases as 
z increases and vanishes as z becomes infinitely large.  
Consequently, the solution becomes 
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Upon differentiating (15) with respect to ρ, the equation 
becomes 
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where );();();( sPss ρρρ −Φ=Ξ .  Note that 
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Furthermore, it follows from (15) that 
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Upon substituting this into (16), the latter reduces to 
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Dividing (18) by )(sf , 
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Note the minus sign in the left side. 

Now, upon noticing that 
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equation (19) simplifies into 
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In most practical applications, values of the time lag τ  are very 
small.  In fact, 2/ cD=τ , where c is the speed of the energy 
transporting waves (it is usually very large, while the diffusion 
coefficient D is small).  Hence, in this case, 

2)( ωτ += ssesf  can be written as 
2)1()( ωτ ++= sssf .  The inverse Laplace transform of 

)(/1 sf  is [24, p. 1025] 
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where I0 is the modified Bessel function.  The inverse Laplace 
transform of )(/1 2 sf  is [24, p. 1022] 
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Upon taking the inverse Laplace transform of (20) and 
restoring the original variables, the solution becomes 
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where p(r, t) is the inverse Laplace transform of the particular 
solution );( srP . 

Finally, upon substituting the constitutive equation 
relating the transported quantity F with its flux φ, namely 
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the solution becomes 
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where xtxpDtx ∂∂−= /),(),(β  denotes the effective flux 
due to the presence of the source function in the original 
equation, R represents the radius of curvature of the surface.  
The sign of R must be the same as the sign of the parameter γ.  
The parameter τc=l  is the “space quantum”. 

Equation (22) is an integral solution of the generalized 
phase-lagged problem of energy transport modeled by equation 
(8) in the case of small values of the phase lag τ .  It provides a 
relationship between the local values of the transported quantity 
F and its flux φ and is valid everywhere within the domain, 
including the domain boundary. 

The solution given by equation (22) provides some 
important cues of how energy transport processes take place in 
general.  Thus, for instance, it follows that a certain maximal 
speed of energy transport should exist such that no process of 
energy transport may occur with the speed larger than that 

maximum speed (the parameter c and the term 22 /1 cu−  in 
the solution).  Furthermore, although allowed being very small, 
the time lag, τ , in the solution is finite.  This time lag may be 
viewed as the “time quantum” of the process in question.  
Moreover, the solution contains the “space quantum”, l , 
defined as τc=l . 

Curiously enough, in the case of a non-zero value of the 
velocity u, the solution given by equation (22) becomes a 
mapping of the form )(1 nn FF ℑ=+ , where ℑ  denotes the 
integral operator in (22).  Therefore, the solution of the 

generalized equation of energy transport allows of chaotic or 
even biotic (self-organized) solutions.  This may become the 
topic of future studies. 

In the following sections, the implications of the proposed 
model to fluid dynamics, heat transfer and quantum mechanics 
will be discussed. 
 
PHASE-LAGGED NAVIER-STOKES EQUATION 

If a viscous fluid flow is considered, the generalized 
approach to energy transport leads to an extended version of 
the classical Navier-Stokes equation, which, unlike the latter, 
is valid at all scales.  For the sake of simplicity, but without 
the loss of generality, the derivation is performed in the case 
of an incompressible Newtonian fluid with constant physical 
properties. 

Newton’s second law of motion, written for a fluid 
particle, becomes 
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(23) 
 
where v is the velocity field, ρ represents density of the fluid, 
φ  is the stress tensor, and g denotes body forces.  The 
Navier-Stokes equation is derived from equation (23) by 
coupling it with an additional relation between the stress 
tensor and velocity field.  Thus, for instance, such a relation 
(otherwise called the constitutive equation) in the case of a 
Newtonian fluid is 
 

),(),(),(),( tttpt xvxvxxφ ⋅∇+∇+−= λµ    (24) 
 
where p is pressure, µ denotes the dynamic viscosity, and λ is 
the second viscosity coefficient.  Equation (24) establishes 
direct proportionality between the stress value and velocity 
gradient. If the fluid is assumed to be of constant density, i.e., 

0=⋅∇ v , the last term in the right hand side of (24) vanishes 
and equations simplifies into 
 

),(),(),( ttpt xvxxφ ∇+−= µ                         (25) 
 
Hence, the Navier-Stokes equation becomes in this case 
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This equation has been derived from Eqn. (23) by using the 
assumptions given by (26).  This constitutive relation, 
however, assumes that the onset of the stress happens 
simultaneously with the onset of the velocity gradient, which 



is equivalent to saying that the momentum transport happens 
with an infinite speed.  As has been already mentioned, this may 
be a good assumption for relatively large scales, but it obviously 
fails at small scales. 

In order to account for a finite value of the time lag between 
the onset of the velocity gradient and the stress caused by it, a 
new constitutive equation is assumed.  Such an equation is 
 

),(),(),( ttpt xvxxφ ∇+−=+ µτ                  (27) 
 
where τ is called the relaxation time or the time lag. 

The same procedure as was used in [25] is applied from this 
point onwards. 

The left and right sides of the constitutive relation are 
written for two different time moments.  In order to overcome 
this difficulty, the left side of (27) is expanded into the Taylor 
series.  The constitutive equation becomes 
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Upon applying the divergence operator to both parts of (28), 
the latter becomes, 
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It follows from (23) that 
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Upon substituting this into (29) and rearranging the terms, it 
yields 
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(31) 
 
where ν is the kinematic viscosity of the fluid. 

Equation (31) is the phase-lagged version of the Navier-
Stokes equation in the case of a finite time lag, τ, between the 
onset of the velocity gradient and shear stress.  This equation 
is valid at all scales, provided that the fluid can be viewed as 
incompressible with constant physical properties.  Note the 
presence of the apparent energy source due to the body force 
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 in (31); it appears due to the finite time lag 

between the excitation and the response to it. 
Now due to the smallness of the time lag, equation (31) 

can be written in the truncated form as 
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(32) 

 
so that all the terms in (31) for which 2≥n  are neglected. 
The significance of these terms will be explained in 
subsequent sections. 
 
AN ILLUSTRATIVE EXAMPLE: START-UP FLOW IN A 
FLAT NANO-CHANNEL   

In order to provide an illustration of how the developed 
model can be applied to problems in fluid mechanics, a very 
simple problem is considered: the start-up Couette flow in a 
flat nano-channel.  It will be shown that, although the problem 
is very simple, the conclusions that can be drawn from the 
application of the present model to it are far reaching. 

Consider the Couette flow between two parallel plates the 
distance between which is small, 910~ −h  m.  The fluid 
between the plates is initially at rest, 0)0,( =zu .  The flow 
is created as one of the plates begins to move with a constant 
velocity, constuthu == 0),( .  The other plate remains at 
rest at all times.  In this case, equation (32) simplifies into 
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where z denotes the spatial variable, hz ≤≤0 .  
Mathematically equation (33) is equivalent to the so-called 
telegraph equation that accounts for the damping of 
transporting waves due to friction (viscous dissipation, in the 
case of this study).  The second initial condition is obviously 

0
0

=
∂
∂

=tt
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The same equation was treated in the case of hyperbolic 
heat conduction in a semi-infinite domain previously [13]. 

The solution is obtained by the method of Kulish [23], the 
one that was used to treat (7): 
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where 0I  is the modified Bessel function and H is the unit step 
function [24]. 
 
SOLUTION APPLICABILITY   

To establish the range of the solution applicability, a simple 
scale analysis of (33) is performed in this section.  

Equation (33) is now written in terms of characteristic scales 
of the process, that is, 
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If both terms on the left side are of the same order of magnitude, 
one obtains expressions for the wave and diffusion time scales, 
namely, Wt and Dt , using the fact that each of these terms have 
to be of the same order as the term on the right side, that is, 
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where h is the scale of linear dimension and ( ) 2/1/τν=C  is 
the speed of momentum waves. 

In fact, the wave component of the momentum transport 
dominates if the term Dtu / , responsible for the change due to 

diffusion, is much smaller than the term 2/ Wtuτ , responsible for 
the wave transport.  In other words, the wave transport 

dominates if 1
2

<<
τD

W

t
t

. 

Therefore, when the intrinsic length of the momentum 
diffusion  

 
( ) 2/1tD νλ =                (38) 

 
is significantly smaller than the intrinsic length scale of the 
momentum wave 
 

CtW =λ                 (39) 
 
where C  is the speed of momentum waves, the effect of wave 
transport can be neglected.  Otherwise, this effect must be 
taken into account. 

The lag time, τ, is such a time moment when WD λλ = .  

Hence, it follows from (38) and (39) that 2/Cντ = . 
It is clear from the above that if the characteristic time of 

momentum transport is smaller than the lag time, i.e., τ<<t , 
the transport by means of diffusion can be neglected, so that 
the transport by means of wave can be viewed as the only 
mechanism of energy transfer.  On the contrary, when 

τ>>t , the diffusion can be seen as the only mechanism of 
energy transport.  However, if τ~t , both the mechanisms of 
energy transport – waves and diffusion – must be taken into 
account. 

Based on the scale analysis of (33), one can now 
introduce a dimensionless criterion to distinguish between the 
possible types of transport processes.  Such a criterion is the 

relaxation number 
ντ

tCtNr

2

== .  If one now notices that 

the length scale of the process is the distance traveled by the 
wave, CtdW = , one obtains 
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It is amazing that this criterion is the Reynolds number 
based on the speed of momentum waves within the domain.  
This circumstance, however, is by no means coincidental.  As 
has been shown [26], a similar scale analysis performed for 
buckling of streams in a fluid flow leads to the definition of 
the Reynolds number, seen as the factor of competition 
between the buckling waves and viscous diffusion.   

From (40) one can observe that for fluids with 
510~ −ν m2/s and 310~C m/s, the transport by momentum 



waves must be taken into account as 910~ −
Wd m and below.  

It is equivalent to the time scale of 1110~ −t s or smaller. 
 
SUPERFLUID BEHAVIOR OF START-UP FLOWS 

The scale analysis performed in the preceding section 
suggests that during fluid flow one part of momentum is 
transported by waves, while another part is transported by 
viscous diffusion.  The part of momentum transported by 
viscous diffusion is determined by the relaxation number, Nr.  
Hence, the flow behaves as if the fluid consisted of two 
interpenetrating liquids: a wave component and a viscous 
component. 

This picture of flow is strikingly reminiscent of the two-
fluid model proposed by Landau [27] to explain behavior of 
liquid helium at low temperatures – the phenomenon known as 
superfluidity.  In the start-up flow, the amount of momentum 
carried by waves can be identified with the amount of 
momentum carried by the superfluid component in Landau’s 
model, that is, the part of momentum transported not by viscous 
diffusion. 

The analogy becomes even more striking, if one notices that 
in the flow considered here, a certain part of energy will be 
transported by means of a temperature wave, whose lag time is 
determined as 

 

2CT
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where α is the thermal diffusivity of the fluid in question.  This 
phenomenon is known as the second sound in superfluids [27].  
In fact, it can be noted that the ratio of τ to τT is the Prandtl 
number of the fluid. 

From 1938, when superfluidity was discovered [28], 
helium-4 was the only known liquid that exhibits the superfluid 
behavior.  In 1972, the phenomenon was seen, at much lower 
temperatures, in helium-3 [29].  Despite many searches for 
superfluidity in other systems, it remained an uncommon 
phenomenon until 1995, when Bose-Einstein condensation was 
achieved in rubidium vapor, adding to the list of superfluid 
systems [30].  This list now includes other gases, such as spin-
polarized hydrogen gas, and, most recently, molecular gases of 
paired fermions [31]. 

It follows from the model presented in this paper that 
superfluidity is a common phenomenon that could be observed 
when particles constituting the medium transport their energy by 
both wave and diffusion.  Hence, the superfluid component of 
flow is the part of momentum transported by means of waves, 
while the normal (viscous) component corresponds to the 
transport by means of diffusion.  This provides a clear and very 
simple physical explanation of the superfluidity phenomenon 
and supports the intuitive two-liquid model suggested by 
Landau.   

Yet the superfluidity of start-up flows is a very short-living 
occurrence.  As the transient time of the process increases, the 

normal component of the flow (viscous diffusion) becomes 
more pronounced, while the superfluid component (the wave 
transport of momentum) decreases, so that it becomes 
negligible as Nr >> 1, when the flow can be considered as 
completely normal, so that all the superfluid effects vanish. 

It is necessary to point out here that if the complete, non-
truncated version of the generalized equation of fluid flow is 
considered [see Eqn. (31)], it follows that start-up flows have 
to exhibit additional modes of transport.  Interestingly, the 
phenomena of the third, fourth and even the fifth sound have 
been recently reported in literature, for the nano-channel flows 
of liquid helium at very low temperatures [32]. 

It follows from the presented model that the phenomenon 
of superfluidity, albeit it has a very short life span within start-
up flows, is a common phenomenon and is not confined to 
near absolute zero temperatures; it can be observed in all start-
up flows. The start-up superfluidity becomes fully pronounced 
in flows, in which characteristic size of the channel is 
comparable with the distance traveled by momentum waves, 
that is, 910~ −

Wd m.  Otherwise, the phenomenon can only 
be observed in a thin nano-layer adjacent to the moving 
boundary and completely degenerates as the transient time of 
the flow becomes much larger than the relaxation time, 

τ>>t . 
 
SOME ILLUSTRATIVE SOLUTIONS 

In order to demonstrate the wave effects (superfluidity) 
throughout the entire channel, the air flow through a nano-
channel where m103 9−×=h , /sm1055.1 25−×=ν  and 

m/s14.200=C  was selected.  Note that the speed of 

momentum waves is defined as 3/sCC = , where 

m/s65.346=sC  is the speed of sound in air.  

Based on these values, s1087.3 10−×=τ .  At this time 
moment, the contributions from wave transport and diffusion 
are equal. 

This means that as the transient time is shorter than the 
relaxation time, τ , the wave effect has to be taken into 
consideration since it is the dominant term.  In particular, it 
means that any start-up flow is to be described by the phase-
lagged Navier-Stokes equations (31). 

For a given constant velocity value of the moving wall, 
integration of equation (34) is straightforward, and is carried 
out by explicit time advancement using trapezoidal rule. In 
order to handle singularity, analytical integration is performed 
in the vicinity of the upper limit.  The time step is chosen in 
such a way that the relative error of the solution does not 
exceed 610−=ε . Upon achieving this criterion, solution also 
becomes independent of further reduction in time step.   

Figure 1 shows the velocity profiles versus time for 
different locations within the channel.  It is observed that for 
the first one pico-second, the velocity in the channel is zero, 
i.e., there is a time lag before the effects of the upper plate are 



propagated to the fluid in the channel.  At slightly less than 2 
pico-seconds, at a location of z/h = 0.9, the fluid velocity 
increases rapidly to a maximum before reaching its equilibrium 
value at time t = 30 pico-seconds.  For smaller values of z/h, the 
wave takes a longer time to propagate from the upper plate to the 
lower plate, e.g. at z/h = 0.1, it takes almost 14 pico-seconds for 
the waves to reach that location. The velocity then increases 
rapidly to a maximum before decreasing to its equilibrium value 
at a time of 30 pico-seconds. This trend is also observed for 
other locations in the channel. It is noted that for the first 30 
pico-seconds, wave transport is the main mechanism in the 
propagation of the velocity. In fact, for all the positions within 
the channel, the equilibrium velocity is reached after 30 pico-
seconds. 
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Figure 1 Transient velocity profiles at different locations within 
the channel 

 
This can be explained by the following analysis: 

Because 3/sCC =  where m/s65.346=sC  is the speed 
of sound in air. 
Then, 

ps30s1097.29

m/s200.14/m1032/2
12

9

≈×=

××==
−

−Chtrelax  

 
which is in excellent accord with the numerical solution. 

This means that the speed of momentum wave is exactly 
equal to the velocity of the density disturbances in the phonon 
gas, defined as 22222 3 soundphononzyx ccccc ==++   in the kinetic 
theory (molecular physics).  The relaxation time of 30 pico-
seconds is the time necessary for the momentum wave, 
generated by the moving wall, to reach the opposite wall and 
then, being reflected by that wall, to travel back across the 
channel.  No diffusion has to be accounted at those timescales.  
Hence the flow behaves as if it consisted of its superfluid 
component only. 

The velocity profiles across the channel at different 
moments of time are shown in Figure 2.  This figure is the most 
telling for visualizing the momentum wave that travels across 
the channel.  In Fig. 2 (above), the position of the wave front 
within the channel corresponds to the point of zero velocity 

value, beyond which the velocity profile has been formed.  As 
the transient time is 15 ps, the wave front reaches the opposite 
wall.  At this particular moment, the velocity profile is 
indistinguishable from the steady Couette profile.  At the same 
moment, the momentum wave, being reflected by the resting 
wall, begins to travel back through the channel, towards the 
moving wall.  This motion of the reflected wave can be seen in 
Fig. 2 (below) as the kink in the velocity profile.  The 
reflected wave moves from the resting wall towards the 
moving wall, so that the reflected wave reaches that wall as 
the transient time is 30 ps.  As soon as the reflected 
momentum wave reaches the moving wall, it is absorbed by 
the latter, so that the velocity profile becomes the classical 
linear profile of the Couette flow – the velocity profile 
remains steady beyond this point.  However, the superfluid 
component remains dominant, for the transient time of the 
process is still much less than ps387=τ .  Yet, as the 
transient time of the process increases, more and more 
momentum is transported by diffusion, because the probability 
of collisions among air molecules within the channel increases 
with time.  Consequently, the content of the normal (viscous) 
component in the flow increases, while the superfluid effects 
become less pronounced.  The flow becomes normal – with no 
superfluid component present – when the transient time of the 
process exceeds the relaxation time of 387 ps. 
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Figure 2 Evolution of velocity profiles across the channel – 
between 0 and 15 ps (above) and between 15 and 30 ps 

(below) 
 

The evolution of the shear stress at different locations 
within the channel is shown in Figure 3.  The first peak 
corresponds to the increase in velocity due to the momentum 



wave coming from the moving plate.  The wave then hits the 
resting plate and is reflected back to the moving plate.  This 
explains the second peak in the shear stress value. It is seen from 
the figure that the equilibrium value of the shear stress at all the 
locations becomes the same, namely 6127 Pa, which 
corresponds to the constant value of the shear stress for the 
classical Couette flow.  It is noted that the maximum shear stress 
throughout the channel occurs at the moving plate and has a 
value of nearly 120,000 Pa.  This is almost 20 times the 
equilibrium shear stress value. Such a huge value is solely due to 
the instantaneous jerk of the moving wall and should be much 
smaller if the wall velocity were a smooth function of time. 
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Figure 3 Transient shear stress profiles at different locations 
within the channel 

 
Figure 4 shows the shear stress profiles across the channel at 

different time moments. In the first 1.5 ps, the momentum wave 
has propagated to h/H =0.9, this explains the increase in shear 
stress. As the transient time increases, the shear stress in the 
channel increases (until the transient time becomes 15 ps).  At 
this point, the wave hits the resting plate, and the shear stress 
becomes constant throughout the channel. This figure is 
consistent with Figure 2 where the velocity profile throughout 
the channel has a Couette-type profile. Subsequently, a reflected 
wave, which is produced by the resting plate, moves towards the 
moving plate and a jump in the shear stress value is noticed. As 
the reflected momentum wave reaches the moving plate, the 
shear stress becomes constant across the channel and its value is 
equal to the shear stress in the steady Couette flow. 
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Figure 4 Evolution of shear stress profiles across the channel 

AN APPARENT INCREASE OF THERMAL 
DIFFUSIVITY DURING SUPER-TRANSPORT 
PROCESSES 

It is well-known that the phenomenon of superfluidity is 
always accompanied by a tremendous increase of the thermal 
conductivity of the superfluid liquid [27].  Thus, for instance, 
the thermal conductivity of superfluid helium exceeds that of 
copper by about three orders of magnitude.  The purpose of 
this section is, therefore, to show that an apparent increase of 
the thermal diffusivity occurs during ultra-short processes as 
well and derive an expression that will allow us to estimate 
this increase.  

In the wave model of heat conduction, the temperature 
evolution is given by 
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where α denotes the thermal diffusivity, T0 is the initial 
temperature, τ is the lag between the onset of the temperature 
gradient and the corresponding heat flux [13].  The kernel, Kw, 
is 
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where I0(z) is the modified Bessel function. 

If, however, the classical model is to be applied instead, 
then a different value of the thermal diffusivity has to be 
assumed, effα , in order to match the experimental results [9-
10].  Thus, 
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where the kernel is given by 
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Combining (42) and (44), 
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Because (46) is to be valid for any t > 0, it yields 
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Consequently, 
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However, 
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[24].  Using this and substituting (43) and (45) into (48), 
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Hence, an apparent increase of thermal diffusivity during wave 
transport takes place.  Thus, for instance, for τ01.0=t , the 
apparent thermal diffusivity may exceed the real thermal 
diffusivity by almost three orders of magnitude. 
 
SUPERFLUIDITY FROM THE POINT OF VIEW OF 
QUANTUM MECHANICS 

It is usually believed that the phenomenon of superfluidity 
can be explained by the phenomenon nowadays known as the 
Bose-Einstein condensation.  A gas of non-interacting atoms, 
obeying the Bose statistics, below a characteristic temperature, 
which depends on the mass and density, should manifest a 
peculiar behavior: a finite fraction of all the atoms (and at zero 
temperature, all of them) should occupy a single one-particle 
state [33].  This state is thought to correspond to the superfluid 
phase of a medium.   

However, in the case of superfluid 3-He [29], since the 3-He 
atom obeys Fermi rather than Bose statistics, the mechanism of 
superfluidity cannot be explained by simple Bose-Einstein 
condensation [33].  This is consistent with the phase-lag model 
of fluid flow that predicts the existence of the phenomenon of 
superfluidity under some conditions, in all fluids [34].   

Nevertheless, in general, the phenomenon of superfluidity 
has to be explained from the point of view of quantum 
mechanics. 

It seems that the phase-lag model, although it explains the 
mechanism of superfluidity and relates the phenomena observed 
at low temperatures and the phenomena that should exist during 
ultra-short processes, is not related with any explanation made 

from the point of view of quantum mechanics.  This, however, 
may be misleading. 

As has been pointed out, the wave energy transport, 
competing with viscous diffusion, is the reason for 
superfluidity of a fraction of fluid.  The fraction of particles 
participating in this wave transport, in a sense, behaves as a 
“single” particle, united by the wave motion.  As a matter of 
fact, the particles constituting the transporting wave can be 
viewed as a narrow wave packet.  It has been shown [7] that 
the group velocity of such a wave packet is the same as the 
flow velocity of the particles constituting the wave packet.  
Moreover, it has been demonstrated that this velocity is 
proportional to the gradient of the phase of the wave function 
that represents the quantum state of the packet.  In other 
words,  

 

θ∇=
m
hv                   (50) 

 
where h  is Planck’s constant, m is the mass of the fluid 
element and θ denotes the phase of the corresponding wave 
function, θψ iAe= .  Therefore, the velocity of the wave 
packet satisfies 0=×∇ v  and, hence, part of the flow that 
transports momentum by means of waves behaves as inviscid, 
which in terms of the phase-lag model formulation is the same 
as being superfluid. 

Furthermore, written in terms of the wave function, 
equation (50) becomes 
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which is known as the Cole-Hopf transformation.  Using (51), 
the Navier-Stokes equations reduce to the Einstein-
Kolmogorov equation for the wave function 
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where µ and ν denote dynamic and kinematic viscosities, 
respectively, and ∆p is the pressure difference between the 
local pressure and a certain reference pressure (for details see 
[7]). 

It has been shown, therefore, that no Bose-Einstein 
condensation may be needed for the phenomenon of 
superfluidity to occur.  It is sufficient that narrow wave 
packets were present in the medium, which is equivalent to 
saying that super-transport of energy is carried by waves and 
not by diffusion. 

It is worth noting that the two fluids model by Landau 
does not include the idea of quantum condensation either (it 



seems Landau has been opposed to such an idea, regarding a 
non-interacting gas as pathology) [33]. 
 
THE PARADOX OF INSTANTANEOUS PROPAGATION 
IN THE SCHRÖDINGER EQUATION 

Like other classical transport equations, the Schrödinger 
equation 
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where h  is Planck’s constant, m denotes the mass of the system 
and ),( trΦ  represents the potential field influencing the 
system, allows for instantaneous propagation of energy.  It yields 
the same kernels as the diffusion equation would yield; although 
the presence of the imaginary unity in the Schrödinger equation 
allows for periodic solutions, while the diffusion equation allows 
for time-decaying solutions only.   

Hence, it may be tempting to assume that the Schrödinger 
equation, in the same way as the diffusion equation, leads to the 
paradox of instantaneous propagation and that a modified 
version of the Schrödinger equation is required if problems in 
which mtr /2h≤  are to be considered. 

Indeed, the solution for the wave function, which is similar 
to the solution given by (1), is 
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The latter equation implies that the influence from the domain Ω 
is instantaneously felt everywhere in space.  In other words, 
energy can propagate with an infinite speed. In most general 
applications, the error incurred is negligible but it must be noted 
that this is factually wrong since in reality energy cannot 
propagate at an infinite speed. 

Therefore, the underlying assumption in the derivation of 
the Schrödinger equation needs to be re-examined.  It is evident 
from the analysis presented in this section that this contradiction 
becomes manifest as the characteristic size of the domain and 
transient time of the process become small enough. 
 
HEURISTIC DERIVATION OF THE SCHRÖDINGER 
EQUATION 

In this section, a heuristic derivation of the Schrödinger 
equation is provided.   

It is necessary to emphasize at this point that, historically, 
the Schrödinger equation was deduced, but not derived, from the 
reasoning that if the wave function ),( trψ  uniquely defines the 
state of a system, then, according to the causality principle, the 
value of the wave function at any moment of time, and hence, 

the state of the system, can be found from its initial value 
),( 0trψ . 

Consider the moment of time t after the initial moment t0, 
such that 10 <<−=∆ ttt .  Then, 
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According to what is said previously, the value of 
0ttt =∂

∂ψ
 

can be found from ),( 0trψ , that is, 
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where T̂ , usually called the time translation operator [35], is 
a certain operation, to which ),( 0trψ  is to be subjected, in 

order to obtain 
0ttt =∂

∂ψ
. 

Since the initial time moment has been arbitrarily chosen, 
it follows that 
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It follows from the superposition of states principle that the 
operator T̂  is linear.  Furthermore, T̂  is independent of 
derivatives and integrals of ψ  with respect to time.  Indeed, if 

T̂  depends on such derivatives, it means that it would be 
necessary to know their initial values to determine the states of 
the system following its initial state.  In this case, however, the 
wave function ),( trψ  does not uniquely define the state of 
the system, which contradicts the initial assumption.  The 
presence of an integral in (57) would mean that the state of the 
system depends on a piece of the past history of this system.  
Hence, T̂  can only contain t as a parameter. 

Unfortunately, the form of the time translation operator 
cannot be found from the above argument.  A correct choice 
of T̂  is hinted by considering a free motion with the value of 
momentum p.  The wave function in this case is the de Broglie 
wave, given by 
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where )2/(2 mpE =  is the energy of the particle of mass m. 
The wave function given by (58) satisfies 
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The latter equation can be written as 
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It follows that, in the case of free motion, the time translation 
operator 
  

2
2

2
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In quantum mechanics, one generalizes this particular result: it is 
assumed that the time translation operator is always given by 
(61). 
 
THE PHASE-LAGGED SCHRÖDINGER EQUATION 

In this section, the phase-lagged Schrödinger equation is 
derived, assuming that a finite time lag exists between the onset 
of the energy density gradient and the corresponding energy 
flux.  It is shown that the classical Schrödinger equation arises in 
the case of the zero lag.  

It is now claimed in many courses of quantum mechanics 
that the Schrödinger equation cannot be derived [36, 37].  Yet, it 
has been shown that if a partial differential equation is to 
adequately describe physical processes, such an equation can be 
derived from the energy conservation equation [38].  Usually, an 
auxiliary assumption is needed, because the conservation 
equation contains two unknown functions – energy density and 
energy flux.  Thus, the final form of a partial differential 
equation depends not only on the conservation equation but also 
on the chosen form of the auxiliary equation, usually called the 
constitutive equation, of which examples are Fick’s and 
Fourier’s laws, assuming a direct proportionality between the 
energy flux and the energy density gradient.  This is exactly why 
there are so many different partial differential equations.  Each 
of them is valid only in those cases in which the corresponding 
constitutive equation is valid. 

The Schrödinger equation is not an exception.  A link 
between it and the conservation equation can be established only 
if an auxiliary equation of the Fickean type is to be employed.  
This circumstance makes the Schrödinger equation inexact and 
valid only at relatively large scales.  Consider a domain Ω, 
whose total energy content is initially E0.  Upon introducing the 
dimensionless energy 0/ EEw = , the energy conservation 
equation can be written as 
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where j is the flux and S(r, t) denotes the source function. 

Note that the dimensionless variable w is more convenient 
as E, because it can be normalized and treated as a distribution 
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In this sense, it is possible to speak of the probability to find 
energy at a certain location within the domain at a certain 
time. 

To overcome the paradox of instantaneous propagation, it 
is assumed that there is a finite time lag, τ, between the onset 
of the energy density gradient and the corresponding flux, that 
is, 

 
),(),( twDt rrj ∇−=+τ                               (64) 

 
where D is a proportionality coefficient that can in general 
depend on r and t.  However, for the sake of clarity but 
without loss in generality, D is assumed constant in this study. 
Equation (64) in turn can be written as 
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Upon applying the divergence operator to (65), the latter 
becomes 
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Now, upon combining (66) and (62), one obtains 
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which is the phase-lagged energy transport equation without 
the convective term [25].  Note the presence of the apparent 
energy source in the right side of (67).  This apparent energy 
source is responsible for the resonance states within the energy 
field.  Its physical meaning is still to be analyzed.   



If now one denotes *),( ψψ=tw r  and 

( )ψψψψ ∇−∇= **),( Dtrj , where ψ and ψ* are complex 
conjugate functions of r and t, then, upon applying the Leibniz 
rule, 
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where the identity 
 

( ) ψψψψψψψψ 22 **** ∇−∇=∇−∇⋅∇  
 
has been used to write the first two terms in the right side. 

Equation (69) is the phase-lagged Schrödinger equation.  It 
accounts for the presence of a finite time lag between the onset 
of the energy gradient and the corresponding energy flux.  As 
such, equation (69) eliminates the paradox of instantaneous 
propagation hidden behind the classical Schrödinger equation.  
Therefore, the phase-lagged version of the Schrödinger equation 
presented here – unlike the classical Schrödinger equation – does 
not contradict the fact that energy propagation takes place at a 
finite speed. 

Note also that, if 0=τ  in (69), the latter reduces to the two 
classical Schrödinger equations, written for ψ and ψ*, 
respectively, that is, 
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and 
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provided that one assumes )2/( miD h=  and 0),( =tS r , 
where m is the mass of the system in question and ),( trΦ  
denotes the field acting on this system (see [39] for details).  
Hence, the classical Schrödinger equation is but a limit case of 
(69). 
 
TRUNCATED VERSION OF THE PHASE-LAGGED 
SCHRÖDINGER EQUATION 

In this section a truncated version of the phase-lagged 
Schrödinger equation is considered.  It is evident that, due to 
the presence of the non-linear term in the equation, it cannot 
be separated into two equations: one for the wave function and 
the other for its conjugate.  The importance of this 
circumstance is discussed. 

Due to the smallness of the time lag in (69), one can 
neglect higher order terms and write (69) in its truncated form, 
that is, 
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(71) 
  
 
It is evident from (71) that, unlike the case of the zero time 
lag, the equation cannot be split into two equations: one for 
the wave function and the other for its complex conjugate.  
This implies that duality – the co-existence of the two 
complementary features in any physical process – is 
fundamental.  These complementary tendencies of the process 
are essential for the process to take place and, if separated, 
lead to solutions, behind which paradoxes, such as, for 
instance, the paradox of instantaneous propagation, are 
hidden. 

Moreover, since the time lag is proportional to Planck’s 
constant h , whose value is finite, the finiteness of the time lag 
is fundamental and is related to the quantum structure of the 
universe. 

The finiteness of the time lag in all the physical systems 
furthermore implies that the wave-corpuscular duality of 
matter is to be manifested at small scales.  Indeed, the finite 
time lag leads to the appearance of both the wave term and the 
diffusion term in the equations of energy transport [25].  Yet, 
the finiteness of the time lag further implies that higher modes 
of energy transport are to be present, for the complete version 
of the transport equation contains higher derivatives with 
respect to time [see (67)].  
 



SOME PHILOSOPHICAL IMPLICATIONS OF THE 
PHASE-LAGGED SCHRÖDINGER EQUATION 

The phase-lagged Schrödinger equation given by (69) is 
written for the wave function and its complex conjugate and 
cannot be split into two equations, each for one of the specified 
functions only.  Thus, from observing (69), it becomes evident 
that duality is a fundamental symmetry of matter.  That is, 
natural processes are results arising from the interaction of two 
complementary (complex conjugate) tendencies, described by ψ 
and ψ*, respectively.  Moreover, this interaction is non-linear 
(all the terms in (69) that involve partial derivatives of ψ and ψ* 
are non-linear). 

The phase-lagged Schrödinger equation suggests that higher 
than wave and corpuscular (diffusion) modes of energy transport 
are possible: this is due to the presence of higher order time 
derivatives in (69). 

The finiteness of the time lag τ implies both the finiteness of 
the energy propagation speed and the finiteness of Planck’s 
constant.  In fact, the time lag can be defined as 

)2/( 2mch=τ , where c represents the speed of energy 
propagation.  Hence, in order for the time lag to be finite, both 
h  and c are to be finite. 
 
TEMPERATURE DEPENDENCE OF THE TIME LAG   

In this section, it will be demonstrated that the phase-lagged 
model not only explains super-transport phenomena – such as 
superfluidity and super-thermal conductivity – during ultra-short 
processes at higher temperatures, but that, as a matter of fact, 
these phenomena are of the same nature as the well-known 
phenomenon of superfluidity observable at ultra-low 
temperatures. 

Consider an ideal gas of phonons.  The temperature 
gradient, in the situation depicted in Fig. 5, can be approximated 
as 

 

λ
12 TTT −

≈∇                      (72) 

 
where λ is the mean free path. 
 

 
 

Figure 5 A single collision of two phonons 
 

It is obvious that, although the temperature gradient is not 
zero, the energy flux will begin only upon a collision between 
the phonons.  Hence, the time lag between the onset of the 
temperature gradient and the corresponding heat flux is 

  

vT
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where v  stays for the average speed of phonons in the ideal 
gas. 

Now, from the kinetic theory, 
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where AN  is the Avogadro number, κ  denotes the thermal 
conductivity of the phonon gas, n is the amount of phonons 
per volume, VC  is the specific heat of the phonon gas at 
constant volume, k stays for the Boltzmann constant, and m is 
the phonon mass. 

Combining equations (73) and (74) and using 
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=  for the ideal gas of phonons, 
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Therefore, ∞=
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TTT

τ  and, hence, the life span of super-

transport phenomena should increase as temperature 
decreases. 

For the superfluidity effect, because ανττ =Tvisc , 
where α denotes the thermal diffusivity and ν is the kinematic 
viscosity of the fluid in question, 
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where ρ denotes density and PC  is the specific heat at 
constant pressure.  In other words, the life span of the 
superfluid phenomena increases as T decreases. 

Note that Kittel (1986) obtained a similar expression for 
the relaxation times for phonon-electron collisions in solids 
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where the subscript e refers to electrons.  The coefficients in (77) 
are different from those in (75) and (76), because, unlike the 
present case – in which the classical distributions were used – 
the Fermi and Bose statistics were employed to derive equation 
(77). 

Note also that the only purpose of equations (75)-(77) is to 
illustrate that the time lag increases as temperature decreases in 
principle.  Thus, for instance, if a well-known relationship from 
statistical physics is employed, 2/1~ Tκ , it will lead to a 
slower increase of the time lag with temperature, 2/1~ −Tτ  but 
not 1~ −Tτ  as follows from (75)-(77).  It will imply that lower 
temperatures – than predicted by (75)-(77) – are needed in order 
to achieve significant time lags.  Interestingly, this is consistent 
with what is observed in liquid 3-He and some alkali gases: they 
achieve the superfluid state at much lower temperatures than 4-
He, for which the theory predicts the transition temperature 

K17.2=λT  [27, 33, 41]. 
 
CONCLUSIONS 
It seems that the phase-lagged model of energy transport may 
provide a deeper understanding of the physics of ultra-short 
processes.  The models, discussed in this paper, may pave the 
way towards harnessing the state of energy super-transport, 
leading to the development of means for its practical use. 
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