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A kinetic model for the influence of external noises such as fluctuations of the 

vacancies’ generation rate and inhomogeneity of irradiated f.c.c. crystal on the 

formation of nanoscale modulated dissipative structure in a spatial distribution of 

vacancies is considered. The generation rate of vacancies all over the sites and a 

density of their dislocation-type sinks are modelled as independent random uni-

form stationary fields and with certain defined parameters of fluctuation correla-

tions—spatial and temporal ones. Such stochastic fields can induce a spatial re-

distribution of vacancies that can lead to their density stationary uniform field or 

stochastic one. By the average value and correlation functions of these fluctua-

tions, the conditions are determined for interacting fluctuations of the vacancies’ 

density, under which this homogeneous random field becomes unstable in rela-

tion to the stochastic field with a spatially periodic mean distribution of vacan-

cies’ density. For instance, with f.c.c. nickel as a model of the irradiated func-

tional material, the temperature dependence of spatial period d(T) of the modulat-

ed dissipative structure of vacancies’ subsystem in f.c.c. crystal is numerically 

forecasted and analysed, taking into account the total (‘electrochemical’ + ‘strain-

induced’) interaction between vacancies. Such d(T)-dependence is also deter-

mined by the kinetic characteristics of vacancies’ redistribution. 

                                                 

*
Corresponding author. Email: tatar@imp.kiev.ua 

mailto:tatar@imp.kiev.ua
mailto:pavel.selyshchev@up.ac.za
mailto:neutrino@ukr.net
mailto:ybpark@sunchon.ac.kr
mailto:tatar@imp.kiev.ua


Keywords: irradiated functional materials; vacancies; nanoscale dissipative 

structure; ‘electrochemical’ interaction; ‘strain-induced’ interaction 

Subject classification codes: 05.65.+b, 61.50.Lt, 61.72.Bb, 61.72.jd, 61.72.Qq, 

61.80.Az, 82.40.Ck 

1. Introduction 

The main causes for the stochastic behaviour of radiation-defects’ density within the 

irradiated crystalline materials are external ones. Firstly, these are fluctuations of the 

rate of defects’ generation. Secondly, it is the (random) distribution of various imperfec-

tions of a crystal lattice, which serve as sinks for the point defects. Because of these, the 

fluctuations of the density of radiation point defects are essentially non-equilibrium. 

Unlike the thermodynamic fluctuations, they do not decrease in inverse proportion to a 

system size and can reach the noticeable values [1]. The role of random disturbances 

becomes especially important for systems with non-linear feedbacks between their ele-

ments, and for processes, which have a threshold character and bifurcation points [2, 3]. 

In a given paper, the analysis of formation of the spatially periodic structure of 

the radiation point defects’ distribution that occurs due to non-linear interaction between 

the defects, which was carried out in Refs. [3–5] and extended to irradiated solids with 

fluctuating parameters [2, 3], is used to predict and consider the possible dissipative 

modulated structure in a spatial distribution of radiation defects formed in irradiated 

f.c.c. crystal. To describe the probabilistic nature of a point defects’ distribution, it is 

suggested to be a stochastic field, and, for its description, a stochastic differential equa-

tion [2–5] is used. If the rate of production of defects and density of their sinks are 

modelled by the relevant random uniform stationary fields, the random distribution of 

point defects can also be homogeneous and stationary [2, 3]. However, under certain 

conditions of irradiation, it becomes unstable due to the interaction of fluctuations of a 



defects’ density through the ‘strain-induced’ fields and ‘electrochemical’ interaction 

between defects. Because of these ones, a stochastic density field with a spatially peri-

odic behaviour of its average value is formed [2, 3, 5]. 

Besides, in a given paper, the analogy between formations of the superlattice of 

nanovoids and the spatial ordered distribution of point defects (first of all, vacancies) is 

drawn. For the first time, such an analogy was noted by Chang [6, 7], using atomistic 

methods. In his opinion, vacancies are quasi-particles, which, due to their elastic inter-

action, array into superlattice of vacancies under radiation, i.e. interaction between va-

cancies is similar to interaction between atoms, as approved in Ref. [8–11], and vacan-

cies have the same redistribution kinetics as for host-crystal atoms. 

Formation of a superlattice of nanovoids is an intrinsic property of many crystal-

line materials under irradiation. This property is technologically important in respect to 

operations and maintenance of nuclear reactor materials as well as to applications of 

functional materials under irradiation, since a material having strong tendency to form a 

vacancy superlattice is expected to be resistant to the radiative swelling. Although nick-

el is of great technological importance because of its use as a host crystal for many 

functional materials, its defect-microstructure properties are not investigated as well as 

those of other f.c.c. metals. In attempt to obtain an understanding of the radiation-

defects’ behaviour in course of formation of nanoscale modulated dissipative structures, 

in a given paper, the numerical calculations for f.c.c. Ni with vacancies are carried out. 

2. Target setting and master equations 

We consider an f.c.c. crystal, in which due to an external irradiation the vacancies and 

self-interstitial atoms are randomly formed. Right after [2–5], the rate of generation of 

defects, K(r,t), is considered to be a random uniform and stationary function of spatial 

coordinates (r) and time (t), respectively. Its average, K(r,t) = K0, and variance are the 



constants and supposed to be predetermined. Correlation functions of this field depend 

only on a difference of respective arguments, i.e. ( , ) ( , ) ( , )KK t K t C t t     r r r r , 

and their Fourier-transform components, i.e. the spectral densities, G(k,t), are also sup-

posed to be given functions [2, 3]. 

The defects migrate and are absorbed by sinks (for instance, by dislocations, dis-

location loops, etc.). As, due to the ‘fast’ migration of intrinsic interstitial atoms during 

the relaxation, their concentration in a bulk is rapidly decreasing, a residual concentra-

tion of self-interstitial atoms is comparatively small, the relevant atom-to-atom distanc-

es are large, and a total internal-energy contribution of interactions of self-interstitial 

atoms with each other and with vacancies is much weaker than contribution of interac-

tion between vacancies [2–4]. Then, neglecting both the self-interstitial atoms’ energy 

contributions and the recombination of mentioned point defects, the evolution of the 

density of ‘slow’ vacancies (v), n(r,t), will be considered hereinafter and described by 

the following stochastic equation [2, 3]: 
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(r  /r is the Hamilton differentiation operator ‘nabla’; (......) symbolizes the scalar 

product). Here, (r) = zdd(r)Dv is the random field, which describes the probability of 

an absorption of point defect by sinks with density d(r) and the preferable absorption 

coefficient zd (i.e. a coefficient characterizing efficiency of interaction of vacancies with 

dislocations) [2, 3], 
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is a vacancy-flux density vector [2–5], where Dv = D0exp(−Em/{kBT}) is the vacancy-



diffusion coefficient (diffusivity), Em is the migration-activation energy
*
, T is the tem-

perature of an irradiated specimen, kB is the Boltzmann constant, 

( , ) ( ) ( , )dvvt W n t    rF r r r r r  is the force of interaction between the vacancy lo-

cated at the point r with all other vacancies with coordinates {r} [2–5, 15], 

el.chem( ) φ ( ) ( )vv vv vvW V      r r r r r r  is the energy of pairwise interactions of vacan-

cies at the points r and r, which consists of, at least, two dominating contributions—

‘electrochemical’ (
el.chemφ ( )vv r r ) and ‘strain-induced’ ( ( )vvV r r ) ones, which are ba-

sically of the cohesive and elastic natures at short-range and long-range distances 

r r  between vacancies, respectively [8–11, 16–18]. 

Pro hac vice, the master equation (1) may be solved with the use of periodic 

boundary conditions [2, 3]. (In this case, the characteristics of a stochastic field of the 

density of interstitial atoms are also simply determined.) 

Further, it is assumed that temperature–concentration relationship is weak, and 

thermal changes can be neglected (
d

0
d

T

t
 ) due to effective heat exchange with ther-

mostat and neglecting recombination of interstitial atoms with vacancies in course of 

the microstructure evolution. 

In equation (1), separating the deterministic ( ( , )n tr ) and fluctuation-noise 

                                                 

*
 By definition, migration-activation energy of vacancies is a height of the potential barrier separating the 

initial and final positions of the atom near vacancy, which is jumping into this vacant site [12–14]. As 

assumed within the model taking into account the effects of dilation in the vicinity of vacancy, for transi-

tion of the oscillating atom into the neighbouring vacancy, it is not required to impart additional energy to 

‘ascend’ an intermediate neighbouring saddle of an intracrystalline potential relief, but it is sufficiently 

wait for such fluctuation, at which neighbouring atoms forming this saddle by their fields will part so that 

the saddle will ‘sag’, its height will go to zero, and the atom will pass into the neighbouring vacant site 

without obstruction. Energy of formation of such fluctuation, at which width of formed interstitial clear-

ance is equal to diameter of the atom passing through it, can be estimated within the scope of the linear 

theory of elasticity taking into account anisotropy of a crystal, without adjustable parameters [12–14]. 

 



( ( , )n tr ) components of n(r,t), K(r,t), β(r), we have a following set of equations [2, 3]: 
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where ( )   r r  is the Laplace operator, and 

 0( , ) ( , ) ,  ( , )n t n t K K t r r r ,  

 
0 0 0( ) ,  ( , ) ( , ) ( , ),  ( , ) ( , ) ,  ( ) ( )n t n t n t K t K t K         r r r r r r r r .  

3. The stationary random uniform field of vacancies’ density 

Amongst the solutions of equation (1) or the set of equations (2) and (3), there can be a 

solution, which is a random uniform stationary field—n0(r,t). The average density of 



vacancies for it, 0 0( , )n t nr , is constant in space and in time, and the correlation 

function of a defects’ density depends only on a difference of arguments [2, 3]. Then, 

for the average value n0, we have [2, 3]: 

 
0 0 0 0( ) ( , ) 0K n n t   r r . (4) 

Neglecting the fluctuations of a product of stochastic functions, we solve equa-

tion (3) and construct the correlation functions as follows [2]: 
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The equations (4), (5) form a closed system for n0(r,t) and together with expres-

sion (6) completely describe a random homogeneous stationary field of the density of 

defects within the correlation approximation [2, 3]. 

4. Instability of a uniform distribution of vacancies in presence of fluctua-

tions of the point-defects’ generation rate and inhomogeneity of irradiated 

f.c.c. crystal 

For the determination of stability conditions for a random uniform stationary field, let 



us consider the evolution of a small perturbation of a probability distribution of the den-

sity of vacancies, at which the perturbation of average value is 

f( , ) exp{ }n t t i    r k r  (with a damping factor f = f(k)), and a perturbation of the 

fluctuation part is ( , )n t r  [2, 3]. Due to the anisotropy of f.c.c. crystal, the interaction-

energy Fourier component, ( )vvW k , reaches a minimum value for a particular crystallo-

graphic direction. Therefore, with a change of parameters, for instance, the temperature 

of an irradiated specimen (and/or its content), one of the modes will become unstable 

with a wave vector k = kc having the same direction. Among other factors, it allows to 

restrict the analysis of stability to one-dimensional perturbations by directing axis 0x 

along kc. Substituting 0( , ) ( , )n x t n n x t   into equation (2) and 0( , ) ( , )n x t n n x t   

in equation (3), we obtain the equations of the evolution of small perturbations of the 

average value and fluctuations of a homogeneous stationary random distribution of 

point defects [2, 3]: 
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The set of equations (7), (8) has variable coefficients and is not closed, as it contains 

( ) ( , )x n x t   and 0( , ) ( , )n x t n x t . Nevertheless, as in equation (8), the variable coef-

ficients are only at ( , )n x t , and we consider the relevant terms as inhomogeneity and 

find ( , )n x t , which is now a functional of ( , )n x t . Then, we substitute it in equation 

(7) and, by averaging, obtain the following expression for a damping decrement of 

above-mentioned perturbations: 
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where 
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In the derivation of expression (9), the statistical independence of ( ) r  and ( , )K tr  was 

supposed, i.e. their mutual correlation function and the relevant spectral density were 

taken to be equal to zero. 



Evidently, the damping decrement f is a function of k. If the energy of thermal 

motion of vacancies (which is of the order of  kBT per vacancy) considerably exceeds 

the energy of their force interaction, f  0 for any mode [2–5]. Nevertheless, with de-

creasing temperature, the damping decrement (for some k = kc) passing through zero 

becomes positive (as amplification factor), and the instability appears with respect to the 

transition to a probability distribution with an average value, which is spatially non-

uniform with a period being equal to 2/|kc| (figure 1) [2–5]. 

 

Figure 1. Schematic illustration of occurrence instability uniform distribution of vacancies [4]. 

5. Instability of a uniform distribution of vacancies in the absence of fluctua-

tions of the point-defects’ generation rate and inhomogeneity of irradiated 

f.c.c. crystal (deterministic model) 

In the case of absence of external fluctuations, the rate of generation of point defects 

and fluctuations heterogeneity irradiated f.c.c. crystal, equation (1) is as follows [3–5, 

15]: 

 0 0 ( )

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

n
K n

t
r j . (10) 



Among steady-state solutions of equation (10), there is the following: 

0 st 0 0 0/n n n K K      , where  = (zdDv0d)
−1

 is their lifetime with respect to the 

absorption of point defect by sinks (dislocations) with the density 0d d ( )   r  [3–5, 

15]. In the irradiated sample, under the temperature decreasing, the role of interactions 

of vacancies becomes essential, and the uniform state of sample structure becomes un-

stable [3–5, 15]. This leads to the decomposition of the vacancies’ subsystem, i.e. for-

mation of the non-uniform spatial distribution of vacancies ( 0( )n nr ). To investigate 

stability of the uniform solution, let us treat the time evolution of its small perturbation: 

 ( , ) exp( )n t t i    r k r . (11) 

Linearizing equation (10), one can obtain a spatial-dispersion equation [3–5, 15]: 
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The parameter n, which is proportional to the vacancies concentration and de-

termined by the external source of defects (K0) and temperature (T), will be called 

‘pumping parameter’ [3–5, 15]. At low density of vacancies and/or high temperatures 

(when n  0), (k, n0)  −Dvk
2
 − 

−1
 < 0, and the homogeneous state is stable [3–

5, 15], i.e., turning to expression (11) for the time dependent small spatial–time pertur-

bation of stationary homogeneous distribution of vacancies’ density, we can see that, 

when (k, n→0) < 0, concentration inhomogeneities eventually ‘resolve’ because 

( , ) 0n t r  at t [3–5, 15]. 



For certain directions of k, ( ) 0U k . Thus, with parameter n being exceeded 

above the threshold value nKP for some defined vector k = kKP, the value of (k,n) 

becomes positive [3–5, 15]. From the expression (11), it follows that in a condition 

(k, nnKP0) > 0, the concentration heterogeneity increases with time, their pertur-

bations grow at exponential law. Thus, the homogeneous state becomes unstable under 

growing modulated structure in distribution of vacancies with period d = 2/kKP, where 

kKP is the (bifurcation) point of a new (additional to homogeneous) solution of the kinet-

ic equation (10), given heterogeneity of concentration waves [3–5, 15]. The minimal 

value of n = nKP is a bifurcation point, at which the equation 
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has a solution at real kKP = kKPn [3–5, 15], where kKP is the condition 
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The properties of an even function (k;n) are investigated in detail in Ref. [3, 

4]. If n < 1, when ( ) 0U k , then (k;n) < 0. At n = 1 and at a point k = km, there is 

an extreme. km monotonously increases with increasing n, and the value of (k;n) in-

creases and becomes equal to zero at n = nKP and k = km = kKP (see figure 1). At 

n > nKP near k = kKP, the value of (k;n) become positive. 

Thus, in the course of radiation, amplitudes will grow most quickly for those 

concentration waves, which wave vectors form beams of a star of a wave vector kKP, 

and pumping parameter is not less nKP [3, 15]. All other, slower concentration waves, 

than wave with wave-vectors’ beams of a star {kKP} will have a positive damping dec-

rement only in the case, when n > nKP [3, 15]. 



From the equations (13) and (14) in the condition of approximation described 

below (see §6), the threshold nKP and critical value of wave-vector magnitude kKP 

along the fixed direction n near k  0 for a cubic crystal may be found as follows (if 

0d d ( )   r ): 
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where el.chem ( ) ( )vv vv vv vvw Q   n 0 nA  and 0( ) ( )vv vv vv   n nB  are the expansion coef-

ficients in equation 2( ) ( )vv vv vvW w k  nk n ... [15] (see §6). Since, both the Fourier 

components of ‘strain-induced’ v–v-interaction energies and the Fourier components of 

‘electrochemical’ v–v-interaction energies have negative minimum values for k0 

along the direction [100] (or [010], or [001]) within the Brillouin zone (BZ) for f.c.c. 

crystal (see §6), then the threshold [100]KP and critical value of wave vector along the 

direction [100] (or [010], or [001]), near k  0, may be found as follows [3–5, 15]: 
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The first (unit) term in the expression for [100]KP contributes dominantly into the 

threshold [100]KP magnitude [3–5, 15]. Thus, as long as ([100]) 0vv   (see §6), the dis-

sipative modulated structure in the distribution of vacancies in f.c.c. crystal appears in 



case of [100]KP > 1. Period of dissipative modulated structure of vacancies’ subsystem 

depends on parameters of kinetics of redistribution: diffusion coefficient, lifetime de-

fects or zd [3–5, 19, 20]. 

Between the dislocation sinks within the f.c.c. crystal, the vacancy concentration 

waves, ( , )n tr , can be in the form of three-dimensional superposition of two or three 

interpenetrating waves along the equivalent directions [100], [010] or [001] simultane-

ously: 

 [001]

0 1( , ) ( , )n t n n z t r , (15a) 

 [010] [001]

0 2 2( , ) ( , ) ( , )n t n n y t n z t  r , (15b) 

 [100] [010] [001]

0 3 3 3( , ) ( , ) ( , ) ( , )n t n n x t n y t n z t   r , (15c) 

where x, y, z—components of a vector of r in the directions of axes [100], [010], [001], 

respectively. Each of summand non-uniform functions, which are in the right parts of 

equations (15а)–(15c), describes one-dimensional modulation vacancies’ subsystem 

along the direction of respective edge of f.c.c. cube [16] (see figures 2(a)–2(c)). 

In the event of in-phase coincidence of crests of three interpenetrating synphased 

modulated vacancies’ concentration waves simultaneously, conditions for ‘nucleation’ 

of nanovoids at sites spanned by ridges of waves appear (see figure 2(c)). Formation of 

such three-dimensional superposition of vacancies’ concentration waves along the 

[100], [010] and [001] directions (see figures 2(a)–2(c)) at the same time (with the in-

phase crossing of their crests) can be compared with the mechanism of formation of na-

novoids within the irradiated f.c.c. crystal. 



 

Figure 2. The schematic image of the one-dimensional (a), two-dimensional (b), or three-dimensional (c) modulated 

structure of vacancies’ subsystem; crests of the concentration wave of atoms in metal f.c.c. crystal are designated by 

light (‘grey’) colour; crests of the concentration wave of vacancies’ subsystem are designated by more dark (‘or-

ange’) colour. 

6. Interaction Parameters of Vacancies 

Energy of total interaction between substitutional point defects, for instance, vacancies, 

in their solid solution within the relaxed (i.e., elastic-stress-free, but strained) host crys-

tal can be presented conditionally as a sum [17, 18]: 

 el.chem

vv vv vvW V  
,  

where el.chem

vv  is an energy of ‘electrochemical’-interaction contribution, which is 

caused by the ‘direct’ interaction of electric charges forming the point defects in unre-

laxed (strain-free, but stressed) host crystal [8–11], and 
vvV  is an energy of the ‘strain-

induced’ (or ‘elastic’) contribution, which is conditioned by the ‘indirect’ (host-crystal-



specific) interaction between point defects as a result of interference of fields of the 

equilibrium static displacements of host-crystal atoms from their inherent sites, which 

occur due to the presence of point defects, in the relaxed (elastic-stress-free, but 

strained) host-crystal lattice [8, 16–18]. If a distance between the defects largely ex-

ceeds the host-lattice period a, the Fourier components, ( )vvW k , of the interaction ener-

gies for vacancies can be written as a power series [15, 16–18]: 

 2

el.chem( ) ( ) ( ) ...vv vv vv vv vvW V w k    nk k k n( ) , (16) 

where vvV k( )  is the Fourier component of ‘strain-induced’ v–v-interaction energies. 

Within the small finite region near k = 0, vvV k( )  may be represented as follows [16, 18, 

21, 22]: 

 2( ) ( ) ( )vv vv vv vvV k Q  k n nA B .  

Here, the well-known first term is based on the long-wave-limit approximation [16, 18, 

21, 22]: 
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D
,  

where L
v
 is a concentration coefficient of f.c.c.-lattice dilatation, K = (C11 + 2C12)/3 is a 

compressibility modulus, 0 = a
3
/4—atomic volume,  = (C11 − C12 − 2C44)/C44 is an 

elastic-anisotropy factor, C11, C12, C44 are the elasticity moduli, 

2 2 2 2 2 2( ) x y z y x zn n n n n n  nX , 2 2 2( ) x y zn n nnY , 

2

11 11 12 11 12 44( )   ( ) ( ) ( 2 ) ( )C C C C C C     n n nD X Y  [16, 18, 21, 22]. The second 

term is a correction to this approximation [21, 22], and the third term is a gauge, which 

eliminates a ‘strain-induced’ self-action of the vacancies [23, 24]. 



 

Figure 3. Dispersion curves for the Fourier components of ‘strain-induced’ v–v-interaction energies in f.c.c.-Ni along 

all the high-symmetry directions in reciprocal space, in particular, at the high-symmetry points, Г, X, W, L, K(U), of 

the first Brillouin zone (with Lv = −0.073 estimated from data [25]);  — ( )vvV 0  at T = 300 K. 

 

The Fourier component of ‘strain-induced’ v–v-interaction energies has a mini-

mum value (see figure 3) along the direction [100] within the first BZ (figure 4) for 

f.c.c. crystal: 
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
nB  [22], LX is the temperature-dependent longitudinal 

phonon frequency at the X(100) point [26], M is a host atom mass. 

Thus, the Fourier component of v–v-interaction energies along the direction  



 

Figure 4. The first Brillouin zone of reciprocal space for f.c.c. lattice. 

 

[100] within the small finite region near k = 0 may be represented as follows: 

 
2

0[100] 0[100]( [100]) ( [100]) { 1 ([100]) }   vv vv vvW k W U k W k ,  

where 0[100]([100]) ([100]) / vv vvW . 

In equation (16), el.chem ( )vv k  is the Fourier component of energies for direct 

‘electrochemical’ v–v-interactions [24]. The dispersion curves for 
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along all the high-symmetry directions within the 1
st
 BZ are presented in figure 5.  

 

Figure 5. Dispersion curves for the Fourier components of ‘electrochemical’ v–v-interaction energies along all the 

high-symmetry directions in reciprocal space, using the Machlin potential [27] with cohesive energy 

ε = −4.45 eV/atom [28, 29] at T = 300 K and with taking into account for 6 coordination spheres only. 

(
vv

(rI), 
vv

(rII), …, 
vv

(rVI) are the ‘electrochemical’ v–v-interaction energies at the 

first, second, …, sixth, … coordination shells.) 



Within both the long-wavelength approximation and the approach developed in 

Refs. [8–11, 18], 

 2

el.chem el.chem 0( ) ( )vv vv vvk     k 0 ,  
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Dependence of the energy of ‘electrochemical’ v–v-interaction in f.c.c. crystal 

on normalized distance r/a, with taking into account interaction in the real 28 coordina-

tion spheres over sites, is plotted in figure 6. 

 

Figure 6. Dependence of the energy of ‘electrochemical’ interaction of vacancies in f.c.c. crystal describing by the Machlin poten-

tial [27] (with cohesive energy ε = −4.45 eV/atom [28, 29]) depending on normalized distance r(300 K)/a(300 K) between them. 



As known, there is a simple relationship between the ordinal number of the co-

ordination sphere, N(n), and its radius, Rn, for f.c.c. lattice [30–33]: Rn = rI(N(n))
1/2

 = 

a(2N(n))
1/2

/2. Unfortunately, it is broken (because of specific ‘removal of a crystallo-

graphic degeneracy’) at XIV-th, XXX-th, … spheres! Really, for three-dimensional 

f.c.c. lattice, the ordinal number of the real coordination sphere and its radius are de-

fined by the Miller indices hnknln: 2 2 2

(n) n n n2N h k l   , 2 2 2

n n n n2R a h k l   . Evi-

dently, the doubled numbers of XIV-th, XXX-th, … coordination spheres, 2×XIV, 

2×XXX, …, do not consist of the three squares of integers hnknln simultaneously. Ac-

cording to Refs. [30–33], these ordinal numbers correspond to so-called ‘zero’ coordi-

nation spheres, on which the sites of f.c.c. lattice do not take place (i.e., their coordina-

tion numbers are equal to zero). 

As shown, moduli of energies of ‘electrochemical’ v–v-interaction quickly de-

crease with increasing distance rn (monotone for n  II; figure 6) (‘short-range interac-

tion’). Meanwhile the ‘strain-induced’ of their interactions has a significantly long-

range nature and quasi-oscillating character [22]. The function el.chem ( )vv k  at k = 0 is an-

alytic (i.e. el.chem el.chemlim ( ) ( )vv vv


  

k 0
k 0 ) (figure 5). The function ( )vvV k  to a point k = 0 is 

nonanalytic (see Ref. [22]): lim ( ) ( )vv vvV V



k 0

k 0  (figure 3). 

In spite of that, the energy of ‘strain-induced’ v–v-interaction has the long-range 

nature and quasi-oscillating character, the value of its energy is much less than ‘electro-

chemical’ v–v-interaction energy. Thus, the energy of ‘electrochemical’ v–v-interaction 

has a main contribution to the interaction energy between vacancies in the f.c.c. Ni. 

However, the Fourier components of ‘electrochemical’ interaction v–v-

interaction energies near k = 0 do not depend on the direction n. Therefore, calculations 

of dispersive curves for the Fourier components of ‘strain-induced’ v–v-interaction en-



ergies are also important, as from their analysis, it is possible to reveal in what direction 

can be formed vacancies’ concentration waves. 

The Machlin potential NiNi 4 8

NiNi NiNi( ) = +r A r B r    [27] (of cohesive character) 

for T > 0 K (but in terms of f.c.c.-lattice spacing а0 at T = 0 K, cohesive energy 0, and 

lattice sums S4  25.338, S8  12.80193, where 0 4 1

NiNi 0 4A a S   , 0 8 1

NiNi 0 8 8B a S   

[18, 27, 34]) extends significantly beyond the limits of the 1
st
 coordination sphere (with 

radius I 2r a ) (figure 6). As result, the dependence of NiNi

el.chem el.chem( ) ( )vv  k k  is ex-

treme (at least, locally) not only at the high-symmetry points, but also within the whole 

of 1
st
 BZ (figure 5). The corresponding character of dispersion curves el.chem ( )vv k  hypo-

thetically promotes expansion to a variety of the long-wave dissipative modulated struc-

tures in distribution of vacancies, which can be formed under favourable conditions. 

7. Characteristics of dissipative modulated structures of vacancies’ subsys-

tem in the absence of fluctuations of the point-defects’ generation rate and 

inhomogeneity of irradiated f.c.c. crystal 

In a given paper, estimates for the following values of parameters for f.c.c. Ni with va-

cancies and their (dislocation) sinks: zd = 1, 0d  510
−8

 Å
−2

 [20, 35, 36], and for exam-

ple at 1500 K   1.3310
−4

 s were carried out. Energy of activation of migration and 

pre-exponential factor in the Arrhenius formula for coefficient of diffusion of vacancies, 

Dv, were expected equal 1.3 eV and 3.510
15

 Å
2
 s

−1
 [20, 35], respectively. 

Experimental data on elasticity moduli, C11(T), C12(T), C44(T), and consistent es-

timation of concentration-dilatation coefficient, L
v
, are presented in Ref. [37] and Ref. 

[25], respectively. el.chem ( )vv 0 , 0

vv  were estimated with use of interatomic potential for 

f.c.c. Ni in Ref. [27]. 



 

Figure 7. Temperature dependence of the modulated-structure nanoscale period in the distribution of vacancies d(T), 

when 0d = const  510−8 Å−2 [36]. (The dashed line in figure shows the d(T) dependence obtained by extrapolation 

of the curves presenting experimental data on elastic moduli [37] and coefficient of thermal expansion [38, 39] out-

side the range of their determinations.) 

 

Predicted temperature dependence of the period of the dissipative modulated 

structure of vacancies’ subsystem, which can be appear the first in quality of the inho-

mogeneity solution (15) of the equation (10) are presented in figure 7. (The dashed line 

in figure 7 shows the d(T) dependence obtained by extrapolation of the curves present-

ing experimental data on elastic moduli [37] and coefficient of thermal expansion [38, 

39].) 

The energy of ‘electrochemical’ interaction is a main contribution into energy of 

parameter 0
0

lim ( )vv vv

k
W W k


n n  in the relations for a critical value of the wave vector and 

the period of the dissipative modulated structure in the distribution of vacancies, d(T). It 

determines the temperature dependence of the period d(T). 

The energy of ‘electrochemical’ v–v interaction has a non-monotonic character, 

(see figure 6) depending on the normalized distance, r/a, between vacancies. The abso-

lute value of their ‘electrochemical’-interaction energy grows with temperature eleva-



tion on the first coordination sphere and it is not compensate in 0[100]

vvW  decrease of mod-

uli of such energies on the following spheres. Period (nanoscale) of the dissipative 

modulated structure of vacancies’ subsystems can a slightly decrease (by < 2%) with 

temperature increasing in the conditions of constancy of density of dislocations (for-

mation of dissipative modulated structures of vacancies’ subsystems is made easier) 

(figure 7). 

The nanoscale period of dissipative of modulated structure of vacancies’ subsys-

tem depends on the density of dislocations. As known, dislocation density is decreasing 

with temperature increasing [40–43]. In a given paper, to analyse the influence of the 

density of dislocation on the period, the experimental data of the temperature depend-

ence of the density of dislocations and their approximation (by different processing 

conditions) are used (Ref. [40–43]). One of such temperature dependence of the exper-

imental data of density of dislocation on the temperature 0d(T), and its approximations 

is presented in figure 8 [43]: 

 

Figure 8. Temperature dependence of the dislocation density, 0d(T) for f.c.c. single crystal Ni [43] at the minimum 

extents of deformation by compression with orientation of an axis of compression [001]. (The dashed line in figure 

shows the 0d(T) dependence, which is obtained by extrapolation of a curve plotted with experimental data on a den-

sity of dislocations.) 



 0d 77 K 1( 77 K)T     , (17) 

where 77 K  0.8710
−6

 Å
−2

, 1  −6.99510
−10

 Å
−2
K

−1
 (figure 8). 

Accounting empirical temperature dependence of density of dislocations leads to 

increasing period of the dissipative modulated structure with temperature, which is 

caused by the entropy factor and ‘electrochemical’ interaction of vacancies (figure 9). 

Therefore, decrease of density of dislocation 0d(T) with temperature increasing 

blocks formation (spatially ordered) of dissipative modulated structure of vacancies’ 

subsystem. However, at increase in density of dislocations from 10
−6

 Å
−2

 to 10
−4

 Å
−2

, 

(nanoscale) period of the dissipative modulated structure of vacancies’ subsystem de-

creases from 10
3
 Å to 10

2
 Å. 

 

Figure 9. Temperature dependence of the modulated-structure period in the distribution of vacancies with approxi-

mation of dislocation density 0d(T) for expression (17). (In figure 8, see an explanation for dashed line.) 

 

The nanoscale period of modulated of dissipative structures of vacancies’ sub-

system depends on the rate of defect generation K0. With increase the rate of generation 

of defects, such as vacancies, K0, the temperature range of the existence of the period 



d(T) is expanded (figure 10). The dissipative modulated structure of vacancies’ subsys-

tem becomes probable at T < TKP = 360–820 K in depending on the rate of defect gener-

ation (K0 = 10
−8

–10
−2

 dpas
−1

), values of coefficient of diffusion of vacancies and densi-

ty of dislocation (figure 10). 

Figure 10 shows the region of instability of homogeneous vacancy distribution 

in the coordinates of critical temperature and radiation intensity ( K0). The correspond-

ing coordinate plane is divided into two parts by the curve: in the region I, the homoge 

 

Figure 10. Regions (in)stability of the homogeneous distribution of vacancies in f.c.c. crystal with respect to its in-

homogeneous perturbations in terms of the radiation intensity and the critical temperature of a sample: I—region of 

instability, II—region of stability; (solid lines—Dv = 11015exp{(−1.4 eV)/(kBT)} [Å2s−1] [44, 12], dashed lines—

Dv = 3.51015exp{(−1.3 eV)/(kBT)} [Å2s−1] [35, 12], dashed lines with point—Dv = 61015exp{(−1.3 eV)/(kBT)} 

[Å2s−1] [45, 12] for cases: (1ʹ, 2ʹ, 3ʹ)—dislocation density 0d  510−8 Å−2 [36], (1ʹʹ, 2ʹʹ, 3ʹʹ)—with taking into ac-

count the empirical dependence 0d(T) (17), (1ʹʹʹ, 3ʹʹʹ)—dislocation density 0d  0.7510−6 Å−2 [43]. (4)—the dividing 

curve is given according to work [12] for comparison. 

 

neous distribution is unstable, whereas in region II, it is stable. At temperatures and ra-

diation intensities, which fall within the region I, the periodic distribution of vacancies’ 

subsystem density should set in. 



The range of stability of the dissipative modulated structure of vacancies’ sub-

system a little expands, taking into account the decreasing temperature dependence of 

density of dislocations (figure 10). Decrease of mobility of vacancies promotes shift of 

range of stability of such structure in coordinates of the critical temperature (TKP) and 

the rate of defect generation K0 sideways more high temperatures (figure 10). The 

curves in figure 10 determine the order of magnitude for threshold values of K0(TKP), 

when instability occurs. 

In addition, we will note that, in applied models, isothermal conditions of self-

organization of the dissipative modulated structure of vacancies’ subsystem in irradiated 

f.c.c. crystal are considered. The quantitative results obtained within their scopes can be 

satisfactory not always as influence of external fluctuations (radius of spatial correlation 

of fluctuations of rate of generation of vacancies, time of correlation of fluctuations of 

rate of vacancies’ generation, and variation factor of rate of vacancies’ generation), 

which are always in real-life environment of irradiation, is not considered. Nevertheless, 

despite of this, the present model decently describes the phenomenon at qualitative lev-

el. 

Let us note that, in regard to nanovoids, it can be assumed that the energy of in-

teraction of nanovoids is given by only their ‘strain-induced’ interaction energy within 

the continuum approximation in the long-wavelength limit [15, 16, 18]: 

( )  vv vv vvw w Qn n nA , ( ) ( ) ( )  vv vvn n nB . (Within the continuum approxima-

tion, the nanovoids are considered as finite objects, and one can use the lattice-statics 

method for k  0 only, i.e. within the long-wave approximation.) Correspondingly, for 

comparison, the temperature dependence of the nanoscale superlattice period in the dis-

tribution of nanovoids is shown in figure 11. 



 

Figure 11. Dependence of the superlattice period in the distribution of microvoids on T with coefficient of a concen-

tration dilatation of f.c.c.-Ni Lp  0.0146 [46] because of presence of voids. (In figure 7, see an explanation for 

dashed line.) 

 

Period of a superlattice in the distribution of nanovoids is increasing with tem-

perature that was indirectly confirmed in Refs. [45, 47–52] for some irradiated b.c.c. 

and f.c.c. metals. 

8. Dissipative modulated structures of vacancies’ subsystem in presence of 

fluctuations of the point-defects’ generation rate 

The expressions obtained for the determination of n0 (see equations (4), (5)), critical 

values of parameters, and a period of the structure, which arises (see equation (9)), are 

non-linear and depend on integrated properties of an interaction potential and corre-

sponding spectral densities. The influence of fluctuations of the rate of a defects’ gener-

ation and heterogeneity of an irradiated crystal within the approximations taken is inde-

pendent, the corrections defined by them are included in (5) and (9) as additive terms. 

An average value of the density of defects in contrast to a damping decrement f(k) de-

pends only on fluctuations of the density of sinks (through G(k)) but not on the fluctua-



tions of a defect-production rate: its correlation functions or spectral densities. In the 

absence of random heterogeneity of sinks, the expression for an average density of de-

fects [2] 0 0 0/n K   formally coincides with the expression obtained in a deterministic 

approximation if all quantities are substituted by their averages. 

The joint accounting for the stationary external fluctuations and non-linear inter-

action of vacancies causes qualitatively new results, namely, the vanishing or, on the 

contrary, arising sets of possible uniform random fields of the defects’ density, each of 

which can be realized [2]. 

When the external fluctuations become negligible, equations (4), (5) and (9) turn 

into relations obtained within the scope of the deterministic model (see §5 and Refs. [2, 

15]). As the influence of ( , )K tr  and ( ) r  is additive, their role is analysed in [53], and 

the statistical characteristics of random homogeneous stationary distributions of defects 

are obtained in Ref. [54], here let us consider the conditions for a spatially-periodic (in-

homogeneous) distribution of the defects’ density to arise in their stochastic formation 

[2]. To obtain further results, a form of a spectral density should be rendered concrete. 

For the Gauss temporal spectrum with 2ln{ ( , ) / ( , )}G t G t tk k , there will al-

ways be an unstable mode, and the homogeneous stationary random field of a defects’ 

density will not be realized. 

Let us consider the case when fluctuations of a rate of defect production in time 

and in space are statistically independent and small so that the period of a structure of a 

defects’ density which arises is close to a deterministic one and much more than a radi-

us of their correlation, rcorr, and the time of their correlation, corr, is much less of all 

characteristic times of a problem. Then for the component in (9) caused by fluctuations 

we have 
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The radius of correlation of fluctuations and the time of correlation of fluctua-

tions may be represented by definition as follows [55, 56]: 
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rcorr < 10
4
–10

6
 Å (< order of size of displacement cascade, i.e. the maximum distance at 

which stages may cross overlap and we can enter deterministic and fluctuation compo-

nents of the density of generated defects) and corr  10
2
–10

4
 ps ( order of time of de-

velopment cascades) [55]. 

In the stochastic description, it is not possible to reduce parameters 0n , 0

vvW n
, T to 

one— 0 0 / ( )vv

Bn W k T n n . We will search for conditions of the development of instabil-

ity by changing K0 (f depends on K0 only through n), and the temperature and coeffi-

cient of a variation of the rate of a creation of displacements 2

0K K  will be con-

sidered as fixed [2]. 

As substantiated in the end of §4, the integrand in (18), decreasing with an in-

crease of k as k
2
 is localised within the interval [−|km|, |km|] (|km|  |kKP|). The damping 

decrement f will become zero at n  KP, because the numerator of an integrand in 

(18) is non-negative within the interval (−|kKP|, |kKP|) (kKP  kKPn), and S > 0 [2]. In a 

numerator of an integrand in equation (18), we will be restricted to the first term of an 

expansion, and in (k,), to the second term because it determines point of a minimum 



km. Going to (18) from an integration to the summation and taking into account 

that 2

corr corr( ,0)G K r 0 , then, substituting (18) into (9) and keeping the terms of the 

same order of smallness, we find [2]: 
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Hence, under fluctuations at issue, the spatial period of such a dissipative struc-

ture is determined by kinetic characteristics too (besides of irradiation parameters). 

Correspondingly, the temperature dependences of a nanoscale period of modu-

lated structure of vacancies’ subsystem with taking into account empirical temperature 

dependence of density of dislocations, 0d(T), and influence of external fluctuations of 

rate of generation of defects, which are characterized by the correlation radius rcorr, cor-

relation time corr, and coefficient of variation 2

0/K K , are presented in figures 

12(a), 12(b). (The dashed line in figures 12(a), 12(b) shows the dependence d(T), ob-

tained by extrapolation of the curves presenting experimental data on elastic moduli 

[37], coefficient of thermal expansion [38, 39] and dislocation density [43], outside 

boundary of range their determination.) 



 

Figure 12. Temperature dependence of the nanoscale dissipative modulated-structure period of vacancies’ subsystem 

with coefficient of diffusion of vacancies Dv = 3.51015exp{(−1.3 eV)/(kBT)} [Å2s−1] [35] and dislocation density, 

0d(T) (17) (a) with fluctuations at the fixed values of (
2

0/ 1K K  ) and the correlation time corr = 104 ps 

fluctuations, but at their various correlation radius rcorr (1—rcorr = 10 Å, 2—rcorr = 102 Å, 3—rcorr = 103 Å); (b) at the 

fixed values of correlation radius rcorr = 102 Å and correlation time corr = 104 ps, but at different value of the fluctua-

tions 
2

0/K K  (1—10, 2—102, 3—103, 4—104, 5—105 

 

At high temperatures, the presence of fluctuations leads to the destruction of the 

dissipative modulated structure of vacancies’ subsystem, which manifests itself in in-

crease of temperature period. Fluctuations of rate of generation of defects are reducing 

with temperature decreasing. The dissipative modulated structure of vacancies’ subsys-

tem is formed in the conditions of radiation always. Due to superfast material cooling, it 

can be recorded even after the stopping of radiation [20]. 

Thus, the presence of both external fluctuations of the rate of generation of radi-

ation point defects such as vacancies and inhomogeneities in the distribution of sinks 

(e.g., dislocations) in f.c.c. crystal leads to a narrowing of the range of stability of dissi-

pative modulated structures in the spatial distribution of density of vacancies’ subsys-

tem (figures 12(a), 12(b)). 



Conclusions 

For the description of occurrence of the dissipative modulated structures of va-

cancies’ subsystem in an irradiated f.c.c. crystal, the mechanism obviously based on 

openness and non-equilibrium of the system and on nonlinearity character of bindings 

of vacancies with an environment is considered. For the first time, contributions to in-

teraction between the generated vacancies, which are determined by both indirect long-

range ‘strain-induced’ interaction (in particular, on far distances, of ‘elastic’ character) 

and ‘direct’ short-range ‘electrochemical’ interaction (basically, of the cohesive nature 

on close distances), are simultaneously considered. Interactions between vacancies 

cause instability of their uniform distribution and play a crucial role in the mechanism 

of formation of the modulated structures of vacancies’ subsystem. 

By the example of f.c.c. Ni lattice, the dispersion curve for the Fourier compo-

nents of ‘electrochemical’ v–v-interaction energies is numerically calculated, taking into 

account features of such ‘direct’ interaction (in particular, its isotropy and attractive 

character). As found, at least, at distances of the several first coordination spheres’ radii, 

considerable values of corresponding energies (in comparison with energies of ‘strain-

induced’ interaction between the vacancies) provide domination of ‘electrochemical’ 

contribution (of cohesion nature) to the Fourier components of total v–v-interactions 

near the BZ centre of the reciprocal space for f.c.c. lattice. 

The case of isothermal conditions of self-organization of formation precursor of 

the nanovoids’ superlattice—the modulated structure in distribution of the vacancies 

generated by radiation, due to instability of their uniform distribution as a result of in-

teraction between them in irradiated f.c.c. crystal, is considered. 

The temperature dependences of the period of the dissipative modulated struc-

tures in distribution of vacancies and nanovoids are evaluated within the deterministic 

model. 



As confirmed numerically, in conditions of the lack of both the fluctuations of 

generally non-uniform distributions of vacancies and their sinks and the fluctuations of 

rate of generation of vacancies within the irradiated f.c.c. crystal, instability of uniform 

distribution of vacancies is determined by a set of some parameters. These are: (i) the 

diffusivity of vacancies (and their migration-activation energy), (ii) the characteristic 

lifetime of vacancies before absorbing by sinks, (iii) a coefficient characterizing the ef-

ficiency of interaction of vacancies with sinks, and (iv) the Fourier components of ener-

gies of total (‘strain-induced’ and ‘electrochemical’) interactions between the vacancies 

corresponding to vicinity of the centre of the Brillouin zone of reciprocal space of f.c.c. 

lattice. Under the above-mentioned fluctuations, the condition of instability of uniform 

distribution of vacancies is also characterized by the correlation parameters: (v) an ef-

fective radius of spatial correlation of fluctuations of rate of generation of vacancies, 

(vi) a time of correlation of fluctuations of rate of vacancies’ generation, and (vii) a var-

iation coefficient for rate of vacancies’ generation. 

Period of dissipative modulated structure of vacancies’ subsystem (including 

nanoscale period) decreases with temperature increasing in the conditions of constancy 

of density of dislocations that is determined, first of all, by the ‘electrochemical’ inter-

actions of vacancies in absence of both the external fluctuations of nonzero rate of gen-

eration of radiation point defects such as vacancies and the internal fluctuations of in-

homogeneity of irradiated f.c.c. crystal such as dislocations. 

As revealed, the period d(T) of the stationary dissipative modulated structures of 

vacancies’ subsystem essentially depends on density of sinks for vacancies. The account 

of empirical temperature dependence of density of dislocations as sinks for vacancies in 

f.c.c. crystal reveals an expansion of the temperature range of stationary presence of the 

modulated structure with a finite nanoscale period. As numerically shown, the account 



of empirical temperature dependence of dislocation density, namely, the decreasing of 

dislocation density with increasing temperature, leads to increasing period d(T) of dissi-

pative modulated structure of vacancies’ subsystem. This is caused by an entropy factor 

and ‘electrochemical’ interactions between the vacancies. 

For the first time, an influence of temperature dependence of density of disloca-

tion sinks for vacancies and energy parameters of vacancies’ interactions in f.c.c. crystal 

on other characteristics of the modulated structures of vacancies’ subsystem (in particu-

lar, on a critical temperature of their initiation) is taken into account. As shown, for the 

case of account of temperature dependence of the sinks’ density for vacancies, the esti-

mated value of critical temperature of formation of dissipative structure is rising. 

As demonstrated, the parametric dependence of the nanoscale period d of the 

stationary dissipative modulated structures of a subsystem of vacancies on rate of their 

generation is nonlinear and can correspond to deterioration or improvement of function-

al properties of a material, depending on radiation intensity. With increasing the rate of 

generation of vacancies in f.c.c. crystal, the temperature range of stability of their modu-

lated structures is extending. 

As confirmed, the period of the stationary dissipative modulated structures of a 

vacancies’ subsystem parametrically depends in non-linear way on the diffusion coeffi-

cient of vacancies in f.c.c. crystal. Reduction of mobility of vacancies promotes shift of 

a range of stability of dissipative modulated structures of the vacancies’ subsystem to-

wards higher temperatures. 

As quantitatively confirmed, unlike the modulated structures arising in closed 

vacancies’ subsystem of f.c.c. crystal by spinodal mechanism of relaxation (see Refs. 

[57, 58]), the period of the stationary (dissipative) modulated structure of the open non-

equilibrium subsystem of vacancies in an irradiated f.c.c. crystal is essentially deter-



mined by both their kinetic parameters (diffusivity, characteristic time of a life before 

absorption by sinks, and coefficient characterizing efficiency of interaction of vacancies 

with dislocations) and characteristics of an irradiation (first of all, by its intensity and 

rate of generation of point defects by it). 

In the case of nanovoids, within the continuum approximation, the period of a 

superlattice in the distribution of nanovoids is increasing with temperature, since it is 

determined only by their ‘elastic’ interaction. 

Besides, nonlinear dependence of the period d(T) of the stationary dissipative 

modulated structures of vacancies’ subsystem on parameters of correlation of external 

fluctuations is numerically investigated, namely, on radius of spatial correlation (of 

fluctuations of rate of vacancies’ generation), time of correlation (of fluctuations of rate 

of vacancies’ generation), and variation factor (of rate of vacancies’ generation). Inves-

tigation of fluctuations of vacancies’ generation rate shows that, with increase in radius 

of spatial correlation (of fluctuations of rate of generation of vacancies) and/or in a vari-

ation factor (of rate of generation of vacancies), the temperature range of stationary 

presence of the dissipative modulated structures of vacancies’ subsystem (with the finite 

period d(T)) in an f.c.c. crystal is narrowed. 

For comparison, the hypothesis is numerically confirmed and illustrated as re-

gards the possibility of formation of a superlattice (of the finite period) from ‘elastical-

ly’ interacting nanovoids after their ‘nucleation’ in vicinities of those sites of (irradiat-

ed) f.c.c. crystal, in which density of (clustered) vacancies is increased in the certain 

interval of temperatures. 
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