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Abstract

In this paper we investigated the thermal behaviour of an assembly of multi scale cylinders in a staggered counter-
rotating configuration cooled by natural convection with the objective of maximizing the heat transfer density rate
(heat transfer rate per unit volume). A numerical model was used to solve the governing equations that describe the
temperature and flow fields and a mathematical optimisation algorithm was used to find the optimal structure for flow
configurations with two degrees of freedom. The multi scale structure of the cylinder assembly was optimized for
each flow regime (Rayleigh number) and cylinder rotation speed for two degrees of freedom. Smaller cylinders were
placed at the entrance to the assembly, in the wedge-shaped flow regions occupied by fluid that had not yet been used
for heat transfer, to create additional length scales to the flow configuration.

It was found that there was almost no effect of cylinder rotation on the maximum heat transfer density rate, when
compared to stationary cylinders, at each Rayleigh number; with the exception of high cylinder rotation speeds, which
served to suppress the heat transfer density rate. It was, however, found that the optimized spacing decreased as the
cylinder rotation speed was increased at each Rayleigh number. Results further show that the maximum heat transfer
density rate for a multi scale configuration (without cylinder rotation) was higher than a single scale configuration
(with rotating cylinders) with an exception at very low Rayleigh numbers.

Keywords: Natural convection, Rotating cylinders, Heat transfer density rate, Counter-rotation, Optimal packing,
Multi scale, Mathematical Optimization

1. Introduction

Efficiency is a key aspect in design, which has become prevalent in the design of heat transfer devices such as
heat sinks and pin fins. Research has been and is still being conducted on this subject with the aim of extracting more
and more heat from a given space through the maximizing of the packing of heat-generating material per unit volume.
This drive to augment heat transfer devices has become reinforced by modern electronic systems which produce high
amounts of heat due to the ever increasing power-to-volume ratio employed in such systems.

The strive for greater heat transfer density rates has been the driving force behind many of the miniaturization
efforts, augmentations and unconventional ways of designing heat transfer devices. This has lead researchers to study
the optimized configurations for various architectures such as: the optimal spacing of parallel plates in forced con-
vection, natural convection and mixed convection [7, 8, 10, 35]; the optimal spacing of cylinders in forced convection
and natural convection [36, 37]; and various optimized multi-scale structures [4, 9, 11–13, 34], etc.

The heat transfer and fluid flow around a single rotating cylinder has been studied previously. Badr and Dennis [1]
considered the problem of laminar forced convective heat transfer from an isothermal circular cylinder rotating about
its own axis located in a uniform stream. The authors reported that the temperature fields are strongly influenced by
the rotational speed of the cylinder and contradictory to expectation they found that the overall heat transfer coefficient
tends to decrease as the rotational of the cylinder increases. They attributed this to the presences of a rotating fluid
layer around the cylinder that separates the cylinder from the main flow stream.
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Nomenclature

D0 large cylinder diameter (m) Greek symbols
f (x) objective function α thermal diffusivity (m2/s)
g gravitational acceleration (m/s2) β thermal expansion coefficient (1/K)
g (x) inequality constraint function µ viscosity (kg/ms)
Hd downstream flow length (m) δT thermal boundary layer thickness (m)
Hu upstream flow length (m) ν kinematic viscosity (m2/s)
k thermal conductivity (W/mK) ρ0 reference fluid density (kg/m3)
W assembly length (m) ω0 cylinder angular velocity (rad/s)
P pressure (Pa)
Pr Prandtl number Subscripts
q̃ dimensionless heat transfer density rate m maximum
q
′

heat transfer rate per unit length (W/m) opt optimum
q
′′′

heat transfer density rate (W/m3)
Ra Rayleigh number Superscripts
S 0 spacing between large cylinders (m) ∗ optimal design variable
T fluid temperature (K)
Tw wall temperature (K) Accents
T∞ inlet fluid temperature (K) ·̃ dimensionless variable
U fluid velocity vector (m/s) ·̂ unit vector
(u, v,w) fluid velocity components (m/s)
x optimisation design variables
(x, y, z) Cartesian coordinates (m)

Chiou and Lee [15] considered a problem of forced convection on a rotating cylinder cooled with an air jet. The
results confirmed that the overall heat transfer is enhanced at lower rotational speeds and at higher rotational speeds
the effect became reversed. They attributed this to the presences of a layer of dead air around the cylinder.

Panda and Chhabra [30] considered a problem of forced convection heat transfer from a heated cylinder rotating
in streaming power-law fluids. The results show a similar behaviour of the heat transfer rate: for moderate rotational
velocities at low Reynolds numbers the heat transfer rate is enhanced and there is an envelope of conditions (Reynolds
number, rotation speed and power-law index) in which rotation has a negative effect on the heat transfer rate. Similar
research includes the works of Gshwendtner [17], Mohanty et al. [23], Oesterle et al. [25], Ozerdem [28], Paramane
and Sharma [31, 32], Yan and Zu [38] and Nobari et al. [24],

More recent studies have been conducted by Joucaviel et al. [20], with a single scale structure of a row of heat-
generating rotating cylinders cooled by forced convection. The authors reported that the effect of rotation was benefi-
cial from the point of view of maximising the heat transfer density rate. The results also showed that a counter-rotation
configuration increases the heat transfer density rate more efficiently when compared to a co-rotation configuration.
In fact the authors states that a co-rotating configuration “seems to be useless”, in that the heat transfer density rate
decreases and the optimal spacing increases with the increase in rotational speed. Similarly, Bello-Ochende et al. [14]
built onto the work by Bello-Ochende and Bejan [11] by considering a multi-scale constructal design with rotating
cylinders.

The study presented in this paper builds onto prior research by Bello-Ochende and Bejan [12], in which the authors
optimized the cylinder-to-cylinder spacings in a multi-scale constructal design of heat-generating cylinders (without
cylinder rotation) cooled by natural convection for one and two degrees of freedom. These classical results will be
used as a reference (benchmark) for the results reported in this paper.

It is the purpose of this paper to maximize the heat transfer density rate of a multi scale configuration of heat-
generating rotating cylinders in steady laminar single-phase natural convection, through constructal theory and design
[2, 3, 5, 6]. According to this method, the flow configuration is free to morph (change) in the pursuit of maximising
global performance subject to global constraints. The resulting optimal configuration is determined.

The assembly of cylinders rotate in a staggered counter-rotating configuration, with stationary small diameter
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cylinders and counter-rotating large diameter cylinders. The results for a single row of heat-generating rotating cylin-
ders in natural convection was presented previously by Page et al. [29].

This paper focuses on taking the constructal design of optimal spacings in a new direction by numerically formu-
lating the problem and mathematically optimising the flow configuration. An optimized single scale and multi scale
flow structure (subject to global constraints), that achieves even higher levels of heat transfer density rate, is sought
for each flow regime (Rayleigh number and cylinder rotation speed). The process of optimising the flow configuration
is often one of “brute force”, whereby the design space is broken up into a finite number of points at which the global
objective is evaluated. By introducing a mathematical optimization routine, a seemingly infinite design space can be
evaluated in order to obtain the optimal flow configuration.

2. Numerical Model

Consider a row of infinity long, rotating and heat-generating cylinders as shown in Fig. 1. The large diameter
cylinders (D0) are aligned along their centreline and smaller cylinders (diameter D1) are inserted in the entrance
(converging) region of the channels formed between the larger diameter cylinders to form a stacking.

The large diameter cylinders rotate at an angular velocity of ω0 in a staggered counter-rotating configuration. The
large cylinder diameter (D0) is fixed and the surface temperature of all the cylinders (Tw) is assumed uniform and
constant and greater than that of the fluid temperature (T∞). The cylinders are cooled by natural convection. The
objective is to select the number of cylinders (large and small) in the stacking or in other words to select the cylinder-
to-cylinder spacing (S 0) and the small cylinder diameter (D1) in such a manner that the overall thermal heat transfer
between the cylinders and the ambient air is maximized. This is done for each flow regime (Rayleigh number) and
cylinder rotation speed. The smaller cylinders are kept stationary and have a uniform and constant surface temperature
(T̃w) equal to the surface temperature of the larger cylinders.

The flow is assumed steady, laminar, incompressible and two-dimensional. All thermophysical properties are
assumed constant. The temperature variations are assumed sufficiently small relative to the absolute temperature so
that the Boussinesq approximation is valid.

The effect of increased complexity is shown in Fig. 2, in which a smaller cylinder (of diameter D1) is inserted in
the entrance (converging) region of the channels formed between the larger cylinders. This geometric change adds one
more degree of freedom to the system: the smaller cylinder diameter D̃1 = D0/D1. The flow configuration now has
two degrees of freedom, represented by the small cylinder diameter D̃1 and the original cylinder-to-cylinder spacing
S̃ 0.

Figure 3 shows the elemental volume that characterises this assembly. The computational domain contains the
upstream section [Hu×2 (D0 + S 0)], the downstream section [Hd×2 (D0 + S 0)] and the flow region [D0×2 (D0 + S 0)].
The upstream lengths (Hu) and downstream lengths (Hu) were selected based on mesh independence tests described
later in Section 3.

The conservation equations (in vector form) for mass, momentum and energy are respectively:

div (U) = 0 (1)

ρo
DU
Dt

= −∇P + µ∇2U − ρogβ (T − T∞) (2)

DT
Dt

= +α∇2T (3)

where U = [u, v,w] is the velocity field and ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

The system of coordinates (x, y) and the velocity component (u, v) are defined in Fig. 3. The variables are defined
in the nomenclature. The numerical work of solving Eqs. 1 to 3 is based on dimensionless formulation using the
following variables:

x̃, ỹ, ỹ =
(x, y, z)

D0
, ũ, ṽ, w̃ =

(u, v,w)

(α/D0)
(
RaD0 Pr

)1/2
(4)
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T̃ =
T − T∞
Tw − T∞

, P̃ =
P(

αµ/D0
2
) (

RaD0 Pr
)1/2

(5)

ω̃0 =
ω0(

2α/D0
2
) (

RaD0 Pr
)1/2

(6)

where the large cylinder diameter (D0) is selected as the characteristic length, Pr = ν/α is the Prandtl number and the
Rayleigh number is defined in terms of the large cylinder diameter as:

RaD0 =
gβ (Tw − T∞) D0

3

αν
(7)

Substituting Equations 4 to 7 into Equations 1 to 3 yields the dimensionless form of the continuity, momentum
and energy equations respectively:

div Ũ = 0 (8)

(Ra
Pr

)1/2 DŨ
Dt̃

= −∇̃P̃ + ∇̃2 Ũ +

(Ra
Pr

)1/2

T̃ k̂ (9)

(RaPr)
1/2

DT̃
Dt̃

= +∇̃2 T̃ (10)

where Ũ = [ũ, ṽ, w̃] is the dimensionless velocity field and k̂ = [0 1 0] is a unit vector indicating the directions
in which gravity acts. All geometric dimensions (cylinder diameters, cylinder-to-cylinder spacing, upstream and
downstream lengths) of the computational domain shown in Fig. 3, were also made dimensionless by dividing through
by the length scale D0:

D̃0 =
D0

D0
= 1, S̃ 0 =

S 0

D0
, H̃d, H̃u =

Hd,Hu

D0
(11)

The computational domain boundary conditions are indicated in Fig. 3. For all the cylinder surfaces, the boundary
conditions are specified as zero slip, zero penetration, constant and uniform surface temperature (T̃w = 1) and the large
cylinder surfaces have an angular velocity of ω̃0. For the inlet of the computational domain, the boundary conditions
are specified as P̃ = 0, T̃∞ = 0 and ũ = ∂ṽ/∂ỹ = 0. For the exit of the computational domain, the boundary conditions
are specified as ∂ (ũ, ṽ) /∂ỹ = 0, P̃ = 0 and ∂T̃/∂ỹ = 0. For the upstream section (0 ≤ ỹ ≤ H̃u) of the computational
domain, the boundary conditions are specified as symmetry planes or free slip and no penetration (ũ = ∂(ṽ, T̃ )/∂x̃ = 0).

For the downstream section (H̃u ≤ ỹ ≤ H̃u + D̃0 + H̃d) of the computational domain, two boundary conditions are
specified: symmetry plane or free slip and no penetration (ũ = ∂(ṽ, T̃ )/∂x̃ = 0) at the left side of the flow region and;
zero stress (∂P̃/∂x̃ and ∂ũ/∂x̃ = ∂(ṽ, T̃ )/∂x̃ = 0) on the right side of the flow region. By specifying ∂ũ/∂x̃ on the right
side of the flow region, fluid is allowed to flow horizontally into the computational domain. This entrainment effect
nullifies the unrealistic vertical acceleration or chimney effect that would have been generated had we specified zero
slip on this side.

The cylinder-to-cylinder spacing and the small cylinder diameter is varied and thus we are interested in the ge-
ometric configuration that maximizes the overall heat transfer between the cylinders and the surrounding fluid. The
dimensionless quantity used to evaluate this configuration is the dimensionless heat transfer density rate. The heat
transfer density rate is q

′′′

= q
′

/2D0(D0 + S 0), where q
′

is the sum of the total heat transfer rate integrated over the
surface of the cylinders:

q
′

=

di∑
i=1

D0

2

∫ 2π

0
k(∇T )sndθ +

d j∑
i=1

D1

a

∫ 2π

0
k(∇T )sndθ (12)
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where di is the number of large diameter cylinders, d j is the number of small diameter cylinders, a = 2 or a = 4 for
a complete and half cylinder respectively, and the subscript sn denotes that gradient of T is taken with respects to the
normal direction to the cylinder surface. The corresponding dimensionless heat transfer density rate is:

q̃ =
q
′

2D0 (D0 + S 0) k (Tw + T∞)
(13)

3. Numerical Methods

Almost all CFD packages or codes are designed with the goal in mind that the CFD package will be used once
off for a given engineering problem with maybe a handful of variations in either the geometry or fluid properties
being simulated. For an optimisation type problem this “one-by-one set up and solution” method can become very
cumbersome as the number of simulations required to be set up and solved becomes exponentially greater with an
increased number of design variables. A more efficient method is sought and is presented in this section.

Equations 8 to 10 were solved using a finite volume package (OpenFoam [26]), with hexahedron elements. The
velocity–pressure coupled equations were solved using the Pressure-Implicit with Splitting of Operators (PISO) pro-
cedure, proposed by Issa [18].

The solution routine of solving the governing equations (8 to 10) with OpenFoam, for each geometric configu-
ration, was automated (as shown in Fig. 4) through the use of a programming script [33] and a few numerical tools
[16, 19]. This automated routine was then coupled to a mathematical optimisation algorithm [19], as shown in Fig. 5,
in order to efficiently optimise a design type problem with multiple design variables, subject to global constraints, for
a global objective. The optimisation algorithm used in this paper is based on the original algorithm implemented by
Kraft [21] which utilises the slightly modified Non-Negative Least Squares (NNLS) algorithm of Lawson [22].

Thus the constrained optimisation problem (derived from Fig. 3 and Eq. 13) can formally be written as:

minimise:
w.r.t. x

f (x) = −q̃ (x) , x = [x1, x2]T ∈ Rn

such that:

g2 (x) = −

[( x1 + D0

2

)2

+

(D0 − x2

2

)2]0.5

≤ 0

= −
[
(x1 + D0)2 + (D0 − x2)2

]0.5
≤ 0

(14)

where x1 = S̃ 0 and x2 = D̃1. The inequality constraint g2 (x) is added to Eq. 14 to ensure that the large diameter
cylinders and small diameter cylinders do not overlap.

The governing equations (8 to 10) were discretised using the Finite Volume Method (FVM) and all internal variable
fields were initialised as being 0 (i.e. U0 = 0, P0 = 0 and T 0 = 0). OpenFoam [27] solves the steady-state Eqs. (8
to 10) by introducing a non-zero time derivative (dummy time variable). Thus the steady-state problem is viewed as
a transient problem that reaches steady-state at a certain time. The convergence criteria, used to solve the governing
equations, at each time step is set based on the residual of each of the variable fields:

Rk
t (U) ≤ 10−4, Rk

t (P) ≤ 10−4, Rk
t (T ) ≤ 10−6 (15)

and the convergence criteria to terminate the simulation is evaluated based on the initial residual of each of the variable
fields, i.e.:

R0
t (U) ≤ 10−4, R0

t (P) ≤ 10−4, R0
t (T ) ≤ 10−6 (16)

In which k is the iteration counter and t is the time step.
The convergence criteria used to terminate the optimisation algorithm was:

‖xi − xi−1‖ ≤ 10−3 (17)
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Table 1: Multi scale mesh refinement summary: number of elements per unit length at each Rayleigh number
(Pr = 0.72).

Ra Elements/L

102 32
103 48
104 80

Table 2: Multi scale mesh refinement study for Ra = 103 (H̃u = 0.5, H̃d = 3.5, S̃ 0 = 0.5 and Pr = 0.72).

Elements/L q̃
q̃i − q̃i+1

q̃i

12 6.604 -
24 6.618 0.00219
48 6.631 0.00199
96 6.634 0.00041

where ‖ · ‖ is the Euclidean norm.
In order to obtain an accurate heat flux results (Eq. 12), from any of the simulations, the computational domain

needs to be considered, namely the upstream and downstream lengths as well as the number of elements used to
discretise the computational domain. The mesh design received special attention and was tested extensively in the
range 102 ≤ Ra ≤ 104, for ω̃0 = 0 and Pr = 0.72, with the grid varying from one geometric configuration to the next.
A structured mesh, consisted of hexahedron elements was used. The initial guess for the mesh size in the x̃ direction
was chosen based on the boundary layer thickness scale δT ∼ D0Ra(−1/4).

Table 1 shows the mesh refinement summary for the number of elements for the multi scale configuration (101 ≤

Ra ≤ 104). For example the mesh refinement study shows, for Ra = 102, the heat transfer density rate is insensitive
(varies by less than 1%) to further mesh refinement when 32 elements per unit length were used. Table 2 shows one
example of how mesh independence was achieved for Ra = 103, S 0 = 0.5, D1 = 0.2 and Pr = 0.72.

Table 3 shows a summary of the domain size study for the upstream and downstream lengths for Pr = 0.72. It was
found that the heat transfer density rate is insensitive when the downstream length H̃d scales linearly as a function
of the cylinder-to-cylinder spacing minus the small cylinder diameter. For example the domain size study shows for
Ra = 103, S̃ 0 = 0.5, and D̃1 = 0.2 that the heat transfer density rate is insensitive to further doubling of upstream and
downstream lengths when H̃u = 0.6 and H̃d = −5.11

(
S̃ 0 − D̃1

)
+ 4.95 = 3.42.

4. Numerical Results

4.1. Stationary Cylinders

As discussed above in section 3, an optimisation routine was used to determine the optimal geometric configuration
for the maximum heat transfer density rate. The accuracy of results obtained from the optimisation routine need to be
considered.

Table 3: Multi scale domain size summary: upstream and downstream lengths at each Rayleigh number (Pr = 0.72).

Ra H̃u H̃d =

102 0.9 −4.57
(
S̃ 0 − D̃1

)
+ 7.50

103 0.6 −5.11
(
S̃ 0 − D̃1

)
+ 4.95

104 0.4 −5.31
(
S̃ 0 − D̃1

)
+ 3.15
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Figure 6 shows a contour plot for the heat transfer density rate for a range of cylinder-to-cylinder spacings (S̃ 0)
and small cylinder diameters (D̃1) for Ra = 103, Pr = 0.72 and ω̃0 = 0. The optimum configuration obtained from
the optimisation routine is also shown in Fig. 6 (as the “Global optimum”) and it can be seen that this result is very
feasible and compares well with the data collected. It is also worth mentioning that the heat transfer density rate
(objective function) is very well behaved, in the sense that it can be considered to be smooth, continuous and have
only one optimum.

The feasibility of the result obtained from the optimisation routine is again shown in Fig. 7. This figure shows
that cylinder-to-cylinder spacing can be optimized, for maximum heat transfer density rate, for each small cylinder
diameter. It can further be seen, from Fig. 7, that there exists a global optimum heat transfer density rate when S̃ 0
and D̃1 have a certain value, when there is no cylinder rotation. The global optimum shown in Fig. 7, for Ra = 103,
Pr = 0.72 and ω̃0 = 0, is found when S̃ 0,opt = 0.557 and D̃1,opt = 0.191. There is a 14.8% and 4.5% difference when
comparing this optimal cylinder-to-cylinder spacing and small cylinder diameter, respectively, with that reported by
Bello-Ochende and Bejan [12] for a multi scale configuration of cylinders with two length scales.

The optimal cylinder-to-cylinder spacings and corresponding maximum heat transfer density rates for 102 ≤ Ra ≤
104, Pr = 0.72 and ω̃0 = 0 are summarized in Fig. 8. The optimal cylinder-to-cylinder spacings (from Fig. 8) can be
correlated by the power law, within 0.27%:

S̃ 0,opt = 2.113Ra(−0.205) (18)

This correlation compares reasonably well with the power law correlation proposed by Bello-Ochende and Bejan [12]:
S̃ 0,opt = 2.218Ra(−0.22). For 103 ≤ Ra ≤ 105, there is a 5.67% difference (Ra = 103), 9.38% difference (Ra = 104) and
13.24% difference (Ra = 105).

The corresponding maximum heat transfer density rates, reported in Fig. 8, can be correlated by the power law,
within 5.9%:

q̃m = 0.698Ra0.321 (19)

This correlation also compares well with the power law correlation proposed by Bello-Ochende and Bejan [12]:
q̃m = 0.85Ra0.30. For 103 ≤ Ra ≤ 105, there is a 5.06% difference (Ra = 103), 0.36% difference (Ra = 104) and 4.58%
difference (Ra = 105).

4.2. Rotating Cylinders
The optimal cylinder-to-cylinder spacings and optimal small cylinder diameters for 102 ≤ Ra ≤ 104, Pr = 0.72

and 0 ≤ ω̃0 ≤ 10 are summarized in Fig. 9. This figure shows that any cylinder rotation in the range 0 ≤ ω̃0 ≤ 1 has
very little improvement on the the optimal geometric configuration for a multi scale structure. There is a maximum
decrease in the optimal cylinder-to-cylinder spacing of 3.1%, 4.7% and 0% for the Ra numbers 102, 103 and 104

respectively, when the cylinder rotation speed is increased from stationary to ω̃0 = 1. It is also shown that, for a
cylinder rotation speed of ω̃0 = 10, there is a decrease in the optimal cylinder-to-cylinder spacing of 10.74% and
24.57% for the Ra numbers 102 and 103 respectively. When the Rayleigh number is equal to 104 and the cylinder
rotational speed is greater than 1, the results become non-physical because the laminar model of the flow collapses
due to a wake and consequent turbulence, which dominates the flow behind the rotating cylinders.

The optimal small cylinder diameters, shown in Fig. 9, is 0.2 for all cylinder rotation speeds for Ra = 104 and
0.19 for all cylinder rotation speeds for Ra = 103 (with the exception of ω̃0 = 10). This result compares well with the
result proposed by Bello-Ochende and Bejan [12]: D̃1,opt = 0.2. For the Rayleigh number Ra = 102 the optimal small
cylinder diameter is 0.1 for all cylinder rotation speeds, this deviation from 0.2 can be attributed to the larger thermal
boundary layer around the large cylinder (large slenderness ratio) at this Rayleigh number.

The corresponding maximum heat transfer density rates for 102 ≤ Ra ≤ 104, Pr = 0.72 and 0 ≤ ω̃0 ≤ 10 are
summarized in Fig. 10. From Fig. 10 it can be seen that any cylinder rotation in the range 0 ≤ ω̃0 ≤ 1 has almost no
improvement on the the maximum heat transfer density rate for a multi scale structure. There is a maximum increase in
heat transfer density rate of 1.2%, 1.5% and 1.2% for the Ra numbers 102, 103 and 104 respectively, when the cylinder
rotation speed is increased from stationary to ω̃0 = 1. It is interesting to note that, at a cylinder rotation speed of
ω̃0 = 10, the maximum heat transfer density rate is suppressed for all Rayleigh numbers in the range 102 ≤ Ra ≤ 104.

7



Figure 11 shows a comparison between the multi scale and single scale [29] configurations for the optimal
cylinder-to-cylinder spacing. The multi scale configuration has the effect of increases the optimal cylinder-to-cylinder
when adding a smaller diameter cylinder in the mouth of the channel. This smaller diameter cylinder also has the ef-
fect of restricting the flow through the mouth of the large diameter cylinders and thus cylinder rotation has a minimal
effect on the cylinder-to-cylinder spacing. The maximum cylinder packing, from a physical point of view, is obtained
using a single scale configuration with rotation.

Figure 12 shows a comparison between the multi scale and single scale [29] configurations for the maximum
heat transfer density rate. Although the effect of cylinder rotation (on a single scale configuration) is an increase in
the maximum heat transfer density rate, a multi scale configuration (without any cylinder rotation) achieves a higher
maximum heat transfer density rate. There is however an exception at very low Rayleigh numbers (Ra = 101 and
Ra = 102) where a high cylinder rotation speed increases the maximum heat transfer density rate greater than that of
a multi scale configuration.

Figure 13 shows the effect of cylinder rotational speed on the thermal boundary layer for a multi scale structure
of rotating cylinders shown in Fig. 1 for Ra = 103 and Pr = 0.72. Figure 13a shows, for ω̃0 = 0, that the thermal
boundary layer between two consecutive large diameter cylinders, at the optimal geometric configuration, touches just
past the top of the cylinders. Figure 13b shows, for ω̃0 = 1, that the thermal boundary layer between two consecutive
large diameter cylinders (where the cylinder rotation aids the flow direction) is extended and touches around one large
cylinder diameter past the top of the cylinders. However, unlike the single scale configuration (cf. [29, Fig. 8.]), the
thermal boundary layer between two consecutive large diameter cylinders (where the cylinder rotation opposes the
flow direction) is more strongly effected and touches near the centreline of the large diameter cylinders.

In summary, the optimal packing for the maximum heat transfer density rate for a given Rayleigh number and
cylinder rotation speed (for single scale and multi scale configuration) can be presented in the following equality
equation:

if 101 ≤ Ra < 102 :
dof = 1
ω̃0 = 10

S̃ 0,opt = −0.362 + 1.69Ra−0.25(
cf. Eq. 21, Ref. [29]

)
q̃m = 0.989 + 0.71Ra0.29(

cf. Eq. 22, Ref. [29]
)

if 102 < Ra ≤ 104 :
dof = 2
ω̃0 = 0

S̃ 0,opt = 2.113Ra(−0.205)(
cf. Eq. 18

)
q̃m = 0.698Ra0.321(

cf. Eq. 19
)

(20)

where dof is the number of degrees of freedom for the flow configuration.

5. Conclusions

For a multi scale configuration, the results show that the effect of increasing the rotation of the large diameter
cylinders has little to no impact on the heat transfer density rate with the exception of a high rotation speed which
serves to suppress the heat transfer density rate. Because the thermal boundary layer between two consecutive large
diameter cylinders (where the cylinder rotation opposes the flow direction) is so strongly effected it causes a reduction
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in the heat transfer density rate which effectively cancels out the increase in heat transfer density rate created by the
cylinder rotation that aids the flow direction (cf. Fig. 13).

For the maximum heat transfer density rate, the optimal configuration of cylinders was found to be as follows:

• for a Rayleigh number range of 101 ≤ Ra ≤ 102, it was found to be beneficial if rotation was added to the
cylinders and only a single scale structure was used; and

• for a Rayleigh number range of 102 < Ra ≤ 104, the optimal configuration was one with no cylinder rotation
in a multi scale structure. Even though a rotation speed of ω̃0 = 1 augmented the heat transfer density rate
slightly, it was almost negligible with a maximum increase of around 1.2%, and a higher rotation speed served
to suppress the heat transfer density rate.

The optimisation algorithm used in this paper [19] required a lot of objective function evaluations in order to
determine the optimal geometric structure. Each objective function evaluation is in effect the solution for one CFD
simulation for the given design variable values. A higher number of objective function evaluation leads to more
time spent solving for the optimal structure, with the majority of the time being spent solving the CFD simulation. It
would therefore be beneficial to research another optimisation algorithm or even develop a new algorithm, specifically
tailored for CFD applications, that requires fewer objective function evaluation.

Further research may include a three-dimensional numerical model or to consider the effect of vibration or oscil-
lation of the cylinders on the heat transfer density rate.
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Figure Captions:
Fig. 1. Single row of counter-rotating cylinders in natural convection.
Fig. 2. Illustration of the thermal boundary layer around a stationary cylinder.
Fig. 2a. Single scale configuration.
Fig. 2b. Multi scale configuration.
Fig. 3. The computational domain and boundary conditions for a set of counter-rotating cylinders.
Fig. 4. Parametrisation routine for OpenFoam.
Fig. 5. Optimisation routine for OpenFoam.
Fig. 6. Contour plot of the heat transfer density rates for a row of rotating cylinders shown in Fig. 1 for Ra = 103 and
Pr = 0.71.
Fig. 7. The maximum heat transfer density rates for a row of rotating cylinders shown in Fig. 1 for Ra = 103 and
Pr = 0.71.
Fig. 8. The optimal cylinder-to-cylinder spacings and corresponding heat transfer density rates for a row of cylinders
shown in Fig. 1 for Pr = 0.72, ω̃0 = 0 and 102 ≤ Ra ≤ 104.
Fig. 9. The optimal cylinder-to-cylinder spacings and small cylinder diameter for a row of rotating cylinders shown
in Fig. 1 for Pr = 0.72.
Fig. 10. The maximum heat transfer density rates for a row of rotating cylinders shown in Fig. 1 for Pr = 0.72.
Fig. 11. The effect of increasing of cylinder rotational speed and the effect of increasing the complexity on the optimal
cylinder-to-cylinder spacing for Pr = 0.72.
Fig. 12. The effect of increasing of cylinder rotational speed and the effect of increasing the complexity on the maxi-
mum heat transfer density rate for Pr = 0.72.
Fig. 13. The effect of cylinder rotational speed on the thermal boundary layer for a multi scale structure of rotating
cylinders shown in Fig. 1.
Fig. 13a. ω̃0 = 0
Fig. 13b. ω̃0 = 1
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Figure 3
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