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Abstract 

This study performs the challenging task of examining the forecastability behavior of 

the stock market returns for the Dow Jones Islamic market (DJIM) and the Dow Jones 

Industrial Average (DJIA) indices, using non-parametric regressions. These indices 

represent different markets in terms of their institutional and balance sheet 

characteristics. The empirical results posit that stock market indices are generally 

difficult to predict accurately. However, our results reveal some point forecasting 

capacity for a 15-week horizon at the 95 per cent confidence level for the DJIA index, 

and for nine- week horizon at the 99 per cent confidence for the DJIM index, using the 

non-parametric regressions. On the other hand, the ratio of the correctly predicted signs 

(the success ratio) shows a percentage above 60 per cent for both indices which is 

evidence of predictability for those indices. This predictability is however statistically 

significant only four-weeks ahead for the DJIM case, and twelve weeks ahead for the 

DJIA as their respective success ratios differ significantly from the 50 percent, the 

expected percentage for an unpredictable time series. In sum, it seems that the 

forecastability of DJIM is slightly better than that of DJIA. This result on the 

forecastability of DJIM adds to its other findings in the literature that cast doubts on its 

suitability in hedging and asset allocation in portfolios that contain conventional stocks. 
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1. Introduction 

One of the most challenging topics in Finance has been the attempt to predict 

accurately the dynamic future evolution of stock market returns. The financial markets 

are usually characterized by complex, unpredictable and apparently erratic dynamics 
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(Hsieh, 1991). This fact, well-known as efficient market hypothesis, does not support 

stock market predictability. According to this hypothesis, the price of a financial asset 

reflects all information which can be obtained from its own past values (Fama, 1970). 

The acceptation of this hypothesis implies that past information does not explain current 

market activity and, therefore, the dynamics of financial prices can be well 

approximated by a random walk. Financial returns are assumed to be independent and 

behave as a white noise process and, consequently, it is not possible to obtain accurate 

predictions or devise a profitable investment strategy from past values of the returns. 

In spite of the general acceptance of the efficient market hypothesis, some 

empirical evidence has questioned the adequacy of this hypothesis. Specifically, there 

exist considerable studies showing that the dynamics of the stock returns include some 

nonlinear deterministic component (Hsieh, 1989; Brooks, 1996; Serletis and Gogas, 

2000; Kocenda, 2001; Ajmi et al. 2014). These studies all conclude that if the nonlinear 

component is important and captured, it would be possible to improve significantly the 

forecasting accuracy using nonlinear methods. Moreover, other studies have gone one-

step further and have demonstrated that stock returns are to some extent predictable (see 

for example, Lo and MacKinlay, 1988; Guidolin and Timmermann, 2007; Chen and 

Hong, 2010; Dangl and Halling, 2012).  

Most of the research accomplished until now is carried out using data from well-

established conventional stock markets or well-known conventional financial indices 

(Leung et al., 2000; Chen et al, 2003). However, an open question which is of great 

interest for academics and practitioners is whether it is possible  to investigate  the 

existence of non-linear predictable structures, using data for less well-established and 

unconventional financial indices or stock markets. These markets and their indices have 

been growing in importance in recent years and are expected to continue to gather 
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momentum in the future as more countries and institutions accept them. One of those 

financial markets is the global Islamic stock market which is better represented by the 

Dow Jones Islamic Market index, the DJIM index. 

The Islamic equity markets are seemingly different from the well-known and 

well-established conventional markets in the United States and other developed 

countries. These markets are not well-known in the financial literature and have 

different characteristics which may make them more or less difficult to model and 

forecast than their conventional counterparts. They prefer investments in growth and 

small capitalization stocks, which are not as liquid as the conventional standard stocks. 

They also restrict speculative financial transactions such as financial derivatives because 

they have no underlying real transactions. These derivatives include futures and options, 

government debt issues with a fixed coupon rate, and hedging by forward sale, interest-

rate swaps and any other transactions involving items not physically in the ownership of 

the seller (e.g., short sales). 

 Studies have also shown that restricting leverage, which is defined as the 

percentage of debt in the total assets or market capitalization, like in the Islamic finance 

industry, reduces liquidity (Frieder and Martell, 2006). The issues of liquidity and 

presence of a second trading market, or the lack thereof, in the world of Islamic finance 

have also been a matter of continuing debate.
1

 Moreover, the tax laws do not 

accommodate Islamic finance transactions where there can be a double charge. The 

differences of opinions among Islamic scholars regarding the acceptability of certain 

transaction structures make investors shy away from the secondary market trading 

because of lack of clarity. 

                                                           
1
The Islamic bonds known as sukuks have no secondary market and are held to maturity because asset 

managers may not be able to find other Islamic investment alternatives to invest in. 
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These unusual characteristics may affect the forecastability behavior of the 

global Islamic stock market. Barring the recent (working) paper by Gupta et al., (2013), 

no studies have attempted to forecast the returns of this global unconventional market. 

Gupta et al., (2013) use a wide variety of linear and nonlinear predictive regression 

models, based on a large number of predictors, to indicate that these models cannot 

outperform the (benchmark) autoregressive model in forecasting the DJIM returns. 

These authors posit that, in addition to the above-mentioned characteristics of the 

Islamic stock markets, the prohibition of interest rates in the Islamic finance industry 

possibly shuts off the channels that connect market returns with economic activity, 

which in turn complicates the attempts to forecast the Islamic stock returns. This paper 

thus suggests that future research should be aimed at analyzing whether the performance 

of the linear autoregressive model can be improved by using nonlinear versions of the 

univariate autoregressive model due to wide evidence on the existence of nonlinear 

data-generating process for the asset returns (see for example Guidolin et al., 2009, 

2010, and references cited therein).
2
 

Against this backdrop, the objective of this paper is to forecast the returns of the 

global Islamic stock market as represented by the Dow Jones Islamic Market index, and 

compare the forecast with that of the Dow Jones Industrial Average, using a non-linear 

forecasting method called the nearest neighbor (NN) approach. This method is one of 

the most popular techniques in non-linear time series forecasting. It is also attractive for 

its simplicity and ability to predict complex non-linear behaviors. 

                                                           
2
Note that in the nonlinear (time-varying) models used by Gupta et al., (2013), nonlinearity is only 

captured between the DJIM returns and the predictors. That paper does not specifically model the DJIM 

returns as nonlinear originating from a nonlinear data- generating process. 
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The remainder of this study is organized as follows. Section 2 discusses the data 

and presents the non-linear forecasting method. Section 3 discusses the results and 

Section 4 concludes. 

2. Empirical investigation 

2.1. Preliminary data analysis 

 

The data used in our study are the Dow Jones Islamic Market (DJIM) Index  and 

the Dow Jones Industrial Average (DJIA) Index, which are sourced from Bloomberg. 

The DJIM index is the most comprehensive Islamic equity index and embraces a global 

universe of investable equities that have been screened for Sharia compliance. The 

companies in this index pass the industry and financial ratio screens which are set forth 

by the Sharia scholars. The DJIM includes Sharia-compliant stocks from 44 countries 

and its regional allocation is classified as follows: 60.14% for the United States; 24.33% 

for Europe and South Africa; and 15.53% for Asia (Hammoudeh et al., 2013). The 

analysis is based on weekly data spanning the period from January 1996:W1to July 

2013:W1, having a total of 923 observations. The range of the data sample is 

constrained by the data availability. The adoption of a weekly frequency allows one to 

have sufficient information to reflect accurately the dynamics of the series (Yao and 

Tan, 2000). Additionally, this periodicity helps alleviate possible biases related to the 

daily frequency such as, for example, the weekend effect or the day-of-the-week effect. 

To be precise, each series captures the value of the financial index during a 

representative day of the week, usually Wednesday. However, as it is very common in 

the financial literature, if a particular Wednesday happens to be a non-trading day, then 

either Tuesday or Thursday is retained (Lo and MacKinlay, 1988; Diebold and Nason, 

1990; Hu, Zhang and Patuwo, 1999; Darrat and Zhong, 2000). 



6 
 

Given the presence of trends in the evolution of the two series, the variables are 

transformed to their growth levels to ensure stationarity
3
. This transformation eases 

interpretation since the log-difference of variables is usually understood as returns. 

According to this transformation, given the series DJIA (Yt) and the DJIM ( tX ), their 

respective returns can be approximated by )log()log( 1 ttt YYy and

)log()log( 1 ttt XXx . Nevertheless, some linear deterministic structures still remain 

in the time series after taking differences (i.e. seasonal components). Therefore, the 

series ty and tx  must be filtered again using some linear forecasting technique. Many 

authors have recommended the use of autoregressive models to bleach the time series 

(Katz, 1988a, 1988b; Theiler and Eubank, 1993). In our study, we consider the 

autoregressive models. 

(1)    ·.......· 110 tptptt yresidualyyy     

(2)    ·.......· 110 tqtptt xresidualxxx   
 

 

where *  +   
 

 and {  }   
 

 are the linear coefficients. These coefficients are estimated 

by a least-squares fit which minimizes the variance of the residuals. The orders of the 

autoregressive models p and q are selected by minimizing the following generalization 

of the Akaike Information Criterion (AIC)  

AIC(r)=  (  
 ( ))    

 

 
                                     (3) 

where N is the sample size, r is the number of coefficients and   
 ( ) is the estimated 

variance of the errors. This generalization of the AIC criterion has been widely used to 

select the order of the autoregressive model when bleaching time series (Cañellas et al., 

                                                           
3
 The unit root tests have not been reported to save space, but the details are available upon request from 

the authors. 
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2005; Álvarez-Díaz et al. 2010, among others). It is important to note that the term   
 

 
  

is included to penalize the use of extra coefficients that do not reduce significantly the 

error.  

Figure 1. Choice of the Optimum p-order of the Autoregressive for the Time Series 

 

 

As depicted in Figure 1, we retain the optimal order of the autoregressive model 

of seven for both series (p=7 and q=7) based on the AIC criterion.
 4

 The filtered series 

are the residuals of Equations (1) and (2): yresiduals and xresiduals. Figure 2 displays 

the time evolution of the filtered time series. In turn, Figure 3 shows the sample 

autocorrelation function for both series, as well as their respective intervals of 

confidence empirically constructed by means of the surrogate method (Theiler et al., 

1992). As we can observe in this figure, none of the sample autocorrelation coefficients  

 

 

 

                                                           
4
 Other possible choices for the model order selection include the Schwarz Criterion or the Hannah Quinn 

Criterion. The use of these criteria also confirms the optimal choice of p=7 and q=7. It is at these lags 

where these criteria are minimized and the estimated errors are uncorrelated.   
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Figure 2. Time evolution of the filtered time series 

 

 

 

Figure 3. Sample autocorrelation function (ACF) of the filtered time series 

 

Note: The confidence intervals are constructed using the surrogate method with a 99 percent 

significance level. 

 

is statistically significant. Therefore, the autocorrelation analysis points to the absence 

of a linear structure for both the residuals of the DJIM returns and the residuals of the 

DJIA returns. This result is also corroborated by the Ljung-Box test and the Breusch-

Godfrey LM test since the null hypothesis for uncorrelated behavior cannot be rejected 
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for any lag. As a consequence, there seems to be no linear deterministic signals in the 

residuals. This characteristic guarantees that our autoregressive models do approach 

quite well to the best linear predictor (Theiler and Eubank, 1993). 

We also test for the existence of non-linear structures by using the BDS statistic 

proposed by Brock et al. (1996). The BDS statistic tests the null hypothesis that the 

residuals of the autoregressive model behave as an independent and are identically 

distributed random variables (i.i.d., in short). However, an important problem that arises 

at this point is that the possible existence of linear dependence in the conditional second 

moments could lead to the rejection of the i.i.d. hypothesis, using the BDS test. If this is 

the case, the rejection of this hypothesis will not imply the presence of non-linear 

structures in the mean.  

Table 1: The ARCH Test for the Original and the Standardized Residuals 

 

 

 

Lags 

ARCH TEST  ARCH TEST 

Residuals of 

the Islamic 

Dow-Jones 

Standardized 

Residuals of 

the Islamic 

Dow-Jones 

Lags 
Residuals of 

the Dow-Jones 

Standardized 

Residuals of 

the Dow-Jones 

1 33.35
***

  1.55 1 33.35
***

          0.01 

2 35.67
***

  2.90 2 35.67
***

  0.88 

3 44.21
***

  3.73 3 44.21
***

  3.76 

4 47.16
***

  4.66 4 47.16
***

  3.80 

5 56.19
***

  4.74 5 56.19
***

  4.06 

6 56.07
***

  5.00 6 56.07
***

  5.50 

7 60.55
***

  5.00 7 60.55
***

  5.89 

8 61.38
***

  6.12 8 61.38
***

  6.69 

9 61.97
***

  7.06 9 61.97
***

  6.66 

10 62.77
***

  7.96 10 62.77
***

  8.34 

Note: The asterisks 
*
, 

** 
and 

*** 
represent the rejection of the null hypothesis 

                                at the 10, 5 and 1 percent significance levels, respectively.  

 

Table 1 shows the results of the ARCH test for the residuals of the DJIM returns 

and the residuals of the DJIA returns. These results allow one to confirm whether there 
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is a linear dependence in the conditional variance or not, which if confirmed is not 

useful if we want to improve our predictive ability. It is for this reason that we have 

applied the BDS test to test for the non-linearity of the standardized residuals 

   
  

 ̂ 
 

where Zt is the standardized residuals, ut is the series yresidualt or xresidualt, and 

 ̂ 
  is the conditional variance which is estimated using the GARCH(1,1) model 

 ̂ 
            

         
  

As one can see also in Table 1, the values of the Arch test reveal that the 

standardized residuals do not have any structure in the variance. Table 2 displays the 

results of the BDS test applied to the standardized residuals. The BDS statistics reject 

the null of no nonlinearity in the standardized residuals of the DJIA and the DJIM 

indices. This finding provides evidence that each of these series has a statistically 

nonlinear dependency. The basic problem to be solved now is to determine if these non-

linear signals are strong enough to improve significantly our predictions. 

Table 2: The BDS results for the standardized residuals 

 

 

 

 

 

 

 

 

 

Note

: 

The asterisks 
*
, 

** 
and 

*** 
represent the rejection of the null hypothesis                    at the 10, 5 

and 1 percent significance levels, respectively. The BDS is implemented assuming   as a fraction of the 

standard deviation. 

Embedding 

Dimension 

BDS Test Statistics  Standardized 

Residuals of the Islamic Dow-Jones 

BDS Test Statistics 

Standardized Residuals of  

the Industrial Dow-Jones 

2 1.03 0.87 

3 1.26 1.33 

4 1.41 1.42
*
 

5 1.88
*
 1.89

*
 

6 2.35
**

 1.88
**

 

7 2.20
**

 1.98
**

 

8 1.87
*
 2.26

**
 

9 1.65
*
 2.53

**
 

10 0.83 2.05
**
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2.2. The non-linear forecasting method: local regression 

 

To accomplish the goal pursued in our study, we use a specific non-linear 

forecasting method known as the nearest neighbor (NN) as indicated earlier. This 

method is one of the most popular techniques in non-linear time series forecasting. It 

has been widely employed in different fields such as physics, biology and medicine. 

Some examples of its applications in economics and finance can be found in Diebold 

and Nason (1990), Meese and Rose (1991), Fernández-Rodríguez et al. (1999), 

Álvarez-Díaz and Álvarez (2008) and Álvarez-Díaz (2010). The explanation of this 

popularity in forecasting research is due to the multiple advantages it offers in 

comparison with other forecasting methods. First, it reduces the possibility of model 

misspecification and provides a versatile method of exploring for a general functional 

relationship between the variables (Barkoulas et al., 2003). Second, it has shown an 

important ability to predict complex dynamics (Farmer and Siderovich, 1987; Casdagli, 

1989). Finally, it requires a minimum prior treatment of the series and behaves quite 

well when analyzing the series that are affected by some type of noise (Aparicio et al., 

2002). 

In our study, we use a specific nearest neighbor method known as the local 

regression. This general procedure can be explained by using matrix algebra. 

Specifically, given any time series T

ttx 1 , it is possible to construct the matrix: 

 

 

 

which is the trajectory matrix of the time series. This matrix represents the dynamics of 
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the time series from a spatial perspective. Each row of the trajectory matrix is a vector  

),....,,( 11  imii

i xxxM  

whose dimension (m) is called the embedding dimension. The next step is to select the 

past dynamics which are similar to the recent behavior of the time series. Following 

Cleveland and Devlin (1988) and Yakowitz (1987), we look for the K vectors miM   

which minimize the Euclidean distance from the vector that represents the present 

dynamics ( 1mTM ). Formally, we consider that the K closest neighbors are the vectors 

that minimize the function 

  
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Based on the calculation of the distances, we can then build both the N matrix with the 

K vectors closest to 1mTM  as well as the Ematrix that reflects the value to which each 

of the K vectors evolves   periods-ahead 
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The predicted value of the future returns ( Tx̂ ) from the vector 1mTM  will be 

determined by the regression model:  

TmmTmTT xbxbxbbx   ...ˆ 22110  

where the coefficients bi have been estimated by the ordinary least squares, using the 

matrices N and E ( ENNNb ')'( 1 ). Other authors have formulated weighting 
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schemes that give greater weights to nearby observations in estimating the local 

regression. However, as Jaditz and Riddick (2000) point out, the weighted regression is 

computationally slower and usually provides worse forecasts than the un-weighted local 

regression.   

An important question for the application of the local regression is to choose 

correctly the embedding dimension (m) and the number of nearest neighbors (K). An 

appropriate selection of these technical parameters is of great importance for the success 

of the predictive exercise. In our case, we follow the recommendations proposed in the 

literature, and we select K and m at the same time using a trial-and-error process 

(Casdagli, 1992). Specifically, we start by dividing our sample into three sub-periods: 

Training, Selection and Out-of-Sample (Yao and Tan, 2000). The first one, which is 

composed by the first 571 observations, is reserved as history of the time series. In this 

sub-period, we apply different local regression models by assuming a number of the 

nearest neighbors between 10% of all observations up to 90%, increasing in steps of 

10%. For the case of the embedding dimension, we consider values from 2 to 20 (Hsieh, 

1991). The selection period, which covers the 213 following observations, is used to 

determine the optimal combination of K and m that optimizes a given fit criterion in this 

specific sub-sample. Finally, the last 130 observations form the out-of-sample set, and 

the value of the accuracy measure obtained in this sub-sample is employed to validate 

our predictive ability. 

There are different accuracy measures to evaluate the forecasting accuracy. In 

our study, we use two different criteria depending on whether our goal is to predict the 

exact value of the time series (point prediction), or if it is to anticipate the direction of 

the sign movements (sign prediction). For the point prediction, we consider the 

Normalized Mean Square Error (NMSE)  
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 

 
2

2

)(

ˆ











tt

tx

xmeanx

xx

NMSE  

The basic idea of this fit criterion is to compare the errors of the forecasting method 

with those obtained by assuming the sample mean as a naive predictor. Consequently, a 

NMSE value lower than/equal/higher than one would imply a forecasting ability better 

than/equal to/worse than the mean as a predictor. This criterion has been recommended 

in the literature (Casdagli, 1989) and has been traditionally used in financial forecasting 

(Elms, 1994; Yao et al., 1999, among many others). 

On the other hand, for the sign prediction we use the ratio of correctly predicted 

signs (Success Ratio) defined by the expression 

 
100

0ˆ·
1 







T

xxI

SR

T

t

tt

   

where SR is the success ratio and )(I  is an indicator function that takes the value one if  

0ˆ  tt xx and zero otherwise. This criterion gives us the percentage of the correct 

predictions of an appreciation or depreciation of the financial indices considered in our 

analysis. The sign prediction is extremely important for empirical financial purposes 

since it affects a trader’s decision to buy or sell a financial asset. A financial trader must 

always keep in mind that even the smallest forecast errors in the point prediction can 

cause important losses if the direction of the forecast is mistaken (Tenti, 1996; Walczak, 

2001). 
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3. Empirical results 

A total of 130 out-of-sample forecasts are made for the weekly period from 

January 2011:W1 to July 2013:W1. The predictive analysis used here is based on the 

approach introduced by Sugihara and May (1990) and empirically applied in economics 

by Finkenstädt and Kuhbier (1995) and Agnon et al. (1999), among others. Specifically, 

this approach is based on analysing the out-of-sample predictability of a series over 

different forecast horizons. In our specific case, we assume a forecast horizon from 1 to 

20 weeks ahead of the residuals of the DJIM returns (xresidualt), and the residuals of 

the DJIA returns (yresidualt). If these series are unpredictable, we would observe that 

the NMSE obtained by our nonlinear forecasting method would fluctuate around a value 

of one (the accuracy of applying the mean as the naïve predictor) regardless of the 

considered forecast horizon. For the sign prediction, we would expect to observe a 

fluctuation in the percentage of correct forecasts about 50 percent (the predictions 

obtained by chance throwing a coin) regardless of how far into the future one tries to 

predict. On the other hand, there would be evidence of predictability if we observe that 

for some forecast horizons the value of the NMSE is statistically lower than one, or the 

Success Ratio is statistically higher than 50 percent.   

One important question is how to determine the statistical significance of the 

predictions made for each forecast horizon. This is a very important matter since our 

study is basically based on discovering time horizons where our predictions are 

statistically significant. In order to do this, we construct empirical confidence intervals 

by using a nonparametric technique called the surrogate data method (Theiler et al. 

1992). Any NMSE or SR inside the empirical interval would be considered as the result 

of the application of the nonlinear method on a random and unpredictable time series. 

Alternatively, if the NMSE is below the lower bound or the SR is above the upper 
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bound of the interval, then there would be evidence of a significant predictive ability. 

As a consequence, we would verify that the residuals of the DJIM returns and the 

residuals of the DJIA returns have non-linear signals that are strong enough to improve 

significantly our predictions.  

 

Table 3: Point prediction of the DJIA for different periods ahead. 

Forecasting 

Periods 

Out-of-Sample 

NMSE 

Empirical Confidence Intervals  

at 90 percent at 95 percent at 99 Percent 

1 1.010** (0.977, 1.062) (0.971, 1.073) (0.955, 1.092) 
2 0.994** (0.980, 1.028) (0.975, 1.034) (0.966, 1.045) 
3 1.013** (0.982, 1.022) (0.978, 1.027) (0.967, 1.042) 
4 1.025** (0.976, 1.046) (0.969, 1.053) (0.954, 1.072) 
5 1.072** (0.979, 1.082) (0.971, 1.092) (0.956, 1.118) 
6 0.997** (0.977, 1.033) (0.970, 1.039) (0.957, 1.048) 
7 0.999** (0.979, 1.033) (0.971, 1.038) (0.962, 1.049) 
8 0.985** (0.982, 1.027) (0.977, 1.031) (0.967, 1.045) 
9 0.996** (0.979, 1.032) (0.974, 1.039) (0.959, 1.063) 

10 0.987** (0.979, 1.081) (0.968, 1.094) (0.951, 1.125) 
11 0.982** (0.985, 1.086) (0.971, 1.114) (0.944, 1.169) 
12 0.972** (0.984, 1.080) (0.971, 1.102) (0.951, 1.140) 
13 0.982** (0.983, 1.044) (0.968, 1.062) (0.955, 1.102) 
14 0.973** (0.982, 1.044) (0.972, 1.061) (0.960, 1.104) 
15 0.963** (0.983, 1.066) (0.971, 1.089) (0.954, 1.134) 
16 0.988** (0.984, 1.027) (0.977, 1.059) (0.967, 1.082) 
17 1.029** (0.984, 1.028) (0.977, 1.041) (0.964, 1.067) 
18 1.020*** (0.981, 1.054) (0.973, 1.075) (0.965, 1.110) 
19 0.998** (0.984, 1.053) (0.971, 1.073) (0.957, 1.115) 
20 0.998** (0.983, 1.047) (0.973, 1.064) (0.959, 1.127) 

Note: The symbols 
*
, 

**
, 

*** 
means rejection of the null hypothesis that there is no 

forecasting capacity at the 10, 5 and 1 percent significance level, respectively. The 

empirical confidence intervals were constructed using the surrogate method.   

 

Tables 3 and 4 show the results of the point prediction for different forecasting 

periods. These tables also display the surrogate empirical intervals with confidence 

levels at 90, 95 and 99 percents. For the case of the residuals of the DJIA index, all 

point predictions are inside the 99 percent confidence interval. The NMSE values move 
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always above the lower bound and fluctuate around a value of one, indicating that there 

is no evidence of a predictive capacity. Nevertheless, if we are less demanding and  

Table 4: Point prediction of the DJIM for different periods ahead. 

Forecasting 

Periods 

Out-of-Sample 

NMSE 

Empirical Confidence Intervals  

at 90 percent at 95 percent at 99 Percent 

1 1.002*** (0.979, 1.021) (0.975, 1.025) (0.961, 1.030) 
2 0.989*** (0.979, 1.019) (0.976, 1.024) (0.966, 1.040) 
3 1.016*** (0.977, 1.062) (0.969, 1.071) (0.959, 1.090) 
4 0.990*** (0.978, 1.062) (0.969, 1.075) (0.954, 1.090) 
5 1.018*** (0.979, 1.076) (0.969, 1.085) (0.953, 1.100) 
6 0.992*** (0.978, 1.074) (0.969, 1.084) (0.946, 1.120) 
7 1.003*** (0.980, 1.079) (0.971, 1.090) (0.945, 1.110) 
8 0.991*** (0.980, 1.071) (0.973, 1.081) (0.962, 1.110) 
9 0.944*** (0.977, 1.071) (0.970, 1.084) (0.947, 1.110) 

10 0.970*** (0.980, 1.041) (0.975, 1.051) (0.965, 1.060) 
11 0.983*** (0.978, 1.041) (0.974, 1.049) (0.962, 1.080) 
12 0.996*** (0.978, 1.042) (0.972, 1.051) (0.962, 1.080) 
13 0.972** (0.975, 1.052) (0.967, 1.069) (0.956, 1.090) 
14 0.995*** (0.979, 1.042) (0.972, 1.048) (0.961, 1.070) 
15 0.980*** (0.973, 1.060) (0.967, 1.070) (0.953, 1.110) 
16 1.012*** (0.977, 1.030) (0.975, 1.039) (0.965, 1.060) 
17 1.018*** (0.980, 1.022) (0.977, 1.028) (0.969, 1.050) 
18 1.019*** (0.977, 1.043) (0.971, 1.054) (0.960, 1.100) 
19 0.986*** (0.972, 1.087) (0.962, 1.107) (0.950, 1.150) 
20 1.014*** (0.980, 1.029) (0.966, 1.059) (0.966, 1.060) 

Note: The symbols 
*
, 

**
, 

*** 
means rejection of the null hypothesis that there is no 

forecasting capacity at the 10, 5 and 1 percent significance level, respectively. The 

empirical confidence intervals were constructed using the surrogate method.   

 

consider the 95 percent confidence interval, we observe that there could be a certain 

degree of predictability for 15 periods ahead. A similar predictive behavior can be 

observed for the case of the residuals of the DJIM index. However, it is much more 

clear here the existence of a predictable pattern for the Islamic returns. As we can see, 

the NMSE for nine-periods-ahead is below the lower bound of the 99 percent 

confidence interval. This fact is a clear indication that there is a statistical significant 

predictive capacity at this horizon for the DJIM. In general, this predictive result seems 

to be consistent with other studies already published in the literature on different 
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markets and, specifically, with those that examine the close relationship among 

liquidity, efficiency and forecasting capacity. Hubert (1997), for example, analyzes the 

Austrian market and concludes that the more mature (liquid) a market becomes, the 

more the dynamics of its prices approach constitute random walk. Yao et al. (1999) 

study the Malaysian financial market and find little evidence of randomness in the 

dynamics of the returns. Darrat and Zhong (2000) discover an apparent predictability in 

the Chinese financial market, which is probably attributed to its low liquidity and the 

existence of asymmetric information. It seems, therefore, that in our study the liquidity 

(or lack thereof) and the specific institutional characteristics of the Islamic stock market 

could be responsible for the higher forecastability of DJIM compared to that of DJIA. 

Table 5: Sign prediction of the DJIA for different periods ahead. 

Forecasting 

Periods 

Out-of-Sample 

Success Ratio 

(%) 

Empirical Confidence Intervals  

at 90 percent at 95 percent at 99 Percent 

1 51.91*** (47.33, 61.07) (46.56, 61.83) (43.51, 64.12) 
2 51.91*** (45.80, 59.54) (44.27, 61.07) (41.98, 63.36) 
3 52.67*** (48.85, 61.07) (48.09, 62.60) (45.80, 64.12) 
4 59.54*** (48.85, 61.07) (48.09, 61.83) (45.04, 64.12) 
5 59.54*** (45.80, 59.54) (44.27, 61.07) (41.98, 64.12) 
6 58.02*** (46.56, 60.31) (45.04, 61.07) (41.98, 63.36) 
7 54.96*** (44.27, 59.54) (43.51, 60.31) (39.69, 62.60) 
8 52.67*** (44.27, 59.54) (42.75, 60.31) (39.69, 63.36) 
9 57.25*** (45.04, 60.31) (42.75, 61.07) (41.22, 63.36) 

10 54.96*** (45.80, 60.31) (44.27, 61.07) (40.46, 63.36) 
11 58.02*** (47.33, 61.07) (45.04, 62.60) (42.75, 64.89) 
12 63.36*** (45.80, 60.31) (44.27, 61.07) (41.98, 62.60) 
13 56.49*** (49.62, 61.07) (48.85, 61.83) (47.33, 63.36) 
14 56.49*** (46.56, 60.31) (45.04, 61.83) (41.98, 64.12) 
15 51.15*** (48.85, 61.83) (48.09, 62.60) (45.04, 64.12) 
16 55.73*** (47.33, 61.07) (46.56, 61.83) (44.27, 63.36) 
17 55.73*** (48.85, 61.07) (48.09, 61.83) (45.80, 64.89) 
18 50.38*** (49.62, 61.07) (48.09, 61.83) (45.80, 63.36) 
19 52.67*** (41.98, 60.31) (41.98, 60.31) (39.69, 61.83) 
20 48.09*** (43.51, 61.07) (43.51, 61.07) (40.47, 63.36) 

Note: The symbols 
*
, 

**
, 

*** 
means rejection of the null hypothesis that there is no 

forecasting capacity at the 10, 5 and 1 percent significance level, respectively. The 

empirical confidence intervals were constructed using the surrogate method.   
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Tables 5 and 6 present the results of the sign prediction for the different 

forecasting horizons considered in our study. In the case of the residuals of the DJIA 

index, the most remarkable finding is the high predictive accuracy of twelve periods 

ahead. The success ratio obtained for DJIA using the local regression gives a value of 

63.33 percent. This percentage of correct predictions is above the upper bound of the 99 

percent confidence interval. It thus implies that DJIA is predictable because its success 

ratio is statistically higher than 50 percent (the expected value of the success ratio for an 

unpredictable time series).  

Table 6: Sign prediction of the DJIM for different periods ahead. 

Forecasting 

Periods 

Out-of-Sample 

Success Ratio 

(%) 

Empirical Confidence Intervals  

at 90 percent at 95 percent at 99 Percent 

1 49.62*** (42.75, 57.25) (41.22, 58.78) (38.93, 61.07) 
2 54.96*** (42.75, 57.25) (41.98, 58.78) (38.93, 60.31) 
3 58.78*** (41.98, 56.49) (41.22, 58.02) (38.17, 61.07) 
4 60.31*** (42.75, 57.25) (41.22, 58.78) (38.17, 60.31) 
5 56.49*** (42.75, 57.25) (41.98, 58.02) (38.17, 61.07) 
6 49.52*** (42.75, 56.49) (41.22, 58.02) (38.17, 60.31) 
7 52.67*** (42.75, 57.25) (41.22, 58.02) (38.93, 62.60) 
8 52.67*** (41.98, 57.25) (40.46, 58.02) (37.40, 60.31) 
9 58.78*** (42.75, 57.25) (41.98, 59.54) (39.69, 61.83) 

10 52.67*** (42.75, 57.25) (41.22, 58.02) (37.40, 62.00) 
11 54.20*** (42.75, 57.25) (41.98, 58.78) (38.93, 60.31) 
12 46.56*** (42.75, 57.25) (41.22, 58.02) (38.93, 61.07) 
13 48.85*** (42.75, 57.25) (40.46, 58.78) (38.93, 61.83) 
14 47.33*** (42.75, 57.25) (41.98, 58.78) (40.46, 61.07) 
15 50.38*** (42.75, 57.25) (41.22, 58.02) (38.93, 60.31) 
16 45.04*** (43.71, 57.25) (41.98, 58.02) (39.69, 61.07) 
17 45.80*** (42.75, 56.49) (41.98, 58.02) (38.93, 60.31) 
18 55.73*** (42.75, 57.25) (41.22, 58.78) (37.40, 61.07) 
19 54.02*** (42.75, 56.49) (41.98, 58.02) (38.93, 60.31) 
20 52.67*** (42.75, 58.02) (41.22, 58.78) (38.17, 61.83) 

Note: The symbols 
*
, 

**
, 

*** 
means rejection of the null hypothesis that there is no 

forecasting capacity at the 10, 5 and 1 percent significance level, respectively. The 

empirical confidence intervals were constructed using the surrogate method.   

 

For the case of the dynamic predictive behavior for the residuals of the DJIM, 

the result shows a predictable capacity of four-periods-ahead. At this predictive horizon, 
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the success ratio reflects a value of 60.31 percent, which is also greater than the 50 

percent value for unpredictability, and which is almost outside the upper bound of the 

99 percent confidence interval as shown in Table 6. These sign prediction results are in 

accordance with the stylized fact observed in financial forecasting that provides 

evidence of the difficulties of getting a success ratio higher than 60 percent (Lequarré, 

1993).  

 

4. Conclusion 

It is acknowledged in the financial literature that predicting stock market returns 

is usually challenging because these markets are characterized by complex and erratic 

dynamics. In fact, the literature is mixed on such predictability, ranging from those that 

support no predictability based on the efficient market hypothesis to those who 

demonstrate that stock returns are to some extent predictable. Some theoretical and 

empirical results seem to support the growing belief that the behaviour of financial 

returns could include some nonlinear deterministic component. If these nonlinear 

structures are important, then it would be possible to improve significantly our 

forecasting capacities by using nonlinear forecasting methods. 

Most of the research on the stock returns predictability has been conducted on 

well-established conventional stock markets or well-known financial indices for 

developed and developing countries. Despite the growing importance of Islamic 

finance, no published research has looked into the forecastibility of the returns of the 

seemingly different Islamic stock markets as represented by DJIM in comparison to that 

of their conventional counterparts represented by DJIA. In addition to their growing 

importance, the Islamic markets are different from their conventional counterparts due 

to their compliance with the Sharia rules which may make them different to forecast, 
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compared to conventional markets. They are also different from the conventional stocks 

in terms of the characteristics of their ownership and balance sheets and their 

implications for liquidity. This makes forecasting the Islamic stock market returns 

useful and interesting. 

Since the presence of a non-linear deterministic component in the conventional 

stock returns is considered a reason behind the forecasting challenge, we also consider 

this component to be present in the Islamic stock returns. In fact, this study verifies this 

nonlinearity in the Dow Jones Islamic Market (DJIM) index which represents the global 

Islamic stock market. The use of the BDS test reflects the existence of a non-linear 

component both in the DJIM and in the DJIA indices. The great question that we have 

to answer is whether the non-linear structure in those indices is strong enough to 

improve significantly our predictions.  

A priori, the anecdotal evidence on the institutional characteristics of the DJIM 

stocks makes us believe that these stocks are relatively less efficient and may be more 

predictable than the conventional counterparts. But this conjuncture is not well 

supported in the empirical literature. It is for this reason we compare the forecastability 

of the DJIM with DJIA indices. For this purpose, we make use of a non-linear 

forecasting method to get accurate predictions known as the nearest neighbor method 

(NN). This method has been shown to have an important ability to predict complex 

dynamics 

We also check the statistical significance of these predictions by means of the 

surrogate method. Our results show no evidence of a strong predictive capacity for the 

two indices under consideration. Nevertheless, we observe that there could be a certain 

degree of predictability for the DJIA. Specifically, we have found that it is possible to 
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achieve statistically significant forecasts 15 periods ahead for the point prediction, and 

12 periods ahead for the sign prediction. A similar pattern is observed for the DJIM 

returns but, in this case, they have a higher predictive capacity than the DJIA returns. 

The nine-period ahead forecasts for the point prediction are highly significant, while for 

the sign prediction we detect a predictable pattern of a four-period ahead forecast. It 

seems therefore that the characteristics of less liquidity and unconventional institutional 

structure of the Islamic stock market could be responsible for this higher forecastability 

of DJIM compared to DJIA. 

The forecastability finding in this study adds to the results of other studies which 

find that the Islamic markets to be causal and interactive with conventional markets and 

also do not perform much better than the conventional markets during crises. The 

forecastability of the DJIM provides new evidence on the characteristics of this 

unconventional equity index which has not discussed in the literature.  It implies that the 

Islamic equity markets may not be good candidates as risk diversifiers in asset 

allocations and hedgers against risk exposures.  
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