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Summary: Maximum likelihood estimation under constraints for estimation in the Wishart class

of distributions, is considered. It provides a unified approach to estimation in a variety of

problems concerning covariance matrices. Virtually all covariance structures can be trans-

lated to constraints on the covariances. This includes covariance matrices with given struc-

ture such as linearly patterned covariance matrices, covariance matrices with zeros, indepen-

dent covariance matrices and structurally dependent covariance matrices. The methodology

followed in this paper provides a useful and simple approach to directly obtain the exact

maximum likelihood estimates. These maximum likelihood estimates are obtained via an

estimation procedure for the exponential class using constraints.
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1 Introduction

Maximum likelihood estimation of parameters and parametric functions in the case of even

standard distributions, belonging to the exponential class, is in certain cases difficult to perform

or leads to intractible procedures which often imply that the likelihood function has to be solved

numerically. In this paper, a maximum likelihood procedure which was developed by Matthews

& Crowther (1995), is extended by using the canonical form of the Wishart distribution directly

in order to obtain maximum likelihood estimates (mle’s) of parameter structures in a simple and

unified way. It is done by considering the likelihood function as a restricted case of a broader

class of likelihood functions of which the mle’s are readily available. Parameter structures can be

translated to constraints on the parameters. These parameters are the elements of the covariance

matrix of the original multivariate normal distribution.

In this paper the focus is specifically on equality constraints on parameters. This does

not relate to the inequality constraints on parameters and parameter matrices usually required in

the case of maximum likelihood estimation of multivariate variance components as, for example,

considered by Calvin & Dykstra (1995).

Estimation of covariance matrices in a variety of settings where the computational aspects

become problematic, is considered. This includes estimation of patterned covariance matrices,

estimation of a covariance matrix with zeros and testing the homogeneity of the covariance matrices

of dependent multivariate normals. Constraints are implied by the model under consideration. In

particular, the expected value of a Wishart matrix can be estimated enabling applications to

patterned covariance matrices where the pattern is not necessarily linear. For a covariance matrix,

Σ =




σ11 σ12

σ21 σ22


, the variances σ11 and σ22 may be required to be nonlinearly related, e.g.

7σ2
11
= σ22. In stead of reparameterizing the covariance matrix by substituting σ22 by 7σ2

11
and

deriving the likelihood equations accordingly, the relation is brought into the estimation process

by directly imposing the constraint that 7σ211 − σ22 = 0 on the elements of the covariance matrix

Σ following the methodology described in Section 2. This procedure also lends itself naturally

to imposing the constraint that certain covariances are zero. The extension of this procedure to
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groups of variables is straightforward. Suppose Σ =



Σ11 Σ12

Σ21 Σ22


. In this case, structure is

imposed on submatrices by direct constraints, e.g. Σ12 = 0 for independence or Σ11 = Σ22 for

testing homogeneity - in the case of independence or dependence. This enables inference regarding

covariance matrices of dependent or independent multivariate normals to be accomplished in a

straightforward manner.

The approach considered in this paper largely simplifies the philosophy, the modelling and

computational aspects involved in the case of maximum likelihood estimation of covariance matri-

ces since no derivation of likelihood equations is required. Covariance matrices can be modelled

by direct imposition of constraints on specific elements of the covariance matrix. In Section 2

the general theory for maximum likelihood estimation under constraints is presented for the expo-

nential family. Estimation of covariance matrices in terms of constraints, as a special case of the

general procedure, is considered in Section 3. A simple introductory example is given. In Section

4 covariance matrices with given structure, e.g. patterned covariance matrices and covariance ma-

trices with zeros, are discussed and illustrated with numerical examples. In Section 5 the problem

of testing for the homogeneity of covariance matrices of dependent multivariate normal samples

is considered. The theoretical basis is given and then illustrated with a numerical example. The

test for independence and a test for the homogeneity of covariance matrices of several dependent

multivariate normals, are illustrated. It is shown how the latter can be adjusted to make provision

for patterns in the covariance matrices at the same time. Concluding remarks are made in Section

6.

2 Maximum Likelihood Estimation under Constraints

The random vector t : k × 1 belongs to the canonical exponential family if its probability

density function is of the form (Barndorff-Nielsen (1982) or Brown (1986))

p(t,θ) = a(θ)b(t)exp(θ′t) = b(t)exp
{
θ′t− κ(θ)

}
, t ∈ Rk, θ ∈ ℵ (1)

where θ : k×1 the canonical (natural) parameter, t : k×1 the canonical statistic and ℵ the natural

parameter space for the canonical parameter θ. The function κ(θ) = −ℓn a(θ) is referred to as
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the cumulant generating function or the log Laplace transform. It is important to note that the

statistic t in (1) is a canonical statistic. If t is a sufficient statistic in the regular exponential class,

it can be transformed to canonical form.

The mean vector and covariance matrix of t are given by E(t) = ∂
∂θκ(θ) = m and

Cov(t) = ∂
∂θ∂θ′

κ(θ) = V . In this case the mle of m without any constraints is m̂ = t.

The mle’s of m may in general not exist, except under constraints which are implied by a

particular model. In this paper, the mle’s are not obtained from maximizing a likelihood function

in terms of parameters. The mle’s m̂ of m are obtained under a set of constraints, g(m) = 0,

imposed on the expected values of the canonical statistics (cf. Matthews & Crowther, 1995, 1998).

The function g(m) is a continuous vector valued function of m, for which the first order partial

derivatives exist. Then m̂ may be obtained from

m̂ = t− (GmV )
′
(
GtV G

′

m

)∗
g(t) (2)

where Gm =
∂g(m)

∂m , Gt =
∂g(m)

∂m

∣∣∣∣
m = t

and
(
GtV G

′

m

)∗
a generalized inverse of

(
GtV G

′

m

)
.

The expression is invariant with respect to the choice of the generalized inverse. Many seemingly

complicated hypotheses regarding m may be imbedded into this framework in order to obtain the

mle of m in a simple way.

In general, the iterative procedure implies a double iteration over t and m. The first

iteration stems from the Taylor series linearization of g(t) and the second from the fact that V

may be a function of m. The usual conditions for convergence, similar to those for Newton-

Raphson, hold in both the iterations. If g(t) is a linear function, no first iteration is necessary.

Similarly, if V and Gm are not functions of m, no second iteration over m is necessary.

The procedure is initialized with the observed canonical statistic as the starting value for

both t and m. Convergence is attained first over t (which is immediate in the case of linear

constraints on m) and then over m. The converged value of t is used as the next approximation

for m, with iteration over m starting at the observed t. The covariance matrix V may be a

function of m, in which case it is recalculated for each new value of m in the iterative procedure.

Convergence over m yields m̂, the mle of m under the constraints. The estimation process is

summarized by an algorithm given by Strydom & Crowther (2012) which is given here to elucidate
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the estimation process:

Algorithm 1 Obtaining mle’s under constraints.

Step 1: Specify t0, the vector of observed canonical statistics.

Step 2: Let t = t0.

Step 3A: Let m = t, t = t0.

Calculate Gm, V .

Step 3B: Let tp = t.

Calculate g(t), Gt.

Calculate t = t− (GmV )
′(GtV G

′

m)
∗g(t).

If (t− tp)′(t− tp) < ǫ (a small positive number determining the accuracy)

then go to Step 3A,

else repeat Step 3B.

Step 4 If (m− t)′(m− t) < ǫ

then convergence is attained.

The exact mle’s are given by m.

For the constrained model to be properly defined, the number of independent constraints,

ν = rank(GmV G
′

m), should equal the difference between the number of elements of m and the

number of unknown parameters of the constrained model. Constraints need not be independent

and the expression is invariant with respect to the choice of the generalized inverse (Matthews &

Crowther, 1998).

The asymptotic covariance matrix of m̂ is given by

Cov(m̂) = V − (GmV )
′
(
GmV G

′

m

)∗
GmV (3)

which is estimated by replacing m with m̂. The standard error of the estimates are given by

σ(m̂), the square root of the vector of diagonal elements of Cov(m̂).

The Wald statistic

W = g′(t)(GtV G
′

t)
∗g(t) (4)

is a measure of goodness of fit under the hypothesis g(m) = 0. It is asymptotically χ2 distributed

with ν degrees of freedom.

In the next section it is shown how the theory discussed here for the exponential class, is

specifically generalized to address estimation problems based on the Wishart distribution.
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3 Estimation of Covariance Matrices in terms of Constraints

Suppose y1, · · · ,yN is a random sample from a multivariate normal distribution, Np(µ,Σ).

Let y =
1

N

∑N
i=1 yi denote the sample mean vector and S =

1

n

∑N
i=1(yi − y)(yi − y)

′ the sample

covariance matrix with n = N−1. The sample covariance matrix S, which is an unbiased estimate

of Σ is Wp(n,Σ/n) distributed. The probability density function of S is

f(S) =
det(S)

n−p−1

2

(n

2

)np

2

Γp(
1

2
n)

exp
{
−

n

2
trΣ−1S −

n

2
ℓn[det(Σ)]]

}

=
det(S)

n−p−1

2

(n

2

)np

2

Γp(
1

2
n)

exp

{
−

n

2

(
N

n

)
vec(Σ−1)′vec(

n

N
S)− n

2
ℓn[det(Σ)]

}

= b(t)exp
[
θ′t− κ(θ)

]

(5)

where vec(S) denote the stacked columns of the p× p matrix S and the canonical statistic, corre-

sponding canonical parameter and expected value are respectively given by:

t =

(
vec(

n

N
S)

)
, θ =

(
−
(n

2

)(N

n

)
vec(Σ−1)

)
, E(t) =m =

(
vec(Σ)

)
. (6)

The latter is chosen as canonical statistic since the mle of m without any constraints is m̂ = t.

The covariance matrix of the canonical statistic is given by

V = Cov(t) = Cov(vec(S)) =
(
Ip2 +K

)
(Σ⊗Σ) /N (7)

where the matrix K is given by K =
∑p
i,j=1(Hij ⊗H

′

ij) and Hij : p × p with hij = 1 and all

other elements are equal to zero (Muirhead (1982, page 90)).

A patterned covariance matrix or a covariance matrix with zeros implies specific con-

straints on the elements of Σ. Consider the general constraint g(m) = g[vec(Σ)] with Gm =

∂

∂vec(Σ)
g[vec(Σ)], Gt =

∂

∂vec(Σ)
g[vec(Σ)]|Σ=S . The mle of Σ under the constraint g(vec(Σ))

is obtained iteratively from (2):

m̂ = vec(S)− (GmV )
′
(
GtV G

′

m

)∗
g[vec(S)]

Constraints are imposed only on elements in the upper half or the lower half of the covariance

matrix. Symmetry of the covariance matrix is preserved automatically.

Using the procedure (2) for estimating Σ under restrictions, the vector t of canonical statis-

tics with corresponding covariance matrix V is used as point of departure for any model considered
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within this framework. The algorithm given in Section 2 is then used to obtain the mle’s. In each

section the model specific expressions for g(m) and Gm are given.

3.1 An introductory example

The following numerical example serves to illustrate the essence and simplicity of the estimation

procedure presented in this paper. Rencher (1998) considered the heights (in inches) and weights

(in pounds) for a random sample of 20 college-age males. The sample covariance matrix is equal

to S =



14.576316 128.87895

128.87895 1441.2737


. We assume that this sample was drawn from a multivariate

normal distribution with unknown mean vector µ and covariance matrix Σ =




σ11 σ12

σ21 σ22


. In

order to obtain the mle of the covariance matrix using the expression in (2), the canonical statistic

t (cf. (6)) with corresponding covariance matrix V (cf. (7)) are required:

t =




(n− 1)s11/n

(n− 1)s12/n

(n− 1)s21/n

(n− 1)s22/n




=




t1

t2

t3

t4




, E(t) =m =




σ11

σ12

σ21

σ22




=




m1

m2

m3

m4




, say and

Cov(t) = V =
(
Ip2 +K

)
[Σ⊗Σ] /N =

1

N




2σ211 2σ11σ12 2σ11σ12 2σ212

2σ11σ12 σ11σ22 + σ212 σ11σ22 + σ212 2σ12σ22

2σ11σ12 σ11σ22 + σ2
12

σ11σ22 + σ2
12

2σ12σ22

2σ2
12

2σ12σ22 2σ12σ22 2σ2
22




.

The mle of the covariance matrix under a particular hypothesis is obtained by specifying constraints

of the form g(m) = g[vec(Σ)] = 0. Various constraints on the parameters may be considered.

Firstly, consider the hypothesis that the variances of height and weight are proportional with

a known constant, e.g. σ11 = 0.01σ22. In this case, g(m) = σ11 − 0.01σ22 = (1, 0, 0,−0.01)m =

Cm, say, with derivative Gm = C =Gt. Consequently,

CV =
(
2σ2

11
− 0.02σ2

12
, 2σ11σ12 − 0.02σ12σ22 , 2σ11σ12 − 0.02σ12σ22 , 2σ2

12
− 0.02σ2

22

)

and

CV C′ = 2σ2
11
− 0.04σ2

12
+ 0.0002σ2

22
.
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Table 1: Iteration process illustrated for a linear constraint.

Iteration over t

Iteration Starting

over m Value 1

1




13.8475

122.435

122.435

1369.21







13.8475

122.435

122.435

1369.21







13.765613

122.39777

122.39777

1376.5613




2




13.765613

122.39777

122.39777

1376.5613







13.8475

122.435

122.435

1369.21







13.7698

122.435

122.435

1376.98




In the iterative procedure the covariance matrix subject to the constraint σ11 = 0.01σ22 is calcu-

lated using:

m̂ = t− (CV )′
(
CV C′

)∗
g(t) = t−

t1 − 0.01t4
2m2

1
− 0.04m2

2
+ 0.0002m2

4




2m2
1
− 0.02m2

2

2m1m2 − 0.02m2m4

2m1m2 − 0.02m2m4

2m2
2
− 0.02m2

4




.

The starting value for both m and t is t = n−1
n S = 19

20




14.576316

128.87895

128.87895

1441.2737




. The iteration process is

summarized in Table 1. No iteration over t is required since g(m) is a linear function.

In order to illustrate the double iteration in the estimation procedure, consider now the

hypothesis that the square of the variance of height is proportional to the variance of weight,

i.e. 7σ211 = σ22. Using traditional maximum likelihood methodology, this relation will have to

be dealt with by reparameterization through substitution of σ22 by 7σ211 and derivation of a new

set of likelihood equations. In this case, the implied constraint is used: g(m) = g[vec(Σ)] =

7σ2
11
− σ22 = 7m2

1
− m4 with corresponding matrices of derivatives Gm = 14m1

∂m1

∂m − ∂m4

∂m =

14m1(1, 0, 0, 0)− (0, 0, 0, 1) and Gt =
∂g(m)

∂m

∣∣∣∣
m = t

. The iteration process proceeds as indicated



8

Table 2: Double iteration process illustrated for a nonlinear constraint.

Iteration over t

Iteration Starting

over m Value 1 2

1




13.8475

122.435

122.435

1369.21







13.8475

122.435

122.435

1369.21







14.0303

123.7619

123.7619

1377.7078







14.0287

123.7506

123.7506

1377.6353




2




14.0287

123.7506

123.7506

1377.6353







13.8475

122.435

122.435

1369.21







14.0316

123.7799

123.7799

1377.9653







14.0300

123.7682

123.7682

1377.8895




3




14.0300

123.7682

123.7682

1377.8895







13.8475

122.435

122.435

1369.21







14.0316

123.78

123.78

1377.9667







14.0300

123.7684

123.7684

1377.8909




4




14.0300

123.7684

123.7684

1377.8909







13.8475

122.435

122.435

1369.21







14.0316

123.7800

123.7800

1377.9667







14.0300

123.7684

123.7684

1377.8909




in Table 2. In each new iteration over m, the observed t (t0), is used as initial value for t.

4 Covariance matrices with given structure

4.1 Linearly patterned covariance matrices

Several methods for maximum likelihood estimation of patterned covariance matrices, which

are used to model multivariate normal data, are given in the literature. Explicit forms for maximum

likelihood estimates (mle’s) exist in some cases. Szatrowski(1980) gives necessary and sufficient

conditions on linear patterns such that there exists explicit solutions which are obtained in one

iteration of the scoring equations from any positive definite starting point. However, patterns

in applications often arise where explicit estimates do not exist and an iterative algorithm is

required. Such algorithms include the well-known Newton-Raphson algorithm and the method of

scoring (Anderson, 1970, 1973) which do not have guaranteed convergence for all patterns. The
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EM algorithm (Rubin & Szatrowski, 1982) was proposed as an alternative method of estimation in

cases where the patterned covariance matrices which do not have explicit mle’s can be viewed as

submatrices of larger patterned covariance matrices that do have explicit mle’s. In this subsection,

the exact maximum likelihood estimates of patterned covariance matrices are obtained directly by

specifying specific structures in terms of constraints. Conditions for convergence are similar to

those for Newton-Raphson.

Firstly, consider linearly patterned covariance matrices of the general formΣ(σ) =
∑m
g=0 σgCg

(Szatrowski, 1980, Anderson, 1970,1973) where σ′ = (σ0, σ1, · · · , σm) are unknown coefficients and

C0,C1, · · · ,Cm are known symmetric linearly independent matrices. The linear structure of the

covariance matrix implies that

m = vec(Σ) =
m∑

g=0

σgvec(Cg) = (vecC0, vecC1, · · · , vecCm)σ = Cσ. (8)

Consequently,

g(m) =QCCσ = 0 where QC = I −C(C
′C)∗C′ (9)

projects orthogonal to the columns of C. The matrix of derivatives Gm =
∂g(m)

∂m = QC = Gt.

Structures such as the complete symmetry pattern (with special cases the intraclass correlation pat-

tern and sphericity test), block complete symmetry pattern, compound-, circular- and stationary

symmetry pattern can be modelled within this framework.

Consider the 3× 3 stationary covariance pattern (Rubin & Szatrowski, 1982):

Σ =




a b c

b a b

c b a




.

This may be expressed in linear form (8) with corresponding implied constraint (9) and matrix of

derivatives Gm = C = Gt. Alternatively, the following three simple constraints are required to

obtain the mle’s:

g(m) =




σ11 − σ22

σ11 − σ33

σ12 − σ23



=




vec(Σ)[1]− vec(Σ)[5]

vec(Σ)[1]− vec(Σ)[9]

vec(Σ)[2]− vec(Σ)[6]



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where vec(Σ)[i] denotes the i-th element of vec(Σ). The corresponding matrix of derivatives are

given by:

Gm = Gt =




Ip2 [1, ]− Ip2 [5, ]

Ip2 [1, ]− Ip2 [9, ]

Ip2 [2, ]− Ip2 [6, ]




where Ip2 [i, ] denotes the i-th row of the identity matrix I : p2 × p2 .

Using the procedure (2) for maximum likelihood estimation under constraints, it is irrelevant

whether an explicit mle exist for a specific symmetry structure since the exact mle’s are obtained.

The process of estimation follows the same straightforward method for any one of the patterns

mentioned.

4.2 Covariance matrices with zeros

To find the mle of a covariance matrix under the constraint that certain covariances are

zero, Chaudhuri, Drton & Richardson (2007) proposed an iterative conditional fitting algorithm

(with guaranteed convergence properties) under the assumption of multivariate normality. Where

the presence of zero covariances can be formulated as a linear hypotheses on the covariance matrix,

e.g. covariance graph models (Chaudhuri, Drton & Richardson, 2007), procedures such as Newton-

Raphson and the method of scoring (Anderson, 1970,1973) may be used for maximum likelihood

estimation. However, the algorithm introduced by Chaudhuri et al. (2007) has clearer convergence

properties than Anderson’s algorithm. In this subsection, the exact maximum likelihood estimate

of a covariance matrix with specific covariances equal to zero, is obtained by directly specifying

these zeros as constraints on the elements of the covariance matrix. No likelihood equations are

required. Convergence properties are similar to those of the Newton-Raphson method.

Estimation of the covariance matrix under the constraint that certain covariances are zero,

represents another direct application of the procedure given in (2). Chaudhuri et al. (2007) consider

a data example where they focus on n = 134 measurements of p = 8 genes related to galactose use

in gene expression data from microarray experiments with yeast strands. The marginal correlations

and standard deviations of these variables are given to two decimal places. The sample correlation
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matrix calculated from this is given below:

S =




0.1521 0.033696 0.014664 −0.11934 −0.0663 −0.054756 −0.050505 −0.048048

0.1296 0.038916 −0.01836 −0.0612 0.033696 −0.05328 −0.038808

0.2209 0.20774 0.22372 0.07332 0.182595 0.188188

2.89 2.5143 0.58344 2.54745 2.27766

2.89 0.51714 2.7676 2.40856

0.6084 0.7215 0.552552

3.4225 2.59259

2.3716




Chaudhuri et al. (2007) give mle’s of covariances for two different structures, here indicated by Σs

and Σd. The variables are presented in the same order used by Chaudhuri et al. (2007).

Σs =




σ11 σ12 0 σ14 0 σ16 0 0

σ22 σ23 0 0 0 0 0

σ33 σ34 σ35 σ36 σ37 σ38

σ44 σ45 σ46 σ47 σ48

σ55 σ56 σ57 σ58

σ66 σ67 σ68

σ77 σ78

σ88




Σd =




σ11 σ12 0 0 0 0 0 0

σ22 σ23 0 0 0 0 0

σ33 σ34 σ35 0 0 σ38

σ44 σ45 σ46 σ47 σ48

σ55 σ56 σ57 σ58

σ66 σ67 σ68

σ77 σ78

σ88




Using maximum likelihood estimation under constraints, the covariance matrices are esti-

mated by setting specific covariances equal to zero by simply specifying the corresponding required

constraints. Let gs(m) and gd(m) respectively denote the constraints to set the appropriate co-

variances equal to zero in the structures Σs and Σd given above. Then gs(m) = g[vec(Σs)] = 0,

gd(m) = g[vec(Σd)] = 0 where:

gs(m) =




vec(Σs)[3]

vec(Σs)[5]

vec(Σs)[7]

vec(Σs)[8]

vec(Σs)[12]

vec(Σs)[13]

vec(Σs)[14]

vec(Σs)[15]

vec(Σs)[16]




, Gsm =Gst =




Ip2 [3, ]

Ip2 [5, ]

Ip2 [7, ]

Ip2 [8, ]

Ip2 [12, ]

Ip2 [13, ]

Ip2 [14, ]

Ip2 [15, ]

Ip2 [16, ]




,
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gd(m) =




vec(Σd)[3]

vec(Σd)[4]

vec(Σd)[5]

vec(Σd)[6]

vec(Σd)[7]

vec(Σd)[8]

vec(Σd)[12]

vec(Σd)[13]

vec(Σd)[14]

vec(Σd)[15]

vec(Σd)[16]

vec(Σd)[22]

vec(Σd)[23]




, Gdm =Gdt =




Ip2 [3, ]

Ip2 [4, ]

Ip2 [5, ]

Ip2 [6, ]

Ip2 [7, ]

Ip2 [8, ]

Ip2 [12, ]

Ip2 [13, ]

Ip2 [14, ]

Ip2 [15, ]

Ip2 [16, ]

Ip2 [22, ]

Ip2 [23, ]




.

The matrices Gsm, Gst, Gdm, Gdt denote the corresponding matrices of derivatives.

The estimated covariances, which agree with those given by Chaudhuri et al. (2007), are

given below:

Σ̂s =




0.155 0.038 0 −0.075 0 −0.063 0 0

0.126 0.034 0 0 0 0 0

0.218 0.214 0.233 0.070 0.192 0.193

2.808 2.452 0.558 2.492 2.225

2.847 0.489 2.726 2.373

0.598 0.696 0.528

3.371 2.554

2.336




Σ̂d =




0.150 0.030 0 0 0 0 0 0

0.126 0.036 0 0 0 0 0

0.218 0.061 0.086 0 0 0.051

2.763 2.374 0.557 2.453 2.167

2.723 0.485 2.646 2.277

0.599 0.711 0.530

3.371 2.507

2.266



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The corresponding standard error of the estimates, σ̂(m̂), obtained using (3), are given below:

σ̂(Σ̂s) =




0.0178 0.0114 0 0.0259 0 0.0218 0 0

0.0148 0.0135 0 0 0 0 0

0.0263 0.0677 0.0690 0.0304 0.0738 0.0621

0.3388 0.3189 0.1187 0.3382 0.2899

0.3422 0.1171 0.3519 0.2989

0.0712 0.1335 0.1092

0.4081 0.3247

0.2828




σ̂(Σ̂d) =




0.0165 0.0112 0 0 0 0 0 0

0.0148 0.0132 0 0 0 0 0

0.0247 0.0383 0.0318 0 0 0.0252

0.3192 0.2961 0.1098 0.3156 0.2705

0.3162 0.1083 0.3251 0.2757

0.0665 0.1264 0.1020

0.3859 0.3028

0.2641




The Wald statistic (4) for Σ̂s, Ws, is equal to 9.2767 (p = 0.4121) with ν = 9 and for Σ̂d is given

by Wd = 29.96, (p = 0.00477) with ν = 13.

5 Dependent multivariate normal samples

The problem of testing the homogeneity of the covariance matrices of dependent multivariate

normal populations, is another example where no explicit analytical expression of the mle of the

covariance matrix (under the null hypothesis) exist. Jiang et al. (1999) proposed a likelihood

ratio test and modifications thereof, through an iterative scheme using PROC MIXED in SAS

for finding the mle of the covariance matrix - not a straightforward process. An overview of

preceding attempts and approaches to variations of this problem is given in the introduction of

the paper by Jiang et al. (1999). In this section, it is illustrated how this problem is solved by

obtaining the exact maximum likelihood estimates directly by specifying appropriate constraints

on the covariance matrices under consideration. Methodology is simplified considerably.

Let Y : pk × 1 denote a random vector composed of k groups of p variables each and



14

Y ∼ Npk(µ,Σ) with unknown mean vector µ and covariance matrix Σ respectively given by:

µ =




µ1 : p× 1

...

µk : p× 1




,Σ =




Σ11 · · · Σ1k

...
...

...

Σk1 · · · Σkk




where Σij : p× p for i, j = 1, · · · k.

The hypothesis of interest is H0 : Σ11 = · · · = Σkk against the alternative hypothesis

that at least one of the equalities does not hold. No assumptions are made regarding the off-

diagonal covariance matrices. Let yij , i = 1, · · · , q, j = 1, · · · , Ni denote Ni observations of the

pk-variate random vector Y observed for population i. The sample covariance matrix is given by

S = 1

n

∑q
i=1

∑Ni

j=1(yij − yi)(yij − yi)
′, yi =

1

Ni

∑Ni

j=1 yij , n = N − q, N =
∑q
i=1 Ni. The density

function of S is given by (5) and expressed in terms of its canonical statistic and corresponding

canonical parameter (6).

The example considered by Jiang & Sarkar (1998) and Jiang et al. (1999) on the bio-

equivalence of two formulations of a drug product are used in the next two subsections to illustrate

how a test for independence of groups of variables as well as a test for the homogeneity of covariance

matrices (with or without given structure) can be performed. A standard 2×2 crossover experiment

was conducted with 25 subjects to compare a new test formulation with a reference formulation.

The two treatment periods were separated by a 7-day washout period. Two variables, namely the

area under the plasma concentration-time curve (AUC) and the maximum plasma concentration

(Cmax), were considered. The natural logarithm of AUC and Cmax are believed to be marginally

normally distributed, i.e. the 2× 2 variate random vector

Y =




Y 1

Y 2


 ∼ N4







µ1

µ2


 ,




Σ11 Σ12

Σ21 Σ22





 . (10)

The two components of y, given by yijk, i = 1, 2, j = 1, · · · , Ni, k = 1(test), 2(reference),

represent the log(AUC) and log(Cmax) of the k-th formulation of the j-th subject in the i-th

sequence. Assuming different effects of the period administering formulation k in sequence i, the
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sample covariance matrix with N1 = 12, N2 = 13 is given by (Jiang & Sarkar (1998)):

S =




0.0657739 0.01602 0.0600567 −0.002653,

0.01602 0.0534908 0.0084126 0.0125034

0.0600567 0.0084126 0.0729088 −0.000625

−0.002653 0.0125034 −0.000625 0.0459961




(11)

.

Three structures for Σ, denoted by Σ1, Σ2 and Σ3 respectively, are considered in the next two

subsections.

5.1 Test for Independence

To test for independence of k sets of variates the off-diagonal covariance matrices are all

set equal to zero:

g(m) = g(vec(Σ)) =




vec(Σ12)

· · ·

vec(Σk−1,k)




with Gm =




∂vec(Σ12)

∂vec(Σ)

· · ·

∂vec(Σk−1,k)

∂vec(Σ)




.

For the example by Jiang et al. (1999), consider H0 : Σ12 = 0 where Σ : 4 × 4, given by

(10). The constraints implied by the test for independence of the two sets of variates are:

g(m) =




σ13

σ14

σ23

σ24







vec(Σ)[3]

vec(Σ)[4]

vec(Σ)[7]

vec(Σ)[8]




= 0 with Gm =




0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0




The maximum likelihood estimate of Σ = Σ1 with corresponding standard errors under these

constraints are:

Σ̂1 =




0.060512 0.014738 0 0

0.014738 0.049212 0 0

0 0 0.067076 −0.000575

0 0 −0.000575 0.042316




σ̂(Σ̂1) =




0.0063 0.0056 0 0

0.0056 0.0128 0 0

0 0 0.0069 0.0052

0 0 0.0052 0.0111




The Wald statistic, W1, is equal to 12.523 (p = 0.0139) with ν = 4.



16

5.2 Homogeneity of Covariance Matrices

In order to test for the homogeneity of covariance matrices, the (k−1)1
2
p(p+1) constraints

implied by the model are simply:

g(m) = g(vec(Σ)) =




vec(Σ11 −Σ22)

· · ·

vec(Σ11 −Σkk)




with Gm =




∂vec(Σ11)− vec(Σ22)

∂vec(Σ)

· · ·

∂vec(Σ11)− vec(Σkk)

∂vec(Σ)




. (12)

To fit the model of homogeneity of covariance matrices of dependent multivariate normals to the

data provided in the example by Jiang et al. (1999), the null hypothesis, H0 : Σ11 = Σ22,Σ12 	= 0,

is considered. The appropriate constraints in terms of the typical elements σij of Σ (cf. (10)) are

given by:

g(m) =




σ11 − σ33

σ12 − σ34

σ22 − σ44



=




vec(Σ)[1]− vec(Σ)[11]

vec(Σ)[2]− vec(Σ)[12]

vec(Σ)[6]− vec(Σ)[16]




with

Gm =




1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1




.

These constraints yield the mle’s of Σ = Σ2 below. These values correspond with the results of

Jiang et al. (1999) to five decimal places.

Σ̂2 =




0.064155 0.007345 0.055672 0.003795

0.007345 0.045719 0.002148 0.011277

0.0556724 0.002148 0.064155 0.007345

0.003800 0.011277 0.007345 0.045719




σ̂(Σ̂2) =




0.0159 0.0082 0.0159 0.0086

0.0082 0.0092 0.0099 0.0094

0.0159 0.0099 0.0159 0.0082

0.0086 0.0094 0.0082 0.0092




This model provides improved fit: W2 = 1.915, (p = 0.5901) with ν = 3.

Patterns can be imposed additionally on submatrices Σij : p × p for i ≤ j = 1, · · · k by

specifying the corresponding constraints. To illustrate, consider the sample covariance matrix in

(11). It suggests that the dependence relation between the two sets of variates is contained within

the sequence. Thus the relation between the two formulations are independent of the sequence in
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which they were administered. Consequently, a model for homogeneity of covariance matrices of

such structurally dependent multivariate normals was fitted, i.e. H0 : Σ11 = Σ22, Σ
∗

12 =




a 0

0 b




where a the covariance between AUC for the test and reference formulations and b the covariance

between Cmax for the test and reference formulations. The constraints required are:

g(m) =




vec(Σ)[1]− vec(Σ)[11]

vec(Σ)[2]− vec(Σ)[12]

vec(Σ)[6]− vec(Σ)[16]

vec(Σ)[4]

vec(Σ)[7]




with matrix of derivatives

Gm =




1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0




.

The maximum likelihood estimate of Σ = Σ3 is:

Σ̂3 =




0.0634099 0.0046713 0.0548077 0

0.0046713 0.0456856 0 0.0111829

0.0548077 0 0.0634099 0.0046713

0 0.0111829 0.0046713 0.0456856




σ̂(Σ̂3) =




0.0156 0.0033 0.0156 0.0000

0.0033 0.0092 0.0000 0.0091

0.0156 0.0000 0.0156 0.0033

0.0000 0.0091 0.0033 0.0092




The Wald statistic, W3, is equal to 2.045 (p = 0.843) with ν = 5. Of the three models considered,

this one fits best.

5.3 An equivalent approach

The likelihood function of independent multivariate normal populations can of course also

be used in a straightforward way as point of departure for this problem of testing for homogeneity

of covariance matrices of groups of dependent multivariate normal variables. Theory is given and il-

lustrated for two independent populations - again using the example by Jiang et al. (1999). Exactly
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the same results as those given in the previous subsection (cf. Σ̂2), are obtained. Generalization

of the process to q populations follows directly.

Suppose that yi1,yi2, · · · ,yini represent ni independent observations of two independent random

samples from Np(µi,Σi) distributions (i = 1, 2). Let yi represent the sample mean vector and Si

the matrix of mean sums of squares and products of the i-th sample:

yi =
1

ni

ni∑

j=1

yij , Si =
1

ni

ni∑

j=1

yijy
′

ij .

The likelihood function for the two multivariate samples can be expressed in its canonical expo-

nential form as follows:

L(µ1,µ2,Σ1,Σ2)

= Π2i=1det(2πΣi)
−ni/2exp



−

1

2
trΣ−1i



ni∑

j=1

(yij −µi)(yij −µi)
′







= Π2i=1exp



niµ

′

iΣ
−1

i (
1

ni

ni∑

j=1

yij)−
ni
2

trΣ−1i (
1

ni

ni∑

j=1

yijy
′

ij)−
ni
2
µ′iΣ

−1

i µi −
ni
2

ℓn[det(2πΣi)]





= exp
[
θ′t− κ(θ)

]
where

t =




1

n1

n1∑

j=1

y1j

vec(
1

n1

n1∑

j=1

y1jy
′

1j)

1

n2

n2∑

j=1

y2j

vec(
1

n2

n2∑

j=1

y2jy
′

kj)




=




y
1

vec(S1)

y2

vec(S2)




, θ =




n1Σ
−1

1
µ
1

−
n1
2

vec(Σ−1
1
)

n2Σ
−1

2
µ2

−
n2
2

vec(Σ−1
2
)




(13)

and E(t) =m =




µ
1

vec(Σ1 +µ1µ
′

1)

µ2

vec(Σ2 +µ2µ
′

2
)




=




m11

m12

m21

m22




. (14)

The covariance matrix of t is given by

V = Cov(t) =



V 11 0

0 V 22


 with V ii =



V i
11 V i

12

V i
21 V i

22



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where for i = 1, 2:

V i
11
= 1

niΣi

V i
21
= 1

ni (Σi ⊗µi +µi ⊗Σi) (Strydom & Crowther (2012))

V i
12 = V

i ′

21

V i
22 =

1
ni

(
Ip2 +K

)
[Σi ⊗Σi +Σi ⊗µiµ

′

i +µiµ
′

i ⊗Σi] (Muirhead (1982, page 518)).

To fit the model of homogeneity of two covariance matrices of four multivariate normal variables

(cf. (10)), in terms of the canonical statistics (13), the appropriate constraints are now given by:

g(m) =




g
1
(m)

g2(m)

g3(m)




,gi(m) =




vec(Σi)[1]− vec(Σi)[11]

vec(Σi)[2]− vec(Σi)[12]

vec(Σi)[6]− vec(Σi)[16]




, i = 1, 2, g3(m) = vec(Σ1)−vec(Σ2).

The corresponding derivatives are given by

Gm =




∂vec(Σi)

∂m
[1, ]−

∂vec(Σi)

∂m
[11, ]

∂vec(Σi)

∂m
[2, ]−

∂vec(Σi)

∂m
[12, ]

∂vec(Σi)

∂m
[6, ]−

∂vec(Σi)

∂m
[16, ]




, i = 1, 2, G3m =
∂vec(Σ1)

∂m
−

∂vec(Σ2)

∂m

where

∂vec(Σ1)

∂m
=

∂[m12 − vec(m11m
′

11
)]

∂m
= (−Ip ⊗m11 −m11 ⊗ Ip, Ip2 , 0p2×p, 0p2×p2)

∂vec(Σ2)

∂m
=

∂[m22 − vec(m21m
′

21
)]

∂m
= (0p2×p, 0p2×p2 , −Ip ⊗m21 −m21 ⊗ Ip, Ip2).

6 Conclusion

The maximum likelihood estimation method used in this paper is a very flexible procedure

for estimation in the Wishart class of distributions. It greatly simplifies maximum likelihood

methodology for the analysis of covariance structures. In addition to its flexibility for modelling

a single patterned covariance matrix, it is appropriate for modelling in the case of independent

as well as dependent multivariate distributions in the exponential class. The methodology also

provides for covariance matrices with non-linear structure, e.g. matrices with AR(1) or Toeplitz

structure.
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The procedure for maximum likelihood estimation under constraints provides a unified ap-

proach to solving estimation problems in a wide variety of applications where generally, estimation

and hypothesis testing can be problematic.
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