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ABSTRACT 
Main conceptual problems faced in detection of vortical 

structures are dealt with and discussed on the background of a 
brief review of existing vortex-identification schemes. 

 

INTRODUCTION 
A large number of existing vortex definitions, vortex-

identification methods and vortex-core visualization techniques 
is proportional to the number of their inherent problems and 
shortcomings as well as apparent vortex misinterpretations 
found in their fluid mechanics applications. The paper presents 
an update on the main applicability requirements as validity of 
detection algorithms for compressible flows and/or variable-
density flows, determination of the local vortex intensity, 
determination of the integral vortex strength, vortex-axis 
identification, specific vortex-axis requirements: existence and 
uniqueness for each connected vortex region, the subjective 
choice of threshold in the vortex-boundary identification vs. 
physically defined boundary, allowance for an arbitrary axial 
strain rate vs. orbital compactness, ability to provide the same 
results in different rotating frames, and inherent bias towards 
shearing motion. 

The Appendix contains a brief survey of typical existing 
vortex-identification schemes in the form of two summarizing 
tables, containing both region-type methods [1-15], Table 1, 
and line-type schemes [16-22], Table 2, the latter being 
characterized by the search for vortex-core lines. A brief 
explanation of some well-established methods and the 
associated symbols is also included. It should be noted that the 
region-type and line-type methods may be effectively combined 
as shown, for example, in [23, 24]. 
 

VALIDITY FOR COMPRESSIBLE FLOWS 
The widely used region-type vortex-identification scheme, 

employed in LES (large-eddy simulations) and compressible 
flows for a long time, is Q-criterion (e.g. [25-29]). However, as 

mentioned in [15], the Q-criterion suffers from ambiguity as it 
offers two ways of extension for compressible flows which 
have different physical meaning, the second invariant of the 

velocity gradient tensor u∇ , and  quantity the 222 /SΩ ⎟
⎠
⎞⎜

⎝
⎛ − , 

rd decomposition ΩSu +=∇ . Both choices of 
annot avoid dependence on a non-zero divergence. 

Apart from this ambiguity, both extensions of Q-criterion 
cannot distinguish between expansion and compression as 
shown in [30]. Consequently, the only correct way how to use 
the Q-criterion is to redefine this criterion a priori in terms of a 
deviatoric part of strain-rate tensor S to read (subscript D 
denotes deviatoric quantity) 

assuming standa
extension c

022
D

2
D >⎟

⎠
⎞⎜

⎝
⎛ −= /SΩQ .    (1) 

The (region-type) Δ-criterion and the associated λci-criterion 
are directly extendable to compressible flows. Both criteria 
fulfil a specific condition which can be conveniently expressed 
for compressible flows in terms of the second and third 
invariants of the deviatoric part of u∇  by the form [30] 

0
23

23
DD >⎟
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⎜
⎝
⎛+⎟

⎠
⎞

⎜
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RQΔ .    (2) 

It is well-known that the λ2-criterion (based on the search 
for

compres

he most 
pop

are directly extendable to compressible flows. 

 a pressure minimum across the vortex) was originally 
tailored for incompressible flows. The use of the quantity 

22 ΩS +  as an approximation of the pressure Hessian for 
sible fluids requires discarding other terms [8] besides 

the unsteady irrotational straining and viscous effects originally 
removed from the strain-rate transport equation valid for 
incompressible flows only. These additional terms are related to 
a non-zero divergence and non-zero density gradients. 

The following conclusion can be drawn: From t
ular region-type vortex-identification schemes (Q, Δ, λ2, and 

λci) only the Δ-criterion and the closely associated λci-criterion 
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The analysis of [13] which provides a frame-independent 
(this aspect is treated in more detail in a later se

planar simply-connected 
vortex cross section: 
defined by the non-zero 
vortex intensity 

vortex boundary: 
defined by the zero 
intensity contour 

ction) definition 
of a vortex, is limited to 3D incompressible flows only. To 
identify vortices in 3D compressible, variable-density flows 
governed by the baroclinic term (i.e. the normalized cross 
product of a density gradient and pressure gradient) in the 
vorticity equation, it is proposed in [14] a Galilean invariant 
scheme, eigen helicity density. The recent method of [15] aims 
at the extraction of shearing motion near a point through the 
decomposition )()(ΩSu orshear tensensorresidual t +=+=∇  
by maximizing the following shear-indicating scalar quantity: 

313123231212 ΩSΩS +  
employed and hence the scheme is not affected by a non-zero 

e of compressible flows. A specific 
portion of vorticity labelled residual vorticity which is obtained 
in [15] after the extraction of shearing motion is proposed to 
represent a local intensity of the swirling motion of a vortex. 
This kinematic measure is free of compressibility and variable-
density effects. There is a modification of this method which 
emphasizes the kinematic role of local corotation of line 
segments near a point, see [31]. Regarding the line-type vortex-
identification schemes [16-22] (see Appendix, Table 2), they 
provide a vortex skeleton in terms of vortex-core lines and 
hence are usually free of direct compressibility effect. 

 

ΩS+ . Only off-diagonal terms of S are

uniform dilatation in the cas

LOCAL VORTEX INTENSITY NEAR A POINT AND THE 
BIAS TOWARDS SHEARING MOTION 

e of a vortex. It is 
des

 

Figure 1 Generally defi ed vortex cross section 
 

What s of 
arlier published measures? The widely used 

The quantity representing a local vortex intensity near a 
point is needed to describe the inner structur

irable to determine the vortex boundary by the condition 
requiring zero or negligible intensity at the boundary, Figure 1. 

 

 
 
 

 

 

 

 

 

 
n

is the local intensity of a vortex in 2D in term
e u∇ -based 
region-type identification criteria (Q, Δ, and λ2) degenerate in 
2D incompressible flow to the same one [6]. This criterion 
reads in terms of magnitudes of planar vorticity ω and planar 
strain rate s as follows: vortex region is identified by 

022 >− sω  what implies the condition s>ω . The quantity, 

 second invariant of planar ⎟
⎞

⎜
⎛ yx uu

, is 

 Okubo-Weiss parameter [32-34] uish 
elliptic and hyperbolic flow regions. The elliptic flow regions 
for 

22 sω − , the
⎠

⎜
⎝

≡∇
yx vv

u

just the used to disting

⎟

s>ω  coincide with the vortex regions determined by the 
dege  planar versions of criteria Q, Δ, and λnerated 2. 

The λci-criterion provides a local vortex intensity as the 
angular frequency of revolutions of spiraling streamlines in a 
local reference frame moving with the examined point. In 2D, 

the local vortex intensity by λci-criterion is 22 sω −  under the 
condition s>ω , thus for all the main regi riteria (Q, 

Δ, λ

on-type c

ci) it is
y indicated 

2, and λ  sufficient to examine the quantity 22 sω − .  
The bias of the quantity 22 sω −  has been alread

in n[15]. For the purpose of a ted analysis below, the bias 
towards shearing motion is conveniently expressed in terms of 
rotating line segments near a point as shown in Figure 2. Let us 
consider an arbitrary point inside the vortex region (Figure 1) 
by the condition 

 upda

s>ω , then the local kinematics near a point 
can be for incom le flow ( 0=+ yx vu ) depicted by the 

upper part of Figure 2. The releva es ω and s can be 
expressed in the form of angular velocities of lin ments as 

pressib

nt quantiti
e seg

( ) AVERAGEΩ2 =−= /yx uvω ,    (3) 

( ) ( ) 2ΩΩ LOWHIGH /− . (4) 24 22 / =⎟
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 It follows directly for s>ω  valid inside a vortex 
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( )[ ]
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LOWHIGHAVERAGE
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ΩΩ
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Ω

⋅=

−+⋅ /  (5) 

The quantity  apparently mixes in (5) the effect of a 
non dy rota

y due

LOWAVERAGE
22 2ΩΩ −−=− /sω

22 sω −
-zero rigid-bo tion given by LOWΩ  with the effect of 

superimposed shearing motion through IGHΩ  and fails as a 
candidate for the local vortex intensit  to this bias. 
Needless to say that vorticity itself, expressing an average 
angular velocity of fluid elements, cannot distinguish between 
shearing motions and the actual swirling motion of a vortex and 
misrepresents vortex geometry. 

The residual vorticity (obtained after the extraction of 
shearing motion) introduced in

 H

 [15] and taken as the vortex 
intensity can be interpreted through the least-absolute-value 
angular velocity of line segments, see Figure 2, so as to obtain 

( )[ ]
,sfor ≥ω
  (6) 

Ωsgn LOWSHRES sωω =−=−= ωωω

sforω ≤= ω0RES .   

The non-zero residual vort
the corotation of line segments as given by non-zero 

 (7) 

icity is just the unbiased measure of 
LOWΩ . 
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Figure 2 The local kinematics near a point in terms of angular velocities of line segments (in 2D) 

 
he popular Okubo-Weiss parameter  absorbs ― 

unl fects a
T  22 sω −
ike the residual vorticity ― shearing ef s it has been 

clearly expressed through the angular velocity of line segments 
by (5). The 22 sω −  is biased towards [ ]s+ω  and fails to 
describe 2D v gions correctly inside x. 

The physical meaning of 22 sω −  for flow geo
ortex re  a vorte

metry and 
stre untouc

 swirling 

tures the 
vor

amline patterns remains hed including a useful 
relationship to flow dynamics (e.g. towards turbulence 
production in wakes [35], among others). However, this 
quantity is not suitable for vortex identification in 2D. A similar 
problem of the bias towards shearing motion is expected in 3D 
vortex identification where obviously both the vortex boundary 
and inner vortex structure are subjected to the detection tool 
(i.e. the concept of local vortex intensity) employed. 

Unlike vorticity, the residual vorticity [15] aims to 
distinguish between shearing motions and the actual

motion of a vortex. Consequently, it correctly cap
tical motion near a no-slip solid boundary, non-rotating 

relative to a reference frame, by diminishing to zero at the 
boundary. The 3D boundary conditions for the shear-vorticity 
vector SHω  and the residual-vorticity vector RESω , 

RESSH ωωω += , are shown (for general 3D case) in Figure 3. 
The vorticity decomposition RESSH ωωω +=  helps to 

qualitatively distinguish between vortex sheets and tubes in 
ent vorticity parts. A nice example is just aterms of differ  

vortex ring impulsively generated fr ening (e.g. 
[36]), schematically depicted in Figure 4. Cylindrical "vortex" 
sheets (and any other "vortex" sheets) are characterized by high 
values of SHω  and negligible values of RESω  while vortex 
cores (vortex centers) are characterized vice versa, by relatively 
high values of RESω  and negligible values of SHω . 

 

om a tube op

|ΩHIGH| − |ΩLOW| > 0 for both cases
(i.e. corotation and contrarotation)
         ⇒ shearing motion

instantaneously mutually orthogonal
line segments fulfilling: 
|ΔΩ| = MAXIMUM = |ΩHIGH − ΩLOW|
formally assuming |ΩHIGH| ≥ |ΩLOW| 

least-absolute-value 
angular velocity 

non-rotating 
line segment 

ΩHIGH 

ΩHIGH 

ΩAVERAGE 

ΩLOW

ΩAVERAGE 

ΩLOW

vorticity dominates 
over strain rate 

strain rate dominates 
over vorticity 

P 

P 

|ΩLOW (corotation)| > 0 
         ⇒ rigid-body rotation

|ΩLOW (contrarotation)| > 0 
         ⇒ elongation / contraction
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Figure 3 Boundary conditions for the shear vorticity 

and the residual vorticity 

 
Figure 4 Vorticity characteristics for vortex sheets and tubes 

T
The integral strength of a vortex is usually calculated as the 

circulation along the vortex boundary, or equivalently, due to 
ity over the 

vort

For an arbitrary thre
vorticity forms a subdo

 VS. ORBITAL 
COMPACTNESS 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

HE INTEGRAL STRENGTH OF A VORTEX 

Green’s theorem, as the surface integral of vortic
ex region. However, vorticity is misrepresenting the local 

vortex intensity as the vorticity is biased towards shearing 
motion. Consequently, one obtains a net circulation for the 
region of a simple shear due to a net vorticity. In spite of this 
fact, such vortex measures as the frequently employed initial 
circulation or downstream circulation still represent basic 
characteristics of vortical structures in free shear flows. 

A residual circulation can be introduced as the (planar) 
surface integral in a similar manner as circulation Γ. It reads 

∫=
A

AΓ dRESRES ω .     (8) 

shold value the region of the residual 
main of the vorticity region. 

The concept of the residual circulation is particularly simple 
if applied to 2D or quasi-2D problems. Let us briefly recall a 
downstream behavior of jets in crossflow. The secondary-flow 
vortical structures form a counter-rotating vortex pair (CVP), 
even for twin jets in crossflow with a limited nozzle separation 
[37]. For three basic nozzle arrangements of twin jets in 
crossflow (tandem, side by side, and oblique at 45º) as well as 
for the single jet in crossflow, the residual circulation of the 
CVP (averaged for the asymmetric oblique case) indicates 
almost universal constant downstream behavior. This behavior 
strongly differs from that of the markedly decreasing 
conventional circulation. One can conclude that the turbulent 
vorticity transport across the CVP centerline and the 
corresponding circulation decay deal predominantly with the 
shear vorticity rather than the residual vorticity, at least within 
the measured downstream range. This might be a plausible 
explanation for the well-known fact that the counter-rotating 
vortex pair of a jet in crossflow persists far downstream. The 
application of the residual circulation is expected to reveal 
interesting flow features, as that already mentioned, in other 
flow problems. 

Quite different vortex-strength models can be derived on the 
basis of different local vortex intensities as shown in [38] in 
2D. The vortex region, vortex boundary and, consequently, the 
(integral) vortex strength are directly dependent on the choice 
of the concept of local vortex intensity. The vortex strength is 
usually calculated for the planar simply-connected vortex cross 
section defined by the non-zero vortex intensity and bounded 
by the zero (or negligible) intensity contour (Figure 1). In 
addition, interestingly enough, the integral approach may be 
considered not only in the cross-section sense but even in 
volumetric sense covering the whole 3D vortex region. 
Volumetric characteristics may offer a better insight into the 
evolutionary process of an individual vortical structure 
considered as a whole (and not, as usually, to be characterized 
in a few representative cross-sections only). 

 

ARBITRARY AXIAL STRAIN RATE

Let us recall the interesting but controversial idea of the 
vortex-identification requirement of allowance for an arbitrary 
axial strain rate. In [39] it is performed an analytical diagnosis 
of four local region-type vortex-identification criteria, 
demonstrated by the Burgers and Sullivan vortices, indicating 
that the Q-criterion [3] and λ2-criterion [6] may cut a connected 
vortex into broken segments at locations with strong axial 
stretching. They emphasized the following vortex-identification 
requirements: a generally applicable vortex definition should be 
able to identify the vortex axis and allow for an arbitrary axial 
strain. The swirling-strength λci-criterion of the study [9], based 
on the Δ-criterion [1, 2, 4], was further enhanced in [12]. 
According to [12], rapid radial spreading out (or, similarly, 
axial stretching out) of instantaneous streamlines may not 
appear to qualify the region as a vortex, as depicted in a 
simplified manner in Figure 5. In [12], a local approximation of 

ωSH=ω, ωRES=0 
at the boundary 

flow region 

non-rotating solid boundary 
(relati e to a reference frame)v

cyl
high ωSH, negl ible ωRES

indrical "vortex" sheet: 
ig

center of a vortex ring: 
high ωRES, negligible ωSH
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the non-local property proposed in [8] is included, requiring 
that the swirling material points inside a vortex have bounded 
separation remaining small. They introduced an idea of orbital 
compactness of a vortex in terms of the so-called spiraling 
compactness of the motion projected onto the vortex plane 
given by the complex-conjugate eigenpair of u∇ . 

The allowance for an arbitrary axial strain rate [39] became 
a subject of intensive debate [40], [41] as this requirement, 
basically, does not conform to the orbital compactness 
pro

Figure 5 Vortex stretching 

TH  BOUNDARY 
The role of threshold, including that mentioned in the 

previous section, is not negligible and have to be taken into 

(i.e

 or 
oth

reference 
frames. The property of frame indifference (that is, both 

dependence, [44]) is not fulfilled. 

posed in [12]. For an incompressible flow the axial strain 
rate is directly related to the spiraling compactness [12, 40]. 
According to [12, 40], the spiraling compactness requires for 
vortex-identification purpose an appropriate threshold dictated 
by the length and time scales of the given problem. Following 
[41], however, adding a threshold value to the local axial strain 
rate or to the orbital compactness is subjective and cannot be 
rationalized. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

RESHOLD VS. PHYSICALLY DEFINED

account. Regarding the vortex boundary, there are typical local 
. applied point by point) region-type discriminative criteria 

(as Q, Δ, λ2, and λci) which provide physically defined 
boundary. However, practical applications of the most popular 
criteria employ a nonzero threshold to remove noisy edges. The 
vortex surface with a positive threshold appears significantly 
smoother [9]. For example, in the eduction of longitudinal 
vortices in wall-turbulence [42] and in the study of a neutrally 
stratified planetary boundary-layer flow [43] it is employed a 
non-zero threshold for λ2 contrary to the original λ2-criterion. 
This practical aspect is emphasized in [19]. Moreover, the study 
of the relationship between local identification schemes [12] 
shows that all of the popular local criteria, given the proposed 
usage of threshold, result in a remarkable vortex similarity. 

The choice of threshold may be important even for line-type 
methods. The search for vortex-core lines usually needs the 
vortex-intensity threshold (and/or relative-angle threshold

er criteria) which terminates the process of growing the 
skeleton. The typical line-type method is predictor-corrector 
scheme [17] with further modifications [23] and [24]. Starting 
from the seed point the skeleton is grown in both directions 
depending on the threshold adopted in the algorithm. 

FRAME INDIFFERENCE 
Though Galilean-invariant quantity, vorticity is not objective 

and provides different results in different rotating 

translational and rotational in
All the typical u∇ -based vortex-identification schemes (Q, 

Δ, and λ2) are not objective. This fact has motivated a new 
vortex definition [13] which is objective relative to an 
arbitrarily rotating reference frame. This definition should help 
in  th

ngly related to the 
obj

ure 6. 
In t

situations where ere is an unclear choice for a reference 
frame (e.g. vortical flows in rotating tanks) 

Regarding vorticity decomposition, it is claimed in [45] that 
objective information is contained in the vorticity tensor. 
Unfortunately for vortex identification, it seems that the 
objective portion of vorticity is always stro

ective strain-rate tensor and the deformational aspects of the 
flow. The residual vorticity of [15] is not objective and depends 
on the angular velocity of an observer's reference frame. 

The following is just for illustrative purposes only. Let us 
consider a simple flow example with rotationally unclear 
choice of reference frame: the two-dimensional merging of two 
identical co-rotating vortices schematically shown in Fig

his case, one should cautiously use the residual vorticity or 
any other u∇ -based identification scheme. The vortex-axis 
uniqueness for each connected vortex region may be broken. In 
this respect, the disappearance of individual single vortices 
separated by a vortex boundary is correctly viewed in the 
rotating refe ce frame stuck on the rotating center-to-center 
connecting line while the evolution of the resulting vortex is 
better viewed in the non-rotating reference frame. 

 

 
 
 
 

ren

Figure 6 Corotating vo ices: an unclear choice 
of refere frame 

CONCL
The longstanding lems faced in the 

detection of vortical structures have been discussed. Due to 
these problems, there is still no consensus on the generally 

rigorous definition of the distinct flow 
phe

s of the 
local corotation of line segments in [31]. 

 
 
 
 
 
 
 
rt
nce 
 

USION 
 conceptual prob

acceptable and 
nomenon of a vortex. One should always be aware of the 

limitations of the scheme selected for data processing. 
Following [39], it should be stated that owing to their 

universality, kinematic criteria are preferred if they work well. 
From the kinematic viewpoint, an easy-to-understand local 
vortex intensity has been recently introduced in term

"vortex" axis 

radial stretching axial stretching 

initial stage 
(merging onset) 
 
 
 
 
 
final stage 
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Table 1 Region-type vortex-identification methods 
 

Year 
B
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PENDIX 
A brief survey of typical existing vortex-identification 

schemes is presented below, though this is not a complete list. 
 

Author/s & 
asic characteristics 

Dallmann (1983) [1] 
Δ-criterion: complex eigenvalues of u∇  
Voll

x eigenvalues of
mers et al. (1983) [2] 

Δ-criterion: comple  u∇  
Hunt et al. (1988) [3] 
Q-criterion: second invariant of u∇  
Chong et al. (1990) [4] 
Δ-criterion: complex eigenvalues of  u∇
B 3) [5] 
swirl parameter, similar to λ

erdahl & Thompson (199
ci-criterion 

Jeong & Hussain (1995) [6] 
 of 2 ΩS +  λ2-criterion: eigenvalues 2

Portela (1997) [7] 
scheme based on set theory 
Cucitore et al. (1999) [8] 

 method non-local (particle-trajectory)
Zhou et al. (1999) [9] 
swirling-strength λci-criterion le: comp x eigenvalues of u∇  
Sadarjoen & Post (2000) [1
advanced streamline method

0] 
 

Jiang et al. (2002) [11] 
scheme based on combinatorial topology 
Chakraborty et al. (2005) [12] 
enhanced swirling-strength λci-criterion 
Haller (2005) [13] 
objective frame-independent vortex definition 
Zhang & Choudhury (2006) [14] 
Galilean-invariant eigen helicity density 
Kolář (2007) [15] 
triple decomposition of u∇ : residual vorticity 

 
Q-criterion [3]: Vortices of an incompressible flow are 

i h a positive second 
i , 
dentified as connected fluid regions wit
nvariant of the velocity-gradient tensor ∇u ΩSu +=∇ , S is 

t  i sor (in tensor 
n pt rentiation), 
he strain-rate tensor, Ω s the vorticity ten
otation below the subscri comma denotes diffe

( )
01

2
1

2
1

22

2

>⎟⎞⎜⎛ −=

−=−≡

SΩ

,,,,, ijjiijjiii uuuuuQ
   (A.1) 

that is, as the regions where the vorticity magnitude prevails 
over the strain-rate magnitude. 

2 ⎠⎝

Δ-criterion [1, 2, 4]: Vortices are defined as the regions in 
which the eigenvalues of u∇  are complex and the streamline 
pattern is spiraling or cl  a loca e 
with the point. To guarantee complex eigenvalues of

osed in l reference fram moving 
 u∇  the 

discriminant Δ of the characteristic equation should be positive 

0
23

>⎟
⎠

⎜
⎝

+⎟
⎠

⎜
⎝

=Δ .     (A.2) 

where Q and R are the second and third invariants of u

23
⎞⎛⎞⎛ RQ

∇ , Q is 
given by (A.1), R is defined by ( )jiuR ,Det≡ . The Δ-c rion 
(A.2) is valid for incompressible flows only. 

rite

The Q-criterion is clearly more restrictive than Δ-criterion 
(cf. (A.1) and (A.2)). 

λ2-criterion [6]: This criterion is formulated on dynamic 
in

 
Hessian aft

 effects from the 
stra

connected fluid region with two negative 

considerations, namely on the search for a pressure m imum 
across the vortex. The quantity 22 is employed as an 
approximation of the pressure er removing the 
unsteady irrotational straining and viscous

ΩS +  

in-rate transport equation for incompressible fluids. Vortex 
region is defined as a 
eigenvalues of 22 ΩS +  (that is, if these eigenvalues are 
ordered, 321 λλλ ≥≥ , by the condition 02 <λ ). 

λci-criterion [9, 12]: The Δ-criterion has been further 
developed into the so-called swirling-strength criterion denoted 
as λci-criterion. The time period for completing one revolution 
of the streamline is given by 2π/λci [12]. The two criteria, Δ and  
λci, are equivalent only for zero thresholds (Δ=0 and λci=0). 

 
 

Table 1 Line-type vortex-identification methods 
 

Author/s & Year 
Basic characteristics 
Levy et al. (1990) [16] 
ex ema of normalized helicity density tr
Banks & Singer (1995) [17] 
vorticity-predictor and pressure-corrector scheme 
Sujudi & Haimes (1995) [18] 
eigenvectors of u∇ , tetrahedral cells 
Kida & Miura (1998) [19] 

re-minimum scheme sectional-swirl & pressu
Roth & Peikert (1998) [20] 
parallel-vectors (higher-order) method 
Strawn et al. (1999) [21] 
lines of maximum vorticity 
Roth (2000) [22] 

type methods generalization of earlier line-
 
Probably the most detailed study of variou

ethods was conducted in [22]. Howeve
s line-type 

m r, there is a number of 
r for example [23, 24, 46].  ecent papers on this subject, 
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