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Abstract

We show that the quantile-based skew logistic distribution possesses kur-
tosis measures based on L-moments and on quantiles which are skewness
invariant. We furthermore derive closed-form expressions for method of L-
moments estimators for the distribution’s parameters together with asymp-
totic standard errors for these estimators.
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1. Introduction

The logistic distribution holds a special place among continuous symmet-
ric distributions due to the simplicity of its probability density, cumulative
distribution and quantile (inverse cumulative distribution) functions, given
in standard form (in effect, with location and scale parameters set as zero

and one) by g(z) = exp[−z]

(1+exp[−z])2
, G(z) = 1

1+exp[−z]
and Q(p) = log

[
p

1−p

]
re-

spectively for z ∈ ℜ and p ∈ (0, 1). Various asymmetric generalizations of
the logistic distribution have been proposed in the literature. For instance,
the real-valued random variable Z is said to have a skew logistic distribution
based upon the skewing methodology introduced by Azzalini (1985), if its
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probability density function is given by f(z) = 2g(z)G(λz) for z ∈ ℜ where
λ ∈ ℜ is a shape parameter. The properties of this density-based skew logis-
tic distribution, which we will denote SLDDB, have been studied by Wahed
and Ali (2001) and Nadarajah (2009).
In this paper we consider the quantile-based skew logistic distribution in-

troduced by Gilchrist (2000) in his book on quantile modeling and henceforth
denoted SLDQB. Gilchrist used the SLDQB throughout his book to illus-
trate important concepts and methods in quantile modeling. However, the
properties of the SLDQB have not been presented in detail in the literature
before. We do so in Section 2. In Section 3 we show that the parameters of
the SLDQB can easily be estimated using method of L-moments estimation.
Closed-form expressions for method of L-moments estimators and their stan-
dard errors are derived. Section 4 presents an example in which the SLDQB

is fitted to a data set using method of L-moments estimation.

2. Definition and properties

2.1. Genesis and special cases

The standard exponential distribution has quantile function Q0(p) =
− log [1− p], while its reflection, the standard reflected exponential distri-
bution, has quantile function Q0(p) = log [p]. Adding the quantile functions
of the standard reflected exponential and standard exponential distributions

gives Q0(p) = log[p]−log[1−p] = log
[

p

1−p

]
, the quantile function of the stan-

dard symmetric logistic distribution. A skew form of the standard logistic
distribution is obtained by taking a weighted sum of the quantile functions
of the standard reflected exponential and standard exponential distributions,

Q0(p) = (1− δ) log[p]− δ log[1− p], p ∈ (0, 1), (1)

where δ ∈ [0, 1]. Including location and scale parameters through the linear
transformation Q(p) = α+βQ0(p) gives the quantile function of the SLDQB,
presented in Definition 1.

Definition 1. A real-valued random variable X is said to have a quantile-

based skew logistic distribution, denoted X ∼ SLDQB(α, β, δ), if its quantile
function is given by

Q(p) = α + β ((1− δ) log[p]− δ log[1− p]) , p ∈ (0, 1), (2)

where α, β and δ are respectively location, scale and shape parameters.
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The parameter δ controls the level of skewness and thus the distributional
shape of the SLDQB through the allocation of weight to each tail of the
SLDQB. The SLDQB is symmetric for δ =

1
2
and negatively (positively)

skewed for δ < 1
2
(δ > 1

2
). The reflected exponential, the symmetric logistic

and the exponential distributions are all special cases of the SLDQB for
δ = 0, δ = 1

2
and δ = 1 respectively. The SLDQB possesses infinite support,

(−∞,∞), for 0 < δ < 1 and half-infinite support, (−∞, α] and [α,∞), for
δ = 0 and δ = 1 respectively.

2.2. Functions

The quantile and probability density functions of the standard SLDQB

with α = 0 and β = 1 are illustrated graphically in Fig. 1 for selected values
of δ. The SLDQB is a quantile-based distribution defined through its quantile
function. Akin to other quantile-based distributions such as Tukey’s lambda
distribution and its generalizations (Tukey, 1960; Ramberg and Schmeiser,
1974; Freimer et al., 1988) and the Davies distribution (Hankin and Lee,
2006), closed-form expressions do not exist for either the cumulative distri-
bution function or the probability density function of the SLDQB, except of
course for its special cases mentioned above.

Theorem 1. The quantile density function of the SLDQB is

q(p) = β
(
1−δ
p
+ δ

1−p

)
, p ∈ (0, 1), (3)

while its density quantile function is

fp(p) =
p(1−p)

β(δp+(1−δ)(1−p))
, p ∈ (0, 1). (4)

Proof. The expressions in (3) and (4) follow immediately from the definitions
of the quantile density function and density quantile function - see Parzen
(1979) or Gilchrist (2000) - in that q(p) = dQ(p)

dp
and fp(p) =

1
q(p)
.

2.3. Moments

Theorem 2. The mean, variance, skewness moment ratio and kurtosis mo-
ment ratio of X ∼ SLDQB(α, β, δ) are

µ = α + β(2δ − 1), (5)

σ2 = β2((2δ − 1)2 + π2

3
ω), (6)
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Fig. 1. The quantile and probability density functions of the standard SLDQB with α =
0, β = 1 and δ = 0, 0.25, 0.5, 0.75, 1. The line types indicated in graph (a) also
apply to graph (b).

α3 =
β3

σ3
(2(2δ − 1)(1− ω(4− 3ζ(3)))) (7)

and
α4 =

β4

σ4
(9 + ω(2((2δ − 1)2π2 − 4) + (9ω − 4)(16− π4

15
))) (8)

respectively, where ω = δ(1− δ).

Proof. Let Z = X−α
β
∼ SLDQB(0, 1, δ) with quantile function given in (1).

Then, for example, the fourth order uncorrected moment of Z is given by

E
[
Z4
]
=

∫ 1

0

(Q0(p))
4
dp

=

∫ 1

0

((1− δ) log[p]− δ log[1− p])4 dp

= (1− δ)4Ψ(4, 0)− 4(1− δ)3δΨ(3, 1) + 6(1− δ)2δ2Ψ(2, 2)

− 4(1− δ)δ3Ψ(1, 3) + δ4Ψ(0, 4)

= 2
(
12φ4 − 2ωφ2(24− π2 − π4

15
− 6ζ(3))

+3ω2(24− 4π2

3
−

π4

90
− 8ζ(3))

)
,
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where ζ(a) is Riemann’s zeta function, ω = δ(1−δ), φi = ((1− δ)i + (−1)iδi)
for i = 1, 2, ... and

Ψ(j, k) =

∫ 1

0

(log[p])j (log[1− p])k dp

= ∂j+k

∂uj∂vk

[∫ 1

0

pu(1− p)vdp

]∣∣∣∣
u=v=0

= ∂j+k

∂uj∂vk
[B(u+ 1, v + 1)]

∣∣∣
u=v=0

for j, k = 0, 1, 2, ... with B(a, b) the beta function. Likewise it can be shown
that E[Z] = −φ1 = (2δ − 1), E [Z2] = 2(φ2 − ω(2 − π2

6
)) and E [Z3] =

−3(2φ3 − ωφ1(
π2

3
+ 2ζ(3) − 6)). Then, since X = α + βZ, the expressions

in (5) to (8) are found (after extensive simplification) using µ′r = E [Xr] and
µr = E [(X − E[X])r] for r = 1, 2, 3, 4. Specifically the mean and variance of
X are given by µ = µ′1 and σ

2 = µ2, and the skewness and kurtosis moment
ratios of X are respectively obtained with α3 =

µ3
µ1.5
2

and α4 =
µ4
µ2
2

.

2.4. L-moments

Lemma 1. Hosking (1990) showed that the rth order L-moment of X can

be written as λr =
∫ 1
0
Q(p)P ∗r−1(p)dp, where

P ∗r (p) =
r∑

k=0

(−1)r−k
(
r

k

) (
r+k
k

)
pk (9)

is the rth order shifted Legendre polynomial.

Theorem 3. If X ∼ SLDQB(α, β, δ), then
(i) the first order L-moment, called the L-location, is

λ1 = α + β(2δ − 1), (10)

(ii) while the rth order L-moment is

λr =
β(2δ−1)rmod 2

r(r−1)
, r = 2, 3, 4, ....

Proof. (i) The L-location equals the mean, λ1 = µ, derived in Theorem 2.
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For (ii), note that
∫ 1
0
P ∗r−1(p)dp = 0 for r > 1 and P

∗
r−1(p) = (−1)

r−1P ∗r−1(1−
p) so that

λr =

∫ 1

0

(α + β ((1− δ) log[p]− δ log[1− p]))P ∗r−1(p)dp

= β(1− δ)

∫ 1

0

log[p]P ∗r−1(p)dp− (−1)
r−1βδ

∫ 1

0

log[1− p]P ∗r−1(1− p)dp

= −β(2δ − 1)rmod 2
∫ 1

0

log[p]P ∗r−1(p)dp

= −β(2δ − 1)rmod 2
r∑

k=0

(
(−1)r−1−k

(
r−1
k

) (
r−1+k
k

) ∫ 1

0

log[p]pkdp

)

= β(2δ−1)rmod 2

r(r−1)
,

where the final result is obtained (after simplification) using
∫ 1
0
log[p]pkdp =

−(k + 1)−2 from expression (2.6.3.2) in Prudnikov et al. (1986).
The L-scale of the SLDQB is simply

λ2 =
1
2
β, (11)

resulting in basic expressions for the L-moment ratios,

τr =
λr
λ2
= 2(2δ−1)rmod 2

r(r−1)
, r = 3, 4, 5, ....

In particular, the L-skewness and L-kurtosis ratios for the SLDQB are

τ3 =
1
3
(2δ − 1) (12)

and τ4 =
1
6
. Comparing the L-moments of the SLDQB to its conventional

moments, it is evident that it is more expedient to characterize the SLDQB

with its L-moments.

Remark 1. Because δ ∈ [0, 1], the SLDQB has τ3 ∈ [−1
3
, 1
3
]. In effect,

the minimum and maximum values attainable by the L-skewness ratio of the
SLDQB are the values for the reflected exponential distribution (τ3 = −

1
3
)

and the exponential distribution (τ3 =
1
3
).

Remark 2. The L-kurtosis ratio of the SLDQB is skewness-invariant in that
τ4 is constant and independent of the value of δ.
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2.5. Quantile-based measures of location, spread and shape

Theorem 4. The median, spread function (MacGillivray and Balanda, 1988),
γ-functional (MacGillivray, 1986) and ratio-of-spread functions (MacGillivray
and Balanda, 1988) of X ∼ SLDQB(α, β, δ) are respectively

me = Q(1
2
) = α + β(2δ − 1) log[2], (13)

S(u) = Q(u)−Q(1− u) = β log
[
u
1−u

]
, 1

2
< u < 1, (14)

γ(u) = Q(u)+Q(1−u)−2me
S(u)

= − (2δ−1) log[4u(1−u)]

log
[
u
1−u

] , 1
2
< u < 1, (15)

and

R(u, v) = S(u)
S(v)

=
log
[
u
1−u

]

log
[
v
1−v

] , 1
2
< v < u < 1. (16)

Proof. The expressions in (13) to (16) follow directly using the quantile
function of the SLDQB in (2).

Remark 3. The ratio-of-spread functions of the SLDQB does not depend on
the value of δ. Thus, in terms of van Zwet’s ordering 6S(van Zwet, 1964),
extended by Balanda and MacGillivray (1990) to asymmetric distributions,
the kurtosis of the SLDQB is the same for all δ ∈ [0, 1]. Hence, akin to
its L-kurtosis ratio, the ratio-of-spread functions of the SLDQB is skewness-
invariant. In fact, any quantile-based kurtosis measure of the general form

∑n1
j=1 ajS(uj)∑n2
k=1

bkS(uk)
=

∑n1
j=1 aj(Q(uj)−Q(1−uj))∑n2
k=1

bk(Q(uk)−Q(1−uk))
,

where aj : j = 1, 2, ..., n1 and bk : k = 1, 2, ..., n2 are constants with n1 and
n2 positive integers, is skewness invariant for the SLDQB. See Jones et al.
(2011) and van Staden (2013) for more detailed discussions on skewness-
invariance.

3. Method of L-moments estimation

In the absence of a closed-form expression for the probability density
function of the SLDQB and due to the complexity of the expressions of
the moments of the SLDQB, maximum likelihood estimation and method
of moments estimation for the parameters of the SLDQB are unappealing.
However, closed-form expressions are available for method of L-moments es-
timators as well as for their asymptotic standard errors.
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Lemma 2. Let x1:n ≤ x2:n ≤ ... ≤ xn:n denote an ordered data set of sample
size n. Then, following Hosking (1990), the rth order sample L-moment,

lr =
(
n

r

)−1 ∑∑
...
∑

1≤i1<i2<...<ir≤n

r−1
∑r−1

k=0(−1)
k
(
r−1
k

)
xir−k:n for r = 1, 2, ..., n, is an

unbiased estimator of the rth order theoretical L-moment, λr. The rth order
sample L-moment ratio is tr =

lr
l2
for r = 3, 4, ..., n.

Theorem 5. If X ∼ SLDQB(α, β, δ), then
(i) the method of L-moments estimators for α, β and δ are α̂ = l1 − 6l3,

β̂ = 2l2 and δ̂ =
1
2
(1 + 3t3) =

1
2
(1 + 3 l3

l2
),

(ii) with asymptotic covariance matrix given by

n var



α̂

β̂

δ̂


 ≈



Θ1,1 Θ1,2 Θ1,3
Θ2,1 Θ2,2 Θ2,3
Θ3,1 Θ3,2 Θ3,3


 ,

where
Θ1,1 =

1
15
β2
(
57 + (125π2 − 1308)ω

)
, (17)

Θ2,2 =
4
3
β2
(
1− (π2 − 8)ω

)
, (18)

Θ3,3 =
1
15

(
8− (397 + 160ω − 20π2(ω + 2))ω

)
, (19)

Θ1,2 = Θ2,1 = −β
2(2δ − 1), (20)

Θ1,3 = Θ3,1 = −
1
5
β
(
7 + (25π2 − 253)ω

)
(21)

and
Θ2,3 = Θ3,2 =

1
3
β(2δ − 1)

(
1 + 2(π2 − 8)ω

)
, (22)

with ω = δ(1− δ). Specifically the asymptotic standard errors of the method
of L-moments estimators for α, β and δ are

s.e. [α̂] = β

√
1
15n
(57 + (125π2 − 1308)ω),

s.e.
[
β̂
]
= β

√
4
3n
(1− (π2 − 8)ω)

and

s.e.
[
δ̂
]
=
√

1
15n
(8− (397 + 160ω − 20π2(ω + 2))ω).

8



Proof. (i) The expressions for α̂, β̂ and δ̂ follow from (10), (11) and (12).
(ii) We must derive the covariance matrix Θ = GΛGT . The elements of

G are given by the partial derivatives of the parameters with respect to the
L-moments, that is

G =




∂α
∂λ1

∂α
∂λ2

∂α
∂λ3

∂β

∂λ1

∂β

∂λ2

∂β

∂λ3
∂δ
∂λ1

∂δ
∂λ2

∂δ
∂λ3


 =



1 0 −6
0 2 0
0 −

3λ3
2λ2

2

3
2λ2


 =



1 0 −6
0 2 0
0 −

2δ−1
β

3
β


 ,

where the final result is obtained using (11) and (12) and simplifying. The
elements of the symmetric matrix,

Λ =



Λ1,1 Λ1,2 Λ1,3
Λ2,1 Λ2,2 Λ2,3
Λ3,1 Λ3,2 Λ3,3


 ,

can, as shown by Hosking (1990), be determined using

Λr,s = lim
n→∞

n cov (lr, ls)

=

∫ 1

0

∫ v

0

(
P ∗r−1(u)P

∗
s−1(v) + P

∗
s−1(u)P

∗
r−1(v)

)
u(1− v)q(u)q(v)dudv

for r, s = 1, 2, 3, where P ∗r (p) is the rth order shifted Legendre polynomial in
(9) and where, for the SLDQB, q(p) is the quantile density function given in
(3). For example,

Λ3,3 =

∫ 1

0

∫ v

0

(P ∗2 (u)P
∗
2 (v) + P

∗
2 (u)P

∗
2 (v)) u(1− v)q(u)q(v)dudv

= 2

∫ 1

0

∫ v

0

(
6u2 − 6u+ 1

) (
6v2 − 6v + 1

)
u(1− v)

× β
(
1−δ
u
+ δ

1−u

)
β
(
1−δ
v
+ δ

1−v

)
dudv
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= 2β2
(
(1− δ)2

∫ 1

0

(
−12v5 + 42v4 − 56v3 + 35v2 − 10v + 1

)
dv

+ ω

∫ 1

0

(
12v5 − 30v4 + 26v3 − 9v2 + v

)
dv

+ ω (−36Ξ(4, 2) + 72Ξ(4, 1)− 42Ξ(4, 0) + 6Ξ(4,−1)

+ 36Ξ(3, 2)− 72Ξ(3, 1) + 42Ξ(3, 0)− 6Ξ(3,−1)

−6Ξ(2, 2) + 12Ξ(2, 1)− 7Ξ(2, 0) + Ξ(2,−1))

+ δ2 (36Ξ(4, 2)− 36Ξ(4, 1) + 6Ξ(4, 0)− 36Ξ(3, 2) + 36Ξ(3, 1)

−6Ξ(3, 0) + 6Ξ(2, 2)− 6Ξ(2, 1) + Ξ(2, 0))
)

= 1
15
β2
(
2 + ω(5π2 − 53)

)
,

with ω = δ(1−δ) and where the final expression is obtained after substantial
simplification using

Ξ(j, k) =

∫ 1

0

vk
∫ v

0

uj−1(1− u)−1dudv

=

∫ 1

0

vkBv(j, 0)dv

= −

∫ 1

0

vk log[1− v]dv −

j−1∑

m=1

1
m(m+k+1)

=

{
π2

6
−
∑j−1

m=1
1
m2 , k = −1,

1
k+1
(ψ(k + 2) + C)−

∑j−1
m=1

1
m(m+k+1)

, k > −1,
(23)

for j = 2, 3, 4, where Bz(a, b) is the incomplete beta function, ψ(a) is the
Euler psi function and C = 0.5772156649... is Euler’s constant, and where
the final result in (23) is obtained using expressions (4.291.4) and (4.293.8)
in Gradshteyn and Ryzhik (2007). Likewise it can be shown that Λ1,1 =
1
3
β2(3 + ω(π2 − 12)), Λ2,2 =

1
3
β2(1 − ω(π2 − 8)), Λ1,2 = Λ2,1 =

1
2
β2(2δ − 1),

Λ1,3 = Λ3,1 =
1
6
β2(1 + 2ω(π2 − 11)) and Λ2,3 = Λ3,2 =

1
6
β2(2δ − 1). Finally

the expressions for the elements of Θ in (17) to (22) are obtained with Θ1,1 =
Λ1,1−12(Λ1,3−3Λ3,3), Θ2,2 = 4Λ2,2, Θ3,3 = β−2((2δ−1)2Λ2,2−6(2δ−1)Λ2,3+
9Λ3,3), Θ1,2 = Θ2,1 = 2(Λ1,2 − 6Λ2,3), Θ1,3 = Θ3,1 = β−1(3(Λ1,3 − 6Λ3,3) −
(2δ − 1)(Λ1,2 − 6Λ2,3)) and Θ2,3 = Θ3,2 = 2β

−1(3Λ2,3 − (2δ − 1)Λ2,2).
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4. Example

Consider the concentration of polychlorinated biphenyl (PCB) in the yolk
lipids of pelican eggs, recently used by Thas (2010) as an example data set
with respect to goodness-of-fit testing. Fig. 2(a) shows a histogram for
the data set. The values of the sample L-location, L-scale, L-skewness ra-
tio and L-kurtosis ratio for the data set, consisting of n = 65 observations,
are l1 = 210, l2 = 39.7928, t3 = 0.1044 and t4 = 0.2125. Table 1 presents
the parameter estimates of the fitted SLDQB obtained with method of L-
moments estimation. The standard error of each estimate is given in paren-
theses below the estimate. The p-values for the Kolmogorov-Smirnov (Dn),
Anderson-Darling (An) and Cramér-von Mises (Wn) goodness-of-fit tests, ob-
tained with 10 000 parametric bootstrap samples and tabulated in Table 1
along with the goodness-of-fit statistics, indicate that the SLDQB provides
an adequate fit to the data set. This is confirmed by the probability density
function of the fitted SLDQB, plotted in Fig. 2(a), as well as the Q-Q plot
for the fitted SLDQB, depicted in Fig. 2(b).

Fig. 2. A histogram of the concentration of polychlorinated biphenyl (PCB) in the yolk
lipids of pelican eggs together with the probability density function of the fitted
SLDQB and the corresponding Q-Q plot for the fitted SLDQB .
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Table 1. Parameter estimates with asymptotic standard errors as well as goodness-of-fit
statistics with p-values for the SLDQB fitted to the polychlorinated biphenyl
(PCB) concentrations.

Parameter estimates Goodness-of-fit statistics

α̂ β̂ δ̂ Dn An Wn

185.0633 79.5856 0.6567 0.4091 0.2595 0.0487

(16.1699) (8.6695) (0.0982) (0.7310) (0.5326) (0.3489)

NOTE: Standard errors of parameter estimates and p-values of
goodness-of-fit tests given in parentheses
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