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SUMMARY
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An improved model for reducing the cost of long-term monitoring in Clean Development Mechanism

(CDM) lighting retrofit projects is proposed. Cost-effective longitudinal sampling designs use the

minimum number of meters required to report yearly savings at the 90% confidence and 10% relative

precision level for duration of the project (up to 10 years) as stipulated by the CDM. Improvements

to the existing model include a new non-linear Compact Fluorescent Lamp population decay model

based on the results of the Polish Efficient Lighting Project, and a cumulative sampling function

modified to weight samples exponentially by recency. An economic model altering the cost function

to a nett present value calculation is also incorporated.

The search space for such sampling models are investigated and found to be discontinuous and

stepped, requiring a heuristic for optimisation; in this case the Genetic Algorithm was used. As-

suming an exponential smoothing rate of 0.25, an inflation rate of 6.44%, and an interest rate of 10%,

results show that sampling should be more evenly distributed over the study duration than is currently

considered optimal, and that the proposed improvements in model accuracy increase expected project

costs in nett present value terms by approximately 20%. A sensitivity analysis reveals that the expec-

ted project cost is most sensitive to the reporting precision level, coefficient of variance, and reporting
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confidence level, and that large interaction effects between these factors exist.

The study provides a more realistic model for implementation in real-world projects, and demon-

strates the impact that various factors have on expected project cost. This will provide guidance for

engineers designing long-term sampling plans.
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OPSOMMING

VERBETERINGE AAN SKOON ONTWIKKELINGSMEGANISME LONGITUDINALE

MONSTERONTWERPE VIR BELIGTING-VERVANGINGSPROJEKTE

deur

Herman Carstens

Studieleier(s): Prof. Xiaohua Xia

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Elektriese Ingenieurswese)

Sleutelwoorde: Meting en verifiëring, Poolse energiedoeltreffendheidsbeligtingprojek,

spaarlamp, longitudinale monstering, Skoon Ontwikkelingsmeganisme,

retrofit, verrigtingsanalise, energiedoeltreffendheid, aanvraagsbestuur,

bevolkingsoorlewing, betroubaarheid

’n Verbeterde model vir die kosteminimering van langtermyn Skoonontwikkelingsmeganisme (SOM)

moniteringsprojekte word voorgestel. Koste-effektiewe longitudinale monsterontwerpe gebruik die

minimum aantal meters wat benodig word om die 90% vertrouensinterval met ’n 10% presiesheids-

vereiste te haal vir die duur van die projek, wat deur die SOM bepaal is om tot 10 jaar te wees. Ver-

beterings aan die bestaande model sluit ’n nuwe nie-linieêre spaarlamp bevolking-oorlewingsmodel in

wat op die Poolse energiedoeltreffendheids-beligtingsprojekdata gebasseer is, asook ’n kumulatiewe

monsterfunksie wat gewysig is om meer onlangse monsters eksponensieël gewigtiger te reken. ’n

Ekonomiese model wat die kostefunksie wysig om netto huidige waarde in ag te neem, word ook

ingesluit.

Die soekruimte vir sulke bemonsteringsprojekte word ondersoek en daar word gevind dat dit

diskontinu en trapsgewys is, wat die gebruik van ’n genetiese algoritme noodsaak. ’n Eksponensiële

vervaltempo van 0.25 word aanvaar, tesame met ’n inflasiekoers van 6.44% en ’n rentekoers van

10%. Resultate toon dat die monsters meer eweredig versprei behoort te word oor die duur van die

studie as wat tans as optimaal geag word, en dat die voorgestelde verbeteringe in die modelakkur-
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raatheid kostes met meer as 20% verhoog in huidige waarde terme. ’n Sensitiwiteitsanalise toon dat

die verwagte projekkoste sensitief is vir die verslagdoenings-presisheidsvereiste, die variasiekoëff-

isiënt, en die verslagdoenings-vertrouensvlak. Daar is ook noemenswaardige interaksie tussen hierdie

faktore.

Die studie verskaf ’n meer realistiese model vir gebruik in regte-wêreld projekte, en wys op die impak

wat oorwegings soos die ongelyke weging van monsters in verskillende jare, asook inflasie, kan hê op

die monsterverspreiding van langtermynprojekte. As sulks verskaf die studie riglyne aan ingenieurs

van langtermyn longitudinale monsterprojekte ontwerp.
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NOMENCLATURE

Symbols

A population difference equation matrix

B number of backup meters

E daily energy use

X̄ sample mean;

in this study a random variable in distribution

N(µi,σ
2
i /ni)

P cumulative relative precision

H average annual lamp operating hours

I last reporting year

L lamp rated lifetime

N lamp population size

Y percentage of lamps left at rated lifetime

Z Standard score of cumulative confidence

a meter purchasing cost per unit

b population difference equation vector

b meter installation cost per unit

c meter maintenance cost per unit per month

d Consumer price index (inflation rate)

h Step increment

n number of observations

n′ number of effective observations

p precision relative to the mean

r Minimum Attractive Rate of Return,

or investment interest rate

u control input

x population difference equation parameter vector

x̄ sample mean

z standard score of normal distribution

Γ true cumulative standard deviation on energy use
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Φ surviving proportion of lamp population

χ̄ cumulative sample mean

α population decay rated lifetime parameter

β population decay slope parameter

γ population decay initial value parameter

φ PELP study data

ε exponential decay factor

η project inception cost

θ true cumulative mean energy use

λλλ optimisation decision variable

µ true mean energy use

in a given year

ρ lag 1 autocorrelation coefficient

σ true standard deviation on energy use in a given year

ω project operational cost

Subscripts

adjusted finite population adjustment

B baseline

J Number of groups

j group counter

k year counter

t time instant in years

unadjusted not adjusted for finite populations

0 year 0
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LIST OF ABBREVIATIONS

ASHRAE American society for heating, refrigeration and air-conditioning engineers

AMS Approved methodology for small scale

AR Autoregressive

CDM Clean development mechanism

CFL Compact fluorescent lamp

CL Confidence limit

CPI Consumer price inflation

CPUC California public utilities commission

CV Coefficient of variance

CVRMSE Coefficient of variance on the root mean square error

DSM Demand side management

EE Energy efficiency

EUL Effective useful life

FEMP Federal energy management program

i.i.d. independently and identically distributed

IPMVP International performance measurement and verification protocol

GA Genetic algorithm

M&V Measurement and verification

MCMC Markov chain Monte-Carlo

MSE Mean squared error

NaN Not a number

NMBE Normalised mean bias error

NPV Nett present value

OLS Ordinary least squares

PELP Polish efficient lighting project

PT Performance Tracking

R South African rand

SA Survival analysis

SANS South African national standard

SI Sensitivity index
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TolCon Tolerance on constraints

TolFun Tolerance on function values

UNFCCC United Nations framework convention for climate change

V Volts

W Watts
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Problem context

South Africa’s national electricity utility, Eskom, oversees more than 700 Energy Efficiency (EE) and

Demand Side Management (DSM) projects, and also supplies more than 95% of the electricity used

in the country - which is over 45% of that used on the African continent [1]. In order to monitor

project sustainability, the savings realised by these projects need to be measured and verified by an

independent accredited Measurement and Verification (M&V) body for a number of years [2]. This

is called performance tracking (PT).

International guidelines suggest that M&V costs should not exceed 10% of annual savings [3]. How-

ever, the time horizons on these projects span many years; for these projects to be eligible under the

United Nations Framework Convention for Climate Change (UNFCCC) Clean Development Mech-

anism (CDM), the performance of lighting projects should be tracked for up to 10 years, whilst other

projects may be tracked for up to 21 years [4]. Certain stringent statistical requirements on measured

data also apply: for projects to be eligible for recognition under CDM guidelines, measured data

should conform to a statistical confidence level of 90%, and a relative precision around the mean of

10%, known as the 90/10 criterion. Although other leading guidelines recommend an 80/20 level [5],

[6], [7], the 90/10 criterion will be used for the purposes of this study. Due to the long (but finite)

planning horizons, non-optimal PT may therefore affect total monetary savings or may report savings

with inadequate confidence and precision. This could affect project viability or eligibility detriment-

ally. Savings may also be reported with confidence and precision values exceeding requirements,
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Chapter 1 Introduction

which increases monitoring costs unnecessarily.

M&V Engineers require two kinds of data to calculate energy usage in such projects: population

survival data, and aggregated averaged daily energy use data [8]. Energy usage data are obtained from

electricity meters installed in a statistically representative number of households, whilst population

survival data are collected through surveys. For this study, population survival data are assumed to

be known and thus no sampling design will be devised for this component of energy use, although a

new population decay model will be proposed.

Both the International Performance Measurement and Verification Protocol and American Society

for Heating, Refrigeration and Air Conditioning Engineers’ (ASHRAE) Guideline make a useful

distinction between the different kinds of uncertainty encountered during an M&V study. Measure-

ment uncertainty occurs due to equipment inaccuracy: incorrect selection, calibration, installation

or operation. Modelling uncertainty arises from inappropriate mathematical models being used: not

considering all covariates, for example. Sampling uncertainty pertains to quantifiable uncertainties

arising from not measuring the whole population. This study will focus on managing the latter kind

of uncertainty in the context of M&V project cost.

1.1.2 Research opportunity

Research grounding the theory of M&V is underway [9], but there is a need to establish best practice

by the application of statistics to the specific challenges in energy monitoring. Guidelines specify

statistical sampling techniques, but do not consider the cost implications of sampling and how to

minimise this.

Lighting projects were selected because they are both common - establishing a need for monitoring

theory - and relatively simple to model through simple statistics and binomial working/failed states

- providing an opportunity for a starting point from which more complex models may be devised.

Although some work has been done on optimal monitoring, the current models are not practical yet,

and present an opportunity for improvement.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

2

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1 Introduction

1.2 RESEARCH OBJECTIVE AND QUESTIONS

This study focuses on monitoring plans for residential lighting retrofit projects where old incandes-

cent lamps are replaced with energy saving Compact Fluorescent Lamps (CFLs), or where halogen

downlighter lamps are replaced with Light Emitting Diode (LED) lamps.

The objective is to devise and implement improvements to current CFL retrofit monitoring models as

a step towards a mature model accurate enough for cost-effective practical implementation.

Research questions may be formulated as follows:

• Could a more accurate and versatile population survival model for CFL populations be devised?

• How would using different population survival models affect the optimal metering plan?

• What is the nature of the solution space for such optimal metering plans?

• How would nett present value considerations affect optimal metering plans?

• How would exponential decay windowing functions affect metering?

1.3 OVERVIEW OF STUDY

The dissertation is organised in the following manner. Chapter 2 provides an overview of the literature

relevant to this study. Chapter 3 describes longitudinal tracking models, and develops a mathematical

model for population decay. Thereafter this model and other improvements are integrated into an

existing sampling model. Chapter 4 applies this new model to an existing case study and presents

results, which are discussed in Chapter 5. Chapter 6 concludes the dissertation, and an appendix

provides the computer programs used for calculation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3
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CHAPTER 2

LITERATURE REVIEW

2.1 CHAPTER OVERVIEW

This chapter surveys performance tracking literature for approaches to energy monitoring, both in

an academic context as well as for technical standards used in industry. Population decay models

are also discussed, and solutions from other disciplines are considered. Finally, logistic population

models are treated in more detail.

2.2 PERFORMANCE TRACKING IN LITERATURE

The theory of performance tracking is essentially the theory of reporting uncertainty, which is applied

statistics within the constraints of the M&V context. To date, existing guidelines provide sound, but

sub-optimal sampling frameworks for M&V studies. That is, no guideline specifies a cost-effective

monitoring plan.

Very little literature pertaining to this specific problem exists. If M&V protocols do specify statist-

ical bounds and discuss sampling, optimality is not mentioned. For example, the International Per-

formance Measurement and Verification Protocol (IPMVP) [3] which is the internationally accepted

guideline on best practice, does advise that the 90/10 criterion be used, but only advises that standard

simple random and stratified sampling formulae be used. The Federal Energy Management Program

(FEMP) guideline [10] uses the 80/20 and 90/10 levels in examples. It also advises that 10% more

meters should be installed than is strictly necessary, in order to account for meter attrition. These

formulae are applicable to single-sample projects, and do not consider repeated sampling. The South

African National Standard (SANS) 50010: Measurement and verification of energy savings [11] does
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Chapter 2 Literature review

not place statistical requirements on M&V measurements, but only states that "a more rigorous study

should not invalidate the result", implying that reported savings should be conservative. The Aus-

tralasian guide follows the IPMVP and advises that measurement uncertainty should be balanced

with cost, considering the point of diminishing returns as desirable [12]. It also follows the IPMVP’s

recommendation that M&V cost should not exceed 10% of project cost. Concerning uncertainty, it

states that "quantified uncertainty should be expressed in a statistically meaningful way, by declaring

both accuracy and confidence level".

The ASHRAE Guideline (14-2002) on Measurement of Energy and Demand Savings [6] is a com-

prehensive technical resource. Statistical bounds are project-dependent with confidence levels of

68%, 80%, and 90% considered standard, in conjunction with precision levels of 10%, 20%, or 50%.

Most methods described in the guideline rely on covariates such as weather data affecting the thermal

systems. Nevertheless, the fractional savings approach [13] advocated by ASHRAE represents an

advanced and industry-specific method for evaluating PT uncertainty. Fractional savings are defined

as the ratio of uncertainty on reported savings to reported savings. This approach has intuitive appeal

but expresses the same quantity as the relative precision (10% in the 90/10 case). However, it does so

by taking the number of monitoring points pre- and post-retrofit into account, as well as considering

the ratio of energy savings to baseline energy use in the calculation. As such, the goodness of fit of an

energy model may be judged relative to these criteria. The delineation and treatment of uncorrelated

and autocorrelated data is also useful. It is shown that utility data representing monthly averages are

not strongly correlated, whereas hourly or daily data may be so, especially with respect to temperature

variation for thermal systems [14]. This is not as significant a consideration for lighting projects, but

will become so when the methods of this study are applied to other EE and DSM projects, discussed

in more detail below. The ASHRAE approach could not be followed for the problem at hand since

this approach considers a single facility, and not the population of facilities as is the case for resid-

ential mass rollout, where a large number of lamps are retrofitted in multiple households over a large

geographic area. Furthermore, the standard confidence/precision approach has been followed in order

to conform to CDM requirements.

The State of California Public Utilities Commission (CPUC) M&V protocol [15] also follows a tech-

nical approach. PT projects are divided into three categories: Effective Useful Life (EUL), retention,

and degradation studies, each with various levels of rigour. Degradation refers to the decrease in per-

formance of a system due to technical or behavioural factors. For the purposes of this study it is as-

sumed that degradation is negligible. Although CFL lumen output decreases over time, the electronic

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5
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Chapter 2 Literature review

ballast ensures that the energy consumption (current drawn) does not increase [16]. EUL studies at-

tempt to find the median life of an EE measure (CFL), and retention studies consider the percentage

of measures retained in operable condition. Rigour levels include 90/30 and 90/10, but crucially also

include statistical power considerations. This protocol also recognises the value of Survival Analysis

(SA) for M&V studies, which will be discussed below. Since the protocol relies on survival analysis

principles, it also requires the monitoring of a control group. This is a collection of similar residences

or facilities where no intervention was implemented. The treatment group is compared to the control

group, which is similar to doing the baseline measurement and post-implementation measurement

simultaneously.

The UNFCCC AMS0046 Guideline [17] for monitoring EE lamp retrofit projects does provide a

statistical sampling framework, but it has been observed that this framework is not practical, and

adoption in industry has thus been poor [18]. Moreover, the framework aims at a sound sampling

and recording protocol, rather than a treatment of the statistical computation methods. Other AMS

guidelines also discuss sampling frameworks for M&V projects. AMS II.C (Demand-side energy

efficiency activities for specific technologies) [19] discusses energy efficiency equipments such as

lamps, ballasts, pumps, motors, and fans saving less than 60 GWh. It makes provision for constant-

load equipment such as lamps, and recommends that a sample be taken conforming to the 90/10

criterion, at least for 90 days to establish a baseline. It also makes provision for energy use being

monitored instead of operating hours for constant-load devices (par. 31). AMS II.J (Small Scale

methodology: Demand-side activities for efficient lighting technologies) [8], specifically applicable

to ballasted CFL’s replacing incandescent lamps. The methodology specifies that two approaches

may be used: the first is a "deemed-savings" approach where it is assumed that the lamps burn for

3.5 hours per day, and no measurements are done. For the second approach, monitoring is required:

both for the operating hours and retention rates (lamps left after a certain period of time).

Recently, more focused studies of the problem have been conducted, specifically regarding the re-

placement of incandescent lamps with Compact Fluorescent Lamps (CFLs). The most notable per-

tains to two-sample meter cost minimisation models, where a CFL and a Light Emitting Diode (LED)

group are combined in a stratified random sample weighted according to population sizes and solved

using frequentist statistics [20]. This model was then applied to a case of a single population over

multiple years, where population decay is also considered [21]. It was assumed that samples are

independently and identically distributed (i.i.d.) because meters are placed in different households.

However, this tacitly assumes that samples from different years, taken by the same meter in the same

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

6
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household, are independent. Such time-series data are usually autocorrelated and not independent

unless it is a Gaussian ‘white noise’ process [22]. It has been shown that autocorrelation does exist in

hourly and daily energy use data [14], but if observations have constant variance and a lag 1 autocor-

relation of ρ is assumed (as has been in literature [13]), then the number of effective observations n′

may be modified to [23]:

n′ = n
1−ρ

ρ
. (2.1)

However, given that the nature of the autocorrelation is unknown during the modelling phase, a simple

model for i.i.d. measurements may be posited as a starting point, with a recommendation that fu-

ture work investigate the possibility of autocorrelation and employ the concomitant statistical tools.

Therefore the two aforementioned studies will be used as a basis for this contribution, and expanded

to incorporate more advanced population decay, weighting, and economic considerations.

2.3 POPULATION MODELS IN LITERATURE

Various approaches to lamp survival modelling may be followed. First, notable methods that were

not adopted will be reviewed briefly, after which the approach that has been decided upon will be

discussed.

2.3.1 Miscellaneous population survival approaches

Time Series Forecasting is a set of mathematical techniques used to predict data such as future sales

or stock prices given the past sales history or stock market fluctuations [24]. Markov chains, neural

networks and general statistics also find applications within Time Series Forecasting, but will be

discussed later. Time Series Forecasting relies on past data, and is especially useful for considering

periodicity and seasonality. Although the method decided upon to predict lamp population decay

could be viewed as a time series forecast, the techniques employed in the financial sector are not

completely suitable to the problem at hand, as it occurs on the logistic scale (0;1).

The lifetime of CFL’s are thought to be strongly correlated to the number of ‘cold’ starts experienced,

i.e. how many times they have been switched on and off [25]. However, results are not conclusive

[26]. This finds an analogy in metal fatigue, where the fatigue life of a component can be predicted

with accuracy, given a known fatigue curve, number of cycles and stress. Thorough treatment of the

topic and methods used to predict fatigue do exist [27], but show that fatigue analysis is concerned
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with the relationship between the stress intensity and the number of cycles to failure. Because there

is no parameter analogous to the stress intensity for CFL life, the methods of fatigue analysis are not

relevant to M&V performance tracking.

Markov analysis, also called state-space analysis, is an elegant way to model how certain stochastic

systems evolve over time. For instance, consider a workshop where a heterogeneous population of

machines could be classified as new, standard, old or failed. When taking a Markov chain approach,

each member of the population has a certain probability of transitioning to the next state given the

current state. These transition probabilities are considered to be stationary as they are independent

of previous states or events, and do not change with time. Eigenvalue techniques then provide equi-

librium parameters. Although useful for repair-and-replace scenarios, it assumes a constant hazard

rate. The hazard rate is also called the failure rate, but applies to non-repairable items and represents

the number of failures expected in a specific time. Since ageing is an important factor for CFL’s,

the constant hazard assumption is invalid. Theoretically, the constant hazard assumption need not

limit Survival Analysis using Markov chains [28], [29] as various non-parametric or semi-parametric

likelihood approaches may be followed [28], with applications also discussed in literature [29]. A

Bayesian approach to the problem may be taken by implementing a Markov Chain Monte Carlo

(MCMC) algorithm, if data is available by which a posterior probability may be elicited [30]. Al-

though these approaches warrant further investigation and may solve the problem at hand, they do so

inelegantly because MCMC, for example, doesn’t solve analytically but in a brute-force approximate

way. Simpler methods may therefore be employed.

Clinical trial design and SA may also be used to model lamp population decay, as both human and

lamp populations follow the same sigmoid decay curves. Like performance tracking for M&V pro-

jects, clinical trials track subjects over time, until they experience an ‘event’, whether it be cure, death,

or some biological parameter reaching a predetermined ‘endpoint’. These techniques have been im-

plemented in many statistical packages [31]. Studies determining the smallest number of subjects

necessary for a statistically significant result have been designed [32], and numerous resources are

available for the engineer seeking to implement these principles ([33], [34], [35], [36], and [37]). An

engineering experiment design approach has also been developed [38] and considers subject dropout

(also called censoring). However, certain simplifying assumptions are made that are untenable for

the current analysis. Both aforementioned texts emphasise the statistical power of the test (1−β , the

complement of the Type II error, which is the probability of incorrectly failing to reject the null hy-

pothesis); an important metric in such experiments which is not given much consideration in current
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M&V literature. This is because power considerations are usually important when two-sample hypo-

thesis testing is done. It should also be noted that as with the IPVMP approach, with the clinical trial

approach the variance of the population still needs to be estimated beforehand in order to continue

with calculations.

SA uses parametric and non-parametric statistics to describe the data and draw conclusions. How-

ever, Cox’s seminal contribution [39] increased the scope of SA greatly by adding semi-parametric

regression techniques by assuming proportional hazards, where the underlying shape of a survival

function need not be known in order to analyse the data. Cox Regression has become synonymous

with Survival Analysis, and is mentioned because for this study, it is not the SA technique of in-

terest. The underlying shape of the distribution is of interest, and thus parametric techniques should

be employed.

Since the current investigation focuses on spatial sampling (meters per sampling point) and not longit-

udinal sampling, SA is not immediately applicable to the question at hand. Also, many SA techniques

can only be applied "ex-post", that is to say, after the study is completed. This is not compatible with

M&V practice which requires reporting accuracy during the study, but such techniques may be incor-

porated in future, and these tools should feature more prominently in M&V literature although it falls

outside the scope of the present study.

2.3.2 Basic population models

Let Φt express the proportion of functioning lamps surviving at time t, where N0 denotes the initial

population size and Nt the population size at time t:

Φt =
Nt

N0
. (2.2)

Various models for population decay have been proposed [40]. By way of introduction, the simplest

model is that of exponential decay:

Φt = e−t (2.3)

Such a model is not realistic however, as it implies that the product has a constant hazard rate, which

is an invalid assumption because of ageing, as discussed in Section 2.3.1.

The second population decay model considered is that in the UNFCCC CDM AMS-II.J Guideline,

as implemented in current studies on which this study is based [21]. It is a straight line graph where
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Figure 2.1: Graphic representation of equation (2.3)

H denotes annual operating hours and i denotes years. Y = 50 is recommended, where Y is the

percentage of lamps left at the rated lifetime L :

Nt =

 N0− i×H× 100−Y
100×L for i×H < L

0 for i×H ≥ L
(2.4)

Real populations of people, animals or engineering devices rarely follow straight-line curves, and

equation (2.4) could at best be an approximation. Therefore a more sophisticated population model

is necessary.
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Figure 2.2: Graphic representation of the CDM population decay equation (2.4) for Y = 50, i = 10,

H = 1642.5

2.3.3 Logistic population approach

Logistic population models are confined to the range [-1,1] and are therefore useful for modelling

population proportions. These equations have been used to model the many different biological sys-

tems, as well as the human population proportions [41]. They have also been used to model adoption

rates in energy systems [42].

Logistic models have sigmoid shapes - a feature expected by the CPUC SA approach, and also cor-

roborated by empirical studies. For example, the Polish Efficient Lighting Project (PELP), conducted

by the World Bank through the International Finance Corporation and UNFCCC, tracked 1.2 million

lamps over a number of years in order to assess various aspects of such retrofit projects [43]. The

main objective was to assess the immediate impact of the program due to CFL sales and distribution

(CO2 emissions reduction). The second objective was to assess the wider impact of the programme

on the residential CFL market in Poland, specifically market penetration and sustainable market trans-

formation due to non-subsidised CFL’s being sold. Population survival was tracked as an intermediate

variable, and is of interest to this study.
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The results correlated with another study conducted by the contractor in the New York area [44], and

it was found that the decay rate was approximately 6.2% p.a. The result is a logistic population decay

curve shown in Figure 2.3. Some questions do still remain regarding their research methodology.

However, since this is the best data available, and since the shape of the curve does agree with that

described above, it is reasonable to use this data for the purpose of modelling.
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Figure 2.3: PELP Data [43].

CFL’s currently installed by Eskom have median lifetimes of 6,000, 8,000, and 10,000 hours [45].

Because of these lifetimes, doing such a comprehensive study in South Africa is prohibitively ex-

pensive, and thus the PELP study is regarded as having the most reliable data for the South African

context [45], given similar project characteristics. The following model has been proposed to fit these

data:

Φt =
1

1+ et−L . (2.5)

This model is part of a family of logistic populations first proposed by Verhulst [46], and take the

form

Φt =
1

1+ e−t . (2.6)

These models were developed to describe biological population dynamics. The main contribution

was to show the limiting effect that the carrying capacity of the land has on population growth, where
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Figure 2.4: Graphic representation of the logistic function equation (2.6). Note that in this case

population growth is indicated, although population decay may also be modelled.

population growth was seen as exponential and unconstrained previously. It may also be used as a

population decay model by altering the sign of the exponent. Since the standard logistic equation

is a symmetrically odd function centred around (0, 0.5), the −L term was introduced in order to

accommodate different lamp lives as is illustrated in Figure 2.5. As can be seen, the population

decay rate is constant, and the parameter L only shifts the curve along the time axis. This means

that although the curve would model populations with this decay rate with great accuracy (the PELP

data happen to have such a decay rate), populations with different decay rates cannot be modelled

adequately. It is for this reason that a more versatile population survival curve is needed.

2.4 CHAPTER SUMMARY

The two focus areas of this research are performance tracking and lamp population survival models.

Although some academic literature on performance tracking exists, the application to optimal track-

ing in multi-year studies has not matured yet. Various solutions to lamp population decay has been

considered, and the further development of a logistic function is deemed to be the most appropri-

ate.
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Figure 2.5: Decay curves from equation (2.5) for different lamp lives L.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

14

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2 Literature review

Model Advantages Disadvantages

Time Series

Forecasting
• Wealth of literature.

• Can account for periodicity.

• Not easily adapted to logistic scale

(0;1).

Fatigue Analysis
• Used for metal fatigue failure. • Stress-magnitude parameter difficult

to quantify

Markov Chain

Analysis
• Simple matrix algebra approach.

• Can be used with Monte-Carlo tech-

niques.

• Constant hazard rate assumption in-

valid.

• Non-constant hazard rate models too

complicated.

Survival Analysis
• Large amount of literature exists.

• A mature field.

• Used for similar medical studies.

• Used by the CPUC.

• Accounts for censoring.

• Control group necessary.

• Results only available ex-post.

Exponential

Logistic Model
• Simple step-ahead forecasting.

• Amenable to control techniques.

• Assumes a constant hazard rate.

UNFCCC CDM

AMS-II.J
• Accepted by the UNFCCC.

• Simple

• Assumes linear population decay.

• Only considers population up to 50%

Logistic models
• Fits known data (PELP study) well.

• Only one unknown parameter.

• Within the range (-1;1).

• Used to model population decay.

• Single-parameter models will not

fit populations with different hazard

rates well.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

15

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3

LONGITUDINAL TRACKING MODEL DEVELOP-

MENT

3.1 CHAPTER OVERVIEW

A new decay model is formulated and written in different formats useful for engineering applications.

The existent sampling model is discussed and assumptions identified. Improvements to the existing

model, including the exponential windowing functions and time-value of money considerations, are

discussed and implemented.

3.1.1 Population decay model formulation

As shown in Table ?? and Section 2.3.3, logistic models are widely used for population modelling

due to their flexibility, simplicity and [-1;1] range. However, using a single-parameter logistic model

logistic model prevents different population decay rates to be modelled.

The proposed improvement to equation (2.5) is similar to Lotka’s reformulation of Verhulst’s model

as a dynamic equation with additional parameters [47]. As previous work suggests, the difference

equation form of this decay model is especially applicable to the engineering context [48].

It is proposed that CFL decay be described by

dΦ

dt
=−βΦ(1− γΦ). (3.1)

which is also called the logistic growth equation [42]. In discrete (or difference) form it is written

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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as

Φk+1 = βγΦ
2
k∆t−βΦk∆t +Φk, (3.2)

and in general form it may be written as:

Φt =
1

γ +αeβ t , (3.3)

which could be written as:

Φt =
1

γ + eβ t−L , (3.4)

where:

α = e−L. (3.5)
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Figure 3.1: Decay curves for equation (3.4) using L = 5, c = 1, and varying b.

3.1.2 Parameters in the CFL population context

Not only does the logistic equation fit known data well, but the parameters have physical significance

and correspond to factors affecting population decay.

The population decay parameter β indicates rate and is in the unit /time. The inflection point of

the sigmoid curve is located at lnα

β
. It is apparent that equation (3.1) is similar to equation (2.5) for

β = γ = 1. However, the parameter β in equation (3.1) allows different population decay rates to be
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modelled as shown in Figure 3.1. This is important because it is not necessarily the case that the decay

rate is always close to unity (even though this is shown to be the case for the PELP study [43]). With

different operating conditions, different manufacturing quality control, or different technologies, it is

expected that the assumption of β = 1 would not necessarily hold. A steeper slope would indicate a

smaller manufacturing and operating variance, with more lamps failing closer to the mean lamp life.

Thus the parameter β increases the flexibility of the model significantly, and it is possible that other

technologies may also be modelled in this way. It is conceivable that a list of factors contributing

to CFL population decay be drawn up, and β be predicted. However, much data will be needed

in order to make ascertain the contribution of the covariates in such a way as to make meaningful

predictions.

For population growth equations, γ represents the carrying capacity of the land. In this model, is

approximately inversely proportional to the starting population because at t = 0,

Φ0 =
1

γ + e−L , (3.6)

but for any realistic L,

Φ0 ≈
1
γ
= Φ0. (3.7)

Although γ = 1 should always be the case (implying a starting population proportion of 1, i.e. all

lamps working), the model fit has been found to vary in practice. These variations may be ascribed to

project phenomena rather than true population behaviour. For example, Free Ridership (where sub-

sidised CFLs would have been installed without the subsidy) may cause some units to be installed at

a later date than project inception, since they are stored by home owners first whilst lamps purchased

previously are used. This would alter the initial population in a way that can be accounted for by γ .

However, γ cannot be used to account for a whole monitoring project starting after t = 0, e.g. setting

γ = 2 if project monitoring starts where N = 0.5, as at time t = 6.8 in Figure 3.2. If this were the

case, the decay rate dN
dt would approach 0− asymptotically where it should be maximum as at t = 6.8

(the point of inflection of the logistic decay curve). Also, altering the value of γ may not be used

to compensate for non-homogeneous populations, for example where only half of the population is

composed of CFLs. In such a case, stratified random sampling should be used, where each sub-group

is homogeneous and considered separately.
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3.1.3 Discrete formulation

The difference equation formulation means that fewer data points need to be used for the identification

of system parameters, since the parameter L need not be determined. This also means that the lamp

installation date is not relevant for determining the state of the system at t = k+ 1, as Φk+1 is not a

function of t, but only of Φk and parameters β and γ . Of course, the more information available the

better, but strictly speaking it is not necessary.

The discrete form of equation (3.2) holds three advantages [48]: First, estimated savings at Φk+1

informs the project manager of the feasibility of continuing the project. Second, since survival data

are binomially distributed, and for binomial data the sample size n = f (Φ), this provides information

about the estimated population size (and thus required sample size) at the next time step. Third, con-

trol techniques may be applied to the problem of lamp replacement by reformulating equation (3.2)

as

Φk+1 = βγΦ
2
k−βΦk +Φk +uk (3.8)

for ∆t = 1, where uk is a control input. This finds practical application in a scenario where a project

developer is paid by Eskom based on the savings realised in a certain EE project. The developer

would then want to optimise his control inputs (replacing lamps) over the duration of the project in

order to ensure that he maximises profit. Since original publication [48], a preliminary version of this

approach has been implemented [49].

3.1.4 System identification

During the system identification phase, the model formulated above is tested to determine how well

it fits known data.

System parameters β and γ can be identified using a least-squares approach with decision variables

β and γ . Let φt be the surviving proportion of lamps at time t in the PELP study. For year I as the last

reporting year, the objective function is defined as

min
1
n

I

∑
t=2

(Φt −φt)
2, (3.9)

where Φt is defined by equation (3.2). The function considers data from t = 2 and onward since

t = 1 is assumed to be known such that Φ1 = φ1. It is found that the PELP data can be characterised

by β = 0.921 and γ = 0.986, with a Mean Squared Error (MSE) of 0.0015. The result is shown in
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Figure 3.2. By way of comparison, the optimal least-squares fit of equation (2.5) yields L = 6.866,

with an MSE of 0.0368.
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Figure 3.2: Least-squares fit to PELP data of equation (3.2)

3.1.4.1 Goodness of fit measures

At this point a short discussion of goodness-of-fit metrics is warranted, since much confusion exists

regarding the appropriate metrics that should be used to describe model uncertainty for time-series

data.

Most engineers use the coefficient of determination R2 as the default goodness of fit measure. How-

ever, the R2 value is dependent on the slope of the curve: R2 changes with the gradient of the straight

line fitted to the data [13], even if the CV of the data remains the same. In this case CV refers to the

mean variation in the data not explained by the model, normalised with respect to the mean of the

dependent variable. R2 may therefore be used to compare how well different models fit to the same

data set or how well a model fits a given data set (e.g. baseline energy use). However, if the slope of

the energy use curve changes, then comparing R2 values would be invalid. R2 may therefore not be

used to draw comparisons between models fitted to different data sets or as an absolute index of how

well a given model fits a given set of data.
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The Coefficient of Variation on the Root Mean Squared Error (CVRMSE) is prescribed by ASHRAE

Guideline 14-2002 Section 5.2.11.3 (Modelling uncertainty) [6]. However, models with different

‘dispersions’ on the data may have the same CVRMSE values if their means also vary proportionally

[13]. Therefore the CVRMSE value is also not an adequate statistic by itself, unless the only criterion

for goodness of fit is the uncertainty in model prediction for the same model with different data sets

[13]. Furthermore, the CVRMSE is the RMSE normalised with respect to the mean value. Therefore

this metric may only be used where the mean is stationary. The mean of the population decay curve

is not stationary, and it is conceivable that the CVRMSE would change from year to year as the mean

changes, even if the goodness of fit of the model does not change.

Like the CVRMSE, the Normalized Mean Bias Error (NMBE) used by ASHRAE 14-2002 (equation

5.4) is normalised with respect to the arithmetic mean of a sample of observations, and therefore

unsuitable for models with non-stationary means.

The considerations mentioned above change when autocorrelation is present. Autocorrelation occurs

when the errors at different measuring points are not independent of each other, and residuals are

not normally distributed - a key assumption for normal regression. This is most commonly caused

by time-dependent changes in a building (central heating, for example) or by not considering key

energy governing factors. (Dry bulb) temperature changes are easily measured and data is readily

available, but humidity may also affect cooling load, and is usually not measured. When plotting a

regression curve of a dependent variable against an independent variable in a scatterplot, the temporal

dependence is not shown since data points measured consecutively are not plotted consecutively.

However, autocorrelation is still present in the autocorrelation of the residuals and will affect model

accuracy.

When using standard Ordinary Least Squares (OLS) estimators for autocorrelated data, the estimates

of the regression parameters (in this case β and γ) may not be biased, but standard techniques may

overestimate confidence on these parameters greatly. Using an autoregressive (AR) model (one where

the state at the previous time is taken into account, as is done in this study) may then improve estimates

on the error bounds [14].

Because of the considerations listed above, selecting a metric to determine goodness of fit for this

case is not simple. It was decided to use the MSE. The reasons for doing so are that the MSE is

simple and easily understood, that the AR model implemented should account for autoregression,
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and that the resultant fit is satisfactory. The caveats are that the MSE may be biased [14] and that

it may overestimate the error bounds. However, since this model will not be used to estimate error

bounds, this consideration is not important for the current study. Since it is a non-linear curve, the

R2 and CVRMSE figures listed above were not used, although they could just as easily have been

implemented in the objective function instead of the MSE. The hybrid prediction method [14] was

not used because it is not as widely recognised, although it does represent a viable alternative to the

MSE approach.

3.1.4.2 Residuals

One method of evaluating the appropriateness of a model is to investigate the nature of the resid-

uals. Ideally, the residuals should be normally distributed with no discernible pattern with respect to

time.

0 2 4 6 8 10 12
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time [years]

R
es

id
u

al
 e

rr
o

r

Figure 3.3: Plot of equation (3.2) with parameters as determined in Section 3.1.4

As can be seen in Figure 3.3 the residuals are not completely random or evenly spaced around 0, and

exhibit a slight positive gradient, implying that there may be a missing linear term in equation (3.2).

However, two outliers are notable in years 6 and 7, and do skew the residuals. From Figure 2.3 it

can be deduced that these two do not follow the general trend of the curve, and thus outliers on

the residual plot are to be expected. When plotting these residuals on a normal probability plot
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Figure 3.4: Normal probability plot of equation (3.2) with parameters as determined in Section 3.1.4

(Figure 3.4), however, one can see that the assumption of normality is not violated significantly, as

all residuals fall fairly close to the straight line - especially the second and third quartiles, which are

indicated by the thicker line. Since the residuals are not completely randomly distributed around

the normal probability line, some autocorrelation may still be present. However, this component is

relatively small, and therefore it is concluded that even though the model may be improved, the fit is

satisfactory.

3.1.4.3 Incremental step-ahead forecasting

It is noted that in practice, parameters β and γ may not be known accurately beforehand. Let Dk be

the data available at time k, in this case the sample population proportions. Then:

(Φk+1|Dk) = f (Φk,βk,γk), (3.10)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

23

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3 Longitudinal tracking model development

where βk and γk are determined incrementally at each time t = k so that

(βk,γk) = (β ,γ|Dk). (3.11)

Since equation (3.2) has two parameters instead of one, more data is needed to define the equa-

tion (3.2) than would be the case for equation (2.5). However, it is argued that a two-parameter model

such as equation (3.2) is not merely convenient, but necessary since equation (2.5) assumes β = 1, i.e.

all populations decay at the same rate (the PELP population decay rate). As such, it appears accurate

for predicting the decay of the data in question, but would not be able to predict other population

survival curves satisfactorily.

The accuracy of equation (3.10) would be improved if β and γ are known or expected from previous

studies. Since γ ≈ 1 for all cases, it is recommended that this assumption be made in the early stages

of project monitoring with unknown parameters. This reduces the number of unknown parameters to

one, thereby reducing the amount of data needed to define the model accurately.

In future, population decay models may be improved by taking sample sizes into account. In the cur-

rent context Dk only contains the proportion of lamps surviving at time k according to a sample taken.

However, Dk can also include more information such as the sizes of samples corresponding to each

population proportion, as well as censoring information. Since larger samples should carry more

weight when calculating model parameters than smaller samples, more accurate parameter estima-

tion can be achieved. Such considerations can be incorporated by the use of conditional probability

methods, but is outside the scope of the current study.

3.2 SAMPLING MODEL FORMULATION

When calculating energy savings for a lighting retrofit project with a total number of groups J there

are two main components that constitute energy use. The first is the average daily energy use per

device E j, and the second number of surviving devices N j [50]. Taking a baseline energy use per

device EB, this may then be expressed as

EB =
J

∑
j=1

(N jE j). (3.12)

N j is affected by population decay as described in Section 2.3, and E j is the energy use determined

directly from energy meter measurements, and not from occupancy schedules or usage hour estimates
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Chapter 3 Longitudinal tracking model development

and lighting system efficacy measurements. Meter measurements will be the focus of the rest of this

study.

A statistical model for describing sequential metering samples has been formulated previously [21].

As the aforementioned model was used as the basis for the current research, the assumptions and key

equations will be reproduced below.

The assumptions on which this model is based have been stated as [21]:

1. Metering data are independent and normally distributed.

2. The lamp population does not decay during the CDM-specified 90-day baseline period.

3. During the reporting period maintenance is performed on active meters only.

There are also additional latent assumptions in the aforementioned model. It is recommended that the

sensitivity of the model to these assumptions be investigated and in a future study:

4. The mean energy use (the integral of the daily load profile) is stationary throughout the study.

5. Samples of the same population, taken in different years, can be treated as independent.

6. Statistical power (Type II-errors) is not considered in calculating sample size

7. The meter purchasing cost is constant in future value terms. That is, R4,032 would purchase a

meter in any given year.

The assumption of normally distributed metering data in 1 is made implicitly in the IPMVP [3],

ASHRAE 14-2002 [6], FEMP [10], and seminal literature on the subject [13]. It is the responsibility

of the M&V practitioner to verify the validity of this assumption and there may be cases where

normality does not hold. However, given the central limit theorem and the number of independent

variables which influence energy usage, assuming a normal distribution is more valid than assuming

any other distribution at project inception.

The assumption of a stationary mean is potentially significant. First it should be noted that since the

same lamps are being measured repeatedly, continuity is expected. Seasonal effects should be visible

in the month-to-month energy use, however, since annual energy use is considered for calculation,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3 Longitudinal tracking model development

it may be neglected. At a finer surveillance resolution, a model correcting for seasonality and other

periodic autocorrelative effects should be implemented. Assuming a stationary mean for modelling

purposes simplifies calculation, and is the preferred choice in the absence of data to the contrary. It

would also be possible for account for varying parameters during actual studies, using non-routine

adjustments. This is because the sampling interval allows for recalculation to be done where equa-

tion (3.16) could be rewritten as a less elegant summation with different mean and standard deviations

for different years. Likewise, θK and ΓK below may be adjusted when this is deemed necessary.

3.2.1 Calculation of mean and variance

Because of the assumption of a stationary mean in Point 4 above, the cumulative sample mean χ̄

varies according to

χ̄K ∼ Normal[θK ,Γ
2
K ], (3.13)

where the true mean θK is defined as

θK =
∑

K
i=1 Niµi

∑
K
i=1 Ni

, (3.14)

and the cumulative sampling standard deviation is defined as

ΓK =

√√√√ K

∑
i=1

σ2
i

ni
·

N2
i(

∑
K
i=1 Ni

)2 . (3.15)

Because of the assumption of a stationary mean, samples taken at different times may be combined

to give a cumulative sample size with which calculations may be done.

Assuming that a given sampling mean for year i follows the distribution X̄i = N(µi,σ
2
i /ni), the cu-

mulative sample mean in year K is defined as

χ̄K =
∑

K
i=1 NiX̄i

∑
K
i=1 Ni

. (3.16)

By substituting the variables defined above into the standard score transformation

z =
x̄−µ

σ/
√

n
(3.17)

and rearranging, we find that

ZK =
χ̄K−θK

ΓK
(3.18)
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Chapter 3 Longitudinal tracking model development

and from equation (3.19)

PK =
χ̄K−θK

χ̄K
(3.19)

where PK and ZK denote the cumulative precision and standard scores up to the Kth crediting

year.

Practically, however, the true mean µ and true standard deviation σ are not known; only the sampling

mean x̄ and sampling standard deviation s are known. In order to do simulations for meter placement

planning, these values have to be assumed. By realising that if the coefficient of variation, CV, is

defined as

CV =
σ

µ
, (3.20)

then

s = x̄CV. (3.21)

It should be noted that the CV value is fundamentally different to the coefficient of variance on the

root mean squared error CVRMSE, although in this case they may be the same. The coefficient of

variation described above is a measure of the variance of a dataset relative to the mean of the data,

in other words the ‘spread’. A variance of 4 is relatively big if the mean is 10, but is relatively small

if the mean is 100. In the first case, CV = 0.2, in the second, CV = 0.02. CVRMSE is measured

relative to the model predicted value, or the estimator. If it is an unbiased estimator, MSE = σ2, in

other words, the variance is equal to the mean squared error. But this is not always the case, as there

are many biased estimators used in statistics.

By substituting equation (3.21) into equation (3.17), the way in which confidence and precision have

been formulated in previous studies [21] has been that for year i,

Zi =
∑

i
j=1

N jz j√n j√
∑

i
j=1

N2
j

n j

(3.22)

and

Pi =
∑

i
j=1

CVjN jz j√n j

∑
i
j=1 N j

. (3.23)

It should be noted that this formulation does not allow for sample sizes of zero, i.e. for studies

where there are years where no samples are taken. This presents a problem when optimising, as not

considering sample sizes of zero constrains the problem unnecessarily. Thus, Zi may be formulated
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Chapter 3 Longitudinal tracking model development

as

Zi =

 equation (3.22) ∀ ni > 0

0 ∀ ni = 0
(3.24)

There is no need to constrain Pi since it is a function of zi for years subsequent to a zero-sample year,

and it may therefore be left as undefined or ‘Not a Number’ (NaN) in Matlab:

Pi =

 equation (3.23) ∀ ni > 0

undefined ∀ ni = 0
(3.25)

3.2.2 Sample size calculation

The well-known standard normal sampling formula shows that

n0 =
z2CV2

p2 , (3.26)

where z is the standard score corresponding to a given confidence level P(z).

The relative precision p is defined as the maximum difference between the confidence limits (CL)

and the mean, normalised with respect to the mean:

p =
|CL−µ|

µ
. (3.27)

Therefore, for the 90/10 criterion (90% confidence interval, 10% precision), and assuming a CV of

0.5 as is usually assumed in M&V for homogeneous samples [3], [10] the required sample size would

be

nunad justed =
1.6452 ·0.52

0.12 ≈ 68. (3.28)

For small populations, it is necessary to include a finite population adjustment:

n =
nunad justed,iN

nunad justed,i +N
. (3.29)

This adjustment affects the sample size for n/N > 5% [51]. By combining equation (3.26) and equa-

tion (3.29), the required sample size is found to be

ni =
z2

i CV 2
i Ni

z2
i CV 2

i +Ni p2
i
. (3.30)
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Chapter 3 Longitudinal tracking model development

3.2.3 Project cost calculation

Project costs may now be calculated, and consist of two parts: the project inception cost, and opera-

tional costs.

Let ai be the meter purchasing cost in year i, bi be meter installation cost, and ci be the monthly meter

maintenance cost, all expressed in per unit Present Value. The project inception cost (which includes

3 months’ maintenance in baseline period) would then be

η = (a0 +b0 +3c0)n0, (3.31)

and project operational costs would be

ω =

 ∑
I
i=1[12cini−Bi(ai +bi)] ∀B < 0

∑
I
i=1(12cini) ∀B > 0

(3.32)

where Bi is the backup meters (meters previously installed, but no longer needed) available in year i,

defined as

Bi = max(Bi−1,0)+ni−1−ni. (3.33)

3.2.4 Optimisation formulation

Therefore one could formulate the mathematical optimisation program for a project up to year I

as:

Decision variable:

λλλ = (z1, p1, ...zI, pI) (3.34)

Objective function:

Min η +ω (3.35)

Constraints:

Zi ≥ 1.645 ∀ i ∈ δδδ (3.36)

Pi ≤ 10% ∀ i ∈ δδδ , (3.37)

where δδδ represents the set of reporting years. For example, if it is required that savings be reported

in years 1, 5, and 10, δδδ = (1,5,10).
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Chapter 3 Longitudinal tracking model development

3.2.5 Model improvement

The model thus far is standard theory, but may be improved upon by implementing the changes

discussed below.

3.2.5.1 Non-linear decay model

The first improvement that has been implemented is a non-linear population decay model as described

in Section 2.3. Previously, the CDM population decay model was used [21], as described in equa-

tion (2.4). The usefulness of such a model has been argued for in Section 3.1.2.

3.2.5.2 Exponential windowing function

Previously, all measurements in the time series were weighted equally as a legacy of single-time,

multiple-sample models. However, in practice data obtained during earlier measurements are not

accorded the same weight as data obtained more recently. For example, in year 10 of a study, a

relatively large sample size in year 1 could outweigh more recent data. In such a case, an exponential

windowing function as described in equation (3.38) would compensate for the age of the measure.

Therefore an exponential decay window, akin to exponential smoothing functions used in time series

analysis, has been introduced. This can be thought of as a moving weighted average.

Whereas the cumulative mean distribution was formulated as equation (3.14), for an exponential

decay factor ε , it is now written as

χ̄i =
X̄KNK

NK
+

∑
K−1
i=1 X̄iNi(1− ε)K−i

∑
K−1
i=1 Ni(1− ε)K−i

, (3.38)

thereby weighting measurements not only by sample size, but also by recency.

3.2.5.3 Time-value of money considerations

Because the kind of projects under investigation have long planning horizons, it is prudent to consider

the time-value of money when calculating project cost. Two factors were taken into account: the

depreciation of meter purchasing values, and the opportunity cost incurred from spending money

early in the project, when that money could have been invested to generate interest.

Let d = 6.44% be the Consumer Price Inflation (CPI) [52], and r = 10% be the Minimum Attractive
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Rate of Return, or investment interest rate. For year n, the true meter purchasing cost is calculated

as

an =
a0

(1+d)n +
a0(1+ r)K−n

(1+d)K . (3.39)

It is assumed that the meter purchasing cost stays constant in future value terms, i.e. Ra0 would

purchase a meter in any given year. Due to inflation, however, the meter purchasing cost declines in

real terms according to the inflation rate. This is the first term in equation (3.39).

Furthermore, it is assumed that the money used to purchase a meter could be invested at a rate of

return of r = 10% until the end of the study in year K. This is the opportunity cost incurred by

purchasing the meter in year n. This is the second term in equation (3.39).

Since meter installation and maintenance costs are labour costs, it is assumed that they will increase

with inflation, and thus stay constant in real value terms. However, opportunity costs are still taken

into account so that

bn = b0 +
b0(1+ r)K−n

(1+d)K , (3.40)

and

cn = c0 +
c0(1+ r)K−n

(1+d)K . (3.41)

3.3 CHAPTER SUMMARY

The logistic population decay model represents an improvement on current lamp population decay

models. It may be formulated as a difference equation, allowing incremental step-ahead prediction to

be applied to the problem. System Identification performed on benchmark data shows that the model

is satisfactory, although selecting a goodness of fit metric is challenging. The existing sampling

formulation is found to have critical latent assumptions. Improvements to the current model, namely

an exponential windowing function and considering the time value of money, are added to the model

to increase practicality for implementation.
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CHAPTER 4

CASE STUDY

4.1 CHAPTER OVERVIEW

In this chapter the theory developed thus far is applied to a real-world project. Firstly, the code was

validated by investigating the nature of the solution space and testing the code against previously

established solutions. Certain changes are made and improvements implemented, and new solutions

are compared in terms of cost. A statistical sensitivity analysis is also conducted to determine the

influence of various parameters on the the expected project cost.

4.2 BACKGROUND

A previous case study and model [21] is used as a benchmark to ensure fair comparison. In this

case study, incandescent lamps were replaced with CFLs in a number of provinces in South Africa

[53] by distributing them free of charge to households in the Western Cape, Northern Cape, Gauteng,

Limpopo, Mpumalanga and the Free State. Installation was ensured by counting and crushing certific-

ates, verifying the destruction of previously installed incandescent lamps. The relevant parameters are

listed in Table 4.1. The scenario described above is deemed appropriate for the decay and sampling

model proposed in this study. The crediting period is assumed to be 10 years with reporting every

second year complying to the 90/10 criterion. The baseline measurement period is 3 months, and it is

assumed that no population decay occurs during this time.

The smoothing parameter was set at ε = 0.25 (a time constant of 4). The 0.25 value was selected since

values between 0.2 and 0.3 are recommended in industry as a starting value for time series analysis

[54], [55]. Since this isn’t a classic time series analysis, one should not expect the same values to hold.
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Chapter 4 Case study

However, since this seems like a reasonably realistic way to weight sampling results from previous

years, it has been adhered to for the purposes of this study, although ε should be case-dependent and

determined by the M&V engineer’s judgement.

4.2.1 Monitoring plan

The UNFCCC CDM guideline AMS II.J (Demand side activities for efficient lighting technologies,

small-scale methodology) [8] Par. 19 defines how monitoring should take place for the case study.

Operating hours O j (in the standard) may be determined by "the average measured value determined

from measurements of a representative sample conducted once, prior to or concurrent with the first

ex post monitoring survey." Therefore the load profile is measured instead of operating hours and

power is used. This also simplifies the calculation, since uncertainty calculations are combined in

one measurement rather than two. AMS II.C (Demand-side energy efficiency activities for specific

technologies) [19] confirms this approach in par. 31 where it states that:

"If the project equipment installed has a constant current (ampere) characteristic, monitoring shall

consist of monitoring either the ‘power’ and ‘operating hours’ or the ‘energy use’ of the equipment

installed using an appropriate method. Appropriate methods include... Metering the ‘energy use’ of

an appropriate sample of the project equipment installed."

For this investigation, it is assumed that an energy meter placed on the lighting circuit measures the

energy used on a per-second basis, and averages over thirty seconds to save two energy use values

per minute. In cases where meters with current transformers only are used, spot measurement of the

utility supply voltage should be done.

4.2.2 Model validation

First, the nature of the search space was investigated. The previously reported case study was used

with its reported optimal solution (labelled ‘Solution 1’), a line section was drawn to another solution

(‘Solution 2’), and the resultant cost function plotted in Figure 4.1. This proved that the search space

is both stepped and discontinuous, and explains the finding that solutions given by gradient methods

such as the interior-point algorithm are sensitive to the initial solution λλλ 0. The stepped nature of
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Table 4.1: Case Study Parameter Values (before changes)

Parameter name Value

Reporting years δδδ = (2,4,6,8,10)

Meter purchasing cost a0 = R 4,032

Meter installation cost b = R420

Meter maintenance cost (per year) c = R122

Coefficient of variation CV = 0.5

CPI inflation rate d = 6.44%

Investment interest rate r = 10%

Exponential decay factor ε = 0.25

Population size N0 = 607,559

Rated lamp life L=20,000 hours

Daily usage 4.5 hours

Incandescent Lamp power rating 100W

CFL power rating 20W

the solution space can be attributed to the effects of rounding; decimal sample sizes may be found

using equation (3.30), but these need to be rounded to integer values for the cost function. The

discontinuous nature may be explained by the fact that confidence and precision pairs interact in a

complex way within λλλ to produce the cumulative confidence and precision levels.

Thereafter, a cross section was drawn at a random dimension of the solution, in this case λλλ 7, and this

was made to vary with ∆h. It can be seen in Figure 4.2 that for λλλ 7 the algorithm did indeed converge

on the optimal solution, and that it is constrained on one side. Although not shown here, this is also

the case for the other dimensions of λλλ .

The cost calculation was validated by reprogramming the cost equations into Microsoft Excel and

comparing the costs of various sampling plans to the results given by the Matlab subroutine.

Given the findings discussed above, it was decided that a Genetic Algorithm (GA) is appropriate

for solving the problem at hand. The optimisation parameters are shown in Table 4.2. In order to
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Figure 4.1: Line section through search space for Solution 1+h× (Solution2−Solution1)
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Figure 4.2: Cross section of solution at λλλ 7 +∆h

validate the code, the model parameters were altered to δδδ = (3,8) and ε = 0.99, effectively con-

straining the model to two different sampling problems. As would be expected, the model converged
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Table 4.2: Optimisation Parameter Values

Parameter name Value

Heuristic ga.m (Genetic Algorithm)

TolFun 10−12

TolCon 10−12

Population Size 500

λλλ 0 (1.645, 0.1, 1.645, 0.1, ...)

on the solution of 67 meters for years 5 and 8, and 0 meters in other years (adjusted from 68 using

equation (3.30)).

In order to establish a basis for comparison, the original problem was first solved using the GA.

Since ga is a heuristic, it does not guarantee that a global optimum will be found. However, the

optimisation parameters were set such that the heuristic converged reliably to high-quality solutions

with the parameters listed in Table 4.2. No improved solutions to the ones originally published for

this case study were found, because of the alteration made in the way the algorithm rounds decimal

sample sizes. For a discussion of this, see Section 5.2. The closest the heuristic came to the original

value of R338,028 was R339,942 - 0.59% higher than previous studies [21]. The sampling plan for

this value is as follows:

n = (34,34,34,13,9,8,8,4,3,5,2). (4.1)

It is also proposed that the reporting years be changed from δδδ = (2,4,6,8,10) to δδδ = (1,2,4,6,8,10).

This is because one would expect the reported energy usage during the baseline phase (part of year 1)

to adhere to the 90/10 criterion just as much as any other reporting year. In fact, if statistical power

were a consideration, it would be more cost-effective to increase the baseline measurement accuracy,

rather than to compensate on all subsequent accuracies to achieve the combined error margin. This

may be a topic for future investigation. With this new constraint to year 1 as well as the baseline

period (assumed to be taken together [21]), a solution is found to be:

n = (68,68,28,16,8,8,6,6,4,4,2), (4.2)

at a cost of R545,760. It is noted that adhering to the 90/10 criterion during the baseline phase adds

significantly to project costs, because the cumulative effect of repeated sampling cannot be used to

reduce individual sample sizes. Previously, the sample sizes in the first two years were allowed to be
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34 and 34, increasing the cumulative confidence in precision in the first reporting year (year 2) to the

90/10 level. But because reporting in year 1 should actually adhere to the 90/10 criterion, the sample

size in year 1 is forced to be 68, doubling the sampling cost for the first year. Since the same reporting

accuracy is required in year 2, this sample size is kept for the second year also.

4.2.3 Model comparison

4.2.3.1 Non-linear PELP model

The first model improvement considered was that of the non-linear PELP population decay rate model

proposed in equation (3.1). The PELP model predicts 8.3% more electricity savings than the CDM

population decay rate model for the current case study parameters. The optimisation heuristic could

not find a better solution to this problem than the one found for the CDM decay curve. The two

sampling regimes could be different, though, with the CDM curve requiring smaller samples because

of the finite population adjustment. More research is warranted in this area, but if the sampling

plan proposed for a CDM model were used when in fact the PELP study is closer to the true decay

shape, the 90/10 criterion would not be adhered to because the population difference would require

a different finite population adjustment factor as incorporated into equation (3.30). The population

would be undersampled, and savings underestimated.

The parameters of the PELP model were set to induce the same population at the end of the study

than was present in the original study. As such, β = 0.543,γ = 0.99. The comparison is shown in

Figure 4.3

The model converged to the following result:

n = (68,68,28,16,8,8,6,5,4,4,2) (4.3)

at a cost of R545,760. The confidence levels, precision levels, and yearly costs are plotted in Fig-

ure 4.4, Figure 4.5 and Figure 4.6 respectively.
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Figure 4.3: Comparison between CDM (equation (2.4) with H = 1,642.5; Y = 50; L = 20,000) and

logistic decay (equation (3.2) with β = 0.543; γ = 0.99) curves
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Figure 4.4: Confidence levels for the model with non-linear population decay taken into account as

in equation (4.3).
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Figure 4.5: Precision levels for the model with non-linear population decay taken into account as in

equation (4.3).
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Figure 4.6: Costs for the model with non-linear population decay taken into account as in equa-

tion (4.3).
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4.2.3.2 Exponential Windowing

Second, and additionally, the exponential windowing function of equation (3.38) was introduced. As

would be expected, since older and more recent results are not weighted equally, more samples would

be required to adhere to the 90/10 criterion. The result was

n = (68,68,33,16,28,21,19,16,16,15,20) (4.4)

at a cost of R696,552. The confidence levels, precision levels, and yearly costs are plotted in Fig-

ure 4.7, Figure 4.8 and Figure 4.9
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Figure 4.7: Confidence levels for the model with non-linear population decay and exponential win-

dowing taken into account as in equation (4.4).
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Figure 4.8: Precision levels for the model with non-linear population decay and exponential win-

dowing taken into account as in equation (4.4).
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Figure 4.9: Costs for the model with non-linear population decay and exponential windowing taken

into account as in equation (4.4).
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4.2.3.3 Nett present value considerations

Last, the time-value of money was also taken into account. Since costs are now calculated in a differ-

ent way with equation (3.39)-equation (3.41) these results cannot be compared to previous results. A

sampling regime for this consideration is:

n = (68,68,32,19,22,14,27,15,18,17,19) (4.5)

at a cost of R1,459,121. The confidence levels, precision levels, and yearly costs are plotted in

Figure 4.10, Figure 4.11 and Figure 4.12
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Figure 4.10: Confidence levels for the model with non-linear population decay, exponential window-

ing and the time value of money taken into account as in equation (4.5).

It is noted that if the rounding is set to ceil instead of round, a solution is found to be

n = (68,68,30,17,24,22,18,20,14,14,23) (4.6)

at a cost of R1,455,759. However, since rounding using the ceil function is not considered op-

timal, this solution is not considered the benchmark, but is included for academic purposes. This is

elaborated upon in the next chapter.

The cost of equation (4.2) in terms of the economic model is R1,199,061 showing that the proposed
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Figure 4.11: Precision levels for the model with non-linear population decay, exponential windowing

and the time value of money taken into account as in equation (4.5).
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Figure 4.12: Costs for the model with non-linear population decay, exponential windowing and the

time value of money taken into account as in equation (4.5).
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Chapter 4 Case study

changes increase monitoring costs by 21,4% in NPV terms. This may be taken to mean that earlier

models underestimated true project costs by this amount.

4.2.3.4 Sample size comparison between different models

A comparison of the three proposed modifications (excluding the improvement on the previous op-

timal solution equation (4.1) or the correction of the baseline reporting requirement equation (4.2)) is

plotted in Figure 4.13.
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Figure 4.13: Comparison of three proposed model modifications. Model 1: equation (4.3), Model 2:

equation (4.4), Model 3: equation (4.5)

4.3 SENSITIVITY ANALYSIS

A sensitivity analysis was performed to investigate which variables are most critical to the expected

total cost reported by the model. Inflation rate, interest rate, meter purchasing cost, meter installa-

tion cost, meter maintenance cost, confidence level, precision level, and coefficient of variance were

considered.

These factors may have complex interactions that are difficult to model analytically. A screening test
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was therefore conducted to identify the most important variables. For the purposes of the sensitivity

analysis, the model output is assumed to be linearly dependent on the input factors. The base value

corresponds to the value in Table 4.1 and the low and high values under consideration are listed in

Table 4.4. They are changed one at a time whilst all other variables are kept at their base values.

The Sensitivity Index (SI) method was selected as it is one of the simplest, but also most reliable

sensitivity analysis techniques [56]. It does not require a detailed knowledge of the parameter distri-

butions or random sampling schemes like Monte Carlo techniques do. The direct sensitivity method

using partial derivatives of the model differential equation is the most accurate sensitivity analysis

technique but ‘is typically much more demanding to implement than other sensitivity methods and

yet provides only comparable results’ [56]. Statistical factor techniques like the one described below

are considerably simpler, but static, analyses.

The SI has been defined in literature [56] as follows. Let D be the total expected project cost in the

context of sensitivity, according to an optimal metering scheme. Then:

SI =
Dmax−Dmin

Dmax
. (4.7)

However, it should be noticed that even this metric is not completely satisfactory, as the index awards

a score between 0 and 1 based on the model output of the size of the ‘high’ case relative to the ‘low’

case. It is therefore suggested that the sensitivity index be normalised with respect to the base value

and not the highest value, in the following manner:

SI =
Dmax−Dmin

Dbase
. (4.8)

The sensitivities of the parameters under consideration are reported in Table 4.3.

The variable ranges may be selected in three ways. Take inflation as an example. First, it may be

varied according to historical inflation data for South Africa. This will provide specific insight for

Energy Services Companies in South Africa, but may not be useful for other countries where inflation

may be close to zero. Second, all variables considered may be changed by a given percentage, and

the effect on the model analysed. However, not all variables are expected to vary according to the

same percentage value. Therefore, the third option of altering each variable within reasonable bounds

is adopted.
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Table 4.3: Sensitivity Indices for parameters under consideration

Parameter name Symbol Sensitivity Index

Precision level p 3.99

Coefficient of variance CV 1.89

Confidence level P(z) 1.07

Interest rate r 0.63

Inflation rate d 0.52

Meter maintenance cost c 0.33

Meter purchasing cost a 0.24

Exponential decay factor ε 0.14

Meter installation cost b 0.03

Inflation is varied between 0% and 10%, to make this study applicable to a wider range of countries.

Since the base case has an inflation rate of 6.44%, the low value of the minimum acceptable rate of

return (interest rate on investments) has been set to 6.44%, but varied to 20%. The exponential decay

rate, as well as the three metering costs, were varied by 30%. The lowest confidence level specified

by ASHRAE [6] is 68%, and the highest 95%. Similarly, precision is varied between 30% and 5%.

The coefficient of variance is varied between 0.25 and 0.75 as these values are encountered in practice

[57].

Table 4.4: Sensitivity Analysis parameter ranges

Parameter name Symbol Low Value Base Value High Value

Inflation d 0% 6.44% 10%

Interest Rate r 6.44% 10% 20%

Exponential decay factor ε 0.175 0.25 0.325

Meter purchasing cost a R2,822.40 R4,032 R5,241.60

Meter installation cost b R294 R420 R546

Meter maintenance cost (per year) c R85 R122 R158.60

Confidence level P(z) 68% 90% 95%

Precision level p 30% 10 % 5%

Coefficient of variation CV 0.25 0.5 0.75
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Figure 4.14: Tornado diagram showing sensitivity of expected project cost to various parameters.

‘High’, ‘low’, and ‘base’ values are given in Table 4.4.
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Figure 4.15: Sensitivity of project cost to various precision levels, relative to the 90/10 case.
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It should be noted that the results from this analysis are obtained using a genetic algorithm. The GA

is a heuristic, and does not guarantee that the results reported are globally optimal.
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Figure 4.16: Sensitivity of project cost to various CV levels, relative to CV= 0.5 (at 100%).

4.3.1 Interaction Effects

Varying model parameters (factors) one at a time may provide some insight into the effect that a

certain parameter has on the model, since one expects the model to be close to the baseline most

of the time. However, relying only on such graphs is poor engineering practice since interactions

between factors are frequently very significant [58]. Interaction occurs when the effect of one factor

on the model differs at different levels of another factor. Other than taking the partial derivatives of

the model differential equation, the correct approach when experimenting with multiple factors is to

vary them simultaneously in a systematic way called factorial experimentation.

Reporting precision, CV, and reporting confidence were identified as the most important factors dur-

ing the initial screening. Although it has been shown in Figure 4.15 and Figure 4.16 that the expec-

ted project cost varies non-linearly with these factors, a two-level experimental design was selected.

Since such an analysis assumes linear relationships, the results of this design will not yield accur-

ate model regression coefficients, but will indicate the relative magnitude of the main effects of the

factors and interactions. The experiment design is thus three-factor and two-level, or a 23 factorial
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design. Since a computer model is used, single replication is considered for model analysis as there

should not be variance around the mean of the optimal sampling plan solutions to each case. Other

experimental design procedures such as randomisation, blocking, analysis of variance, or fractional

designs will complicate the experimental design and analysis without adding value, and have not been

used. Therefore the averaged main effects of reporting confidence, reporting precision, and CV have

been considered orthogonally, along with their interactions. In order to make effects unitless and

thus comparable, factors are coded as in Table 4.5. Traditionally, factors are named a, b, and c, and

their effects A, B, and C [58]. The interaction between a and b would be denoted ab, for example.

However, since these symbols denote other values in this study, the notation of CV, P(z), and p will

be used for CV, confidence level and precision level respectively. The interaction between precision

and confidence will therefore be denoted pP(z), for example.

The experiment was conducted using the standard order (Yate’s order), with factors varied orthogon-

ally as shown in Table 4.6. The results are shown in Figure 4.17. It should be noted that the calculation

of the averaged effects in the last column is quite involved, but available in literature [58].

Table 4.5: Factorial design variable coding

Coded value CV Confidence Precision

0 0.25 0.3 0.68

1 0.75 0.05 0.95

4.4 CHAPTER SUMMARY

A case study previously published in literature was considered as a benchmark. An investigation of

the solution space showed stepped discontinuity, and thus a genetic algorithm was chosen rather than

a gradient method. The various improvements proposed in this paper were implemented sequentially

and was found to increase project cost markedly. The sensitivity analysis revealed that the parameters

that have the biggest influence on expected project cost are reporting precision level, coefficient of

variance, and reporting confidence level.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4 Case study

Table 4.6: Factorial experiment order and results

Precision Confidence CV Project Cost Effect

(1) 0 0 0 27,490

p 1 0 0 538,123 6,289,834

P(z) 0 1 0 69,625 3,925,635

pP(z) 1 1 0 2,097,272 3,708,442

CV 0 0 1 141,751 5,310,013

pCV 1 0 1 4,793,903 5,020,694

P(z)CV 0 1 1 534,001 3,124,992

pP(z)CV 1 1 1 18,502,908 2,949,935
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Figure 4.17: Averaged main effects and interactions of reporting precision level (p), reporting con-

fidence level (P(z)), and CV.
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CHAPTER 5

DISCUSSION

5.1 CHAPTER OVERVIEW

This chapter provides reviews outstanding questions regarding the implementation of the model to

a real-world case study. The effect of the proposed improvements on the economic performance

of the sampling project is also discussed, as well as the sensitivity of the model to certain factors.

Lastly, the application to other technologies as well as the applicability of the model to real-world

scenarios is assessed according to the validity and impact of the assumptions made during model

development.

5.2 MODEL IMPLEMENTATION

Because of the way in which the model has been formulated with λλλ as the decision variable containing

the parameters z and p for every year, sample size is not optimised directly. Although there are valid

reasons for this (discussed below), it presents a problem in that z and p map many-to-one to an ni-

value through equation (3.30). In effect, the optimisation function then searches for a solution with

high zi and low pi that still map to the lowest ni possible, since cost is determined by ni.

However, there are good reasons for fomulating the problem this way. First, it may then be compared

with previous models. Second, the alternative is not obviously preferable. One may be able to re-

arrange equation (3.30) to give confidence as a function of sample size and precision, or precision as

a function of sample size and confidence (assuming a CV value in each case). But both confidence

and precision are variable, because the one may be traded off against the other. Fixing confidence, for

example, is not an option since a large sample (and confidence) in one year may be traded off against a
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smaller one in another year for economic reasons. Therefore optimising for precision and confidence

simultaneously in the current formulation of the problem, although not efficient, is justifiable.

An observation concerning rounding is also necessary. Previously, rounding was done using the ceil

function in Matlab to convert the decimal n value to an integer for cost and accuracy calculation. This

function rounds up, so that 1.0001 will be rounded to 2. The rationale behind this approach is that

since decimal samples are not realistic, the next whole number should always be selected for the

sample size. This is normally the case when employing equations such as equation (3.30). Since the

pre-rounded figures are used to calculate precision and confidence through equation (3.22) and equa-

tion (3.23), rounding interacts with the model in a complex way; it is not simply that always rounding

up will be conservative, since increased confidence can lead to decreased precision. In the end, both

the round and the ceil function supply similar results to the problem through optimisation, as the

algorithm works within the context of the rounding selected. However, it is believed that round is

the preferable alternative, since due to calculation and multiplication at the limit of working precision

(as the optimisation algorithm does) may produce slight inaccuracies such as where 0 is expressed

as 0.000001. It is reasonable in such a case to round down rather than to round up. Another way

in which ceil can be seen to deliver sub-optimal results is when performing the model validation

test of Section 4.2.2. If δδδ = (5,8) with ε = 0.99 and ceil is used, the optimal result would be

n = (1,1,1,67,1,1,1,1,67,1,1), which is obviously sub-optimal, as no samples should be taken in

the years other than 3 and 8. Therefore solutions using round are considered in this study.

5.3 IMPACT OF IMPROVEMENTS ON MODEL PERFORMANCE

As expected, number of meters never exceed 68 in any given year, as indicated by equation (3.28).

However, each subsequent model improvement considered does increase the cost of metering above

the previous case.

In this case, the optimal solution for the linear and non-linear population decay curves were identical,

although this is not necessarily always the case. Depending on the size of the population, the increased

metering cost due to using the sigmoid decay curve rather than the CDM straight-line curve may be

offset by the increase in true savings reported. If a larger lamp population were considered in the

study, and the finite population adjustment factor thus made no difference, the sampling plans for

both population decay models would be identical. In this case greater and more accurate savings are

reported with no additional cost due to this modification.
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The second improvement - the exponential windowing function - does not allow the model to rely

on high initial sample sizes to support much lower sample sizes in later years. As such, sample sizes

during the later years of the study are notably higher than before, although the algorithm stabilises on

sample sizes of between 15 and 20 per year.

The last improvement, taking the time-value of money into account, also tends to shift metering

towards the end of the study. This is because meter cost was modelled as depreciating, reinforced by

opportunity costs which also penalise early expenditure on ‘expensive’ meters, when money could

be invested and spent later on ‘less expensive’ meters. It is interesting to note that introducing this

consideration does not increase sample sizes significantly, although it does skew their size distribution

towards the later years of the study. The increased cost of this consideration in NPV terms is 0.5%

when compared to the exponential windowing function modification. However, if ε were changed to

a different value, this comparison may well show a much greater discrepancy.

5.4 MODEL SENSITIVITY

From the sensitivity analysis it is evident that the model is more sensitive to statistical parameters

such as confidence, precision and assumed CV, than to economic parameters such as metering costs.

Inflation rate and interest rate are still notable, since the project developer has little control over these

figures. They must therefore be forecast accurately.

Since confidence and precision values are usually specified by legislation, M&V Engineers cannot

select these values, although they are sometimes negotiated at project inception if CDM requirements

do not need to be adhered to. Figure 4.15 shows that monitoring projects with lower precision values

will almost always dominate projects with higher precision values in economic terms, regardless of

the confidence level. Relative to the 90/10 case, reporting at a precision level of 5% would increase

project costs fourfold, and halving the precision to 20% would decrease project costs to 25% of the

original value.

It is also important to note the sensitivity of the model to the coefficient of variance, as this value is

estimated by engineering judgement before project commencement. Assuming a CV of 0.25 when

the CV is actually 0.5 will decrease the expected cost of the project to 27% of the true cost, but will

detrimentally affect reporting accuracy. On the other hand, if a CV of 0.5 is assumed, but it is later

found that the CV is actually closer to 0.75, monitoring costs need to double in order to adhere to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5 Discussion

the contractually agreed reporting accuracy levels. Therefore CV should be tested over a short period

of time, and then updated, bearing in mind that seasonal effects may affect this value. In long-term

projects the CV value should be evaluated on an annual basis.

The interaction effects revealed by the factorial experimental design shows that one-factor-at-a-time

sensitivity approaches do not do justice to the complexities of these projects. Figure 4.17 indicates

that precision and CV are still the most important factors, but that the interaction between these two

factors is more significant than the main effect of the confidence level. This is not only because

those two factors dominate expected project cost, but also because at different CV levels, the same

precision level specification affects the model differently. Other interactive effects are also large

relative to the main effects. One should bear in mind that this analysis technique assumes a linear

relationship between expected project cost and the factors and that it is static. However, setting up a

linear regression model using these factors will not work, as illustrated by Figure 4.15 and Figure 4.16.

Nevertheless, it does show that if a non-linear regression model were set up, the interactive terms such

as x1x2 or x1x3 should not be discarded. If it is possible to derive the model differential equation, this

will shed more light on the interaction between these factors.

5.5 APPLICATION OF MODEL TO OTHER TECHNOLOGIES

Although this model may be applied to technologies other than lighting, caution should be exercised

in such cases. This model is derived from first principles, but certain assumptions have been made

that need to be adhered to ensure compliance to the 90/10 reporting criterion. First, lighting retrofit

projects usually have large population sizes, making them suitable for statistical analysis. Second,

normally distributed residuals are also assumed; this may not always the case for other technologies,

and the engineer involved should consider this possibility. Third, lighting technologies are relatively

insensitive to seasonality effects such as outside air temperature. For heating technologies where such

covariates may be significant, it is recommended that an optimal sampling model be derived from the

ASHRAE models [6] described in Section 2.2. Simple power meters may therefore not be suitable

for such studies, and a combined uncertainty analysis is then warranted.

5.6 APPLICABILITY OF MODEL TO REAL-WORLD SCENARIOS

How applicable is this model to real-world sampling scenarios? The accuracy of the model depends

on the validity of the assumptions made before implementation. Although the NPV-calculations are
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not complicated, they do add realism to the cost minimisation calculation. However, the applicability

of the whole economic model depends on the pricing structure of the contractor supplying the meters.

Often certain ‘packaged’ schemes are sold and thus price is not directly proportional to the number

of meters installed, or the maintenance aspect of the project is calculated differently to the way this

model calculates it. Nevertheless, a proportional model most accurately reflects true costs incurred,

and is thus the preferable model within a research context.

Computer simulations of long-term projects are at best an approximation of a complex system. In-

stalling the exact number of meters recommended by the algorithm would carry the risk of under-

sampling in the event of a meter failing, data being corrupted, or other unforeseen circumstances

interfering with data integrity. A greater risk is that of underestimating the coefficient of variance - a

common problem in M&V practice [57]. And yet building in a ‘buffer’ is precisely what the optim-

isation approach seeks to avoid. In this regard, using the sampling as a guide, there is no substitute

for an experienced M&V practitioner’s judgement on the expected variance within the population to

be monitored as well as on data reliability.

More significant concerns pertain to the assumptions made at a fundamental level when this model

was formulated originally, as alluded to in Section 3.2.

The first assumption of concern is that the mean daily energy use is stationary throughout the study.

Since the current focus is on residential lighting projects, occupancy change should not affect energy

consumption as much as it would hot water consumption, for example. One could also argue that

baseline adjustments should be done in order to compensate for such (and other) changes over the

monitoring period. However, meter readings are done prior to baseline adjustment, and thus means

and standard deviations used to calculate sample size at a given confidence and precision level would

still be affected. Assuming a stationary mean for the current study is reasonable. Seasonal effects

should also be visible in the month-to-month energy use. However, since annual energy use is con-

sidered for calculation, seasonal effects may be neglected. At a finer surveillance resolution such a

model should be implemented, also correcting for other periodic autocorrelative effects. It would also

be possible to account for varying parameters during actual studies as the sampling interval allows for

recalculation to be done where equation (3.16) could be rewritten as a less elegant summation with

different mean and standard deviations. Likewise, θK and ΓK may be adjusted when this is deemed

necessary.
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Chapter 5 Discussion

The second assumption is that samples taken by the same meter, in different years, are independent,

as the assumption for normal sampling (used in the model) is that samples are i.i.d. If there is autocor-

relation, then the number of effective samples reduce dramatically according to equation (2.1). This

is applicable to hourly, daily or monthly energy use. However, all things being equal, annual energy

use should not be affected by autocorrelative phenomena such as seasonality, and may be assumed to

be i.i.d.

5.7 CHAPTER SUMMARY

Various challenges to model implementation have been overcome, specifically in relating confidence

and precision to sample size, as well as the question of rounding. Improvements in the model ac-

curacy resulted in a cost increase of 21.4% in NPV terms. Certain model assumptions need to be

investigated further, but are considered valid and is expected to have a small impact on results. The

model sensitivity analysis shows that assumptions of CV made during the project planning phase have

a large cost implication, as does the selected confidence and precision reporting level.
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CHAPTER 6

CONCLUSION

A number of improvements to current sampling design studies have been proposed and implemented,

altering optimal sampling regime shapes and expected project costs significantly.

The improved CFL population survival model was found to fit known data very well, with a mean

squared error (MSE) of 0.0015 compared to an MSE of 0.0368 for the previous model. The new

model in discretised form also allows for optimal control theory to be applied to the problem, and

reports greater savings than existing linear models.

By plotting line sections through the search space and investigating the gradient around known solu-

tions, the nature of the search space was proven to be stepped and discontinuous, and the Genetic

Algorithm was determined to be an appropriate heuristic for optimisation. The model was validated

by applying it to certain test cases and checking performance against their known solutions. This

approach allows for greater confidence in optimisation results.

A more accurate cumulative sampling function was devised and implemented. This function allows

for the exponential decay of weights on past data, thereby increasing the relative contribution of more

recent data during calculation. An exponential decay factor of 0.25 was selected for the current study,

but it is recognised that this value will vary between projects.

An economic model incorporating the time-value of money was also implemented. This model not

only accounts for inflation, but also takes investment opportunity costs and the difference between

labour and capital costs into account. Using a minimum acceptable rate of return of 10% and an

inflation rate of 6.44% based on Consumer Price Inflation, it was found that the project costs for op-

timal sampling plans are 21.4 % higher in Nett Present Value (NPV) terms than previously calculated,
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Chapter 6 Conclusion

although this figure is dependent on project-specific assumptions.

Neither the improved population survival model nor the addition of NPV considerations altered the

sampling plans in a notable way, contributing 0% and 0.5% respectively. However, not weighting all

samples equally did have a significant effect, contributing the bulk of the increased project cost.

The expected project cost is sensitive to the reporting precision, coefficient of variance, and reporting

confidence, with modified sensitivity indices of 3.99, 1.89 and 1.07 respectively. Large interaction

effects between these factors exist.

6.1 RECOMMENDATIONS

Although numerous improvements to the aforementioned changes may be made, it is recommended

that future work focus on the latent assumptions identified in existing literature on longitudinal CFL

sampling design: that the mean energy usage is stationary throughout the study, that samples taken

in different years are independent, the possibility of considering statistical power during sample size

calculation, and the structure of meter pricing and contracting schemes. Future research may also

incorporate Bayesian methods and binomial data techniques.
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APPENDIX A

MATLAB PROGRAMMING CODE

A.1 SAMPLEOPTIM.M

1 % Author: Herman Carstens. Naming conventions based on code by

Xianming

2 % Ye in order to assure continuity.

3 % Department of Electrical, Electronic and Computer Engineering

4 % Date: 2013/10/07

5

6 clear all;

7 close all;

8 %% Variable declaration

9 % Initial values

10 a = 4032*ones(1,11); %Meter purchasing Cost

11 b = 420*ones(1,11); %Meter installation Cost

12 c = 122*ones(1,11); %Meter maintenance Cost

13 Year=10; %Length of study

14 smoothingfactor = 0.25; %Exponential smoothing coefficient

15 delta = [1 2 4 6 8 10]; %Reporting years

16

17 %Reference sequence (Should be called lambda)

18 x_ref=[1.645

19 0.100105813

20 1.148569001
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Appendix A Matlab Programming Code

21 0.10073342

22 0.797595167

23 0.101293138

24 1.059205978

25 0.100988871

26 0.794130446

27 0.087695381

28 0.88042801

29 0.102345577

30 0.545535986

31 0.069281733

32 1.043751244

33 0.132554463

34 0.773859636

35 0.101610681

36 0.894999911

37 0.101335949];

38

39 %% Program controls

40 expoption = 1; %1 for exponential windowing

41 survcurve = 1; %1 for PELP, 0 for CDM

42 npv = 0; %1 for time-value of money calc

43 figures = 1; %1 to display figures

44 optimise = 0; %1 to optimse, 0 to analyse existing x_ref

45

46 %% NPV calc

47 %Discount price of meter by CPI inflation: Assume meter price stays

48 %constant but in Present Value thus decreases by CPI.

49 %Also, factor in an opportunity cost

50

51 if npv

52 inflation = 0.0644;

53 interest = 0.1;
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Appendix A Matlab Programming Code

54 metercost = a(1);

55 installationcost = b(1);

56 maintenancecost = c(1);

57 opportunity = 0;

58 for i=1:Year

59 meter_cost_depreciated(i) =metercost/((1+inflation)^(i-1));

60 opportunity_cost_purchasing(i) = (metercost*(1+interest)^(

Year-i))/((1+inflation)^Year);

61 opportunity_cost_installation(i) = (installationcost*(1+

interest)^(Year-i))/((1+inflation)^Year);

62 opportunity_cost_maintenance(i) = (maintenancecost*(1+

interest)^(Year-i))/((1+inflation)^Year);

63 a(i)=meter_cost_depreciated(i)+opportunity_cost_purchasing(

i);

64 b(i) = b(i)+opportunity_cost_installation(i);

65 c(i)=c(i)+opportunity_cost_maintenance(i);

66 end

67 end

68

69 N0=607559; %Initial Population

70 cv= 0.5; %Coefficient of variance

71

72 %% Survival Rate variable declaration

73

74 k=4.5; %daily burning time (hours)

75 H=k*365; %Annual burning time (hours)

76 L=20000; %Rated life span (hours)

77 y=zeros(1,11); %The population that has decayed

78

79 %% PELP Survival

80 if survcurve

81 SurRate = zeros(1,11);

82 SurRate(1:2) =1;
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Appendix A Matlab Programming Code

83 beta=0.543;

84 gamma=0.99;

85 for t=3:1:11

86 SurRate(t) = beta*gamma*SurRate(t-1)^2-beta*SurRate(t-1)+

SurRate(t-1);

87 end

88 end

89

90 %% CDM Surival

91 if ~survcurve

92 for t=1:1:10

93 if t*H<=L

94 y(t+1)=(t).*H./(2*L);

95 else

96 y(t+1)=1;

97 end

98 end

99

100 y(1)=0;

101 y=[y(1) y(1:end-1)];

102 SurRate=1-y;

103 end

104

105 %% Plot survival

106 %SurRate=[1 SurRate(1:end-1)];

107

108 N=zeros(1,Year+1);

109

110 for t=1:1:Year+1

111 N(t)=N0*SurRate(t);

112 end

113

114 figure(1);
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Appendix A Matlab Programming Code

115 plot(N,’k’,’linewidth’,3);

116 grid on;

117 hold on;

118 xlabel(’Time: Year’)

119 ylabel(’Population Size’)

120 legend(’N(i)’);

121 N=N(2:end);

122

123 %% Optimisation

124 if optimise

125

126 %Initial value

127 x0=[1.645

128 0.1

129 1.645

130 0.1

131 1.645

132 0.1

133 1.645

134 0.1

135 1.645

136 0.1

137 1.645

138 0.1

139 1.645

140 0.1

141 1.645

142 0.1

143 1.645

144 0.1

145 1.645

146 0.1]’;

147 %Upper and lower bounds
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148 lb=[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;]’;

149 ub=[3;1;3;1;3;1;3;1;3;1;3;1;3;1;3;1;3;1;3;1;];

150

151 optionsga = gaoptimset(’InitialPopulation’,x0,’Tolcon’,1e-12,’

tolfun’,1e-12,’PlotFcns’,@gaplotbestf,’PopulationSize’,50,’

PopInitRange’,[0; 2]);

152

153 [x,fval,exitflag] = ga(@(x)MeteringCostFunction(x,cv,a,b,c,N)

,20,[],[],[],[],lb,ub,@(x)MeteringConstraintFunction(x, N,

cv, smoothingfactor,expoption,a,b,c,delta,Year),optionsga)

154 [TotalConf, confidence, TotalPre, precision, CumCost, Cost,

Sample, Backup, BaseCost,B,n,Z] = cumcalc(x,expoption,cv,N,

Year,a,b,c,smoothingfactor);

155

156 else

157 if ~optimise

158 x=x_ref; %Perform subsequent calculations with given

value

159 end

160 end

161 %% Output Confidence and Precision

162 %This is the main function of the program

163 MeteringCostFunction(x,cv,a,b,c,N)

164 [TotalConf, confidence, TotalPre, precision, CumCost, Cost, Sample,

Backup, BaseCost,B,n,Z] = cumcalc(x,expoption,cv,N,Year,a,b,c,

smoothingfactor);

165

166 %% Figures

167 if figures

168 t=0:1:Year;

169

170 %Adding Baseline value

171 confidence=[confidence(1) confidence];
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172 precision=[precision(1) precision];

173 Sample=[Sample(1) Sample];

174 CumCost=[BaseCost, CumCost];

175 Cost=[BaseCost, Cost];

176

177 %Confidence

178 figure(2);

179 plot(t, confidence,’k--’,’linewidth’,3);

180 set(gca,’FontSize’,22,’Fontname’,’Times’)

181 grid on;

182 hold on;

183 plot(t, TotalConf,’k’,’linewidth’,3);

184 xlabel(’Time [Years]’,’fontsize’,22,’Fontname’,’Times’)

185 ylabel(’Confidence level’,’fontsize’,22,’Fontname’,’Times’)

186 h_legend=legend(’Instantaneous Confidence’,’Cumulative

Confidence’);

187 set(h_legend,’FontSize’,22,’Fontname’,’Times’);

188

189 %Precision

190 figure(3);

191 plot(t, precision,’k--’,’linewidth’,3);

192 set(gca,’FontSize’,22,’Fontname’,’Times’)

193 grid on;

194 hold on;

195 plot(t, TotalPre,’k’,’linewidth’,3);

196 set(gca,’FontSize’,22,’Fontname’,’Times’)

197 xlabel(’Time [Years]’,’fontsize’,22,’Fontname’,’Times’)

198 ylabel(’Precision level’,’fontsize’,22,’Fontname’,’Times’)

199 h_legend=legend(’Instantaneous Precision’,’Cumulative Precision

’);

200 set(h_legend,’FontSize’,22,’Fontname’,’Times’);

201

202 %Sample size, backup meter population size
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203 figure(4);

204 plot(t,Sample,’k--’,’linewidth’,3);

205 grid on;

206 hold on;

207 plot(t, Backup,’k’,’linewidth’,3)

208 set(gca,’FontSize’,22,’Fontname’,’Times’)

209 xlabel(’Time [Years]’,’fontsize’,22,’Fontname’,’Times’)

210 ylabel(’Sample size’,’fontsize’,22,’Fontname’,’Times’)

211 h_legend= legend(’Adopted meters’,’Backup meters’);

212 set(h_legend,’FontSize’,22,’Fontname’,’Times’);

213

214 %Cost

215 figure(5);

216 bar(t, Cost);

217 grid on;

218 hold on;

219 plot(t, CumCost,’k’,’linewidth’,3);

220 set(gca,’FontSize’,22,’Fontname’,’Times’)

221 xlabel(’Time [Years]’,’fontsize’,22,’Fontname’,’Times’)

222 ylabel(’Metering cost [R]’,’fontsize’,22,’Fontname’,’Times’)

223 h_legend=legend(’Annual Cost’,’Aggregated Cost’);

224 set(h_legend,’FontSize’,22,’Fontname’,’Times’);

225 end
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A.2 CUMCALC.M

1 % Author: Herman Carstens. Naming conventions based on code by

Xianming

2 % Ye in order to assure continuity.

3 % Department of Electrical, Electronic and Computer Engineering

4 % Date: 2013/10/07

5

6 function [TotalConf, confidence, TotalPre, precision, CumCost, Cost

, Sample, Backup, BaseCost, B,n, Z] = cumcalc(x_passed,expoption

,cv,N,Year,a,b,c,smoothingfactor)

7

8 %%Variable Declarations

9 n=zeros(1,Year); %Decimal Sample size

10 zscore=zeros(1,Year); %instantaneous standard score

11 precision=zeros(1,Year); %instantaneous precision

12 confidence=zeros(1,Year); %instantaneous confidence

13 Sample=zeros(1,Year); %rounded sample size

14 Cost=zeros(1,Year); %Annual Cost

15 CumCost=zeros(1,Year); %Total Cost

16 B=zeros(1,Year); %Backup meters

17 numz=zeros(10,1); %z-calculation numerator

18 denz=zeros(10,1); %z-calculation denominator

19 nump=zeros(10,1); %precision numerator

20 denp=zeros(10,1); %precision denominator

21

22 %% Instantaneous confidence and precision levels

23 for i=1:1:Year

24 zscore(i)=x_passed(2*i-1);

25 precision(i)=x_passed(2*i);

26 if zscore(i)==0 && precision(i)==0 %This circumvents the

problem of

27 %dividing by zero for z=0.
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28 n(i)=0;

29 else

30 n(i)=((zscore(i)^2)*(cv^2)*N(i))/((zscore(i)^2)*(cv^2)+(

precision(i)^2)*N(i)); %Finite population adjustment

31 end

32 confidence(i)=normcdf(zscore(i),0,1)-normcdf(-zscore(i),0,1);

33 Sample(i)=round(n(i));

34 end

35 %Sample=[]; %Insert sample size here for a quick calculation. Note

that

36 %confidence and precision will be inaccurate, as x_passed is needed

as per

37 %above.

38

39 %% Cost calculation

40 BaseCost=(a(1)+b(1)+3*c(1)).*Sample(1); %Cost of baseline period

41 Cost(1)=12*c(1)*Sample(1); %Cost of first year

42 CumCost(1)=BaseCost+Cost(1); %Total cost of first year

43 B(1)=0;

44 for i=2:1:Year

45 B(i)=max(B(i-1),0)+Sample(i-1)-Sample(i); %Backup meter

calculation

46 if B(i)<0 %This is a rare

condition

47 Cost(i) = 12*c(i)*Sample(i)-B(i)*(a(i)+b(i));

48 else

49 Cost(i)=12*c(i)*Sample(i);

50 end

51 CumCost(i)=CumCost(i-1)+Cost(i);

52 end

53 Backup=[0 B];

54 %% Cumulative confidence and precision calculation
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55 if expoption %For the case where exponential windowing is

considered

56 for i=1:1:Year

57 for j = 1:i

58 if Sample(j) ~= 0

59 numz(i)=numz(i)*(1-smoothingfactor)+N(j).*zscore(j)

./sqrt(Sample(j));

60 nump(i)=nump(i)*(1-smoothingfactor)+cv.*N(j).*

zscore(j)./sqrt(Sample(j));

61 denz(i)=denz(i)*(1-smoothingfactor)+N(j)^2/Sample(j

);

62 else

63 nump(i)=1;

64 numz(i)=0;

65 end

66 denp(i)=denp(i)*(1-smoothingfactor)+N(j);

67 end

68 z(i) = numz(i)/sqrt(denz(i));

69 Conf(i)=normcdf(z(i),0,1)-normcdf(-z(i),0,1);

70 if Sample(i)~=0

71 p(i) = nump(i)/denp(i);

72 else

73 p(i) = NaN;

74 Conf(i)=NaN;

75 end

76 end

77 end

78

79 if ~expoption %No exponential windowing isn’t considered

80 for i=1:1:Year

81 for j = 1:i

82 numz(i)=numz(i)+N(j).*zscore(j)./sqrt(Sample(j));

83 nump(i)=nump(i)+cv.*N(j).*zscore(j)./sqrt(Sample(j));
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84 denz(i)=denz(i)+N(j)^2/Sample(j);

85 denp(i)=denp(i)+N(j);

86 end

87 z(i) = numz(i)/sqrt(denz(i));

88 Conf(i)=normcdf(z(i),0,1)-normcdf(-z(i),0,1);

89 p(i) = nump(i)/denp(i);

90 end

91 end

92

93 %% Cumulative vectors

94 Z=[z(1) z(2) z(3) z(4) z(5) z(6) z(7) z(8) z(9) z(10)];

95 TotalConf=[Conf(1) Conf(1) Conf(2) Conf(3) Conf(4) Conf(5) Conf(6)

Conf(7) Conf(8) Conf(9) Conf(10)];

96 TotalPre=[p(1) p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9) p(10)];
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A.3 METERINGCOSTFUNCTION.M

1 % Author: Herman Carstens. Naming conventions based on code by

Xianming

2 % Ye in order to assure continuity.

3 % Department of Electrical, Electronic and Computer Engineering

4 % Date: 2013/10/07

5 %%

6 function totalcost= MeteringCostFunction(x,cv,a,b,c,N)

7 Year=10;

8 n=zeros(1,Year);

9 B=zeros(1,Year);

10

11 %Calculate n. This needs to be done since this function is called

fromt the

12 %optimisation function.

13 for i=1:1:Year

14 n(i)=x(2*i-1).^2*cv.^2*N(i)./(x(2*i-1).^2*cv.^2+x(2*i).^2*N(i))

;

15 end

16

17 Sample=round(Sample);

18

19 %% Cost Calculation

20 %(Same calculation as in cumcalc)

21

22 BaseCost=(a(1)+b(1)+3*c(1)).*Sample(1); %Cost of baseline period

23 Cost(1)=12*c(1)*Sample(1); %Cost of first year

24 CumCost(1)=BaseCost+Cost(1); %Total cost of first year

25 B(1)=0;

26

27 for i=2:1:Year
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28 B(i)=max(B(i-1),0)+Sample(i-1)-Sample(i); %Backup meter

calculation

29 if B(i)<0 %This is a rare condition

30 Cost(i) = 12*c(i)*Sample(i)-B(i)*(a(i)+b(i));

31 else

32 Cost(i)=12*c(i)*Sample(i);

33 end

34 CumCost(i)=CumCost(i-1)+Cost(i);

35 end

36 totalcost = CumCost(end);

37 end
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A.4 METERINGCONSTRAINTFUNCTION.M

1 % Author: Herman Carstens. Naming conventions based on code by

Xianming

2 % Ye in order to assure continuity.

3 % Department of Electrical, Electronic and Computer Engineering

4 % Date: 2013/10/07

5 function [c,ceq] = MeteringConstraintFunction(x, N, cv,

smoothingfactor,expoption,a,b,c,delta,Year)

6 Year=10;

7 n=zeros(1,Year);

8 [TotalConf, confidence, TotalPre, precision, CumCost, Cost, Sample,

Backup, BaseCost,B,n,Z] = cumcalc2(x,expoption,cv,N,Year,a,b,c,

smoothingfactor);

9 c=[TotalPre(delta+1)’-0.1

10 0.9-TotalConf(delta+1)’];

11 ceq = [];

12 % No nonlinear equality constraints:
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