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ABSTRACT 
Steady laminar natural convection in air-filled rectangular 

enclosures, both shallow and slender, partially heated at the 
bottom wall and cooled at both sides, is studied numerically. 
SIMPLE-C algorithm is employed for the solution of the mass, 
momentum, and energy transfer equations. Simulations are 
performed for height-to-width aspect ratios of the cavity from 
0.2 to 5, Rayleigh numbers based on the height of the cavity 
from 102 to 107, and values of the heated fraction of the bottom 
endwall between 0.2 and 1.  

 
INTRODUCTION 

Natural convection inside rectangular enclosures has been 
extensively studied both experimentally and numerically, 
owing to its importance in many engineering applications, e.g., 
heat transfer in buildings, solar energy collection, heat removal 
in electronics, and cooling of nuclear reactors, to name a few. 

Most of the papers on this topic are related to unidirectional 
heat flows, but real-life systems are more usually characterized 
by multi-directional heat flows, i.e., neither simply horizontal 
nor vertical. Moreover, in many practical cases mixed thermal 
conditions on the same boundary wall may also be encountered, 
which is, e.g., what happens when a boundary wall is only 
partially heated or cooled. Focusing the interest on the heating-
from-below situation with the assumption of isothermal walls, 
studies on this topic were conducted by Sezai and Mohamad 
[1], Aydin and Yang [2], Deng et al. [3], Calcagni et al. [4], and 
Oosthuizen and Paul [5], in which a specific reference to the 
cooling of electronic components is made. However, none of 
these authors either treated the case of tall cavity or developed a 
correlating equation for predicting the amount of heat 
transferred across the enclosure. 

In this background, the aim of the present paper is to carry 
out a study of natural convection heat and momentum transfer 
inside air-filled, rectangular cavities, both shallow and slender, 
partially heated at the bottom endwall, and cooled at both 
sidewalls. In particular, the heated boundary surface, which is 

considered to be symmetric about the vertical midplane of the 
enclosure, is assumed to be kept at uniform temperature, whilst 
the remaining parts of the bottom endwall, as well as the top 
endwall, are assumed to be perfectly insulated. 

The study is conducted numerically under the assumption of 
two-dimensional laminar flow. Simulations are performed for 
different values of the Rayleigh number based on the height of 
the cavity in the range between 102 and 107, the heated fraction 
of the bottom endwall in the range between 0.2 and 1, and the 
height-to-width aspect ratio of the cavity from 0.2 to 5, whose 
effects on the flow pattern, the temperature distribution, and the 
heat transfer rates, are analyzed and discussed. Heat transfer 
dimensionless correlating equations are also proposed.  

 
MATHEMATICAL FORMULATION 

An air-filled, rectangular enclosure of height H and width W 
is partially heated at the bottom endwall, and cooled at both 
sidewalls. The central portion of the bottom wall, of length L, is 
heated at uniform temperature TH, while both sides are cooled 
at temperature TC. The remaining parts of the bottom endwall, 
as well as the top endwall, are considered perfectly insulated, as 
sketched in Fig. 1, where the coordinate system adopted is also 
represented.  
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Figure 1 – Sketch of the geometry and coordinate system 



    

The buoyancy-driven flow is considered two-dimensional 
and laminar. The fluid is assumed incompressible, with constant 
physical properties and negligible viscous dissipation and 
pressure work. The buoyancy effects upon momentum transfer 
are taken into account through the Boussinesq approximation.  

Once the above assumptions are used into the conservation 
equations of mass, momentum and energy, and the following 
dimensionless variables are introduced: 
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the following set of governing equations is obtained: 
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Here x and y are the horizontal and vertical coordinates, 
respectively, with the corresponding velocity components u and 
v; t is the time; T is the temperature; T0 is the surface mean 
temperature; p is the pressure; ρ is the density; ρ0 is the density 
at the reference temperature T0; g is the acceleration of gravity; 
ν is the kinematic viscosity; Pr is the Prandtl number; and Ra is 
the Rayleigh number defined as: 
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Other parameters which enter into this study are: 
(a)  the heated fraction of the bottom endwall 

 
W
LE =    0.2 ≤ E ≤ 1          (9) 

(b)  the height-to-width aspect ratio of the enclosure 

W
HA =    1/5 ≤ A ≤ 5        (10) 

On account of eqs. (3), (9), and (10), it results:  

( ) ( )
( )( )CH

HC

TTEA
TTETTAθ

−+
−−−

=
2

2          (11) 

and the following relations for the dimensionless temperatures 
θH and θC of the heated and cooled boundary surfaces of the 
enclosure may then be derived: 
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The boundary conditions assumed are the no-slip condition 
U = V = 0 at the four boundary walls, and θ = θH and θ = θC at 
the heated and cooled boundaries, respectively.  

The initial conditions assumed are fluid at rest and uniform 
temperature θ = 0 across the whole cavity. 
 
COMPUTATIONAL PROCEDURE 

The set of governing equations (4)−(7) with the boundary 
conditions stated above is solved through a control-volume 
formulation of the finite-difference method. The pressure-
velocity coupling is handled by the SIMPLE-C algorithm by 
Van Doormaal and Raithby [6]. The advection fluxes across the 
surfaces of the control volumes are evaluated by the QUICK 
discretization scheme by Leonard [7]. A second-order backward 
scheme is then used for time stepping.  

Starting from assigned initial fields of the dependent 
variables, at each time-step the discretized governing equations 
are solved iteratively through a line-by-line application of the 
Thomas algorithm, enforcing under-relaxation for convergence.  

The computational spatial domain is covered with a non-
uniform grid, having a concentration of grid lines near the 
boundary walls and both ends of the heated bottom surface, and 
a uniform spacing across the remainder interior of the cavity. 
Time discretization is chosen uniform.  

Within each time step, the spatial solution is considered to 
be fully converged when the maximum absolute values of both 
the mass source and the percent changes of the dependent 
variables at any grid-node from iteration to iteration are smaller 
than prescribed values, i.e., 10-4 and 10-5, respectively. Time-
integration is stopped once an asymptotic steady solution is 
reached. This means that the simulation procedure ends when 
the percent difference between the incoming and outgoing heat 
transfer rates, and the percent changes of the time-derivatives 
of the dependent variables at any grid-node from time-step to 
time-step, are smaller than prescribed values, i.e., 10-6 and 10-7, 
respectively.  

After convergence is attained, the average Nusselt numbers 
NuH and NuC of the heated and cooled boundaries, respectively, 
are calculated: 
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where hH and hC are the average coefficients of convection of 
the heated and cooled boundary surfaces, respectively, and Qin 
and Qout are the overall incoming and outgoing heat transfer 
rates, respectively. The temperature gradients at any boundary 
surface are evaluated through a second-order profile among 
each wall-node and the next corresponding two fluid-nodes.  

Of course, since at steady-state the incoming and outgoing 
heat transfer rates must be the same, i.e., Qin = −Qout = Q, at 
steady-state the following relationship between NuH and NuC 
holds: 
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Tests on the dependence of the results on both grid-size and 
time-step have been performed for several combinations of the 
independent variables A, E, and Ra. The optimal grid-size and 
time-step used for computations, which represent a good 
compromise between solution accuracy and computational time 
required, are such that further refinements do not yield for 
noticeable modifications neither in the heat transfer rates nor in 
the flow field, that is, the percent difference between the first 
and the second members of eq. (16), and the percent changes of 
the maximum and minimum values of the vertical velocity 
component on the horizontal midplane of the enclosure, must 
be smaller than prescribed accuracy values, i.e., 1% and 2−4%, 
respectively. Typically, the number of nodal points lies in the 
range between 30×30 and 80×400, and the time stepping lie in 
the range between 10-3 and 10-6.  

Furthermore, in order to validate the numerical code used 
for the present study, the steady-state solutions obtained for 
τ→∞ in a square cavity with differentially heated sidewalls and 
adiabatic top and bottom endwalls for Rayleigh numbers from 
103 to 106, have been compared with the benchmark results of 
de Vahl Davis [8], obtained by a standard finite-difference 
method used to solve the stream function-vorticity formulation 
of the governing equations. In particular, the average Nusselt 
numbers throughout the cavity as well as the maximum 
horizontal and vertical velocity components on the vertical and 
horizontal midplanes, respectively, are within 1% of the 
benchmark data, as indicated in Table 1, where other reference 
solutions derived through finite-volume methods (column FV) 
are also reported (i.e., the solutions obtained by Mahdi and 
Kinney [9], for Ra = 103, and by Hortmann et al. [10], for Ra = 
104 to 106). It seems worth noticing that our dimensionless 
velocity results have been multiplied by the Prandtl number 
before being inserted in Table 1, so as to account for the choice 
of the ratio between kinematic viscosity and characteristic 
length of the cavity as scale factor for the velocity, instead of 
the ratio between thermal diffusivity and characteristic length, 
used by de Vahl Davis [8].  

 

Table 1 – Comparison of thermally-driven square cavity solutions 

Quantities Benchmark [8]     Present 
k

 FV [9]-[10] 

Ra = 103 
 Umax      3.649      3.654    3.649 
 Vmax      3.697      3.708    3.690 
 Nuav      1.118      1.116    1.113 

Ra = 104 
 Umax    16.178    16.242  16.180 
 Vmax    19.617     19.714  19.629 
 Nuav     2.243     2.254    2.244 

Ra = 105 
 Umax    34.722    35.008  34.739 
 Vmax    68.590     68.109  68.639 
 Nuav      4.519     4.506    4.521 

Ra = 106 
 Umax    64.630   65.226  64.836 
 Vmax  219.360   221.598    220.461 
 Nuav      8.800     8.879    8.825 
 

RESULTS AND DISCUSSION 
Numerical simulations are performed for Pr = 0.71, which 

corresponds to air, and different values of (a) the height-to-
width aspect ratio of the enclosure A in the range between 0.2 
and 5, (b) the heated fraction of the bottom endwall E in the 
range between 0.2 and 1, and (c) the Rayleigh number Ra based 
on the height of the cavity in the range between 103 and 107. 

A selection of local results is presented in Figs. 2−7, where 
isotherm and streamline contours are plotted for different sets 
of values of A, E, and Ra, in order to highlight the effects of 
any independent parameter on the flow and temperature fields. 
In Figs. 2−4 the Rayleigh number is maintained at 105, so as to 
point out the effects of E for different values of A. In Figs. 5−7 
the heated fraction of the bottom endwall is maintained at 0.4, 
so as to point out the effects of Ra for different values of A. 

In the isotherm plots (Figs. 2a−7a), the contours correspond 
to equispaced values of the dimensionless temperature θ in the 
range from θC to θH=1+θC. In the streamline plots (Figs. 2b−7b), 
the contours correspond to equispaced values of the normalized 
dimensionless stream function ⎪Ψ⎪/⎪Ψ⎪max in the range from 0 
to 1, where Ψ is defined through U = ∂Ψ/∂Y and V = −∂Ψ/∂X.  

It may be seen that, owing to the symmetry of the boundary 
conditions, the resulting fields are symmetric about the vertical 
midplane of the cavity. The flow field consists of two counter-
rotating cells, each one located in one half of the cavity, which 
originate from the rising of the hot fluid in the middle of the 
enclosure and its descent along both sidewalls. The intensity of 
the fluid motion, which depends on the relative importance 
between buoyancy force and viscous force, increases as: (a) the 
heated fraction of the bottom endwall E increases, see Figs. 
2−4; (b) the Rayleigh number Ra increases, see Figs. 5−7; and 
(c) the height-to-width aspect ratio A decreases, see Figs. 2−4 
and Figs. 5−7.  



    

    
Figure 2a – Isotherms for Ra = 105, A = 4 and E = 0.2, 0.4, 0.6, 0.8 

 

   

   
Figure 3a – Isotherms for Ra = 105, A = 1 and E = 0.2, 0.4, 0.6, 0.8 

 

 

 

 

 
Figure 4a – Isotherms for Ra = 105, A = 0.25 and E = 0.2, 0.4, 0.6, 0.8 

    
Figure 2b – Streamlines for Ra = 105, A = 4 and E = 0.2, 0.4, 0.6, 0.8 

 

   

   
Figure 3b – Streamlines for Ra = 105, A = 1 and E = 0.2, 0.4, 0.6, 0.8 

 

 

 

 

 
Figure 4b – Streamlines for Ra = 105, A = 0.25 and E = 0.2, 0.4, 0.6, 0.8 



    

    
Figure 5a – Isotherms for A = 4, E = 0.4 and Ra = 103, 104, 105, 106 

 

   

   
Figure 6a – Isotherms for A = 1, E = 0.4 and Ra = 103, 104, 105, 106 

 

 

 

 

 
Figure 7a – Isotherms for A = 0.25, E = 0.4 and Ra = 103, 104, 105, 106 

    
Figure 5b – Streamlines for A = 4, E = 0.4 and Ra = 103, 104, 105, 106 
 

   

   
Figure 6b – Streamlines for A = 1, E = 0.4 and Ra = 103, 104, 105, 106 
 

 

 

 

 
Figure 7b – Streamlines for A = 0.25, E = 0.4 and Ra = 103, 104, 105, 106 
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Figure 8 – Distributions of the local Nusselt number on the bottom 

wall for A = 0.5, E = 0.6 and different values of Ra 
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Figure 9 – Distributions of the local Nusselt number on the bottom 

wall for A = 2, E = 0.6 and different values of Ra 

As the intensity of the fluid motion inside the enclosure 
increases, the cores of the two cells move upwards, and the 
isotherms become progressively more distorted with respect to 
the distribution typical of pure conduction, more warped around 
the two centers of rotation, and more compressed towards the 
boundary walls of the cavity, which implies an increase in the 
temperature gradients, and, correspondingly, in the heat transfer 
rates. The local temperature gradient on the bottom endwall, 
and then the local Nusselt number [−(∂θ/∂Y)]0, is higher at both 
ends of the heated surface, decreasing steeply as one moves 
towards the vertical midplane of the cavity, where it reaches a 
minimum, as shown in Figs. 8 and 9 for E = 0.6, Ra = 103 to 
106, and A = 0.5 and 2, respectively. 

As far as the overall results are concerned, the heat transfer 
performance of the whole cavity is expressed in terms of NuC, 
which is considered more appropriate to this purpose than NuH. 
In fact, as said above, once Ra is assigned, the amount Q of 
heat transferred across the enclosure increases with increasing 
the heated fraction E of the bottom endwall, and decreasing the 
aspect ratio A of the cavity. Correspondingly, a Nusselt number 
which would represent the thermal behavior of the cavity “at a 
glance” should increase with increasing E and decreasing A. On 
the other hand, according to eq. (14), it is NuH ∼ Q×A/E. This 
means that, once A is assigned, NuH may either increase or 
decrease with increasing E, depending on whether ∂Q/∂E is 
positive or negative. Similarly, given the value of E, NuH may 

either decrease or increase with increasing A, depending on 
whether ∂Q/∂(1/A) is negative or positive. Actually, from Figs. 
8 and 9, and from eq. (14), it results that NuH increases with A, 
instead of decreasing as would be preferable. 

In contrast, from eq. (15) it results NuC ∼ Q, which implies 
that NuC unequivocally increases with E and decreases with A. 

For this same reason, the effectiveness of heat removal from 
the bottom wall is described better through a Nusselt number 
Nu* which uses L instead of H as characteristic length: 
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Distributions of Nu*, and then, according to eq. (17), also of 
NuC = 0.5Nu*, are plotted against the Rayleigh number Ra in  
Figs. 10 and 11, for A = 0.5 and E from 0.2 to 0.8, and for E = 
0.6 and A from 0.25 to 4, respectively, where a good agreement 
with the results of Aydin and Yang [2] for A = 1 may be noticed. 

As regards the development of a correlation among Nu* and 
the independent variables A, E, and Ra, the Rayleigh number 
RaL based on the length L of the heated portion of the bottom 
endwall is introduced: 
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Figure 10 – Distributions of Nu* vs. Ra for A = 0.5 and different 
values of the heated fraction of the bottom endwall E 
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Figure 11 – Distributions of Nu* vs. Ra for E = 0.6 and different 
values of the height-to-width aspect ratio of the enclosure A 



    

Pr
L)TT(g

Ra CH
L 2

3

ν

−β
=                      (18) 

In fact, on account of eqs. (8)−(10) and (18), it follows: 
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Therefore, RaL increases with Ra and E and decreases with 
A, which is exactly what happens for the heat transfer rate 
across the cavity, as discussed above, thus implying that RaL 
might be used for a more synthetic first-approach “description” 
of the problem treated here. 

Indeed, the numerical results obtained for Nu*, and then for 
NuC = 0.5Nu*, can be expressed by the following semi-empiric 
correlating equations:  

 slender geometry 
2220290 .

LRa .*Nu =         (20) 

for 1 ≤ A ≤ 5, 0.2 ≤ E ≤ 0.8, and 103 < Ra ≤ 107, with a 6.13% 
standard deviation of error, and a ±10% range of error with a 
88% level of confidence, as shown in Fig. 12; 

 shallow geometry 

)A(F
LRa .*Nu 220=  with  F(A) = 0.215 + 0.035A      (21) 

for 0.25 ≤ A ≤ 1, 0.2 ≤ E ≤ 0.8, and 103 < Ra ≤ 107, with a 
6.38% standard deviation of error, and a ±10% range of error 
with a 87.5% level of confidence, as shown in Fig. 13. 
 
CONCLUSIONS 

Natural convection inside air-filled, rectangular cavities, 
both shallow and slender, discretely heated at the bottom and 
cooled at both sides, has been studied numerically, for different 
values of the height-to-width aspect ratio of the enclosure, the 
heated fraction of the bottom wall, and the Rayleigh number 
based on the height of the enclosure. 

It has been found that, due to the symmetry of the boundary 
conditions applied, the resulting flow field consists of two roll-
cells symmetric about the vertical midplane of the enclosure. 

The intensity of the fluid motion, and then the consequent 
heat transfer rate across the enclosure, increases with increasing 
the heated fraction of the bottom endwall and the Rayleigh 
number, while decreasing as the aspect ratio of the cavity 
increases.  

Finally, the effectiveness of heat removal from the bottom 
wall is described better through a Nusselt number based on the 
length of the heated portion of the bottom wall, rather than on 
the same characteristic length used in the Rayleigh number, i.e., 
the height of the enclosure. 
 
NOMENCLATURE 
A height-to-width aspect ratio of the enclosure 
E heated fraction of the bottom endwall 
g gravitational acceleration  
H height of the enclosure 
h average coefficient of convection 
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Figure 12 –Nu* from eq. (20) vs. Nu* from numerical simulations 
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Figure 13 –Nu* from eq. (21) vs. Nu* from numerical simulations  
 
k thermal conductivity of the fluid 
L length of the heated portion of the bottom endwall 
Nu average Nusselt number based on H = hH/k 
Nu* average Nusselt number based on L = hL/k 
P dimensionless pressure 
p pressure 
Pr Prandtl number = ν/α  
Q heat transfer rate 
Ra Rayleigh number based on the cavity height =  
 = gβ(TH – TC)H3Pr/ν2 
RaL Rayleigh number based on the length of the heated 

portion of the bottom endwall = gβ(TH – TC)L3Pr/ν2 
T temperature 
T0 reference temperature 
t time 
U dimensionless horizontal velocity component 
V dimensionless vertical velocity component 
u horizontal velocity component 
v vertical velocity component 
X dimensionless horizontal coordinate  
Y dimensionless vertical coordinate  
x horizontal coordinate 
y vertical coordinate 



    

W width of the enclosure 

Greek symbols 
α thermal diffusivity of the fluid 
β coefficient of volumetric thermal expansion of the fluid 
ν kinematic viscosity of the fluid 

θ dimensionless temperature 
ρ density of the fluid 
ψ dimensionless stream function 

Subscripts 
av average value 
C cold 
H hot 
max maximum value 
0 at the reference temperature, at the heated wall 
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