RESEARCH COMMUNICATION

OVERBERG RESEARCH PROJECTS. IV. THE DEVELOPMENT OF RESISTANCE TO NEMATODIRUS IN LAMBS AND SPONTANEOUS CURE OF TELADORSAGIA IN WEANERS

R. K. REINECKE, Overberg Research Projects, Department of Parasitology, Faculty of Veterinary Science, University of Pretoria, P.O. Box 680, Hermanus 7200

ABSTRACT

REINECKE, R. K., 1989. Overberg Research Projects. IV. The development of resistance to Nematodirus in lambs and spontaneous cure of Teladorsagia in weaners. Onderstepoort Journal of Veterinary Research, 56, 81–85 (1989).

Soon after 12-week old suckling lambs reached a peak infestation of *Nematodirus* resistance developed, worm burdens falling by 43,1-97,5% in 18 week and 11-month old sheep respectively. Both *Teladorsagia* (syn. *Ostertagia*) and *Trichostrongylus* reached a peak geometric mean (G) of 18 099 and 3 278 worms on 02 December 1987 in weaners 5-6 months old. Within 6 weeks-6 months of sheep grazing on safe pastures, spontaneous cure of *Teladorsagia* occurred, worm burdens falling by 77,3-98,7\% but not of *Trichostrongylus* which was only reduced by 34-40\%.

The epidemiology of nematode parasites was compared in 2 flocks of 250 Merino ewes each and their progeny on the farm Boontjieskraal (10 km west of Caledon) in the Overberg area of the winter rainfall region (Reinecke & Louw 1989; Louw 1989).

This paper is confined to the epidemiology of the major genera *Teladorsagia* (Syn. *Ostertagia*), *Nematodirus* and *Trichostrongylus* recovered from 6 male lambs (born in June and July 1987) and thereafter 6 weaned wethers slaughtered every 6 weeks (31–48 days). The trial started in June 1987 and stopped in May 1988.

Pregnant ewes and lambs grazed on infested dry-land lucerne pastures from April-25 November 1987. Weaners grazed on wheat stubble from 26 November 1987-24 February 1988 and from 25 March-05 May 1988, were transferred to dry-land lucerne from 25 February-24 March and again from 6–16 May 1988. Reinecke & Louw (1989) have shown that grazing in summer, either on wheat stubble or lucerne is safe if mean monthly mean temperatures are >20 °C and rainfall is <30 mm per month (Fig. 1).

Resistance to Nematodirus

Nematodirus: N. spathiger (Table 1, Fig. 2) N. abnormalis (5 sheep only, Table 2):

Suckling lambs 5–11 days old (Group C06) were negative and 6 weeks later *Nematodirus* was recovered, reaching a geometric mean (G) of 7 208 in September (in lambs 12 weeks of age) falling slowly but steadily thereafter, only G mean of 180 being present by May 1988, when lambs were 10–11 months old. This confirms the observations of other workers that lambs rapidly develop resistance to this genus (Seghetti & Senger, 1958; Donald Dineen, Turner & Wagland, 1964, cited by Fitzsimmons, 1969).

Spontaneous cure of Teladorsagia

Teladorsagia: T. circumcincta and T. trifurcata (Table 1, Fig. 2)

After a slow start in July and September this genus reached a peak in December 1987. In July 64 % of all *Teladorsagia* recovered were either 3rd stage or 4th stage larvae (L_3 or L_4) and this remained fairly constant while the flock grazed on infested dry-land lucerne pasture. These larvae were hypobiotic (Louw, 1989).

As soon as weaners started grazing on wheat stubble from 26 November 1987, a different reaction known as

Received 5 December 1988-Editor

		srs se Table 2)					
	snjkbu	sn1081					
	richostro						
	T						
		198iyipd					
	S						
	lematodiru.						
	V	atosrufi					
manachi	a	ורכעזובנום					
A TON IN THE TANK	Teladorsag						
	Ι						
	Lamb No.						
AVELING OF A VIRISHING AND ALL A LIVER ALVER ALVERTICS HER POINTS IN THE COURSE HE POOLS STATE	Date killed						
		Group					

TABLE 1 Nematodes consistently recovered from lambs and weaners in the control flock at Boontjieskraal

			T_{I}	Teladorsagia	3	~	Nematodirus	13		Tric	Trichostrongylus	gylus		AI	All nematodes	
Group	Date killed	Lamb No.	L3	L4	T. circumcincta	T. trifurcata	L3	L4	198ithoq2 .V	L ₃	L4	T. rugatus	Others (See Table 2)	L_3+L_4	stlubA	Total
	27 Jul. 87	37 664 1227 200	527 16 395 395 104	105 14 83 229 70 0	200 71 220 217 149 0	15 31 49 0 0	117 10 173 85 125 0	3 333 145 945 925 925 0	0 67 675 0 0	000000	17 000000	117 10 35 35	000000	4 099 185 1 256 1 634 1 224 0	332 164 289 248 908 5	40
	10 Sep. 87	27 45 118 198 242 502	1 548 1 309 915 147 147 183	2 183 2 121 3 667 1 333 1 333 1 507 1 633	1 615 1 345 2 924 1 167 1 85 1 347	175 199 729 206 35 0	80 150 167 167 200	1 240 1 350 2 333 747 1 867 2 300	6 160 14 425 9 033 100 4 380 12 050	000000	4 <u>0</u> 0000	190 190 433 467 497	554 336 3	5 091 7 115 3 924 5 220	8 140 8 16 082 13 121 1 513 5 621 13 897	¹³ ²⁰ ²⁰
	21 Oct. 87	5 86 106 106 238 238	4 875 7 550 9 007 3 746 2 354	1 850 3 507 6 020 4 333 2 020 2 650	8 347 10 580 1 513 3 603 1 803 1 803	1 307 0 400 0 0	000200	660 390 500 380 380 70 2 340	10 940 8 770 287 287 540 11 670 2 906	00000 8100000	20 ¹³ ⁷ 00	3 830 3 830 1 200 2 547 840 840	22 90 10 10 10 10	7 405 11 447 15 534 8 479 4 464 7 631	24 050 21 879 4 356 5 699 14 320 3 409	33 33 11 11 11 11 11
	2 Dec. 87	46 69 163 170	2 501 5 500 5 500 6 650 5 169 1 635	3 451 7 333 8 500 8 234 8 234 4 335	4 975 5 433 15 916 8 209 6 736 4 589	0 1 384 1 226 1 077	000000	1 650 725 625 625 529 425	50 2 975 2 975 1 375 3 575	000000	000000	2 475 3 800 3 450 2 520 2 520	35 12 12 1816 1816 20 641	6 002 14 483 15 875 13 396 13 885 6 395	7 535 13 520 27 817 16 076 9 536 12 402	18 33 34 38 13 18 33 34 38 13
	13 Jan. 88	49 55 191 191 196	1 0 669 367 367	366 450 4515 6373 6373 2075	2 139 1 851 4 042 3 506 1 568 1 435	0 450 275 0	000000	130 195 255 255 333 33	205 1 075 1 085 5 700 5 700 918	000000	500000	900 2 740 5 199 2 400 2 400	4 19 26 100 114	502 545 5 197 7 609 351 2 582	3 248 4 416 8 336 8 336 14 431 3 802 4 867	evel242
	24 Feb. 88	2282328 192828	171 172 00 00	1 896 1 896 1 837 1 96 43	2 091 1 806 1 761 883 2 884	24 179 177 0 0	000000	200 200 13 47 187	9 900 680 747 200 199	000000	000000	1 030 3 200 1 187 2 053 1 907 853	424 8 10 10 10 10 10 10	275 2113 21 1886 226 230	2 209 15 412 3 874 3 946 3 946	95004
	11 Apr. 88	505 92 131 132 133 133	000000	164 85 120 272 272 273	1 487 1 551 661 2 345 788 1 707	130 0 171 90 90	000000	282385	130 1 013 1 333 113 260 760	000000	000000	1 320 1 840 1 433 2 254 1 060	23 19 21 29 19	174 105 147 292 132 326	2 966 4 561 3 446 3 429 3 636 3 636	~4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	18 May 88	39 71 104 144 144	000000	509 457 347 347 433	62 2 107 207 21	000000	300008	4 973 20 40 513 20 100	60 0 280 40 40	000000	82130 8773 8773 8773 8773	1 160 3 994 3 287 1 580 787 3 626	33314 3032233714 3032233714	5 802 604 1 079 417 616	1 296 4 067 3 321 2 465 1 537 3 717	C400-4

TABLE 2 Nematodes occasional	y recovered from control	l lambs and weaners at Boontjieskraal	
------------------------------	--------------------------	---------------------------------------	--

Group	Date killed	Sheep No.	Nematodirus abnormalis	Oesophagostomum venulosum	Trichostrongylus colubriformis	Trichostrongylus falculatus	Trichostrongylus pietersei	Trichuris skrjabini	Total
C08	10 Sep. 87	45 118 242 502	0 0 487 0	6 0 0 3	0 0 0 0	0 0 0 0	100 0 67 0	0 2 0 0	106 2 554 3
C09	21 Oct. 87	5 11 86 106 125 238	0 0 0 0 0	2 1 0 2 4 4	0 0 0 0 393	0 0 0 0 0 0	0 0 0 0 0	3 21 9 14 3 6	5 22 9 16 7 403
C10	02 Dec. 87	2 46 69 82 163 170	0 0 2 250 1 800 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 630	0 0 0 0 0 0	35 12 17 16 20 11	35 12 2 267 1 816 20 641
C11	13 Jan. 88	49 55 188 191 196 197	0 0 0 80 102	0 0 2 0 4 2	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	4 15 17 26 16 10	4 15 19 26 100 114
C12	24 Feb. 88	25 75 96 124 150 190	0 0 0 0 0 0	0 0 3 1 2 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	24 42 5 25 14 10	24 42 8 26 16 10
C13	11 Apr. 88	505 92 131 132 139 166	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	29 27 19 29 21 19	29 27 19 29 21 19
C14	18 May 88	39 71 87 104 144 146	0 0 0 0 0 0	0 0 5 0 0 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	14 71 28 24 23 29	14 71 33 24 23 30

TABLE 3 Spontaneous cure of <i>Teladorsagia</i> . A comparison of the geometric means of larvae (L_3+L_4) and adult <i>Teladorsagia</i> between Grou	ips
(Č10–C14) slaughtered from 02 December 1987–18 May 1988	

0		G	G
Group	Date killed	$L_3 + L_4$	Adult
C10 C11	02 December 1987 13 January 1988	10 351 1 288	7 498 2 291
C10 and C11	Difference	-87,6 %	-69,5 %
C11 C12	13 January 1988 24 February 1988	1 288 195	2 291 1 622
C11 and C12	Difference	-84,9 %	29,2 %
C12 C13	24 February 1988 11 April 1988	195 155	1 622 1 349
C12 and C13	Difference	-20,5 %	-16,8 %
C13 C14	11 April 1988 18 May 1988	155 -182	1 349 26
C13 and C14	Difference	+17,4 %	-98,4 %

OVERBERG RESEARCH PROJECTS IV

"spontaneous cure" occurred (Stewart, cited by Gordon, 1967). There was a dramatic fall in the worm burdens from a G mean of 18 099 to 4 108 in the period between 02 December 1987 an 13 January 1988, which continued to fall and by the end of this trial on 18 May 1988 only a G mean of 230 worms were recovered.

The reduction in the geometric means of the larvae (L_3+L_4) and adult *Teladorsagia* and the percentage differences between successive groups (C10, C11, C12, C13 and C14) of weaners slaughtered while spontaneous cure was taking place are summarized in Table 3. The Mann-Whitney U test (Siegel, 1956) was used to compare 1 group with the following group, with the following results:

	L_3+L_4	Adults
Group C10 compared with Group C11	P<0,004	P<0,001
Group C11 compared with Group C12	P<0,032	P<0,294
Group C12 compared with Group C13	P<0,409	P<0,120
Group C13 compared with Group C14	P<0,032 ⁽¹⁾	P<0,002

(1) Larvae in Group C14 were significantly more than those in Group C13 (see below).

Reinecke & Louw (1989) have shown that larvae aestivate in the soil and only migrate on to the lucerne pasture if the mean monthly mean temperatures are <20 °C and the total monthly rainfall is >30 mm, which oc-curred in April 1988 (Fig. 1). Weaners in Group 14 grazed on infested dry-land lucerne pasture for 10 days (06-16 May 1988) prior to slaughter and became reinfested, accounting for the larval increase in Group 14. In all other groups spontaneous cure was most evident in the 1st 6 weeks on wheat stubble and both larvae and adults were spontaneously expelled by the hosts.

This differs from experiments done by Armour, Jarrett & Jennings (1966) who dosed 16 6-month-old worm-free sheep with a single dose of 100 000 infective larvae of T. circumcincta and slaughtered them in pairs from 4-60 days after infestation. They showed that most of the worms were adult stages which were expelled at 16 days and a further decrease occurred 35-60 days after infestation. In the present trial both adults and larvae were expelled within 6 weeks of freedom from reinfestation and this process continued for at least another 4 months.

Sommerville (1954) showed that L_4 of T. circumcincta could be inhibited for as long as 12 weeks before the 4th moult took place and referred to this inhibition as the histotrophic phase. This is a normal part of the life-cycle which Reinecke (1977) also noted when he dosed wormfree lambs with infective larvae of T. circumcincta, some of which remained as L4 for at least 9 weeks after they should have undergone the 4th moult (M₄) and developed to the 5th and adult stages.

The following confirms the observations on Ostertagia ostertagi by Michel (1963) and Michel, Lancaster & Hong (1976 a, b).:

Many adult Teladorsagia probably live for less than 6 weeks, possibly only 25-30 days as is the case with O. ostertagi. Those that were recovered after 6 weeks on

safe pastures probably developed from the larval stages which had been acquired while sheep had been grazing on infested dry-land lucerne the previous spring.

It is possible to postulate that the surviving worms have been derived from a genetic strain which does not die for at least 6 months and will assure that the genus survives under the grazing conditions at Boontjieskraal, to contaminate the pastures when weather conditions are favourable for the free-living stages to develop into viable infective larvae to infest the grazing hosts.

Trichostrongylus: T. rugatus (Table 1, Fig. 2).

T. colubriformis (1 lamb), T. falculatus (1 lamb) and T. pietersei (2 lambs) (Table 2).

This genus lives longer than either Nematodirus or Teladorsagia in lambs and weaners and the host does not develop resistance, nor is there any spontaneous cure within the 1st 11 months of its life under the grazing conditions in the present trial. Within 6 weeks-6 months of weaners grazing on safe pastures worm burdens were reduced by 34-40 %, which is probably a normal fluctuation.

ACKNOWLEGEMENTS

Mrs Johanna Matthewson is thanked for preparing the graphs and Mrs Norah Reinecke for typing the manuscript.

REFERENCES

- ARMOUR, J., JARRETT, W. F. H. & JENNINGS, F. W., 1966. Experimental Ostertagia circumcincta infections in sheep: Development
- mental Ostertagia circumcincta infections in sneep: Development and pathogenesis of a single infection. American Journal of Veteri-nary Research, 27, 1267–1278.
 FITZSIMMONS, W. M., 1969. Pathogenesis of trichostrongyles. Re-view article. Helminthological Abstracts, 38, 139–190.
 GORDON, H. McL., 1967. Self-cure reaction. In: E. J. L. SOULSBY (ed.). The reaction on the host to parasitism. Proceedings of the International Conference of the World Association for the Advance-ment of Veterinary Perseitology. 3, 14092–277 July 1967. Veterinary
- International contector into work vork visional of the visional contect and vork vision Veterinary Association (In press).
- MICHEL, J. F., 1963. The phenomena of host resistance and the course of infection of Ostertagia ostertagi in calves. Parasitology, 53, 63-84
- MICHEL, J. F., LANCASTER, M. B. & HONG, C., 1976a. Observations on the resumed development of arrested Ostertagia ostertagi in natural infected yearling cattle. Journal of Comparative Pathology, 86, 73-80
- MICHEL, J. F., LANCASTER, M. B. & HONG, C., 1976b. The resumed development of arrested Ostertagia ostertagi in experimentally in-
- fected calves. Journal of Comparative Pathology, 86, 615–619. REINECKE, R. K., 1977. The effect of abomasal nematodes on subsequent infestations with Haemonchus contortus. M. Med. Vet (Parasi-
- REINECKE, R. K. & LOUW, J. P., 1989, Overberg Research Projects.
 I. The epidemiology of parasitic nematodes in ewes, suckling lambs and weaners at Boontjieskraal. *Journal of the South African Veteri-*
- and wearers at Boonijieskraal. Journal of the South African Veterinary Association (In press).
 SEGHETTI, L. & SENGER, C. M., 1958. Experimental infections in lambs with Nematodirus spathiger. American Journal of Veterinary Research, 19, 642–644.
 SIEGEL, S., 1956. Non-parametric statistics for the behavioral sciences. New York: McGraw-Hill Book Co. Inc.
 SOMMERVILLE, R. I., 1954. The histotropic phase of the nematode parametric ortention in control of Assignment of Assignment of Assignment of Assignment Sciences.
- parasite Ostertagia circumcincta. Australian Journal of Agricultural Research, 5, 130-140.

Printed by the Government Printer, Private Bag X85, Pretoria, 0001