## Research Communication

# OVERBERG RESEARCH PROJECTS. IV. THE DEVELOPMENT OF RESISTANCE TO NEMATODIRUS IN LAMBS AND SPONTANEOUS CURE OF TELADORSAGIA IN WEANERS 

R. K. REINECKE, Overberg Research Projects, Department of Parasitology, Faculty of Veterinary Science, University of Pretoria, P.O. Box 680, Hermanus 7200


#### Abstract

REINECKE, R. K. , 1989. Overberg Research Projects. IV. The development of resistance to Nematodirus in lambs and spontaneous cure of Teladorsagia in weaners. Onderstepoort Journal of Veterinary Research, 56, 81-85 (1989).

Soon after 12-week old suckling lambs reached a peak infestation of Nematodirus resistance developed, worm burdens falling by $43,1-97,5 \%$ in 18 week and 11 -month old sheep respectively. Both Teladorsagia (syn. Ostertagia) and Trichostrongylus reached a peak geometric mean (G) of 18099 and 3278 worms on 02 December 1987 in weaners 5-6 months old. Within 6 weeks- 6 months of sheep grazing on safe pastures, spontaneous cure of Teladorsagia occurred, worm burdens falling by 77,3-98,7 \% but not of Trichostrongylus which was only reduced by $34-40 \%$.


The epidemiology of nematode parasites was compared in 2 flocks of 250 Merino ewes each and their progeny on the farm Boontjieskraal ( 10 km west of Caledon) in the Overberg area of the winter rainfall region (Reinecke \& Louw 1989; Louw 1989).

This paper is confined to the epidemiology of the major genera Teladorsagia (Syn. Ostertagia), Nematodirus and Trichostrongylus recovered from 6 male lambs (born in June and July 1987) and thereafter 6 weaned wethers slaughtered every 6 weeks (31-48 days). The trial started in June 1987 and stopped in May 1988.

Pregnant ewes and lambs grazed on infested dry-land lucerne pastures from April-25 November 1987. Weaners grazed on wheat stubble from 26 November 1987-24 February 1988 and from 25 March-05 May 1988, were transferred to dry-land lucerne from 25 February-24 March and again from 6-16 May 1988. Reinecke \& Louw (1989) have shown that grazing in summer, either on wheat stubble or lucerne is safe if mean monthly mean temperatures are $>20^{\circ} \mathrm{C}$ and rainfall is $<30 \mathrm{~mm}$ per month (Fig. 1).

## Resistance to Nematodirus

Nematodirus: $N$. spathiger (Table 1, Fig. 2)
N. abnormalis (5 sheep only, Table 2):

Suckling lambs 5-11 days old (Group C06) were negative and 6 weeks later Nematodirus was recovered, reaching a geometric mean (G) of 7208 in September (in lambs 12 weeks of age) falling slowly but steadily thereafter, only G mean of 180 being present by May 1988, when lambs were $10-11$ months old. This confirms the observations of other workers that lambs rapidly develop resistance to this genus (Seghetti \& Senger, 1958; Donald Dineen, Turner \& Wagland, 1964, cited by Fitzsimmons, 1969).

## Spontaneous cure of Teladorsagia

Teladorsagia: T. circumcincta and T. trifurcata (Table 1, Fig. 2)

After a slow start in July and September this genus reached a peak in December 1987. In July $64 \%$ of all Teladorsagia recovered were either 3rd stage or 4th stage larvae $\left(\mathrm{L}_{3}\right.$ or $\left.\mathrm{L}_{4}\right)$ and this remained fairly constant

[^0]while the flock grazed on infested dry-land lucerne pasture. These larvae were hypobiotic (Louw, 1989).

As soon as weaners started grazing on wheat stubble from 26 November 1987, a different reaction known as


FIG. 1 Monthly temperature and rainfall recorded from May 1987-May 1988 at Boontjieskraal (Reinecke \& Louw, 1989).


FIG. 2 Variations in the G mean worm burdens of Teladorsagia 0 , Nematodirus 5 and Trichostrongylus in suckling lambs and weaners from January 1987-May 1988 at Boontjieskraal (Reinecke \& Louw, 1989).

OVERBERG RESEARCH PROJECTS IV

| Group | Date killed | $\begin{aligned} & \text { Lamb } \\ & \text { No. } \end{aligned}$ | Teladorsagia |  |  | Nematodirus |  |  | Trichostrongylus |  |  |  |  | All nematodes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{L}_{3}$ | $\mathrm{L}_{4}$ |  |  | $\mathrm{L}_{3}$ | $\mathrm{L}_{4}$ |  | $\mathrm{L}_{3}$ | $\mathrm{L}_{4}$ |  |  | $\mathrm{L}_{3}+\mathrm{L}_{4}$ | $\frac{y}{3}$ | Total |
| C07 | 27 Jul .87 | $\begin{gathered} 37 \\ 43 \\ 64 \\ 66 \\ 64 \\ 127 \\ 220 \end{gathered}$ | $\begin{array}{r} 527 \\ 16 \\ 55 \\ 395 \\ 104 \\ 0 \end{array}$ | $\begin{array}{r} 105 \\ 14 \\ 83 \\ 229 \\ 70 \\ 0 \end{array}$ | $\begin{array}{r} 200 \\ 71 \\ 220 \\ 217 \\ 149 \\ 0 \end{array}$ | $\begin{array}{r} 15 \\ 3 \\ 2 \\ 31 \\ 49 \\ 0 \end{array}$ | $\begin{array}{r} 117 \\ 10 \\ 173 \\ 85 \\ 125 \\ 0 \end{array}$ | $\begin{array}{r} 3333 \\ 145 \\ 945 \\ 925 \\ 925 \\ 0 \end{array}$ | $\begin{array}{r} 0 \\ 80 \\ 67 \\ 0 \\ 675 \\ 0 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 17 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$ | $\begin{array}{r} 117 \\ 10 \\ 0 \\ 0 \\ 35 \\ 5 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 4099 \\ & 185 \\ & 1256 \\ & 1634 \\ & 1224 \\ & 124 \end{aligned}$ | $\begin{array}{r} 332 \\ 164 \\ 289 \\ 248 \\ 908 \\ 5 \end{array}$ | $\begin{array}{r} 4431 \\ 349 \\ 1545 \\ 1882 \\ 2132 \\ 2 \quad 5 \end{array}$ |
| C08 | 10 Sep. 87 | $\begin{array}{r} 27 \\ 45 \\ 418 \\ 1198 \\ 242 \\ 502 \end{array}$ | $\begin{array}{r} 1548 \\ 1309 \\ 1315 \\ 147 \\ 383 \\ 1087 \end{array}$ | $\begin{aligned} & 2183 \\ & 2121 \\ & 31667 \\ & 36333 \\ & 13507 \\ & 1563 \\ & 1633 \end{aligned}$ | $\begin{aligned} & 1615 \\ & 1345 \\ & 2924 \\ & 1167 \\ & 185 \\ & 1347 \end{aligned}$ | $\begin{gathered} 175 \\ 199 \\ 729 \\ 206 \\ 35 \\ 0 \end{gathered}$ | $\begin{array}{r} 80 \\ 150 \\ 200 \\ 167 \\ 167 \\ 200 \end{array}$ | $\begin{aligned} & 1240 \\ & 13350 \\ & 2333 \\ & 747 \\ & 1886 \\ & 18300 \\ & 2 \end{aligned}$ | $\begin{array}{r} 6160 \\ 14425 \\ 9033 \\ 100 \\ 4380 \\ 12050 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 40 \\ 50 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$ | $\begin{array}{r} 190 \\ 7 \\ 43 \\ 40 \\ 467 \\ 497 \end{array}$ | $\begin{array}{r} 0 \\ 106 \\ 2 \\ 0 \\ 554 \\ 3 \end{array}$ | $\begin{aligned} & 5091 \\ & 4980 \\ & 7115 \\ & 2394 \\ & 3924 \\ & 5220 \end{aligned}$ | $\begin{array}{r} 8140 \\ 1682 \\ 13121 \\ 1513 \\ 5621 \\ 13897 \end{array}$ | $\begin{array}{r} 13231 \\ 21062 \\ 20236 \\ 3907 \\ 9545 \\ 19117 \end{array}$ |
| C09 | 21 Oct. 87 | $\begin{array}{r} 5 \\ 11 \\ 86 \\ 106 \\ 125 \\ 238 \end{array}$ | $\begin{aligned} & 4885 \\ & 7550 \\ & 9007 \\ & 37746 \\ & 27354 \\ & 2534 \end{aligned}$ | $\begin{aligned} & 1850 \\ & 3 \\ & 3 \\ & 6007 \\ & 43302 \\ & 2303 \\ & 2020 \\ & 2650 \end{aligned}$ | $\begin{array}{r} 8937 \\ 10580 \\ 1513 \\ 3603 \\ 1803 \\ 100 \end{array}$ | $\begin{array}{r} 928 \\ 1307 \\ 0 \\ 400 \\ 0 \\ 0 \end{array}$ | $\begin{array}{r} 0 \\ 0 \\ 0 \\ 7 \\ 10 \\ 0 \end{array}$ | $\begin{array}{r} 660 \\ 390 \\ 500 \\ 380 \\ 7340 \end{array}$ | $\begin{array}{r} 10940 \\ 8770 \\ 287 \\ 540 \\ 11670 \\ 2906 \end{array}$ | $\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ 87 \end{array}$ | $\begin{array}{r} 20 \\ 0 \\ 7 \\ 13 \\ 0 \\ 20 \end{array}$ | $\begin{array}{r} 3830 \\ 1200 \\ 2547 \\ 1140 \\ 840 \\ 8 \end{array}$ | $\begin{array}{r} 5 \\ 22 \\ 9 \\ 16 \\ 7 \\ 703 \end{array}$ | $\begin{array}{r} 7405 \\ 11447 \\ 15534 \\ 8479 \\ 4464 \\ 7631 \end{array}$ | $\begin{array}{r} 24050 \\ 21879 \\ 4366 \\ 5699 \\ 14320 \\ 3409 \end{array}$ | $\begin{aligned} & 31455 \\ & 33326 \\ & 19890 \\ & 14178 \\ & 18784 \\ & 11040 \end{aligned}$ |
| C10 | 2 Dec. 87 | $\begin{array}{r} 2 \\ 46 \\ 69 \\ 82 \\ 163 \\ 170 \end{array}$ | $\begin{aligned} & 2501 \\ & 5500 \\ & 6650 \\ & 65169 \\ & 5601 \\ & 5635 \\ & 1635 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3451 \\ & 7333 \\ & 8500 \\ & 7602 \\ & 8234 \\ & 4335 \\ & \hline \end{aligned}$ | $\begin{array}{r} 4995 \\ 5433 \\ 54916 \\ 88209 \\ 6736 \\ 6589 \end{array}$ | $\begin{array}{r} 0 \\ 1384 \\ 1226 \\ 430 \\ 1077 \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 50 \\ 1650 \\ 725 \\ 625 \\ 50 \\ 425 \\ \hline \end{array}$ | $\begin{array}{r} 50 \\ 4275 \\ 2975 \\ 1375 \\ 50 \\ 3575 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 2475 \\ & 3800 \\ & 5275 \\ & 3450 \\ & 2300 \\ & 2520 \end{aligned}$ | $\begin{array}{r} 35 \\ 2267 \\ 2267 \\ 180 \\ 641 \end{array}$ | $\begin{array}{r} 6002 \\ 14483 \\ 15875 \\ 13396 \\ 13885 \\ 6395 \end{array}$ | $\begin{array}{r} 7535 \\ 13520 \\ 27817 \\ 16076 \\ 9536 \\ 12402 \end{array}$ | 13537 28003 43692 29472 23421 18797 |
| C11 | 13 Jan .88 | $\begin{array}{r} 49 \\ 55 \\ 188 \\ 191 \\ 196 \\ 197 \end{array}$ | $\begin{array}{r} 1 \\ 0 \\ 427 \\ 669 \\ 36 \\ 367 \end{array}$ | $\begin{array}{r} 366 \\ 450 \\ 4515 \\ 6373 \\ 315 \\ 2075 \end{array}$ | 2139 1851 4042 3506 1568 1435 | $\begin{array}{r} 0 \\ 0 \\ 450 \\ 0 \\ 275 \\ 0 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 130 \\ & 195 \\ & 255 \\ & 567 \\ & 33 \\ & 140 \end{aligned}$ | $\begin{array}{r} 205 \\ 1075 \\ 1085 \\ 5700 \\ 588 \\ 918 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 900 \\ 1475 \\ 2740 \\ 5199 \\ 1273 \\ 2400 \end{array}$ | $\begin{array}{r} 4 \\ 15 \\ 19 \\ 26 \\ 100 \\ 114 \end{array}$ | $\begin{array}{r} 502 \\ 645 \\ 5197 \\ 7609 \\ 351 \\ 2582 \end{array}$ | 3248 4416 8336 14431 3802 4867 | 3750 5061 1353 22040 4453 4449 |
| C12 | 24 Feb .88 | $\begin{gathered} 25 \\ 75 \\ 96 \\ 9124 \\ 150 \\ 190 \end{gathered}$ | $\begin{array}{r} 0 \\ 17 \\ 0 \\ 2 \\ 0 \\ 0 \end{array}$ | $\begin{array}{r} 265 \\ 1896 \\ 1837 \\ 196 \\ 43 \end{array}$ | $\begin{gathered} 801 \\ 2091 \\ 1806 \\ 1861 \\ 1783 \\ 2884 \end{gathered}$ | $\begin{array}{r} 24 \\ 179 \\ 193 \\ 177 \\ 0 \\ 0 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r\|} 10 \\ 200 \\ 13 \\ 47 \\ 30 \\ 187 \end{array}$ | $\begin{array}{r} 330 \\ 9900 \\ 680 \\ 747 \\ 200 \\ 199 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 1030 \\ 3200 \\ 1187 \\ 2053 \\ 1907 \\ 853 \end{array}$ | $\begin{array}{r} 24 \\ 42 \\ 8 \\ 26 \\ 16 \\ 10 \end{array}$ | $\begin{array}{r} 275 \\ 2113 \\ 21 \\ 1886 \\ 226 \\ 230 \end{array}$ | $\begin{array}{r} 2209 \\ 15412 \\ 3874 \\ 4774 \\ 3006 \\ 3946 \end{array}$ | $\begin{array}{r} 2484 \\ 17585 \\ 3895 \\ 6650 \\ 3232 \\ 4176 \end{array}$ |
| C13 | 11 Apr. 88 | $\begin{aligned} & 505 \\ & 92 \\ & 131 \\ & 132 \\ & 139 \\ & 166 \end{aligned}$ | $\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$ | $\begin{aligned} & 184 \\ & 85 \\ & 120 \\ & 272 \\ & 112 \\ & 279 \end{aligned}$ | $\begin{aligned} & 1487 \\ & 1551 \\ & 661 \\ & 2345 \\ & 788 \\ & 1707 \end{aligned}$ | $\begin{array}{r} 0 \\ 130 \\ 0 \\ 171 \\ 0 \\ 90 \end{array}$ | 0 0 0 0 0 0 | $\begin{aligned} & 10 \\ & 20 \\ & 27 \\ & 20 \\ & 20 \\ & 47 \end{aligned}$ | $\begin{array}{r} 130 \\ 1013 \\ 1333 \\ 113 \\ 2600 \\ 760 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 0 0 0 0 0 | $\begin{aligned} & 13220 \\ & 1840 \\ & 1 \\ & 1433 \\ & 2234 \\ & 2360 \\ & 1060 \end{aligned}$ | $\begin{aligned} & 29 \\ & 27 \\ & 19 \\ & 29 \\ & 21 \\ & 19 \end{aligned}$ | $\begin{aligned} & 174 \\ & 105 \\ & 147 \\ & 292 \\ & 322 \end{aligned}$ | $\begin{aligned} & 2966 \\ & 4561 \\ & 3446 \\ & 4912 \\ & 3429 \\ & 3636 \end{aligned}$ | 3140 4666 3593 5204 3561 3962 |
| C14 | 18 May 88 | $\begin{array}{r} 39 \\ 71 \\ 87 \\ 104 \\ 144 \\ 146 \end{array}$ | $\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 6 \\ 10 \\ 0 \end{array}$ | $\begin{gathered} 509 \\ 457 \\ 1 \\ 500 \\ 347 \\ 433 \end{gathered}$ | $\begin{array}{r} 62 \\ 2 \\ 1 \\ 81 \\ 707 \\ 21 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$ | $\begin{array}{r} 4973 \\ 20 \\ 40 \\ 513 \\ 20 \\ 100 \end{array}$ | $\begin{array}{r} 60 \\ 0 \\ 0 \\ 780 \\ 20 \\ 40 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 300 \\ 127 \\ 87 \\ 60 \\ 40 \\ 60 \end{array}$ | $\begin{aligned} & 1160 \\ & 3994 \\ & 3287 \\ & 1580 \\ & 787 \\ & 3626 \end{aligned}$ | $\begin{aligned} & 14 \\ & 71 \\ & 33 \\ & 24 \\ & 23 \\ & 30 \end{aligned}$ | $\begin{array}{r} 5802 \\ 604 \\ 128 \\ 1079 \\ 417 \\ 616 \end{array}$ | 1296 4067 3321 2465 1537 3717 | 7098 4671 3449 3544 1954 4333 |

TABLE 2 Nematodes occasionally recovered from control lambs and weaners at Boontjieskraal

| Group | Date killed | Sheep No. |  |  |  |  |  | Trichuris skrjabini | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C08 | 10 Sep. 87 | $\begin{array}{r} 45 \\ 118 \\ 242 \\ 502 \end{array}$ | 0 0 487 0 | $\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 100 \\ 0 \\ 67 \\ 0 \end{array}$ | $\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 106 \\ 2 \\ 554 \\ 3 \end{array}$ |
| C09 | 21 Oct. 87 | $\begin{array}{r} 5 \\ 11 \\ 86 \\ 106 \\ 125 \\ 238 \end{array}$ | 0 0 0 0 0 0 | $\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 2 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 393 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 3 \\ 21 \\ 9 \\ 14 \\ 3 \\ 6 \end{array}$ | $\begin{array}{r} 5 \\ 22 \\ 9 \\ 16 \\ 7 \\ 403 \end{array}$ |
| C10 | 02 Dec. 87 | $\begin{array}{r} 2 \\ 46 \\ 69 \\ 82 \\ 163 \\ 170 \end{array}$ | 2 2 $\begin{array}{r}0 \\ 1800 \\ \\ 800 \\ \\ \\ 0\end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 630 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 35 \\ & 12 \\ & 17 \\ & 16 \\ & 20 \\ & 11 \end{aligned}$ | $\begin{array}{r} 35 \\ 12 \\ 2267 \\ 1816 \\ 20 \\ 641 \end{array}$ |
| C11 | 13 Jan. 88 | $\begin{array}{r} 49 \\ 55 \\ 188 \\ 191 \\ 196 \\ 197 \end{array}$ | 0 0 0 0 80 102 | $\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 4 \\ & 2 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 4 \\ 15 \\ 17 \\ 26 \\ 16 \\ 10 \end{array}$ | $\begin{array}{r} 4 \\ 15 \\ 19 \\ 26 \\ 100 \\ 114 \end{array}$ |
| C12 | 24 Feb. 88 | $\begin{array}{r} 25 \\ 75 \\ 96 \\ 124 \\ 150 \\ 190 \end{array}$ | 0 0 0 0 0 0 | $\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 1 \\ & 2 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{r} 24 \\ 42 \\ 5 \\ 25 \\ 14 \\ 10 \end{array}$ | $\begin{array}{r} 24 \\ 42 \\ 8 \\ 26 \\ 16 \\ 10 \end{array}$ |
| C13 | 11 Apr. 88 | $\begin{array}{r} 505 \\ 92 \\ 131 \\ 132 \\ 139 \\ 166 \end{array}$ | 0 0 0 0 0 0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 29 \\ & 27 \\ & 19 \\ & 29 \\ & 21 \\ & 19 \end{aligned}$ | $\begin{aligned} & 29 \\ & 27 \\ & 19 \\ & 29 \\ & 21 \\ & 19 \end{aligned}$ |
| C14 | 18 May 88 | $\begin{array}{r} 39 \\ 71 \\ 87 \\ 104 \\ 144 \\ 146 \end{array}$ | 0 0 0 0 0 0 | $\begin{aligned} & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 14 \\ & 71 \\ & 28 \\ & 24 \\ & 23 \\ & 29 \end{aligned}$ | $\begin{aligned} & 14 \\ & 71 \\ & 33 \\ & 24 \\ & 23 \\ & 30 \end{aligned}$ |

TABLE 3 Spontaneous cure of Teladorsagia. A comparison of the geometric means of larvae ( $\mathrm{L}_{3}+\mathrm{L}_{4}$ ) and adult Teladorsagia between Groups (C10-C14) slaughtered from 02 December 1987-18 May 1988

| Group | Date killed | $\begin{gathered} G \\ L_{3}+L_{4} \end{gathered}$ | G <br> Adult |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{C} 10 \\ & \mathrm{C} 11 \end{aligned}$ | 02 December 1987 <br> 13 January 1988 | $\begin{array}{r} 10351 \\ 1288 \end{array}$ | $\begin{aligned} & 7498 \\ & 2291 \end{aligned}$ |
| C10 and C11 | Difference | -87,6\% | -69,5\% |
| $\begin{aligned} & \mathrm{C} 11 \\ & \mathrm{C} 12 \end{aligned}$ | 13 January 1988 <br> 24 February 1988 | $\begin{array}{r} 1288 \\ 195 \end{array}$ | $\begin{aligned} & 2291 \\ & 1622 \end{aligned}$ |
| C 11 and C 12 | Difference | -84,9\% | 29,2 \% |
| $\begin{aligned} & \mathrm{C} 12 \\ & \mathrm{C} 13 \end{aligned}$ | 24 February 1988 <br> 11 April 1988 | $\begin{aligned} & 195 \\ & 155 \end{aligned}$ | $\begin{aligned} & 1622 \\ & 1349 \end{aligned}$ |
| Cl 2 and C 13 | Difference | -20,5\% | -16,8\% |
| $\begin{aligned} & \mathrm{C} 13 \\ & \mathrm{C} 14 \end{aligned}$ | 11 April 1988 18 May 1988 | $\begin{aligned} & 155 \\ & 182 \end{aligned}$ | $\begin{array}{r} 1349 \\ 26 \\ \hline \end{array}$ |
| C13 and C14 | Difference | +17,4\% | -98,4\% |

"spontaneous cure" occurred (Stewart, cited by Gordon, 1967). There was a dramatic fall in the worm burdens from a G mean of 18099 to 4108 in the period between 02 December 1987 an 13 January 1988, which continued to fall and by the end of this trial on 18 May 1988 only a G mean of 230 worms were recovered.

The reduction in the geometric means of the larvae $\left(L_{3}+\mathrm{L}_{4}\right)$ and adult Teladorsagia and the percentage differences between successive groups (C10, C11, C12, C13 and C14) of weaners slaughtered while spontaneous cure was taking place are summarized in Table 3. The Mann-Whitney U test (Siegel, 1956) was used to compare 1 group with the following group, with the following results:

|  | $\mathrm{L}_{3}+\mathrm{L}_{4}$ | Adults |
| :---: | :---: | :---: |
| Group C10 compared with Group Cl 1 | $\mathrm{P}<0,004$ | $\mathrm{P}<0,001$ |
| Group C11 compared with Group C12 | $\mathrm{P}<0,032$ | $\mathrm{P}<0,294$ |
| Group C12 compared with Group C13 | P<0,409 | $\mathrm{P}<0,120$ |
| Group C13 compared with Group C14 | $\mathrm{P}<0,032^{(1)}$ | $\mathrm{P}<0,002$ |

(1) Larvae in Group C14 were significantly more than those in Group
C13 (see below).

Reinecke \& Louw (1989) have shown that larvae aestivate in the soil and only migrate on to the lucerne pasture if the mean monthly mean temperatures are $<20^{\circ} \mathrm{C}$ and the total monthly rainfall is $>30 \mathrm{~mm}$, which occurred in April 1988 (Fig. 1). Weaners in Group 14 grazed on infested dry-land luceme pasture for 10 days (06-16 May 1988) prior to slaughter and became reinfested, accounting for the larval increase in Group 14. In all other groups spontaneous cure was most evident in the 1st 6 weeks on wheat stubble and both larvae and adults were spontaneously expelled by the hosts.

This differs from experiments done by Armour, Jarrett \& Jennings (1966) who dosed 166 -month-old worm-free sheep with a single dose of 100000 infective larvae of $T$. circumcincta and slaughtered them in pairs from 4-60 days after infestation. They showed that most of the worms were adult stages which were expelled at 16 days and a further decrease occurred 35-60 days after infestation. In the present trial both adults and larvae were expelled within 6 weeks of freedom from reinfestation and this process continued for at least another 4 months.

Sommerville (1954) showed that $\mathrm{L}_{4}$ of $T$. circumcincta could be inhibited for as long as 12 weeks before the 4th moult took place and referred to this inhibition as the histotrophic phase. This is a normal part of the life-cycle which Reinecke (1977) also noted when he dosed wormfree lambs with infective larvae of $T$. circumcincta, some of which remained as $\mathrm{L}_{4}$ for at least 9 weeks after they should have undergone the 4th moult $\left(\mathrm{M}_{4}\right)$ and developed to the 5th and adult stages.

The following confirms the observations on Ostertagia ostertagi by Michel (1963) and Michel, Lancaster \& Hong (1976 a, b).:

Many adult Teladorsagia probably live for less than 6 weeks, possibly only $25-30$ days as is the case with $O$. ostertagi. Those that were recovered after 6 weeks on
safe pastures probably developed from the larval stages which had been acquired while sheep had been grazing on infested dry-land lucerne the previous spring.

It is possible to postulate that the surviving worms have been derived from a genetic strain which does not die for at least 6 months and will assure that the genus survives under the grazing conditions at Boontjieskraal, to contaminate the pastures when weather conditions are favourable for the free-living stages to develop into viable infective larvae to infest the grazing hosts.

## Trichostrongylus: T. rugatus (Table 1, Fig. 2).

T. colubriformis (1 lamb), T. falculatus (1 lamb) and $T$. pietersei (2 lambs) (Table 2).
This genus lives longer than either Nematodirus or Teladorsagia in lambs and weaners and the host does not develop resistance, nor is there any spontaneous cure within the 1 st 11 months of its life under the grazing conditions in the present trial. Within 6 weeks- 6 months of weaners grazing on safe pastures worm burdens were reduced by $34-40 \%$, which is probably a normal fluctuation.

## ACKNOWLEGEMENTS

Mrs Johanna Matthewson is thanked for preparing the graphs and Mrs Norah Reinecke for typing the manuscript.

## REFERENCES

Armour, J., Jarrett, W. F. H. \& Jennings, F. W., 1966. Experimental Ostertagia circumcincta infections in sheep: Development and pathogenesis of a single infection. American Journal of Veteri nary Research, 27, 1267-1278.
FitZSimmons, W. M., 1969. Pathogenesis of trichostrongyles. Review article. Helminthological Abstracts, 38, 139-190.
Gordon, H. McL., 1967. Self-cure reaction. In: E. J. L. Soulsby (ed.). The reaction on the host to parasitism. Proceedings of the International Conference of the World Association for the Advancement of Veterinary Parasitology, 3, Lyons, 25-27 July, 1967. Veterinary Medical Review, 174-190.
Louw, J. P. , 1989. Overberg research projects. III. A preventive worm control program for sheep in the Rûens, a sub-region of the winter rainfall area of South Africa. Journal of the South African Veterinary Association (In press)
MiCHEL, J. F., 1963. The phenomena of host resistance and the course of infection of Ostertagia ostertagi in calves. Parasitology, 53 63-84.
MICHEL, J. F., LANCASTER, M. B. \& HONG, C., 1976a. Observations on the resumed development of arrested Ostertagia ostertagi in natural infected yearling cattle. Journal of Comparative Pathology, 86, 73-80.
Michel, J. F., Lancaster, M. B. \& Hong, C., 1976b. The resumed development of arrested Ostertagia ostertagi in experimentally infected calves. Journal of Comparative Pathology, 86, 615-619.
Reinecke, R. K., 1977. The effect of abomasal nematodes on subsequent infestations with Haemonchus contortus. M.Med. Vet (Parasitology) thesis, University of Pretoria.
Reinecke, R. K. \& Louw, J. P., 1989, Overberg Research Projects. I. The epidemiology of parasitic nematodes in ewes, suckling lambs and weaners at Boontjieskraal. Journal of the South African Veterinary Association (In press).
SEGHEITI, L. \& SENGER, C. M., 1958. Experimental infections in lambs with Nematodirus spathiger. American Journal of Veterinary Research, 19, 642-644.
SIEGEL, S., 1956. Non-parametric statistics for the behavioral sciences. New York: McGraw-Hill Book Co. Inc.
SOMMERVILLE, R. I., 1954. The histotropic phase of the nematode parasite Ostertagia circumcincta. Australian Journal of Agriculturai Research, 5, 130-140.


[^0]:    Received 5 December 1988-Editor

