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Abstract

A generative model for modelling maritime vessel behaviour is proposed. The model is a novel variant of the dynamic Bayesian
network (DBN). The proposed DBN is in the form of a switching linear dynamic system (SLDS) that has been extended into a
larger DBN. The application of synthetic data fabrication of maritime vessel behaviour is considered. Behaviour of various vessels
in a maritime piracy situation is simulated. A means to integrate information from context based external factors that influence
behaviour is provided. Simulated observations of the vessels kinematic states are generated. The generated data may be used
for the purpose of developing and evaluating counter-piracy methods and algorithms. A novel methodology for evaluating and
optimising behavioural models such as the proposed model is presented. The log-likelihood, cross entropy, Bayes factor and the
Bhattacharyya distance measures are applied for evaluation. The results demonstrate that the generative model is able to model

both spatial and temporal datasets.

Keywords: Behavior Modeling, Dynamic Bayesian Network, Switching Linear Dynamic System, Contextual Information,

Maritime Domain Awareness, Multi-Agent Simulation.

1. Introduction

Real-world data of illegal activities such as maritime piracy
and illegal immigration is scarce [1]. Furthermore, the maritime
piracy data that does exist is considered incomplete. Some ship
owners do not report pirate attacks in order to avoid insurance
costs and lengthy investigations [2]. Real world data is often
required for developing applications that counter such illegal
activities. Applications may include automatic situation assess-
ment and threat assessment methods. In the maritime piracy
domain, an ideal threat assessment method should identify a
vessel as a threat before a pirate attack occurs. This may be
performed by utilising a model that describes the behaviour of
pirate vessels in their prowling state. To form the model of pi-
rate prowling behaviour, data of pirate vessels in this state is
generally required. No such data has been found. This study
proposes a generative model that is able to model behaviour
and generate synthetic behavioural data.

A multi-agent generative model of a maritime piracy situa-
tion is proposed. The model consists of a novel variant of a
dynamic Bayesian network (DBN) that extends the switching
linear dynamical system (SLDS). The DBN is hybrid DBN that
consists of both discrete and continuous variables. The struc-
ture of the DBN is informed by prior knowledge of the problem.
Behaviour of various vessels in a maritime piracy situation is
modelled by the DBN. The behaviour consists of various ac-
tivities such as sailing, target acquisition, and attacking. The
proposed DBN provides the capability to model a vessel at the
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level of the motion state vector. The model is provided with
information such as the vessel class and various contextual el-
ements. Synthetic data such as track data of a particular vessel
being simulated is generated.

The proposed model is applied to generate a synthetic dataset
of pirate attack locations. The model is evaluated by compar-
ing the synthetic dataset to a real world dataset. The real world
dataset consists of a set of locations of the pirate attacks that
occurred in 2011. A novel method of evaluating and optimising
the model is proposed. The evaluation is expressed as a like-
lihood that indicates the capability of the generative model to
produce the real world dataset. An optimisation procedure is
demonstrated for optimising the model parameters. The results
indicate that the generative model has the ability to produce
real-world-like data in terms of a statistical distribution. Cross
validation is applied to evaluate how well the model generalises
the 2011 pirate attack dataset. An evaluation using Bayes factor
indicates that the proposed model performs well. The tempo-
ral modelling capability of the model is demonstrated. Pirate
behaviour is modelled such that a particular temporal distribu-
tion of monthly pirate attacks is generated. This distribution is
compared to temporal 2011 pirate attack data.

Over each simulation, unique results may be produced by
the generative model. The desired statistical structure is main-
tained over each simulation. The ability to define unique re-
sults is ideal for generating data for algorithms such as machine
learning algorithms.

The novelty of this work lies in the use of a SLDS in the DBN
to generate simulated track data. No applications have been
found in literature where the SLDS is extended into a DBN for
providing a context based behavioural model. The proposed
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DBN provides a complete framework for synthetic data gener-
ation. A novel framework for evaluating behavioural models is
presented. The proposed evaluation and optimisation method
may easily be adapted to other problems. The purpose of this
work is primarily for the testing of maritime pirate behaviour
detection algorithms.

2. Background and Related Work

The DBN proposed in this study may be considered as a
multi-agent system. Each vessel modelled by the DBN may
be considered as an agent. Multi-agent systems have been
applied in various fields. These include robotics, computer
games, simulation, econometrics, military and social sciences
[3, 4]. Multi-agent Based Simulation (MABS) is a relatively
new paradigm for modelling and simulating entities in an en-
vironment [5]. Agents are generally considered to be au-
tonomous, independent and able to interact with their environ-
ment and other agents [6, 5]. The military MABS is intended
to enhance training and support decision making [7]. The ap-
plication considered in this study may be argued to be a form
of a military based MABS. A review of military based MABS
applications are provided in [8].

The Bayesian network (BN) [9] is a directed graphical
model. The BN exists in various forms that include the dy-
namic Bayesian network and the influence diagram. The DBN
[10] is a temporal extension of the Bayesian network (BN) [9].
Applications of the DBN include computer vision based hu-
man motion analysis [11], situation awareness [12] and vehicle
detection and tracking [13]. The influence diagram (ID) is a
BN supplemented with decision variables and utility functions
[14]. It could be argued that the higher levels of the DBN model
presented in this study form an influence diagram. IDs been ap-
plied to solve a vast number of decision problems. Poropudas
and Virtanen have used IDs in the analysis of simulation data
[15]. Their work has been extended to include the use of DBNs
for the application of simulation [16, 17]. Time evolution is
studied and what-if-analysis is performed. The simulation ap-
proach is applied to problems involving server queuing and sim-
ulated air combat. The structure of the DBNs are application
specific and are not necessarily relevant to modelling maritime
vessels in a pirate situation. The use of expert knowledge to
construct the DBN is suggested as a possible extension to their
work. In this study, prior knowledge is used to inform the struc-
ture of the DBN for modelling maritime vessel behaviour.

The SLDS [18, 19, 20] is a form of a DBN. In literature,
various names are associated with the SLDS. These include the
switching Kalman filter and the switching state space model
[19]. The SLDS has been successfully applied to various prob-
lems that include human motion modelling in computer vision
[21], econometrics [22] and speech recognition [23]. No at-
tempts to use SLDS as a generative model for data synthesis
have been found in literature.

This study is intended to fall within the framework of in-
formation fusion. The structure of the DBN is formulated to
provide the means fuse information from various sources. A
wide variety of maritime surveillance applications within the

field of information fusion exist. A simulation test-bed has
been developed for coastal surveillance [24]. The test-bed is
developed for the study of distributed fusion, dynamic resource
and network configuration management, and self synchronising
units and agents. The BN has been used for information fusion
for maritime security [25, 26] and maritime domain awareness
[27, 28]. A DBN has been proposed for multi-sensor informa-
tion fusion [29]. Data from various sensors such as imaging
sensors, acoustic sensors and radar sensors may be fused using
the DBN. A DBN has been applied for information fusion in a
driver fatigue recognition system [30]. The DBN is a discrete
based DBN that provides an indication of the level of fatigue of
a driver. A hybrid DBN has been used for gesture recognition
in human-computer interfaces [31]. The DBN may be argued
to be in the form of an SLDS. In these applications, the DBN
is used for recognition and detection. In this study, the DBN is
used for simulation and data generation.

Context-based applications incorporate and model contex-
tual information. The model proposed in this study provides
a means to incorporate various external elements that influence
behaviour. A survey of context modelling has been conducted
by Strang and Linnhoff-Popien [32]. A more recent survey on
context modelling and reasoning in pervasive computing has
been conducted in [33]. Context-based information fusion has
been applied to video indexing [34], computer vision [35] and
natural language processing [36]. Context-based information
fusion has found use in various maritime situation and threat as-
sessment applications [37, 38, 39]. The DBN is not used in any
of these applications. A DBN has been used in context based
information fusion system for location estimation [40]. This
system has been extended to include fuzzy logic for imprecise
contextual reasoning [41, 42]. As for information fusion appli-
cations, the DBN and BN are generally used for detection and
recognition. The use of the DBN for synthetic data has not been
found in literature.

Website applications for situation awareness have been made
available. The model proposed in this study could be consid-
ered for deployment on a website based system. An on line
data visualisation and risk assessment tool for maritime piracy
is available [43]. The European Commission has developed the
Blue Hub for maritime surveillance data gathering [44]. The
platform is currently in development for maritime piracy aware-
ness.

Maritime piracy is a problem of international concern. Mar-
itime piracy poses humanitarian, economic and environmen-
tal risks [45]. In late 2008 three counter-piracy missions
were deployed. These include the EU’s Operation ‘Atlanta’,
NATO’s Operation ‘Ocean Shield’ and the US-led Combined
Task Force-151 [46]. These operations have deployed war ships
to patrol high risk regions and assist maritime piracy victims.
Due to the vast patrol regions, patrolling efforts are partially
successful. The use of technology is proposed to assist in com-
bating maritime piracy [47]. In September 2011, an advanced
study institute (ASI) was held in Salamanca, Spain to discuss
the maritime piracy problem. The objective of the discussions
was to help deter predict and recognise maritime piracy using
information systems [48]. Topics such as information fusion



methods, situation assessment methods, surveillance and chal-
lenges associated with the collaboration between information
systems and humans were discussed. This study is intended to
provide an information system that may be used in the counter-
piracy endeavour.

This study considers the maritime piracy problem. Vari-
ous applications have been proposed in literature for combat-
ing maritime piracy. Game theory has been used to optimise
counter piracy strategies. Game theory has been utilised to sug-
gest transport routes that avoid maritime pirates [49, 50]. A
game theoretic approach that seeks to optimise counter piracy
patrolling strategies has been implemented [51]. Risk analysis
has been used to assist ship owners and captains in managing
risk during a pirate attack [52, 53]. Methods for pirate detection
have been discussed in literature. An approach to detect pirates
through satellite communication monitoring has been proposed
[54]. Other approaches intend to detect pirate vessels by classi-
fying small craft in imagery [55], [56].

A state based multi-agent simulation environment has been
proposed for simulating maritime entity behaviour [1]. Long-
haul shipping, Piracy Behaviour and Patrolling behaviour are
simulated in the system. Vessel behaviour simulations are im-
plemented using finite state machines. Long-haul shipping be-
haviour is based on a model where cargo ships follow a route
that minimizes travel time, costs and security. Pirate behaviour
includes activities such as discovering, approaching and attack-
ing vessels. Patrol vessels are placed at near optimum locations
according to their deterrence potential as well as according to
a risk map. An algorithm is used to determine a set of routes
for a set of patrol vessels that maximizes deterrence. The be-
havioural models described in [1] are used to inform the struc-
ture of the DBN described in this study.

A method of simulating pirate kinematic behaviour has been
proposed [57]. The simulation is based on the model where pi-
rates venture out in skiffs from a home base in search of targets.
The skiffs motor out to a predestined location and drift until
supplies have been depleted. Once the supplies have been de-
pleted, the pirates return to the base to refresh their supplies. To
simulate the drifting of the pirate vessels, meteorological and
oceanographic forecasts are utilized. The drifting behaviour de-
scribed in [57] is integrated into the DBN behavioural model in
this study.

3. Dynamic Bayesian Networks and the Linear Dynamic
Switching System Model

The Bayesian network provides a means of statistically mod-
elling causal relationships in data. The dynamic Bayesian net-
work (DBN) extends the Bayesian network to allow modelling
of sequential data [19, 20, 58, 59, 10].

The switching linear dynamic system (SLDS) is a mathe-
matical model that may be considered a subclass of DBNs
[20]. The switching linear dynamic system provides a means
to model a system whose linear parameters change over time.
A proposed variation of the classical SLDS model is described

Figure 1: Dynamic Bayesian network (DBN) representation of a switching lin-
ear dynamic system (SLDS) for three time slices. The s; node denotes the
switching process state, the x; node denotes the system state vector, the u, node
denotes the control input and the y}* node denotes the m™ sensors observed
measurement vector at time 7.

by the following state space equations:

X = A(s)xi—1 + B(s)uy + vi(sy), ()
Vit = C(s)" x: + wi(s)" ()

and
u; = f(x-1). (€)]

In (1), x, is the state vector, u, is the control vector, A(s,) is
the system matrix, B(s;) is the input matrix and v,(s;) is the state
noise process. In (2), y;* is the observed measurement, C(s;)™
is the observation matrix and w,(s,)™ is the measurement noise.
The variables in (2) describe the measurements from the m™
sensor selected from a set of M sensors. Equations (1) and (2)
describe the typical linear dynamic system equations in state
form [60]. In (3), u, is the control vector and f(x,—;) is the
control function. The control function f(x,_;), transforms the
vessel’s previous state x,_; to a control vector u,.

The additional parameter, s, in the state equations is the
switching processes state. It is assumed that s, follows a
first order Markov process [61]. As the switching process
state changes, the linear dynamic systems parameters change.
This provides the means to model a complex dynamic system
through varying states or activities.

The SLDS described by (1), (2) and (3) may be represented
as the DBN model illustrated in Figure 1. The DBN model is
described by the following joint probability distribution:

pGo.1» Xo.1» Uo:T> S0:T)
T M
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The conditioning between variables corresponds to the SLDS
system equations provided in (1), (2) and (3).

4. Maritime Piracy Situation DBN Model

To model behaviour, it is proposed that the switching process
state s, in an SLDS be represented as a DBN. The proposed
DBN for modelling vessel behaviour in a maritime piracy situ-
ation is illustrated in Figure 2. In this model, the process state,
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Figure 2: Dynamic Bayesian Network (DBN) model for a vessel in a maritime
piracy situation.

s, is essentially expressed as a DBN that includes the class (C),
journey parameters (JP), external parameters (EP) and the state
parameter (SP) random variables. The x;, y}* and the u, vari-
ables are the state space equation vectors for the SLDS as de-
scribed in section 3. The ocean/weather (OW) variable is in-
cluded to model the influences of ocean and weather conditions
on the motion of vessels.

The DBN model in Figure 2 is represented in plate notation.
Each of the N vessels in the environment is represented by a
vessel plate. The time plate contains the dynamic nodes that
transition between states over the T discrete time steps. A set
of E external parameters are represented by the EP plates. The
set of M sensors are represented by the sensor plates.

4.1. Class Variable (C)

The C variable represents the class of a particular vessel. The
C variable describes either a pirate vessel, a transport vessel or a
fishing vessel. The pirate vessel label is associated with a pirate
mothership and its associated pirate skiffs. The transport vessel
label is associated with commercial long-haul vessels. These
may include cargo ships, oil tankers, cruise ships and container
ships. The fishing vessel label is associated with small private
or commercial fishing vessels. In particular, the fishing vessel
class considers vessels that remain near the coastline and prefer
particular fishing regions.

The probability distribution of transport and fishing vessels
may be informed by ship registers and ocean traffic statistics.
Lloyd’s register of ships [62] is a potential source for such data.
The statistics for pirate vessels may be informed by piracy re-
port statistics provided by the International Maritime Bureau
(IMB).

4.2. Journey Parameters Variable (JP)

The JP variable is a random variable that selects the home
location, the route way-points and the destination location for
a particular vessel. These variables are selected from to a list
of predefined locations and routes. The predefined locations in-
clude world ports, fishing towns, pirate ports, fishing zones and

pirate zones. Way-points determine route paths. Route paths
consist of straight lines between a set of way-points.

The JP variable is conditionally dependent on the C variable.
The dependence places constraints on the possible locations
that may be selected given the class. A pirate class may only
select a pirate port as a home location and a pirate zone as a
destination location. A fishing class may only select a fishing
port as a home location and a fishing zone as a destination lo-
cation. Transport vessels select from a distribution of various
world ports.

The probability distribution of world ports may be informed
by world port rankings. The American Association of Port Au-
thorities (AAPA) [63] produce world port rankings. Fishing
zones may be inferred from fishing vessel traffic data or from
legalized fishing zones. Pirate zones may be determined from
attack locations provided in IMB published attack reports. The
method for determining pirate zones is presented in Section 4.8.
Pirate ports may be inferred from locations where pirate ran-
soms have been conducted.

4.3. External Parameters (EP)

The external parameters variable describes context based ex-
ternal factors that influence the behaviour of vessels. A set
of E external parameters may be provided. External factors
may include date, time, season, ocean conditions and weather
conditions. The EP variables are considered to be observable.
The observations of the variables may be obtained from data
sources. Data sources may include oceanographic and climatic
models or data.

The international comprehensive ocean atmosphere data set
(ICOADS) provides surface marine data. The dataset includes
information such as air temperature, sea surface temperature,
humidity, wind, wave data, cloud cover and air pressure data.
Each of these elements may influence behaviour and may be in-
cluded as external parameters. For example, pirates are known
to avoid conditions such as monsoon seasons, high winds, high
waves and strong ocean currents [2, 64].

The geographic location of a vessel may have an influence
on the vessels behaviour. Transport vessels will generally pre-
fer to travel along known shipping routes. Fishing vessels will
prefer fishing zones that are defined by fish habitat and fishing
laws and regulations. Pirate vessels will prefer to remain near
transport routes where targets may be acquired.

Times and seasons may affect behaviour. Pirates prefer at-
tacking targets during hours of darkness [65]. Fishing vessels
may prefer fishing during the hours of dusk and dawn. Dusk
and dawn are generally associated with feeding times of many
fish species [66]. The small craft used by fishermen and pirates
are particularly susceptible to harsh sea conditions. Pirates and
fishermen are known to avoid the monsoon seasons due to the
harsh sea conditions associated with them [2, 64].

4.4. State Parameters Variable (SP)

The SP variable provides an indication of the nature of a par-
ticular vessels kinematic activity or behaviour. The SP variable
is defined to contain the anchor, sail-out, sail-home, fish, drift,



attack and abort-attack states. The SP variable is conditioned
on the C variable. This dependence dictates which SP states
may be utilised for a particular vessel class. The state param-
eters and their associativity may be described with state transi-
tion diagrams illustrated in Figure 3.

The state transition diagram for the transport vessel is illus-
trated in Figure 3a. It is assumed that transport vessels travel
from a home port to a destination location along the most eco-
nomical route [67, 1]. The vessel is in an anchor state when
located at its home location. The switching state variable tran-
sitions to the sail-out state when the vessel is required to sail to
its destination. When reaching the destination port, the vessel
returns to the anchor state.

The state transition diagram for a fishing vessel is illustrated
in Figure 3b. It is assumed that fishermen prefer fishing during
particular times and seasons. The fishing vessel will remain in
an anchor state at its home location. At dawn or dusk, the vessel
will transition to a sail-out state. The vessel sails out to a fishing
zone. Once in the fishing zone, the fishing vessel will enter the
fish state. After fishing, the fishing vessel will transition into a
sail-home state. When the home location is reached, the fishing
vessel returns to an anchor state.

The state transition diagram for a pirate vessel is illustrated
in Figure 3c. This model is based on the model proposed in
[1]. A pirate vessel will leave its anchor state to sail out to a
pirate zone in a mothership. When the pirate zone is reached,
the pirate vessel transitions to a drift state where the pirates wait
for a target [57]. On detection of a target, the pirate vessel will
enter an attack state and attack the target with small high speed
boats such as skiffs [65, 45]. If the attack is successful, the
pirates will return home with the hijacked vessel to ransom it.
The mothership is left abandoned. If the attack is unsuccessful,
the pirate vessel enters the abort-attack state. In this state, the
skiffs return to the mothership and return to the drift state.

The SP variable is dependent on the EP variable. External
factors influence vessel behaviour. Time and ocean conditions
are external factors that are considered in this study. Pirate and
fishing vessels will avoid harsh sea conditions and will prefer
particular times an seasons.

The pirate drift state is a target acquiring state. The pirate
class is required have a perception of surrounding vessels. For
this, the SP variable must be conditionally dependent on other
vessels measurement vector y{". This implies that there is con-
ditional dependence between the N vessel plates.

4.5. Ocean Current/Weather Variable (OW)

The OW variable describes ocean conditions and weather
conditions. This variable is included to influence the motion
of vessels. The variable provides a means for the ship vessel
to drift according to the ocean currents and wind specified at
the particular location of the vessel. This variable is consid-
ered to be observable. The parameters for this variable may be
obtained from oceanographic and climatic models or data such
as proposed in [57]. The OW variable is dependent on x, at
the previous time step. This provides a means to determine the
localised ocean and weather conditions.

S

(a) Transport vessel state diagram.

(c) Pirate vessel state diagram.

Figure 3: State transition diagrams describing the state-parameters node for
each class.

4.6. Linear Dynamic System Vectors

The linear dynamic system vectors include the state vector
x;, the control vector u; and the observed measurement vector
vi". These vectors are related by the state space equations (1),
(2) and (3). The state vector may be assumed to contain the
location, the velocity and the acceleration of a vessel. In this
study only the longitudinal and latitudinal components of the
location and velocity are considered. The measurement vector
may model any or all of the contents of x;. For example, a radar
sensor may provide the position of the vessel.

The control function f(x;) computes the control vector u;
such that the vessel sails between the way-points specified by
the JP variable. The function may control the direction and the
speed of a vessel such that it sails through each way-point on its
path. At each time step the control function may compute the
direction required for the vessel to reach the next way-point.
Complex vessel motion may be modelled with the combination
of the control function, the way-points and the state noise pro-
cess.

4.7. Ancestral Sampling in the Proposed Model

To generate data from the generative model, the ancestral
sampling method may be used. The ancestral sampling method
involves a process of sampling from the root nodes to the leaf
nodes. In the generative model, the root nodes include the class
and the contextual parameters. The leaf nodes are the measure-
ment vectors. The measurement vector simulates sensors that
observe the vessel. At each time step the sampling process is
performed to generate simulated samples from the sensors for
each vessel. The ancestral sampling algorithm applied to the
proposed DBN behavioural model is provided in Algorithm 1.

4.8. Gaussian Mixture Model Fitting

The Gaussian mixture model (GMM) may be fitted to a spa-
tial dataset consisting of pirate attack locations. The GMM pro-
vides an estimate of the probability density function that de-
scribes the dataset. A GMM may be fitted to a simulated pirate



Algorithm 1 Ancestral Sampling method for the proposed gen-
erative DBN.
Require: The generative graphical DBN and its associated pa-
rameters.

1: for each vessel on the map do

2 Sample the class (C) variable for the vessel.

3 Sample the journey parameters JP.

4:  for each time step ¢ and each sampled vessel do
5: Sample each of the E external parameters EP;.
6
7
8
9

Sample the state parameter variable S P;.
Sample the Ocean/Wind variable OW;.
Sample the control variable u;.

Sample the state vector x;.

10: Sample each of the M observation vectors y/".
11:  end for
12: end for

attack dataset as well as a real-world pirate attack dataset. In
the case of the simulated dataset, the GMM may be used for
evaluating the simulation results. In the case of the real-world
dataset, the GMM serves as an estimation of pirate zones. The
pirate zones density estimation provides a prior distribution of
pirate attacks.

Leta = (al,...,al)" describe the vector of the simulated pi-
rate attack locations. Each a;, j = 1,...,n contains the longi-
tude and latitude of the j* pirate attack location. Similarly, let
b = (bT,...,bI)T describe the vector of the real-world pirate
attack locations.

The g-component GMM describing the dataset a is given as
follows [68]:

g
@z ws) = D mdiaj; i, ). 5)
i=1

The variable s describes the parameters of the GMM for the
simulated dataset. These include the mixture weights ; and the
Gaussian parameters y; and X;. The function ¢;() denotes the
i" Gaussian mixture component. The variable 7; describes the
weight of the i Gaussian mixture component. Variables y; and
; describe the mean and covariance of the i Gaussian mixture
component respectively.

Similarly, The g-component GMM describing the dataset b
is given as follows:

8
q@ﬁ%0=§:m@@ﬁmjb' ©
i=1

The variable ¥y describes the parameters of the GMM for the
real-world dataset. For notational simplicity, the algorithm used
for fitting the GMM to a dataset will be described for the simu-
lation dataset a.

The likelihood for the model parameters g is formed from
the observed data. The likelihood is given by [68]:

Lws) = | [ a@sws). @)

J=1

The log-likelihood is often a more convenient representation of
the likelihood in application. The log-likelihood is given by
[68]:

log Ls) = Y log q(@;; s). (8)
j=1

The GMM is fitted to the simulated dataset using the expec-
tation maximization (EM) algorithm. The observed data vector
a is considered to be incomplete in the EM algorithm. The
complete data vector includes the associated component-label
matrix [ = (I}, ...,1,)T such that:

a. =@, m". ©)

Each a; is assumed to have arisen from one of the GMM
components. The vector l_j = [l lijs syl € lis a g-
dimensional vector containing indicator variables. Label ;; € [;
is assigned the value 1 or 0 according to whether a; arose from
the i mixture component or not (i = 1,...,g;j = 1,...n). The
complete-data log likelihood for ¢ is given as [68]:

g n
log L:ws) = > " lij(log; + logq(@c; ¢s)) . (10)

i=1 j=1

The E-step of the EM algorithm requires the computation of
the conditional expectation of log £L.(¥s) given @. In the k™
iteration of the algorithm, this value is given by the following
expectation [68]:

QWs:uy)) = By (log Le(s)la)

g n
= Z Z Ti(aj; l!/(sk)) (logﬂi +log g(ac;; l!/s))-
=1 =l
(11)

The value 7;(aj; l//(sk)) describes the expectation of the random
variable Z;; with respect to the observed data a. This value is
given by [68]:

w _ mpag i, %)
Vo X8 (@ s Zn)

The M-step of the EM algorithm requires the global maxi-
mization of Q(Ys; w(sk)) with respect to ¥s. This computation
exists in closed form for Gaussian components. The M-step
involves the updating of the component means and covariance
matrices at the k" iteration. The update for the mean is given
as follows [68]:

_
Ti(a;; lﬁ(s)) =7

12)

n (k) =
(k+1) _ Zj:l ij 4

i ®
=1 Tij

The update for the covariance matrix is given as follows [68]:

13)

k)= (k+1)y — (k+D\T
}11'=1Tij (aj_/li )(aj_,u,' ) 14
Zn (k) ’ (14)
=1 Tij

The update for the mixture weight is given by [68]:

(k+1) _
D =

n

A = r@s i, (15)

J=1



The E- and M-steps are alternated repeatedly until conver-

gence. The EM algorithm converges when log Lc(glr(sk”)) -

log Lc(l,b(sk)) < €, where € is a small arbitrary value [68]. This
same procedure applied for fitting a GMM with parameters g,

to the real-world dataset b.

5. Spatial Domain Evaluation and Results

The proposed model is evaluated by comparing spatial dis-
tributions that describe the real-world pirate data and the sim-
ulated data. The spatial region of pirate attacks is limited to
the region of the Gulf of Aden and the Indian Ocean. A set of
235 reported attacks that occurred in this region are extracted
from the 2011 IMB annual piracy report [64]. The set of 235
attack locations forms a real-world dataset to which the pro-
posed model is compared. A set of simulations are run using
the proposed model. Pirate attack locations are recorded during
the simulation. The simulation is run until at least 235 pirate
attacks have occurred. The set of recorded pirate attack loca-
tions form the simulated pirate attack dataset. The simulated
dataset is compared with the real-world dataset. The model ef-
fectiveness is evaluated according to information gain, quality
and robustness.

5.1. Model Configuration for Simulation

A set of ports, points-of-interest and way-points are fixed
on the map of the Gulf of Aden. The particular assignment
of simulated routes of transport vessels and the pirate attack
zones is critical. The assignments are delineated according to
known shipping lanes and the 2011 pirate attack data. Three
pirate ports are initialized; Bosaso, Harardhere and Mogadishu.
The pirate port locations are selected based on locations of ran-
som payments and reported hijacked vessel anchorage locations
[69].

The Poisson distribution is appropriate for modelling the
number events that occur in time or space [70]. The set of N
vessels appearing on the map are modelled by the Poisson dis-
tribution. Each vessel is assigned a class by sampling from the
C distribution. The classes include pirate, fishing and transport
vessels.

The JP variable is sampled from the distribution of ports, pi-
rate zones and fishing zones. Ports, pirate zones and vessel
paths for transport and pirate vessels are illustrated in Figure 4.
Each vessel is assigned a home port, a destination location and a
path between the home port and destination location. The path
includes a list of via points. The estimation of the pirate zone
parameters is described in Section 5.2.

The EP variable plate contains a single variable that describes
the sailing conditions. This variable combines information such
as season, time-of-day and ocean conditions. The sailing con-
ditions are described as poor, adequate or favourable condi-
tions. Poor conditions are conditions for pirate and fishing ves-
sels relate to daytime, monsoon seasons, poor ocean conditions
or poor weather conditions. Favourable conditions for pirate
vessels relate to night time, non-monsoon seasons, favourable

Figure 4: Map of the Gulf of Aden with vessel routes. Yellow routes are routes
for transport and pirate vessels. Red routes are routes that extend from pirate
ports and pirate zone centres.

ocean and weather conditions. Adequate conditions relate to
adequate weather and ocean conditions.

The model is configured such that vessels follow a constant
velocity model. The x;, y/" and u, variables are implemented as
described by (1), (2) and (3). The y;* variable is configured to
contain the longitudinal and latitudinal coordinates of the ves-
sel. The OW variable is modelled as a random process.

The control function f(x;) calculates the control vector u,
such that the vessel sails along a path designated by the JP vari-
able.

5.2. Pirate Zone Parameters

The pirate zones are represented by a GMM that has been
fitted to the 2011 pirate attack dataset. Each GMM component
describes a pirate zone. The mean of a component provides an
estimate of the centre of a pirate zone. The covariance matrix
provides an estimate of the shape and size of the pirate zone.
The probability that a pirate will select a particular pirate zone
is estimated by the corresponding GMM component mixture
weight. The GMM parameters are determined using the EM-
algorithm described in Section 4.8.

The number of mixture components (pirate zones) for a
GMM is required to be specified. By computing the likelihood
of the data given the number of components, an optimal num-
ber of mixture components may be determined. The likelihood
of the GMM of the dataset b, parameterised by g, given the
number of mixture components is given by:

log Llg) = Y log g(bj; ¥ lg). (16)

=

This likelihood may be determined over a range of number of
mixture components, g.

A plot of the likelihood for the set g = {1...20} is pre-
sented in Figure 5. The results demonstrate that the likelihood
increases with increasing g. For the case where g = 1, the
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Figure 5: The self-likelihood (16) is plotted over a range of the number of GMM
components (g). For each value of g, a GMM is fitted to the 2011 pirate attack
dataset and the self-likelihood is computed. The optimal number of components
is the value that corresponds to the “knee” of the curve.

likelihood is lowest due to under-fitting. A single GMM com-
ponent is not able to sufficiently describe the distribution struc-
ture. The structure of the distribution requires multiple mixture
components for a more accurate representation. Problems with
over-fitting may become evident if too many mixture compo-
nents are used to represent the distribution. The recommended
number of components is the value that lies at the “knee” of
the curve plotted in Figure 5 [71]. The “knee” of the curve is
located at the value of g = 6 mixture components.

A plot of the GMM pirate zones is illustrated in Figure 6. In
the process of sampling the JP variable, a pirate zone is sam-
pled for each pirate vessel. The probability of pirate zone being
selected is given by the GMM weight parameter. The destina-
tion of a pirate vessel is located within the selected pirate zone.
This destination is a random location. The random location is

b

Figure 6: Pirate zones according to a GMM fitted to the 2011 pirate attack
dataset. Each pirate zone is represented by a Gaussian mixture component.
The yellow ellipses describe the standard deviation of each Gaussian mixture
component. The 2011 pirate attack locations are plotted as red markers.
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Figure 7: Block diagram of the optimisation and evaluation process of the pro-
posed model.

generated from a Gaussian distribution with parameters given
by the pirate zone mixture component parameters.

5.3. Evaluation and Optimisation Methodology

The process of evaluation of the proposed model is described
by the block diagram in Figure 7. Prior knowledge is used to
form the proposed model of pirate, transport and fishing vessel
behaviour. The model is utilised to generate simulated pirate at-
tack data. A GMM estimate of the probability density function
of the simulated pirate attack data is computed. The likelihood
of the real-world dataset given the simulated dataset is com-
puted. The likelihood provides an indication of the ability of
the proposed model to generate the real-world pirate data. This
likelihood is applied for the evaluation of the proposed model.

The method described in Figure 7 may be used for the op-
timisation of the model and its parameters. The likelihood es-
timate provides a relative measure of the model accuracy. Op-
timisation involves a parameter space search. The parameter
value that results in the most superior model is considered to be
the optimal parameter value. The likelihood estimate provides
a means to compare the results from using different parameter
values. In this study, the parameters are determinable and thus
optimisation is not necessary. A demonstration is however pro-
vided to describe the optimisation procedure. Furthermore, the
data generated in the demonstration is used for evaluating the
model.

5.4. Model Likelihood

As illustrated in Figure 7, a likelihood estimate is required
to be computed for the purpose of evaluating of the proposed
model. The likelihood function is defined according to a set



of observations originating from a distribution with parame-
ters s [68]. A likelihood function is to be formed that de-
scribes the likelihood of the real-world pirate dataset with re-
spect to the simulated pirate dataset. This likelihood function
may be described according to the observations from the real-
world dataset and the parameters of the simulated dataset. Note
that this likelihood is not to be confused with the likelihood as-
sociated with the EM algorithm described in Section 4.8. The
parameters of the simulated dataset are the GMM model param-
eters g, described in (5). The vector b = (b7, ..., bT)T describes
the pirate attack locations of the 2011 dataset. With reference
to (8), the log-likelihood function of the real-world dataset with
respect to the simulated dataset is given as follows:

log Lgs) = > logq(b; ys). (17)

J=1

The function g(b i3 ¥s) is the GMM of the simulated dataset
evaluated at the locations given by b;, j = 1...n.

The results of (17) provide a means for model optimisation
and evaluation.

5.5. Model Optimisation Demonstration

The optimal model is the model that produces the most likely
results. The likelihood is described in section 5.4. For model
optimisation, the model parameters may be varied. Parameters
associated with the transport routes and pirate zones may be
considered. Parameters include the transport vessel paths, the
number of pirate zones, pirate zone locations, pirate zone sizes
and pirate zone probabilities. For demonstration purposes, the
pirate zone size shall be considered for optimisation.

A set of six pirate zones are selected as illustrated in Figure 8.
The locations and relative sizes of the pirate zones are selected
according to the 2011 attack data and the GMM presented in
Figure 6. The probability of a pirate zone is determined by the
number of attacks in the pirate zone and the size of pirate zone.
The probability of a pirate zone is the probability that the pirate
zone will be selected by a pirate. The pirate zones are repre-
sented by bivariate Gaussian distributions. The mean value of
the Gaussian distribution defines the location of the pirate zone.
The covariance of the Gaussian distribution determines the size
of the pirate zone.

The covariance of the Gaussian distributions are varied for
the purpose of model optimisation. Each Gaussian distribu-
tion has a preselected covariance. The covariance of all the
Gaussian distributions are scaled by a single scaling factor,
o. The scaling factor is considered over the set of values
o =1{1,2,3,4,5,6,7,8,9}. A simulation is performed for each
value of 0. The simulated pirate attacks for o = 1 is illustrated
in Figure 9. This result illustrates condensed clusters of pirate
attacks. For comparison, the pirate attack locations of 2011 are
illustrated in Figure 10. The results in Figure 9 seem to demon-
strate little correlation with the real-world data. The simulated
pirate attacks for o = 6 is illustrated in Figure 11. The results
seem to demonstrate a higher correlation with the 2011 pirate
attack data. The simulated pirate attacks for o = 9 is illustrated

Figure 8: Selected pirate zones for the optimisation demonstration. Each pi-
rate zone is represented by a Gaussian distribution. The yellow rings describe
the standard deviation of the Gaussian distributions. The 2011 pirate attack
locations are plotted as red markers.

Figure 10: Pirate attack locations of 2011 [64]

in Figure 12. The results demonstrate a more uniform distribu-
tion of pirate attacks.



Figure 11: Simulated pirate attacks for o = 6. This value produces the optimum
results.

Figure 12: Simulated pirate attacks for o = 9

A set of GMMs are fitted to each of the nine simulation re-
sults. The EM algorithm described in section 4.8 is applied for
fitting the GMMSs. The EM-algorithm requires initial parame-
ters for the GMM. The number of Gaussians in the GMM was
set as g = 6. This corresponds to the number of preselected
pirate zones. The initial mean values were set as the prese-
lected pirate zone Gaussian distribution means. The covariance
matrices were initialized as diagonal matrices. The diagonal
elements were set as the variance of the real-world pirate at-
tack data. The initial weights were set uniformly. The resulting
GMM probability density function for o = 6 is illustrated in
Figure 13.

The model is optimised by considering the likelihood de-
scribed by (17). The likelihood results for the set of o values is
presented in Table 1. The optimum value is demonstrated to be
o = 6. The model with o = 6 is considered to be the optimum
model.

5.6. Optimisation Results Validation

The simulations described in section 5.5 were repeated. Four
simulations were run over the set o = {1,2,3,4,5,6,7,8,9}.

10
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Figure 13: GMM for the simulated pirate attack data for o = 6. The surface
illustrates the GMM probability density function above the map of the region
considered.

Table 1: Log-likelihood values for the pirate attack data of 2011 given the sim-
ulation data. The log-likelihood is provided for each of the simulations over the
set o ={1,2,3,4,5,6,7,8,9}. The row containing the maximum likelihood is
presented in bold font.

o | log Lys)
1 -3983
2 -4172
3 -3781
4 -3232
5 -3173
6 -2987
7 -3161
8 -3138
9 -3112

A considerable amount of time is required to perform a set of
simulations. This limited the number of simulations performed.
The error-bar plot of the simulation results is illustrated in Fig-
ure 14. The line plot and associated error bars represent the
mean values and standard deviations respectively of the log-
likelihood results over four simulations for each of the o values
considered. The trend provides a confirmation that the maxi-
mum likelihood occurs for o = 6.

It may be noted that the likelihood does not seem to decrease
as o increases beyond o = 6. A cause of this is the structure of
the transport vessel routes. A large covariance of a pirate zone
will result in larger area considered by the pirate. Pirate attacks
will however not occur in regions where no transport vessels
sail. The distribution of pirate attacks is thus constrained to the
regions in which transport vessels sail. The results illustrated in
Figure 12 demonstrate this. Pirate zones with high covariance
are simulated. A structure in the simulated pirate attack loca-
tion distribution is maintained. With reference to Figure 4, the
transport routes define the maintained distribution structure. In-
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Figure 14: An error-bar plot for a set of four simulations over the set o =
{1,2,3,4,5,6,7,8,9}. The mean value for each o value is plotted as a line. The
error bars describe the standard deviation of the results for each o~ value.

creasing the pirate zone variance beyond the constraint will not
cause a change in the variance of the simulated attacks. The
likelihood results will not vary significantly over large values
of 0.

5.7. Cross Validation Based Verification

The ability for a model to generalise a dataset may be evalu-
ated using the method of cross validation [72, 20]. In the cross
validation method, a dataset is split into a training set and a val-
idation set. The training set is used for training the model. The
validation set is used for evaluating the model. Separating the
datasets provides a means to evaluate the performance of the
model on unseen data [73]. A number of cross validation folds
may be performed. In each cross validation fold a new train-
ing set and validation set are formed. The model is trained and
evaluated over each fold.

In Algorithm 2, a cross validation based method for evalu-
ating the proposed model is described. The methodology of
this algorithm is illustrated in Figure 15. The 2011 pirate at-
tack dataset is split into a training dataset (D7) and a validation
dataset (Dy). The GMM is fitted to the training dataset. This
GMM may be considered a model of the real-world dataset.
A simulation is performed using the parameters of the train-
ing dataset GMM as pirate zone parameters. The simulation
produces a simulation dataset (Dg). A GMM is fitted to the
simulation dataset. The training set GMM is compared to the
simulation dataset GMM using Bayes factor. Bayes factor is
given as:

gDV yr)

;= , . (18)
(DY) vs)

The numerator ¢(D\; ), is the likelihood of the i*" validation

dataset sample, given the parameters, {7 of the training dataset

GMM. The denominator ¢(D\; ), is the likelihood of the i

validation dataset sample, given the parameters, g of the sim-

ulation dataset GMM. A likelihood is computed by evaluating
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Algorithm 2 Cross validation based verification method for
evaluating the proposed model.

Require: 2011 attack data consisting of the pirate attack loca-
tions.

1: for fold =1to 10 do

2:  Sample (without replacement) 10% of the 2011 attack
dataset to form the validation set Dy.

3:  Set the remaining 90% remaining data as the training set
Dr.

4:  Generate a simulation dataset Dy using pirate zone pa-
rameters determined from Dr.

5. Fita GMM with parameters ¢ to Dr.
6:  Fita GMM with parameters g to Dyg.
7. for each validation sample i do
8: Compute the likelihood the validation set sample
given the GMM model of the training set q(Diﬁ); ).
9: Compute the likelihood the validation set sam-
ple given the GMM model of the simulation set
gD us).
10: Compute Bayes Factor for each of the two computed
sample likelihoods using (18).
11:  end for
12:  Compute the median of the Bayes factor using (19).

13: end for
14: Plot the Bayes factor median for each fold.

the respective GMM at the point given by D(\?. Bayes factor in
(18) provides an indication of how many more times likely the
real-world GMM is to the simulated data GMM, at the valida-
tion sample point. The median Bayes factor over all the samples
is given by:

D(i);
K = median (K;) = median(w] s (19)
CI(DV ; lﬂs)
where i = {1,...,10}. The median of Bayes factor provides a

measure of how many more times likely the validation dataset
fits the real world data model than that of the simulation data
model. The closer a Bayes factor value is to unity, the more
similar the models are. The more similar the models are, the
more superior the proposed model is.

The log-likelihood of the validation dataset, given the GMMs
is illustrated in Figure 16. The black curve describes the log-
likelihood of the validation dataset given the training dataset
GMM. The grey curve describes the log-likelihood of the val-
idation dataset given the simulation dataset GMM. The devia-
tion between the two curves is low and the trends of the curves
are similar. The similarity between the curves provides an indi-
cation that the model performs well.

The median Bayes factor for the ten folds is plotted in Fig-
ure 17. The values lie within a range {1 < K < 1.7}. The av-
erage median Bayes factor value over the ten folds is 1.3. The
Bayes factor values are all greater than unity as the likelihood
of the real-world dataset is naturally greater than the likelihood
of the simulated dataset. The Bayes factor values do not deviate
far from unity, indicating that the model performs well.
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Figure 15: Cross validation based verification method for evaluating the pro-
posed model.
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Figure 16: The log-likelihood of the validation dataset given the real-world

model g(Dy; yr) and the simulation model g(Dy; ¢rs).
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Figure 17: Median value of the Bayes factor given by (19) is plotted for each
validation set over ten folds.

The Bayes factor results are presented as box plots in Fig-
ure 18. The median Bayes factor is indicated by the central
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Figure 18: Box plots of Bayes factor for 23 validation samples over 10 cross
validation folds.
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Figure 19: Box plot of Bayes factor for a test set with 1176 samples. This figure
may be compared to Figure 18 where the test set for each cross validation fold
consists of 212 samples.

mark in each box. The box upper and lower edges indicate
the upper and lower quartiles respectively. Over the ten folds,
the Bayes factor quartiles remain within a range of 0.57 and
8.6. The extreme Bayes factor values are represented by the
whiskers. The extreme values remain below a value of 21. The
majority of extreme values remain below a value of 5. The out-
lier Bayes factor values are indicated by grey ‘+’ markers. The
outliers are constrained to a value of 22 in the plot. The outliers
are validation samples that the proposed model is not able to
generalise well.

In each cross validation fold, the simulation dataset consists
of 212 samples as in the training set. The GMM estimate based
on the simulation samples may be improved by increasing the
number of simulation samples. To demonstrate this, a simula-
tion dataset consisting of 1176 samples is generated. The box
plot for this single cross validation fold is presented in Fig-
ure 19. The median Bayes factor value is 1.4. The range of
quartiles is reduced to the range of 1.05 and 2.47. This indicates
a significant decrease in the variance of the results. The up-
per quartile indicates that the validation sample given the real-
world data GMM is only 2.47 times more likely than the val-
idation sample given the simulated data GMM. This indicates
a high level of similarity between the simulation and training
dataset models.
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Figure 20: A bar graph describing prw, the number of attacks that occurred in
each month of 2011 [64]. The generative model temporal results are compared
to this figure.

6. Temporal Domain Evaluation and Results

The proposed model is evaluated by comparing temporal dis-
tributions that describe the real-world pirate data and the simu-
lated data. As indicated in Section 4.3, pirate behaviour is de-
pendent on time. This is evident given histogram presented in
Figure 20. The histogram describes the monthly number of at-
tacks over the year, 2011. The real-world temporal distribution
illustrated by the histogram is given by

prw = {58,38,54,35,56,32,32,31,29,36,18,20}.  (20)

To evaluate the proposed model, the generated results may be
compared to the distribution, pgy .

To generate results that are comparable to pgy, the temporal
behaviour of vessels must be considered. Pirate vessel tempo-
ral behaviour is of particular interest. To affect the number of
monthly pirate attacks, the amount of time spent at sea of pirate
vessels may be adjusted. The pirate state transition probabili-
ties may be considered for this purpose. In particular, the an-
chor to sail-out or the drift to sail-home transition probabilities
may be considered. For example, by increasing the drift to sail-
home transition probability, the vessel will spend less time at
sea. Fewer pirate attacks will occur if the pirate spends less time
searching for targets. Inversely, by decreasing the drift to sail-
home transition probability, the vessel will spend more time at
sea, resulting in more pirate attacks. A value may be associ-
ated with the drift to sail-home transition probability for each
month in a year. For the model to generate data that is compa-
rable to prw, the transition probabilities may be set as values
that are proportional to pgy. In this study, the drift to sail-home
transition probability for month i = {1,..., 12} is given by:

Prw (D)
max(prw) + min(pgw)”

p(sail-homeldrift, i) = 2D
The denominator in (21) does not affect the temporal distribu-
tion. It affects the total number of attacks that occur throughout
the year.
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Figure 21: A histogram describing pysc, the number of simulated attacks that
occurred in each month, averaged over 10 simulations. This figure may be
compared to Figure 20.

A set of 10 simulations are performed. Each simulation
epoch represents a year. In each simulation, the monthly num-
ber of attacks is accumulated. A set of 10 temporal distributions
are formed, p(sj), j =1{1,...,10}. The Monte Carlo temporal
distribution, pyc is defined as the average monthly attacks over
the set of 10 simulations. That is, each of the 12 elements in
Ppumc contains the average number of pirate attacks over the 10
simulations for each month in a year. Each element in pyc is
given by:

10
. 1 G -

puc(i) = 75 IZJ Py, (22)

where i = {1,...,12}. The histogram of py is illustrated in

Figure 21. This histogram may be compared to the histogram
illustrated in Figure 20.

The Bhattacharyya coeflicient between two discrete distribu-
tions p; and p, over some variable i, is defined as [74, 75]:

p(p1,p2) = D \P1@Dpa(D).

The Bhattacharyya coefficient may be explained as the cosine of
the angle between the unit vectors formed with p; and p,. This
may be used as a measure for comparing the generated and real-
world temporal distributions. The Bhattacharyya coeflicient for
each of the 10 simulations p(pY’, prw), j = {1 ... 10}, is plotted
in Figure 22. The values of the Bhattacharyya coeflicient are in
the range {0.993 < p(p(SJ),pRW) < 0.997}. The range of values
is near unity indicating a high level of similarity between the
generated and real-world distributions. The similarity may be
improved using the Monte Carlo approach. The Bhattacharyya
coefficient between pyc and pgw is calculated as

(23)

p(puc, prw) = 0.9991.

As indicated in Section 7.2, the Bhattacharyya coefficient may
be explained as the cosine of an angle between the two distri-
butions. The ‘Bhattacharyya angle’ between py¢ and pgy, for
p(puc, prw) = 0.9991, is 2.431°.
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Figure 22: The Bhattacharyya coefficient p(prw (i), prw), i = 1 ... 10, compar-
ing the 2011 temporal distribution and the 10 simulated temporal distributions.

7. Model Effectiveness

The effectiveness of an information fusion system may be
described according to robustness, quality and information gain
[76]. Robustness measures the consistency of the model. Qual-
ity measures the performance of the model. Information gain
measures the ability of the model to provide improvement.

7.1. Model Robustness

The robustness of the model may be described by ability of
the model to generalise the data. A model that is not able to
generalise data is not considered to be robust. The ability for the
model to generalise data is demonstrated by the cross validation
results presented in Section 5.7. The exceptional Bayes factor
results indicate a high level of robustness of the model.

The simulated pirate attack locations are not required to be
identical to real-world attack locations. A robust model will
maintain the form of the spatial distribution while providing
a level of uncertainty on the attack locations. The proposed
model produces varying results while maintaining the required
structural form of the distribution.

The results illustrated in Figure 14 also provide an indica-
tion of the robustness of the model. The standard deviation of
the model for each o is described by the error bars. The log-
likelihood seems to vary more over the o~ parameter values than
over different simulation instances with the same o~ value. This
is particularly true for o < 5. This implies that the model is
more strongly affected by the parameter selection than model
uncertainty. Furthermore, the standard deviation values remain
similar between the various model parameters.

7.2. Model Quality

The quality of the model may be described by the similarity
between the simulated data and the real-world data. The tem-
poral results presented in Section 6, demonstrate a high level of
similarity between the simulated and real-world data. The high
level of similarity indicates a high level of quality of the model.

The likelihood results discussed in section 5.5 provide an
indication of the quality of the model. The maximum likeli-
hood value indicates the model with highest quality. The Bhat-
tacharyya distance may be considered as a simpler and more
intuitive measure than the likelihood. In this case, the Bhat-
tacharyya distance is however a less rigorous measure.
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Table 2: Pirate attack location spatial distribution comparisons between the
simulated results and the 2011 attacks. The Bhattacharyya distance and the
Bhattacharyya coefficient are provided for various histogram bin sizes in kilo-
metres. The bin sizes are discretised in pixels and converted to approximated
distance measures. As a frame of reference, the dimensions of the map are
approximately 6400km x 4600km.

Bin Size (pixels) | p(p1, p2) | Ds(p1, p2)
25kmx25km 0.0358 0.9819
100kmx100km 0.2702 0.8543
250kmx250km 0.6684 0.5758
400kmx400km 0.7988 0.4485
500kmx500km 0.8632 0.3699

The Bhattacharyya coeflicient between two discrete distribu-
tions p; and p, is given by (23). The Bhattacharyya distance
between discrete distributions p; and p, may be calculated as

[74, 75]:
Dg(p1,p2) = N1 = p(p1, p2). (24)

The discrete distributions of the pirate attack locations are
determined using two dimensional histograms. The maps are
divided into square cells to form the histogram bins. For this
evaluation, let the distribution p; represent the histogram de-
termined from the simulated data. Let the distribution p, rep-
resent histogram determined from the 2011 pirate attack data.
Results of distances between the spatial distributions for vari-
ous histogram bin sizes are provided in Table 2. For small his-
togram bin sizes, the distributions appear unrelated. For large
histogram bin sizes, the distributions are more similar. The re-
sults describe the scale at which the model performance be-
comes acceptable. The model performance becomes acceptable
around the 250kmx250km region.

7.3. Information Gain (Cross Entropy)

The information gain may be considered as the information
that is required to be gained for the simulated distribution to
match the real-world data distribution. Entropy is a measure
that is used to describe the level of information. To compare
different probabilistic models, cross entropy may be used [77].
In language processing, a sequence of words or parts of speech
may be compared with a particular model using cross entropy
[77]. In this study, cross entropy is used to compare the real
world dataset with the proposed model. Suppose some natu-
ral probability distribution p(y) generated the real world dataset
within the space y € Y. The GMM distribution, ¢(y; s) mod-
els the simulated dataset. The cross entropy between p(y) and
q(y; ¥rs), is given as [77]:

H(p.q) = - f p(y)log(g(y; ¥s))dy (25)
Given the set of real world data b, the cross entropy is given by
[77]:

. Il - -
H(p.q) = lim —~ 3" p(b))log(g(bius))  (26)
J



Table 3: Cross entropy (27) in nats for the set of simulations over various values
of o.

H(p,q)
18.5
19.1
17.2
14.2
13.2
12.2
13.1
12.7
12.5

N R R N N

The Shannon-McMillan-Breiman theorem dictates that, for a
stationary ergodic process, the cross entropy may be written as
follows [77]:

. 1< -
H(p.g) = lim ~— } " log(¢(B;: Us)) (27)
J

This equation may be interpreted as describing the information
of the GMM distribution evaluated at the sample points of the
real world dataset. If the real-world dataset does not correlate
well with the GMM distribution, then the information will be
high. The GMM requires a higher amount of information to
‘encode’ the real-world dataset.

The cross entropy values for the various simulation parame-
ters are presented in table 3. The simulation parameters are de-
scribed in section 5.5. The cross entropy values are displayed
in nats. The minimum cross entropy value corresponds to the
covariance for o = 6. This result agrees with the maximum
likelihood value displayed in table 1. The minimum cross en-
tropy value indicates that the corresponding simulation param-
eters provide a model that requires the least amount of informa-
tion to be gained to represent the real-world dataset.

It may be noted that the cross entropy given in (27) is similar
in form to the log likelihood given in (17). The cross entropy
in (27) may be considered as the negated normalised likelihood
given in (17). The maximum likelihood method described for
optimisation is equivalent to the minimisation of the cross en-
tropy. This provides a form of validation of the optimisation
procedure.

8. Future Research and Applications

The implementation of the model is to be refined using real
world data and statistics. The EP variable may be expanded to
include parameters such as wave height, wind speed, wind di-
rection, cloud cover and air temperature. Additional parameters
may be varied in the optimisation of the model as discussed in
section 5.5.

The proposed model is developed for the purpose of simu-
lation and data generation. The data generated by this model
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shall be utilized for the purpose of developing and testing mar-
itime pirate detection algorithms. Research is being conducted
on using a DBN for classification of vessels in the maritime
environment using the generated data. The DBN classifier is
a generalised variation of the proposed model where the class
variable is inferred.

The data generated by the proposed model may be utilised
in various other applications. For example, the proposed model
may be used for multi-sensor simulation. The proposed model
contains a plate of sensor variables. The sensor variables could
be used in modelling a set of particular sensors. The data gen-
erated by the sensors could be used for testing and evaluating
multi-sensor information fusion methods. The model is not lim-
ited to the maritime piracy application. The variables in the pro-
posed model can be adapted to be applied to other applications
such as land or air based applications.

The authors intend to integrate the proposed model into the
ICODE-MDA open source tool for maritime domain awareness
[78].

9. Summary and Conclusion

A multi-agent generative model is proposed for the purpose
of simulating a maritime piracy situation. The model comprises
of a SLDS represented in the form of a DBN. The DBN de-
scribes a Markovian state based model that determines the be-
haviour and motion of the modelled vessel. The states of the
model are determined by a set of higher level variables whose
probability distributions may be inferred from data. The pro-
posed DBN thus provides a versatile model that unifies physi-
cal, graphical and probabilistic attributes to model behaviour.

The proposed model is modelled and evaluated with respect
to the attack locations of 2011. Optimisation and evaluation is
conducted based on likelihood computations of the real-world
pirate attack data with respect to the simulated data. Further-
more, method of cross validation is performed using Bayes fac-
tor. The temporal modelling capability of the proposed model
is demonstrated. The temporal results are evaluated using the
Bhattacharyya coefficient.

The model effectiveness is measured according to quality, ro-
bustness and information gain. Cross entropy is utilised to de-
scribe the information gain. The likelihood and Bhattacharyya
distance is used to describe the quality. The robustness of the
model is measured by the consistency of the model and the
cross validation results. The proposed model is able to produce
unique and varying results while maintaining the structural in-
tegrity of the general spatial and temporal distributions. The
distributions that were produced correlate well with the real-
world data. The evaluation and optimisation methodology may
be applied to other behavioural modelling applications.

A possible deficiency of the model is that the DBN is subject
to the curse of dimensionality. The conditional distributions
for each link in the DBN are required to be defined. If many
contextual elements and many vessel classes are considered, the
DBN may become cumbersome to configure. This is addressed
in this study by combining contextual elements to reduce the
number of variables.



The data generated by the model may be utilised for vari-
ous applications. The intended use of the data is for training,
testing and evaluating threat assessment methods. Machine
learning methods may require training data. Statistical meth-
ods may require prior information. In general, most algorithms
and methods will require testing and evaluation. The model is
able to produce unique and varying results while maintaining
the structure of a spatial distribution. This quality is desirable
for producing realistic results and for generating suitable data
for training, testing and evaluation.
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