TWO FIELD STRAINS OF HAEMONCHUS CONTORUTUS RESISTANT TO RAFOXANIDE

J. A. VAN WYK(1), F. S. MALAN(2), H. M. GERBER(1) and REGINA M. R. ALVES(1)

ABSTRACT

Two field strains of Haemonchus contortus, one from Pretoria on the Highveld and the other from White River in the Lowveld of the Transvaal, showed pronounced resistance to rafoxanide at a dosage rate of 7.5 mg/kg live mass per os. Both of these strains originated from kikuyu pastures under irrigation. Resistance in South Africa to rafoxanide and other anthelmintics, namely, closantel, ivermectin and the benzimidazoles is reviewed. It is concluded that apart from avoiding farming practices where integrated worm control is not possible, there is at present no solution to the problem of worm resistance in the country.

INTRODUCTION

The first report in South Africa of resistance of gastrointestinal nematodes to the modern anthelmintics appeared in 1975 (Berger, 1975). However, no systematic search has ever been conducted in South Africa for resistant strains, and in every case the resistance came to light because of complaints by consumers or during the course of routine investigations (Van Wyk & Gerber, 1980).

During the past decade resistance has escalated to the extent that many cases are occurring with ever increasing frequency, and we have already found resistance to an impressive array of anthelmintics and an increasing number of strains of Haemonchus contortus, Ostertagia circumcincta and Moniezia expansa.

This paper describes trials with 2 strains of H. contortus which were tested for resistance to rafoxanide and other anthelmintics.

MATERIALS AND METHODS

Unless otherwise stated, the methods used for faecal egg counts, faecal cultures and infestation of animals have been described by Reinecke (1973). The abomasum ingesta were concentrated by sieving through sieves having apertures of 150 μm onto sieves with apertures of 37 μm and retaining the residues in both for worm recovery.

EXPERIMENTAL INVESTIGATIONS

I. PRETORIA PTZR STRAIN

History

This strain was isolated from sheep grazing irrigated kikuyu pasture on a smallholding near Pretoria. From time to time between December 1983 and 1985, the flock was repeatedly enlarged by the introduction from elsewhere of a few sheep. Initially worm control consisted of anthelmintic treatments every 6–12 weeks. More recently, adult sheep were drenched every 5 weeks and lambs every 3 weeks.

Initially the anthelmintic used consisted of levamisole¹, but later this was regularly alternated with albendazole² and infrequently with rafoxanide³, at intervals of more or less 6 months.

Materials and Methods

The strain was isolated in the laboratory to investigate the presence of considerable numbers of eggs of H. contortus in sheep after routine treatment with rafoxanide. It was passed only once in the laboratory, the infective larvae (L3) for use in the trial originating from the first laboratory passage in donor animals. The sheep from which L3 of H. contortus were harvested for the trial was not dosed with rafoxanide; thus the strain was not selected with rafoxanide in the laboratory.

Thirty-one Dorper wethers, born and raised under conditions of minimal exposure to worms (concrete-floored pens swept twice per week for the removal of accumulating manure), were available for the trial. Subsequent to their introduction to the trial they were housed under worm-free conditions.

Prior to the commencement of the trial, faecal worm egg (egp) counts of the sheep were negative. Nevertheless, as a further precaution, the sheep were drenched with morantel⁴ at a dosage range for the various sheep of 30–68 mg/kg.

Each of 31 worm-free Dorper wethers was dosed with 1 003 L3 of H. contortus on Day –28, Day –27, and on Day –26 (Table 1). On Days –5, –4, and –1 egg counts were carried out. On the day of treatment (Day 0) the sheep were mass-measured, ranked according to the mean egg counts, and allocated to the various trial groups with the aid of tables of random numbers. The method of allocation is outlined in detail by Van Wyk & Gerber (1980).

The groups were as follows: 11 sheep dosed with rafoxanide; 4 dosed with fenbendazole; 3 with levamisole; 3 with closantel; and 9 undosed controls (Table 1).

On Day +6 all the sheep were killed for worm recovery (Reinecke, 1973).

TABLE 1 PTZR strain—experimental design: Numbers of L3 of H. contortus dosed to each sheep, the anthelmintics drenched, and the day of slaughter.

<table>
<thead>
<tr>
<th>Day</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 sheep each treated with 1 003 L3 H. contortus, 4 sheep drenched with fenbendazole, 3 sheep with levamisole, 3 with closantel, and 9 untreated controls (Table 1).</td>
</tr>
<tr>
<td>+6</td>
<td>31 sheep killed for worm recovery</td>
</tr>
</tbody>
</table>

¹ Ripercol (Jansses Pharmaceutica)
² Valbazen (SmithKline)
³ Ranide (MSD)
⁴ Banminth (Pfizer)
each abomasum. Subsequently, total worm counts were
done of the control sheep having the median worm
count, of the sheep with counts immediately above and
below this count, and of the treated sheep having the 2nd
highest to the 5th highest worm counts.

Results (Tables 2 & 3)

It is obvious that rafoxanide is ineffective because 5 of
the treated sheep had worm counts higher than the re-
duced control median 1 213 × 0.5 = 615.5 or 616
(Table 2). For a Class C efficacy, only 4 treated sheep
may have a worm count higher than that of the reduced
control median (Reinecke, 1973).

TABLE 2 Ptzr strain—H. contortus recovered from untreated
controls and from sheep treated with rafoxanide

<table>
<thead>
<tr>
<th>Numbers of H. contortus</th>
<th>Rafoxanide (7.5 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated (Control group)</td>
<td>830</td>
</tr>
<tr>
<td>970</td>
<td>20</td>
</tr>
<tr>
<td>1 020</td>
<td>70</td>
</tr>
<tr>
<td>1 74*</td>
<td>80</td>
</tr>
<tr>
<td>1 231*</td>
<td>170</td>
</tr>
<tr>
<td>1 471*</td>
<td>180</td>
</tr>
<tr>
<td>1 550</td>
<td>215*</td>
</tr>
<tr>
<td>1 560</td>
<td>700*</td>
</tr>
<tr>
<td>1 880</td>
<td>719*</td>
</tr>
<tr>
<td>Mean: 1 298 ±/− 340</td>
<td>Mean: 448 ±/− 414</td>
</tr>
</tbody>
</table>

NPM efficacy: Class X (ineffective)
Arithmetic mean efficacy: 65.5 %
* Total worm counts, and not only counts of aliquots, as in the other
sheep

TABLE 3 Ptzr strain H. contortus recovered from untreated controls
and from sheep treated with fenbendazole, levamisole, and
closantel

<table>
<thead>
<tr>
<th>Numbers of H. contortus</th>
<th>Fenbendazole (5 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated (Control group)</td>
<td>830</td>
</tr>
<tr>
<td>970</td>
<td>710</td>
</tr>
<tr>
<td>1 020</td>
<td>850</td>
</tr>
<tr>
<td>1 74*</td>
<td>1 180</td>
</tr>
<tr>
<td>1 231*</td>
<td>Mean: 720 ±/− 434</td>
</tr>
<tr>
<td>1 471*</td>
<td></td>
</tr>
<tr>
<td>1 550</td>
<td>Levamisole (7.5 mg/kg)</td>
</tr>
<tr>
<td>1 560</td>
<td>0</td>
</tr>
<tr>
<td>1 880</td>
<td>0</td>
</tr>
<tr>
<td>Mean: 1 298 ±/− 340</td>
<td>Closantel (5 mg/kg)</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Although only 4 sheep were treated with fenbendazole
at 5 mg/kg (Table 3), it is obvious that large numbers of
worms were still present, giving a reduction on the arith-
metic mean of only 44.5 %.

That no worms survived treatment with closantel and
levamisole indicates that these anthelmintics are still
effective.

II. WHITE RIVER KRTZ STRAIN OF H. CONTORTUS

A farmer in the Lowveld region of the Transvaal com-
plained that his sheep were showing signs of haemo-
chosis despite being treated with rafoxanide. The farm
is situated on the north-eastern slope of a mountain, and is
divided into numerous camps of about 1 ha each.

The kikuyu pasture is irrigated at regular intervals and
grazed by a flock of about 2 000 South African Mutton
Merino sheep. The sheep are divided into flocks of
about 2 000 South African Mutton

<table>
<thead>
<tr>
<th>Numbers of H. contortus</th>
<th>Rafoxanide (7.5 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated (Control group)</td>
<td>1 630</td>
</tr>
<tr>
<td>2 010</td>
<td>1 160</td>
</tr>
<tr>
<td>1 920</td>
<td>1 780</td>
</tr>
<tr>
<td>Mean: 1 853</td>
<td>1 597</td>
</tr>
</tbody>
</table>

Reduction* |

13.9 % |

0 % |

* Reduction on arithmetic mean, treated compared to control worm burdens

DISCUSSION

With the exception of those in the rafoxanide treat-
ment in Trial I, relatively few sheep were used in these
trials. Nevertheless, it is plain that both Ptzr and Ktzr
strains are markedly resistant to both rafoxanide and
fenbendazole at recommended therapeutic doses. The

3 Panacur (Hoechst)
6 Ripercol (Janssen)
7 Ranide (MSD)
is well-documented side resistance between the benzimidazoles (discussed by Martin, 1985), hence it can be accepted that none of the benzimidazoles will be effective against either strain.

Sheep had been introduced relatively recently to the farm of origin of the Ptzr (Pretoria) strain and they were dosed infrequently with rafoxanide. It therefore seems unlikely that the resistance to rafoxanide developed on this farm but was probably introduced with one or more of the groups of sheep that were brought in from elsewhere. Fortunately this strain was still susceptible to closanol and levamisole.

In the case of the Krtz strain, there are records of treatment since the beginning of 1983 and it seems unlikely that the resistant strain could have developed from a total of 4 exposures to rafoxanide over the ensuing period. It may have been resistant to rafoxanide prior to 1983, or else it may also have been introduced subsequently to the farm.

It is surprising that rafoxanide resistance took so long to develop in South Africa, since the following factors are favourable for the development of resistance to this anthelmintic:

1. Rafoxanide has been on the South African market for 15 years and has been used intensively during that time.
2. The compound has a residual efficacy of approximately 3 weeks' duration against H. contortus (Snijders, Horak & Louw, 1973), a characteristic that should theoretically predispose to relatively rapid development of resistance (reviewed by Le Jambre, 1985); and
3. It is highly effective against H. contortus, the most important helmint of sheep in the summer rainfall region, and is used very intensively—as frequently as every 3 weeks during periods of peak transmission in years of heavy rainfall. This means that, given the residual efficacy, exposure of the worm to the anthelmintic and hence also to selection for resistance was probably very high during the periods.

Despite these factors, only 1 case of slight resistance to rafoxanide has been described before (Van Wyk & Gerber, 1980). It is true that no organized search for resistance has ever been made in South Africa, and this may account for so few reported cases. But, on the other hand, pharmaceutical companies investigate numerous strains of sheep intensively grazing irrigated pastures.

At present we are investigating 2 more strains with apparent resistance of H. contortus to rafoxanide, and another 2 strains have been investigated by a pharmaceutical company.

Resistance in South Africa (Table 6)

The most disquieting aspect to resistance in South Africa is the recent discovery of resistance of H. contortus to ivermectin\(^8\), an anthelmintic which has only been registered for use in sheep in South Africa since 1983. This strain was discovered by Visser & Schneider (Anon., 1986) on a farm in the South-western Cape, where ivermectin was used at very short intervals. Suspected resistance of O. circumcincta to the benzimidazoles had caused the farmer to change to ivermectin, and unfortunately very few other anthelmintics were subsequently used on the farm. This resistance developed under intensive grazing conditions on irrigated pasture. At least 2 further strains of H. contortus, strongly suspected of being resistant to ivermectin, are being investigated at the moment, both of which also originated from sheep intensively grazing irrigated pastures.

<table>
<thead>
<tr>
<th>TABLE 6 The present state of resistance of nematodes of sheep to anthelmintics in South Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Haemonchus contortus</td>
</tr>
<tr>
<td>Benzimidazoles</td>
</tr>
<tr>
<td>Rafoxanide</td>
</tr>
<tr>
<td>Closanol</td>
</tr>
<tr>
<td>Ivermectin</td>
</tr>
<tr>
<td>2. Ostertagia circumcincta</td>
</tr>
<tr>
<td>Benzimidazoles</td>
</tr>
</tbody>
</table>

Equally disquieting is the fact that some cases of resistance of H. contortus to closanol\(^9\) are under investigation at the moment (Malan & Van Wyk, unpublished observations, 1986). In the light of the substantial residual efficacy of this remedy against H. contortus (Van der Westhuizen, personal communication, 1979) it was not surprising that resistance developed relatively quickly. Nevertheless, this residual efficacy is very useful in a dosing programme and increased resistance will rob the sheep farmer of yet another anthelmintic.

This state of affairs means that, of the anthelmintics at present registered for use against nematodes of sheep in South Africa, only disophenol, levamisole, morantel and trichlorfon have not as yet been proved to be affected by nematode resistance in South Africa. Of these, levamisole and morantel are in the same group (according to the classification of Arundel, 1985), and disophenol has not been used on a large scale.

Almost without exception the cases of resistance of the more modern anthelmintics in South Africa have been associated with intensive sheep farming involving irrigated pastures, or improved pastures in regions having relatively high or consistent rainfall. This is probably the modern trend-intensive sheep farming on permanent pastures (Van Wyk, unpublished observations, 1985; P. C. van Schalkwyk, personal communication, 1986; P. Botha, personal communication, 1986; T. Taljaard, personal communication, 1986).

Under intensive grazing conditions worms are controlled exclusively by frequent drenching with anthelmintics, often without alternation of the compounds or with alternation of chemically related compounds. Heavy selection pressure is caused because these anthelmintics are dosed as often as every 3 weeks at times of peak transmission, and this pressure may be increased when the first signs of resistance occur, since the farmer often tends to increase the frequency of treatment still further.

The devastating effect of this intensive farming is evident in the rapidity with which ivermectin has become involved in resistance. This remedy is one of the most efficient against H. contortus, and it was hoped that resistance would not occur. Perhaps the short residual effect of ivermectin aggravated the development of resistance.

If resistance to other new compounds follows the same trend as ivermectin, we may reach a crisis in the treatment of H. contortus. The modern systems of integrated control, such as provision of safe pastures at critical times, are not applicable to irrigated pastures and many farmers might have to abandon sheep farming under such conditions.

\(^8\) Ivermectin (MSD)

\(^9\) Canel (SmithKline); Flukiver (Janssen); Seporver (Janssen)
TWO FIELD STRAINS OF *HAEMONCHUS CONTORUTS* RESISTANT TO RAFOXANIDE

ACKNOWLEDGEMENTS

The authors wish to thank the following people for valued assistance: Prof. R. K. Reinecke and Mrs N. A. Roper, Mr L. J. van Rensburg, Mrs A. J. Ashburner, J. M. Louw and Mr G. Shabangu.

REFERENCES

