University of Pretoria

Submitted in fulfilment of the requirements for the degree
Master of Science (Computer Science)
in the Faculty of Engineering, Built Environment and Information
Technology,
University of Pretoria,

Pretoria,
South Africa

An investigation into the consistency and
usability of selected minisatellite detecting
software packages

by

Koos Themba Masombuka
07129102

Supervisor: Prof DG Kourie

October, 2013

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

To Nana my wife & Sn'Themba my daughter

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Contents

Contents i
1 Introduction 5
1.1 Background information)
1.2 Definition of terms and concepts 9
1.3 Research goals, objectives and questions 10
1.3.1 Research questions 11
1.3.2 Research objectives 12
1.3.3 Delineation and limitations 13
1.4 Brief chapter overview 13
1.5 Concluding remarks 14
2 Background: Minisatellite detecting algorithms 15
2.1 Imtroductiono 15
2.2 C(lassification of TR searching algorithms 16
2.3 Selection of algorithms for investigation 19
2.4 Overview of algorithms selected for investigation 22
24.1 Phobos. 23
242 Mrepso 23
2.4.3 Tandem Repeat Finder (TRF) 28
2.4.4 Approximate Tandem Repeat Hunter (ATRHunter) . 30
2.5 Overview of two unselected algorithms 33
2.5.1 REPuter 33
2.5.2 FORRepeats 36
2.6 Conclusion 37

3 Background: Open Source Software and the relationship
to Usability 39

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

ii CONTENTS
3.1 Introduction 39
3.2 Computer software users 40
3.3 Software usability 0oL 40

3.3.1 Alternative definitions of usability 41
3.3.2 Design for usability 46
3.4 Usability in open source and proprietary software 47
3.4.1 Proprietary software and usability 47
3.4.2 Open source software (OSS) and usability 48
3.4.3 Proposed OSS usability solutions 50
3.5 Conclusion 52

4 Methodology 55
4.1 Introduction 55
4.2 Minisatellites detection 56

421 Researchdesign o7
4.2.2 Methodology o7
4.3 Software usability oo 60
4.3.1 Research design 60
4.3.2 Methodology 61
4.4 Conclusion 65

5 Minisatellite detecting algorithms: output comparison 67
5.1 Introduction 67
5.2 Research instruments 68

52.1 Testdata, 68
5.2.2 Software 69
5.3 Software parameters 69
5.3.1 Mreps 70
5.3.2 Phobos. 71
5.3.3 Tandem Repeat Finder (TRF) 72
5.3.4 ATRHunter 73
5.4 Software Comparison 75
5.5 Observations. 76
5.5.1 Comparison for perfect detection 7
5.5.2 Comparison for approximate detection 80
5.5.3 Comparison between TRF and ATRHunter 84
5.6 Discussion of results and conclusions 89

6 Minisatellite detecting algorithms: usability comparison 91

© University of Pretoria

CONTENTS

6.1 Introductiono

6.2 Heuristic evaluation of TR software GUI

6.3 Taskanalysis
6.3.1 Task analysis of FireuSatPlus
6.3.2 Requirement capturing and detail interface design . .

6.4 Suggested FirepSat GUI improvements
6.4.1 Analysis of the STN
6.4.2 Detail design

6.5 Usability testing on FireuSat and FireuSatPlus GUIs

6.6 Conclusion L

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

7 Conclusion

7.1 Introduction

7.2 Overview e

7.3 Implication of the findings

7.4 Limitations of the study,

7.5 Futureresearch

7.6 Conclusion
Bibliography

A Usability Test Plan

Al
A2
A3

A4
A5

A6

AT

Document Overview
Purpose
Methodology
A.3.1 Participants
A3.2 Training
A.3.3 Procedure,
Usability taskso o
Usability metrics
A.5.1 Subjective evaluations
Usability goals
A.6.1 Subjective measures
Reporting results L.

B Consent Form

C Tasks

D Questionnaire

© University of Pretoria

iii

91

93
103
103
105
107
108
109
116
120

123
123
123
125
127
128
128

131

143
143
144
144
144
145
145
145
145
145
146
146
146

147

149

151

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

iv CONTENTS
E FireuSatPlus GUI source code 155
List of Symbols and Abbreviations 161
List of Figures 162
List of Tables 164

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

Acknowledgements

I would like to express my sincere gratitude and appreciation to all the
people who assisted in many ways to make this study a success.

e To my supervisor, Prof. DG Kourie. Thanks for the understanding,
guidance, advice and patience you have give to me during this study.

e To my colleagues (UNISA), Mrs C Reyneke, Mr T van Dyk and Mr
N Levine. Thank you for advice, support and your encouragement.

e To everyone who participated in the usability study.

e To my parents, Nomvula and Paulos. Thank you believing in me and
your encouragement.

e To my wife Nana. Thank you for your love and patience.

e To my daughter, Sn’Themba (Muntshu kaBaba). Thank you for un-
derstanding when you do not have to.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

Abstract

A tandem repeat is a sequence of adjacent repetitions of a nucleotide pattern-
signature, called its motif, in a DNA sequence. The repetitions may either
be exact or approximate copies of the motif. A minisatellite is a tandem
repeat whose motif is of moderate length.

One approach to searching for minisatellites assumes prior knowledge
about the motif. This approach limits the search for minisatellites to
specified motifs. An alternative approach tries to identify signatures au-
tonomously from within a DNA sequence. Several different algorithms that
use this approach have been developed. Since they do not use pre-specified
motifs, and since a degree of approximation is tolerated, there may be am-
biguity about where minisatellites start and end in a given DNA sequence.

Various experiments were conducted on four well-known software pack-
ages to investigate this conjecture. The software packages were executed on
the same data and their respective output was compared. The study found
that the selected computer algorithms did not report the same outputs. The
lack of precise definitions of properties of such patterns may explain these
differences. The difference in definitions relate to the nature and extent of
approximation to be tolerated in the patterns during the search. This prob-
lem could potentially be overcome by agreeing on how to specify acceptable
approximations when searching for minisatellites.

Some of these packages are implemented as Academic/Research Software
(ARS). Noting that ARS has a reputation of being difficult to use, this study
also investigated the usability of these ARS implementations. It relied on
literature that offers usability evaluation methods. Potential problems that
are likely to affect the general usability of the systems were identified. These
problems relate inter alia, to visibility, consistency and efficiency of use.
Furthermore, usability guidelines in the literature were followed to modify
the user interface of one of the implementations. A sample of users evaluated

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

4 CONTENTS

the before- and after versions of this user interface. Their feedback suggests
that the usability guidelines were indeed effective in enhancing the user
interface.

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

Chapter 1

Introduction

1.1 Background information

Advances in the use of technology today allow for decoding the Deoxyri-
boNucleic Acid (DNA) structure of hundreds of organisms in a relatively
short period of time. The decoded data is typically stored in databases for
various reasons, including data analysis . Data analysis aims at encoding
certain proteins and determining certain regulatory sequences. The com-
parison of genes to determine their relationship is thus enabled, both within
the same species and between different species. Because of the large amount
of data generated by improved DNA decoding techniques, it is difficult to
manually analyse the generated data. Computer software offers a reliable
alternative for the data analysis of sequenced DNA in a readable format.
The application of computer science and information technology to the field
of biology and medicine is called Bioinformatics.

DNA constitutes a sequence made up of four nucleotides — Adenine (4),
Cytosine(C), Thymine (T) and Guanine(G). To a computer scientist, DNA
is viewed as a string of A, C, G and T characters. These nucleotides form
long sequences and may contain specific kinds of patterns in certain ar-
eas. Consider, for example, the following DNA sequence: ACGTCT ACGTCT
ATGTT. Note that the pattern ACGTCT is repeated twice in the sequence.
Moreover, the repeats are adjacent to each other. Such a repeated pattern
is referred to as a Tandem Repeat (TR). The pattern ACGTCT is called the
motif. Depending on the number of nucleotides in the motif, TRs are tra-
ditionally classified into three categories: microsatellites with motif length
of less than 6, minisatellites with motif length greater than 5, but less than

5

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

6 CHAPTER 1. INTRODUCTION

or equal to 100, and satellites of which the motif is greater than 100. Sec-
tion 1.2 gives a formal definition of these terms as they will be used in this
dissertation.

TRs are used during DNA profiling—a technique employed by forensic
scientists for identity verification of individuals by relying on their DNA
profile. This DNA profiling may be used during paternity testing, and for
forensic medicine and population genetics [27, 33, 3]. TRs are also asso-
ciated with human diseases like cancer and epilepsy [85, 5]. Clearly, then,
detecting these TRs is important as it has social and medical implications
to human existence.

There are a number of algorithms that automate TR detection and some
are still under development. A selection of these will be investigated later
in this dissertation. stressed Two types of TRs are distinguished: perfect
and approximate TRs.

A Perfect TR (abbreviated to PTR) of motif M in string 7" is a sub-
string in T" consisting of two or more adjacent exact copies of M. The TR
example given earlier was of a PTR. The detection of PTRs is of limited
biological interest, due to biological events that occur in genetic sequences.
Events such as mutation, trans-location and transversal events, render the
gene copies imperfect [87]. Consequently, PTR detection algorithms are of
limited value.

An approximate TR (abbreviated to ATR) of motif M in string 7" is a
sub-string of T" consisting of two or more adjacent approximate copies of M
in T. Normally, a number k is associated with an ATR, indicating how far
off it is from being a PTR. Broadly speaking, this number is based on the
total number of non-matching nucleotides in each approximate repetition of
M in T. As an example, consider the string 7" shown in the following table.

T = A|C|G|IT|C|A|T|C|G|T|C|A| A |C| A |T A
Pos. 1 7 13 15 17
M A/IC|G|T|C|A|A|C|G|T|C|A| A |C|G|T|C]|A

T as given in the top row is a TR with motif M = ACGTCA. Three adjacent
repeats of the motif string M are shown in the bottom row, and their
starting positions are shown in the middle row as 1, 7 and 13. It is apparent
that not all elements of T" match exactly with the nucleotides of the three
repeated motifs. In positions 7 and 15, there are so-called mismatch errors—
one nucleotide in the motif has been substituted by another in the sequence
T. Another error, a so-called deletion, occurs in position 17—one nucleotide

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

1.1. BACKGROUND INFORMATION 7

in M is missing in the sequence T'. Insertion—one nucleotide is inserted in
the sequence T—is the opposite of a deletion. Insertion and deletions are
collectively referred to as indels.

Note that the question of determining precisely which nucleotides do
not match is not as simple as it might first appear. In general, non-matches
can be ascribed to one of three different types of errors: mismatches, in-
sertions or deletions. In certain cases, a given non-matching scenario can
be explained in more than one way, each way involving a different selection
of these error-types. A full elaboration of when these ambiguities arise and
how to deal with them is beyond the scope of this present discussion and
this dissertation.

In general, algorithms searching for TRs need to detect both PTRs and
ATRs. One approach requires a priori specification of the motifs. In such
instances, a list of motifs M is given as an input. The drawback of this ap-
proach is that unanticipated TRs embedded in the data may go undetected.

An alternative approach is employed by various algorithms in the field.
In these cases, a priori knowledge about the motifs to be sought is not re-
quired. Instead, the algorithms employ various techniques for TR detection.

These techniques may not deliver identical results and consequently the
consistency within detected TRs using these techniques is not certain. This
dissertation will be investigating these uncertainties.

This investigation is limited to minisatellite detectors which detect unan-
ticipated TRs. Henceforth, all references to minisatellite detection software
should be construed as referring to the detection of unanticipated TRs.

Three types of software that are of interest in this study are Proprietary
Software (PS), Open Source Software (OSS) and Academic/Research Soft-
ware (ARS). PS is software that is developed mainly for commercial reasons.
As this software is developed to make profit gains, companies developing
this software usually allocate significant resources for the development of
this software. These resources include money, specialised developers, etc.
It is therefore important that the product produced i.e software and the
source code, be protect from misuse by customers and competitors. This
is done so that the returns on investments can be realised. PS is further
discussed in Section 3.4.1.

OSS is software that is distributed with its source code, allowing users
to modify and redistribute it for free. This software is usually developed
to satisfy the needs of the developer. Therefore, OSS is usually developed
under limited resources. It is for that reason that some of the features of
the software that may be important to other users may be overlooked.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

8 CHAPTER 1. INTRODUCTION

ARS is software developed by academics/researchers mainly for research
purpose rather than for profit, as is the case with OSS. The software may
be developed to test an algorithm, for example. Because of lack of profit
incentives, ARS too is developed with few resources. This may also results
in other parts of the software like the usability of the user interface being
overlooked. However, an advantage of these software is that they are usually
freely available. In some cases their source code is also made available,
giving other researchers the opportunity to scrutinise the source code. Some
of the ARS products are issued to the public as OSS products. Thus, every
ARS has a potential of being an OSS product at the end.

Software packages under this study are either ARS products and /or OSS
products and they are referred to as ARS packages in this dissertation. The
primary reason for restricting this study to ARS packages has been prag-
matic: the ready availability of these packages. However, there are many
other benefits (and indeed, disadvantages) of OSS that have been widely
discussed and debated. Various authors [63, 50] believe that by its nature,
OSS is more beneficial than Proprietary Software (PS). As an example,
Pande and Gomes [63] believe that OSS is fully customisable to meet one’s
needs and can be seen as more accountable because of the availability of
the source code with the software. Potential users can easily scrutinise the
source code as opposed to taking the word of PS salesman about what the
source code does. Mittal and Singh [50] on the other hand are of the opinion
that the availability of source code imposes a security risk on OSS. They also
observe that OSS is not easy to use and end-users are not provided enough
support via software documentation. The challenge in managing software
documentation in OSS is due to frequent changes made in the software.

One of the recognised advantages of OSS is its potential benefits to de-
veloping countries, South Africa (SA) included. This is due, amongst other
things, to the free nature of OSS—potentially cutting costs for developing
countries which may be under financial constraints.

There are lots of similarities between OSS and ARS such as their de-
velopment goal. They both follow similar development processes with same
constrains such as the availability of resources. These similarities give
ground for asserting that ARS could be viewed as a subset of OSS. With
that in mind, it is generally acceptable that ARS would experience similar
issues (such as usability issues) as does OSS. The usability of OSS has been
widely studied and is discussed in Section 3.4.2 compared to ARS. With all
that being said, issues experienced by OSS (as discussed in Section 3.4.2)
will be taken to be applicable to ARS.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
L]
<
1.2. DEFINITION OF TERMS AND CONCEPTS 9

It is interesting to note that the recently approved The Criminal Law
(Forensic Procedures) Amendment Bill B2-2009 [78] (known as the DNA
Bill) provides a legal framework for investigative DNA profiling in crimi-
nal and intelligence contexts. This development points in the direction of
increased general demand for suitable DNA expertise within SA and, by
extension, also for software tools supporting DNA analysis. In this sense,
the present study into ARS-based minisatellites detecting software has local
relevance, albeit within a rather limited local user community.

One of the general criticisms made about OSS, which would be similar to
that of ARS, is that it tends to be user-unfriendly. This is considered to be
one of the factors holding back the wider adoption of OSS amongst users who
do not have specific computing skills [53, 92, 90, 55, 21] and [13]. Hence, this
study will also investigate the usability of minisatellites detecting software
packages.

1.2 Definition of terms and concepts

The usage of some of the terminology in this field is not consistent as pointed
out by De Ridder et al [16]. The terminology used by one author may
have a different meaning to the next author. The list below presents the
terminology that will be used throughout this dissertation:

Tandem Repeat (TR) is a string of nucleotides where the motif is re-
peated more than once. The repeated versions of the motifs are ad-
jacent to each other. A TR may consist of only exact copies of the
given motif, or may include approximate copies too.

A Perfect Tandem Repeat(PTR) isa TR with the exact motif repeated.

An Approximate Tandem Repeat (ATR) is a TR in which the ver-
sions of the repeated motif are not necessarily the same as the motif
itself.

A Microsatellite is a TR with motif length |M| such that 2 < |M| < 5.
A Minisatellite is a TR with motif length |M| such that 6 < |M| < 100.
A Satellite is a TR with motif length |M| such that 100 < |M]|.

Proprietary Software (PS) is software that is available at a cost and is
licensed to a single or group of users . The software license does not

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

10 CHAPTER 1. INTRODUCTION

permit redistribution or modification, and the software does not come
with source code. Microsoft Office is an example of such software.

Free Software is software freely obtainable and distributable but may not
come with source code or allow modification thereof.

Academic/Research Software (ARS) is free software that may not nec-
essarily come with source code, but can be requested from its authors

and modified by permission. Software packages under this study are
ARS.

Open Source Software (OSS) issoftware that is free, distributable, comes
with source code and hence, is modifiable. The only condition with
OSS is that it should remain open source even after modification.
Libre Office is an example of such software.

Henceforth in this dissertation, reference to a TR should be interpreted
to mean a general reference to a tandem repeat string without making any
specific assumptions about whether it is a PTR or an ATR.

1.3 Research goals, objectives and questions

This study investigates two problems. The first has to do with the consis-
tency of the output of various ARS implementations that detect minisatel-
lites. The second has to do with the usability of these ARS products. These
matters are important for the following reasons.

It has already been suggested that detecting novel minisatellites may
have a biological significance pertaining to genetic diseases, the evolution of
species and forensic medicine. Various algorithms implement different tech-
niques with the intention of discovering those novel repeats. It is, however,
not clear whether these techniques produce the same results. To put it dif-
ferently, the consistency of minisatellites detected by various minisatellite
detecting algorithms remains untested.

Secondly, SA as a developing country has shown support for use of OSS
in all its departments. However, OSS is being criticised for poor usability
support [92, 90, 55, 21] and [13].

The overall goal of this dissertation is to address two research questions
associated with the two problems mentioned above. This study aims at:

e focusing the user community’s attention on the fact that there is a
variety of ARS minisatellite detection software;

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

1.3. RESEARCH GOALS, OBJECTIVES AND QUESTIONS 11

e raising awareness of the fact that the software offerings generally differ
in output as well as in usability; and

e making empirical information available with regard to these differ-
ences so that informed decisions can be made when selecting a prod-
uct.

The remainder of this section provides these research questions as well
as the dissertation’s specific objectives in a formalised, systematic fashion.
An outline of the scope and general limitations of the work is also provided.

1.3.1 Research questions
1. The first research question may be formulated as follows:

Do the selected ARS implementations behave consistently
with respect to the occurrence and positioning of minisatel-
lites, even though they do not rely on information provided
a priori about the positioning of minisatellites?

In order to investigate this question, the following hypotheses were
derived:

1.1. Hy: Equivalent minisatellites (PTRs) are detected by different
algorithms, when no mismatches and/or indels are allowed.

1.2. Hy: Equivalent minisatellites (ATRs) are detected by different
algorithms, when mismatches and/or indels are allowed.

1.3. Hj: Non-equivalent minisatellites (PTRs and ATRs) are detected
by different algorithms when the meaning of “approximate” as-
sumed by the algorithms varies from one to the next.

Two minisatellites reported by two different algorithms are equivalent if
they possess the following properties:

e The location of the minisatellites in a genetic sequence is the same—
that is, the same offset and last index position.

e The motif sizes are the same.
e The nucleotides in the reported sequences are identical.

e The motif repeat count—i.e. the number of times a unit motif is
repeated—is the same.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

12 CHAPTER 1. INTRODUCTION

e The number and index positions of nucleotides—including errors—are
the same.

In this study, the overall data sets detected by different algorithms are
considered consistent if the algorithms are run on the same genomic se-
quence and the results consist of:

e the same number of minisatellites, and

e the minisatellites from different algorithms are equivalent, in the sense
described above.

2. The second question this dissertation addresses is:

How usable are the software packages previously investi-
gated to address the first question?

To address this question, the following sub-questions are identified:

2.1. To what extent do the selected minisatellite detecting academic /research
implementations follow usability guidelines suggested in the lit-
erature?

2.2. To what extent would implementing the usability guidelines as
proposed in academic papers improve the usability of one of the
ARS detecting minisatellites?

To answer the first sub-question, a technique for evaluating a design is
used to evaluate selected Graphical User Interfaces (GUIs). An improved
GUT is implemented, based on the results of the evaluation and software en-
gineering guidelines. This GUI is subjected to usability testing by potential
users. This will in turn answer the second sub-question.

1.3.2 Research objectives

By investigating the aforementioned questions, this dissertation aims to
achieve the following objectives:

e To learn whether and to what extent there are similarities and/or
differences in output minisatellites detected by the algorithms imple-
mented in the ARS software under study that rely on an ab initio
approach.

© University of Pretoria

&
&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

1.4. BRIEF CHAPTER OVERVIEW 13

e To assess the usability of academic/research minisatellite detection
software and consider how it could be improved.

1.3.3 Delineation and limitations

This study focuses on the output of algorithms that detect TRs, specifically
minisatellites. Only algorithms that detect minisatellites without relying on
knowledge from databases or libraries are investigated. This study intends
to investigate the implementations classified as ARS.

In this study, a few implementations of minisatellites detecting software
will be investigated, namely: Mreps, Phobos, TRF and ATRHunter. These
software packages are classified as ARS.

Phobos and TRF implementations are also available as standalone pro-
grams with GUIs, making them suitable for usability testing in the context
of this study. Due to the lack of stand alone GUIs on the other packages,
this study will use another package called FirepSat in its usability investi-
gation. This is a microsatellite-detecting package, but it is being enhanced
to detect minisatellites as well. In this study, the original GUI of FireuSat
was investigated and subsequently improved.

1.4 Brief chapter overview

The rest of this dissertation is laid out as follows:

e Chapter 2: This chapter indicates relevant ways in which TR detect-
ing algorithms may be classified. Later in the chapter an overview is
presented of a selection of algorithms that search for minisatellites.
The selection includes those algorithms which are subsequently eval-
uated in the dissertation.

e Chapter 3: This chapter relates OSS to usability. It identifies the
different types of software users, and elaborates on the meaning of
software usability. It differentiates between PS and OSS, points to
concerns about the alleged lack of OSS software usability and dis-
cusses what is being done to address these concerns. It should be re-
membered that OSS problems, especially the usability issues are also
applicable to ARS due to the nature of their development processes.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

14 CHAPTER 1. INTRODUCTION

e Chapter 4: The methodology that will be used to address the re-
search questions as previously outlined in this chapter is presented in
Chapter 4.

e Chapter 5 and Chapter 6: These chapters investigate the respective
research questions using the methodology as described in Chapter 4.
Thus, Chapter 5 focuses on the output produced by the ARS im-
plementations under study and Chapter 6 focuses on the usability of
these implementations. Each chapter later reports on the findings
derived from the gathered evidence.

e Chapter 7: This chapter gives an overview of the work done for the
dissertation, reflects on the findings and limitations of the study and
identifies future research questions.

1.5 Concluding remarks

The importance of TRs has been explained. TR-supported forensic evi-
dence could assist in solving criminal cases that have remained unsolved
because of lack of evidence. There are many other TR-supported genomic
identification needs—for example in paternity testing. Early detection of
genes causing cancer and other genetically related diseases could help pre-
vent risks associated with late treatment. In all these contexts, the detection
of these minisatellites could be of significant value.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g

Chapter 2

Background: Minisatellite
detecting algorithms

2.1 Introduction

The rationale behind searching for Tandem Repeats (TRs) in general, and
minisatellites in particular, has already been discussed in Chapter 1. It was
noted that various algorithms have been proposed and some implemented
as executable programs to search for these TRs.

This chapter gives a background on minisatellite detecting algorithms,
which will eventually lead to the discussion of the algorithms selected for
investigation. The outline of this chapter is provided below:

e Section 2.2 focuses on TR algorithm categories. This section looks at
how various authors have categorised TR detecting algorithms. Hence,
the categories will be revealed into which those algorithms fall that
have been selected for further study.

e Section 2.3 gives detailed criteria used in selecting algorithms for in-
vestigation in this study. At this point the algorithms that will be
investigated in this dissertation will be re-emphasised.

e Section 2.4 provides a brief discussion on the broad approach used to
detect TRs employed by each of the selected algorithms.

e Section 2.5 introduces a few algorithms that might have been selected
for further investigation, but were not for reasons that are mentioned.

15

© University of Pretoria

&
&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
16 ALGORITHMS

2.2 Classification of TR searching algorithms

The problem of searching for TRs has existed for years. Algorithms that use
different approaches to solve this problem have been proposed by various
authors. Attempts to categorise these algorithms based on the types of
TRs they are searching for, and the approach they followed to search for
these TRs, have also been conducted. In this section, two categorisation
approaches are briefly explained, namely the approach used by De Ridder
et al [17] and the approach used by Saha et al [70].

In their study of microsatellites detecting algorithms, De Ridder et al [17]
categorised TR searching algorithms into three types, according to the type
of TR it detects:

e Microsatellite detecting algorithms: These algorithms only search for
microsatellites. One example is FireuSat [17]—which will later in this
dissertation be evaluated for usability.

e More general TR-detecting algorithms: These algorithms may detect
other types of TRs (microsatellites, minisatellites, and satellites) in
their search. Algorithms investigated in this study belong to this
category.

e Other algorithms: Algorithms that do not aim specifically at detecting
TRs, but that nevertheless detect TRs indirectly in some manner.

Unlike algorithms that search for microsatellites only, the existence of
algorithms that search exclusively for minisatellites per se is not evident.
Generally minisatellite detecting algorithms include microsatellites and/or
satellites in their searches.

Boeva et al [10] distinguish between two classes of minisatellites: those
originating from microsatellites, and long minisatellites, for which it is hard
to separate the sub-motifs. Minisatellites originating from microsatellites
have a motif that can be broken down to a simpler motif, with length [, such
that 2 <[< 5. As an example, the sequence ACGTACGTACGTACGT may be
regarded as a TR with motif length of eight, namely ACGTACGT, repeating
two times, or as a TR with motif length of four, namely ACGT, repeating four
times. By way of contrast, in the string ACGTCTACGTCTACGTCT, a motif of
length six ACGTCT can be identified. This motif cannot be broken down into
a much simpler motif. Thus in searching for minisatellites, it may be impor-
tant to start by searching for microsatellites, so that microsatellites do not
get categorised as minisatellites. This could be the reason why algorithms

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.2. CLASSIFICATION OF TR SEARCHING ALGORITHMS 17

searching for only minisatellites, seem not to exist. In the light of the above,
the algorithms that will be investigated in this dissertation will belong to
more general TR-detecting algorithms according to the classification of De
Ridder et al [17].

There are a number of more general algorithms that do not search di-
rectly for TRs per se, but that end up generating results that contain TRs.
These TRs could be microsatellites and/or minisatellites. BLAST [11] and
RepeatMasker [76] are two algorithms that have been identified by De Rid-
der et al [17] to be in this category. These kinds of algorithms will not be
discussed further as they do not form part of this dissertation.

A second categorisation was noted in a study by Saha et al [70] whereby
distinctions were made between TR detecting algorithms. These distinc-
tions are based on two approaches followed by algorithms in searching for
TRs. These approaches are:

Signature and library based algorithms: These algorithms identify
TRs, by comparing the string provided against a reference set of re-
peat sequences, i.e. against a library. RepeatMasker can be considered
to be an example of a signature and library based algorithm [70]. A
drawback of using this approach is that since it is based on a priori
knowledge about the motif, novel TRs may not be detected. Algo-
rithms based on this approach are considered to be beyond the scope
of this dissertation and will not be discussed any further.

Ab initio based algorithms: These algorithms identify repeating se-
quences without using reference sequences or known motifs during
the repeat identification process. By using this approach, novel TRs
can be detected and hence, new motifs may be discovered and be
forwarded to the database for use by signature and library based al-
gorithms. Algorithms based on this approach are the focus of this
dissertation.

According to Saha et al [70], the process of detecting repeating sequences
employed by ab initio algorithms can be divided into two stages. The first
stage identifies possible repeating motifs, whilst the second stage sets the
boundaries and extraction of these repeating sequences. Five techniques
that serve for initial identification of possible TRs are briefly mentioned
below as reported by Saha et al [70]:

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
18 ALGORITHMS

Techniques for identifying repeating strings

e Self-comparison: In this technique, a subset of a DNA sequence is
compared with the rest of the unclassified DNA sequences.
ATRHunter [87] uses this approach.

e k-mer or ‘‘word counting’’: This approach views a repeat (as
opposed to a tandem repeat) in a sequence S of length n as a sub-
string w of length k£ that occurs more than once. This approach
involves explicit enumeration of all frequently occurring exact sub-
strings (called k-mers or ‘words’) in a given sequence(s). If the
repetitive sub-sequence w cannot be extended without introducing
errors, then it is called a maximal repeat. Two sub-strings of length
k match if their sequences are identical. Mreps [37] and REPuter [42]
are examples of algorithms based on this approach.

e Spaced seed: Instead of searching for perfectly identical matches of
length £, as with the case of a k-mer, this approach conducts searches
using a seed containing a defined level of tolerance for a variation in
sequence identity and/or length. Saha et al [70] identifies Pattern-
Hunter [47] as belonging to this group.

e Dot matrix: In this approach, a sequence is plotted against itself.
Similar k-mer elements located within a user-specified range are de-
tected and recorded. An example as noted by Saha et al [70] is Dot-
plot [77].

e Periodicity: Unlike the aforementioned techniques, this approach
transforms sequence data from the sequence (time) domain into the
frequency domain, and performs analysis on the frequency data. Spec-
tral Repeat Finder [73] uses a power spectrum generated from a Fourier
transform* to identify auto-correlations of a sequence with itself. The
high intensity peaks in the power spectrum of the sequence repre-
sent possible repetitive regions or elements.

The techniques mentioned above are merely used for identification of
candidate motifs. A candidate motif can then be used to check whether
subsequent strings form a TR. Saha et al [70] mention three techniques that
algorithms used to extend and combine motifs into TRs. These techniques
are:

*A Fourier transform expresses a mathematical function of time as a function of
frequency, known as its frequency spectrum.

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.3. SELECTION OF ALGORITHMS FOR INVESTIGATION 19

e Clustering: Algorithms implementing this technique identify the TR
by further grouping together similar motifs to derive the final TR
definition. That is, exact repeats that are close together are merged
to generate a set of merged repeats. This process is usually guided by
biological heuristics.

e Graph representation with heuristics: This technique involves
building a repeat graph in which the vertices represent the recita-
tive sequence or motif. The weighted edges represent the relationship
among similar elements.

e String extension: This technique is used by most algorithms that
employ the so-called k-mers approach. Maximal repeats are extend
in both directions with the number of mismatches as a threshold.

A detailed description of how these motifs can be extended is presented
by Saha et al [70]. Figure 2.1 shows the approach used by algorithms under
this investigation.

This section has introduced two TR detecting algorithm categories and
mentioned the categories into which algorithms that will be investigated in
this study belong. These algorithms are “more general” in their search in
terms of the classification by De Ridder et al [17] and “ab initio” in terms
of the classification by Saha et al [70].

2.3 Selection of algorithms for investigation

As has been mentioned, this study is limited to minisatellites detectors
which follow the ab initio approach to detect unanticipated TRs. There are
many such algorithms or at least, many claim to be within this scope. A list
of a few examples can be found at [82]. However, it should be noted that
this list was mainly intended for microsatellites detectors. Nevertheless,
some algorithms also detect minisatellites, as is mentioned on the site.

The initial approach in identifying algorithms for investigation was to
list as many algorithms that search for TRs as could be found. This list
was populated with the following algorithms:

e Phobos [48],

e Mreps [37],

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
20 ALGORITHMS

e REPuter [42],

e FORRepeats [44],

e INtegrated Variable numbER Tandem rEpeat findER (INVENTER) [89],
e Exact Tandem Repeat Analyzer (E-TRA) [35],

e Tandem Repeat Finder (TRF) [§],

e Approximate Tandem Repeat Hunter (ATRHunter) [87],

e Spectral Repeat Finder (SRF) [74],

e Tandem REpeat in sequences with a K-meanS (T-REKS) [34],

e Burrows-Wheeler tandem repeat software (BWtrs) [15], and

e JSTRING [24].

This list does not include all the algorithms available and it was realised
that investigating the whole list would not be practical within the scope of
a dissertation. Therefore, criteria were needed to qualify an algorithm for
investigation. The following criteria were formulated:

e The algorithm should search for minisatellites. After all, this is the
type of TR this study is focusing on.

e The algorithm should not rely on an existing database or library of
motifs. In other words, the algorithm should utilise an ab initio ap-
proach.

e An implementation of the algorithm should be available to run as
standalone computer software.

e This software implementation should be freely available and easily
accessible from the web.

After all of that, it was realised that there were still too many algorithms
that fit these criteria. After due consideration, it was decided that because
the selected few are readily available and are prominent in the literature,
they would therefore make a good representative sample.

Thus, minisatellite algorithms can be grouped into three in the context
of this dissertation:

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.3. SELECTION OF ALGORITHMS FOR INVESTIGATION 21

Group 1: available and compared — These are algorithms that have
been selected for further investigation in the dissertation. These al-
gorithms are:

e Phobos,

e Mreps,

e TRF and

e ATRHunter.

Group 2: available and not compared — These algorithms are avail-
able but will not be further investigated in this study. In some in-
stances, the algorithms have been investigated elsewhere, and in other
instances, the algorithms were not accessible during the investigation.

e JSTRING was investigated on the study by Masombuka et al [4].

e INVENTER, T-REKS, E-TRA and BWtrs were investigated and
reported on by Mokwana and De Ridder [51].

e Although REPuter is said to be available , attempts to access it
have not been successful. A brief description of this algorithm is
therefore presented below, but it not further investigated in this
dissertation.

Group 3: not available — The algorithms in this group are not available
as software packages for comparison and were therefore not investi-
gated any further. However, the FORRepeats algorithm is an ex-
ception in that a short description is given below. This description is
presented to give evidence about the existence of such algorithms for
the sake of interested readers.

The algorithms presented here showed some similarities and differences
in their minisatellite detection approach. ATRHunter followed the self-
comparison approach whilst the other follows the k-mer approach. Although
most of these algorithms take the k-mer route, they may use other different
means in identifying these minisatellites. As an example, TRF uses a prob-
abilistic model whilst Mreps uses TR extension. It is for that reason one
may ask if all these approaches will yield the same results and this disserta-
tion aims to investigate that. Figure 2.1 shows the grouping of the selected
algorithms based on the classifications discussed.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
22 ALGORITHMS

k-mer - i Self- comparison
¢ TRF: using probabilistic e ATRHunter:
technique<lustering clustering

¢ Mreps: using TR extension

¢ Phobos

Figure 2.1: Selected algorithms classified according to the approach and
technique used by the algorithm. There is not enough information to the
techniques used by Phobos, as is indicated in Section 2.4.1. This is the
reason why parts of Phobos are placed in both k-mer, self-comparison and
another part is outside them. This does not necessarily mean it belongs to
all the techniques.

The next section gives a brief overview of Phobos, Mreps, TRF, ATRHunter,
REPuter and FORRepeats algorithms. It should however be borne in mind
that only the first four algorithms will be investigated further in this study.

2.4 Overview of algorithms selected for investi-
gation

This section gives a brief overview of the selected algorithms for minisatel-
lites detection. The criterion used to select the algorithms for investigation
is as mentioned in Section 2.3.

It however should be noted that some details of the workings of TR
detecting algorithms are not clear, as was noted by Leclercq et al [43], who
focused on software packages searching for microsatellites. Therefore, the
level of details presented here has been kept to the extent required in the
context of this dissertation. Furthermore, the focus of the study is to
cross-compare outcomes and usability of different implementations, rather
than to explain exhaustively the internal details about each algorithm.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.4. OVERVIEW OF ALGORITHMS SELECTED FOR INVESTIGATION23

2.4.1 Phobos

Phobos uses what is called a recursive alignment algorithm [48] to detect
TRs, including minisatellites. The developers of Phobos had not published
a formal academic paper at the time of writing this dissertation, thus the
deeper details of this recursive alignment algorithm behind Phobos and
some of the details of their calculations are not well explained. The
limited information about Phobos was obtained from the package’s “ User
manual” [49] downloadable from the web together with the software. It
is understood that this algorithm does not rely on a database or library
of some sort in its detection, and hence, it falls under ab initio approach
algorithms.

The Phobos algorithm checks each position in a DNA sequence and de-
termines for each motif length, whether that position is a valid starting
position for a match. After the valid starting position has been established,
the detected repeat is extended in both directions as far as possible. Unfor-
tunately, details of how Phobos determines this valid start position are not
available.

A scoring scheme is used as an optimality criterion. Scoring is computed
as follows: each match in the alignment gets a positive score of 1, (mismatch
as well as insertion and deletion scores are restricted to negative numbers).
A repeat is considered better than another repeat if it obtains a higher
score. This optimality criterion is used to decide whether a repeat should
be extended beyond a mismatch or an indel position or not [49]. Presently,
the above is the only information that has been made available with regards
to the optimality criterion.

Nevertheless, although the details on the algorithm employed by Phobos
are not in the public domain, the implementation of this algorithm has been
made available as a software package. A usability and comparative study
of Phobos is therefore part of this dissertation, and it will be subjected to
further investigation.

2.4.2 Mreps

Kolpakov et al [37] proposed the software package Mreps for TR detection.
The algorithm underlying Mreps can be divided into two parts. The first
part collects all repeating sequences using a combinatorial algorithm. The
combinatorial algorithm considers that two adjacent sub-sequences or re-
peats, with the same motif length in a given sequence, are part of the same

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
24 ALGORITHMS

tandem repeat if they differ by no more than k£ mismatches. Sequences are
compared and this process stops when the adjacent repeats differ by k£ + 1
errors. More details regarding the combinatorial part of the algorithm fol-
low below. The repeats collected in the first part are filtered by means of a
heuristic treatment (a set of rules) in order to remove the repeats that are
unwanted by the second part. The heuristic treatment is discussed later on.
The two parts of the algorithm are based on advanced string processing
techniques. An overview of the two parts of the algorithm follows.

Combinatorial treatment

As mentioned above, the purpose of the combinatorial treatment is to iden-
tify all repeats occurring in a sequence. This is initially done by extending
each repeat to the left and right without introducing errors. Such repeats
are called mazimal. A set of all maximal repeats in a sequence comprises
all TRs occurring in this sequence.

To tolerate errors between repeated copies,the mazimal run of k-mismatch
TRs notation is used. Given an error threshold, £k, a run of k-mismatch TRs
of motif length m, is a string such that any sub-string of size 2m is a TR
with at most k substitution errors [37].

For example,

GCACAC ACACAC AG
is a run of 7-mismatch TRs of motif length 6. The corresponding TRs, each
of motif length 6, are:

GCACAC ACACAC,

CACACA CACACA and

ACACAC ACACAG.

The computation of maximal runs of k-mismatch TRs of a given length has
several limitations as pointed out by Kolpakov et al [37]:

e The parameter k, which is the number of mismatch errors allowed,
should be specified beforehand. This implies that one has to have a
priori knowledge of the motif one is looking for in order to be able to
specify a proper number of allowed errors.

e There are certain artifacts of the definition of maximal runs of k-
mismatch TRs, that produce unnatural so called ‘side effects’ to the
collected TRs. These side-effects are as a result of maximality run of
k-mismatch TRs which implies that errors may be added to the end
of a repeat in order to always reach k mismatches.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.4. OVERVIEW OF ALGORITHMS SELECTED FOR INVESTIGATION25

e The definition sometimes turns out to be too rigid: e.g. two long
strings of a’s separated by ¢ should be viewed as two repeats, and not
as the same repeat with a mismatch. In other words, a repeat can
be seen as a repeat with multiple motifs in which one motif is better
than the other(s). Indels not accounted for is another illustration of
this rigidity.

e The reporting of insignificant repeats which may have no biological
importance is also viewed as a limitation. These repeats may include
repeats which have no obvious significance in the genome, like simply
AA.

More details pertaining to the combinatorial algorithm can be found
in [37]. The second part of the algorithm addresses these limitations and is
discussed next.

Heuristic treatment

The repeats found in the first part of the algorithm are subjected to heuristic
treatment to obtain the desired TRs. The heuristic treatment is completed
in several steps that are explained below.

STEP 1: Trimming edges — This step removes errors that might
have been added as a result of finding the maximal run of a k-mismatch
TRs. For example, for £ = 1 and with motif 2, GACACAT is I-mismatch
TR repeating 2.5 times. However, the bases G and T in GACACAT could be
deemed to redundant.

This step processes repeats in order to get rid of such artifacts. The
‘cutting’ allows the removal of an edge element containing too many mis-
match errors in it, and ensures that the remaining part of the repeat is
still big enough to be meaningful. As an example, consider the repeat
GAAGGACAACGGACAGCGGACAATG of motif size 7, found for k = 2. By cutting
the three bases at each end, the repeat is reduced to GGACAACGGACAGCGGACA.
Three bases are deleted (GAA at row 1 column 1, 2 & 3 and ATG at row 4
column 2, 3 & 4 below) from each end. The new TR is now repeating 2.7
times and has fewer mismatch errors. Row 4 shows a partial repeat whereby
a repeat is formed by a fraction on a motif.

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
26 ALGORITHMS

1234567
GAAGGAC
AACGGAC
AGCGGAC
AATG

W N =

STEP 2: Computing the best period and merging - Another
consequence of the definition of runs of k-mismatch TRs, is that the same
region of the genetic sequence can be reported on for different motif lengths.
E.g. for k =1, the sequence ATATATATATAAA is computed as a repeat with

motif =2 (AT AT AT AT AT AA A),

motif =4 (ATAT ATAT ATAA A), and

motif = 6 (ATATAT ATATAA A).

Kolpakov et al [37] calculated what they called the ‘best’” motif. This
motif can be determined by computing the quality of a repeat as measured
by the error-rate. This error-rate is given by:

error-number
errorrate = ——————
length — m

where length is the length of the repeat and error_number is the num-
ber of mismatches in the repeat, except that two mismatches formed by
a nucleotide are counted for as one, if the mismatched nucleotides are the
same. In other words, the following situation is accounted for one mismatch:
y---x---y---, where p is the motif.
Y————

p p
The ‘best” motif, whose length is in the interval [1...m], is the one with

the smallest error rate.

The repeats in the above example will have error rates of:

1/11 = 0.09 for m = 2,

1/9 =0.11 for m = 4, and

1/7 =0.14 for m = 6.

Thus AT is regarded as the ‘best motif’. Hence it is referred to as the ‘true
motif’

After the true motif has been computed for each repeat, repeats that
have the same motif and that are overlapping by at least two motif occur-
rences are merged into a single repeat. Overlapping repeats occur on top
of one another. Consider the sequence ACGTACACGTACACGTACTTTACTT. The
motif ACGTAC and TACTT overlap as shown below:

ACGTAC ACGTAC ACGTAC

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.4. OVERVIEW OF ALGORITHMS SELECTED FOR INVESTIGATION27

TACTT TACTT

When overlapping repeats are merged in this way, the parameter k£ no
longer specifies the maximal number of mismatches between two adjacent
copies of length m, but acquires a different meaning. As an example, con-
sider the TR ATATGG ATATAG ATAT with motif size 6 detected for k = 1.
Its true motif will be computed as 2 (AT AT GG AT AT AG AT AT AT AT'),
even though there are two mismatches between adjacent AT and GG. Now
instead, £ measures the degree of fuzziness of computed repetitions and it
is referred to as a resolution parameter.

STEP 3: Filtering out statistically expected repeats — This step
filters out other repeats and retains those which are viewed as statistically
significant. This is guided by a principle invoked in Bioinformatics, namely
that only those repeats which have a small probability of being a random
event can be biologically significant, as noted by Kolpakov et al [37]. A
probabilistic model of a DNA sequence and a method for estimating the
probability of observing a given repeat in a random sequence generated by
the model could be used. For the purposes of Mreps, computer simulation
and experimentally characterised repeats typically occurring in a ‘random
genomic sequence’ were used. This was because there is no corresponding
theory, and elaborating on such a method is a non-trivial problem which is
still largely open for research [37].

There are two reasons why a repeat can be statistically insignificant,
according to Kolpakov et al [37]:

1. The small length of the repeat. A repeat that is perfect but too small.
In other words it is very likely that such a repeat may appear in a
random sequence.

2. The high error rate of a repeat. A repeat may be “too noisy”, and
therefore, indistinguishable from the “background noise”. This means
it will be difficult to see the difference between the repeated pattern
and the raw sequence.

Two filters are used to eliminate the above statistically insignificant re-
peats. These filters are:

fReaders should note that the original source [37] of this example has an error in it
and the error has been removed here.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
28 ALGORITHMS

e length filter: The length filter eliminates any repeat with a length
smaller than m+9, where m is the motif length. Experiments showed
that this filter eliminates short repeats occurring randomly very well.

e quality filter: The quality filter eliminates repeats by taking into
account their error rate, their length and the resolution of the corre-
sponding computed repeat.

STEP 4: Gathering the results — The final step constructs repeats
found for different resolution values. The algorithm is iterated (STEP 1 to
STEP 4) for all resolution values k, up to a certain value K that defines the
final resolution level. Groups of collected repeats with the same motif are
then processed again so that repeats overlapping with at least two motifs
are merged into a single one.

2.4.3 Tandem Repeat Finder (TRF)

Tandem Repeat Finder (TRF) uses a probabilistic model to find TRs. The
model is said to be probabilistic because it is based on percentage identical-
ity. Two tandem copies of a pattern of length n are aligned by a sequence
of Bernoulli trialst.

a g c t c a c t a g t a c a c a c a c t t
e e I [

c g c t c a c t g g t - a c a c a c t c

T H H H H H H H T H H T T H H H H H H H T

Figure 2.2: Two TR copies aligned, H is a match, and 7" is a mismatch or
indel.

Figure 2.2 shows the idea behind the model. A match in the figure is
shown as H for “Heads”, and a mismatch, insertion or deletion is shown
as T for “Tails”. The matching probability is given by the average percent
identicality between the copies. For example, the length of the top string
in Figure 2.2 is 21, and the number of matches (the number of times H
occurs) is 16. The probability of a match between the two example TR
copies in the figure is therefore w = 76.2%. The second probability, the

YA Bernoulli trial is an experiment whose outcome is random and can be either of
two possible outcomes, “success” and “failure”. The tossing of a coin can be identified
with a Bernoulli trial, where, say,“Heads” is associated with success and “Tails” with
failure.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.4. OVERVIEW OF ALGORITHMS SELECTED FOR INVESTIGATION?29

indel probability, specifies the average percentage of insertion and deletion
between copies.

The algorithm can be viewed as having two components. The detection
component and the analysis component. The detection component identi-
fies candidate TRs, whilst the analysis component attempts to produce an
alignment for each candidate, and reports on TR statistics if the alignment
is successful.

Detection component

The algorithm assumes that adjacent copies of any pattern will contain some
matching nucleotides in corresponding positions. Thus, the algorithm looks
for matching nucleotides separated by a common distance d. This distance
is not initially specified, and to be efficient, the algorithm looks for a run
of k matches, which is referred to as k-tuple matches [6].

This k-tuple is a window that contains k consecutive nucleotides. Thus,
matching k-tuples are two windows of same length with identical contents.
A Bernoulli model would produce a run of k ‘heads’ if two k-tuples match,
i.e. if they contain the same characters in the same order. As an example,
if k=6 a run of k matches will yield six heads—HHHHHH.

According to Benson [8], a list of all possible probes of k-length strings
is kept. Within the DNA alphabet A, C, G and T, the number of possible
probes of k-length strings is given by 4*. Each probe p, is slid across the DNA
sequence and a list, H,, of occurrences of p in the sequence is maintained.
Before every entry in position ¢ in the list, the list is searched for earlier
entries j of the same probe. Because ¢ and j in the list are the indices of the
matching k-tuple, the distance d = i — j is a possible pattern (motif) size
for a TR. Information about other k-tuple matches at the same distance is
placed in a distance list Dy and this list is updated every time a match at
distance d is detected. Dy can be viewed as a sliding window of length d
which maintains the position of matches and their total.

Analysis component

As said, the contents of D, are candidate TRs. The analysis component of
TRF aims to produce an alignment for each candidate TR in Dy list. If
the candidates in the distance list Dy passes the criteria tests—based on
Bernoulli sequences and four distributions (refer to [7] for more information
on tests criteria)—a candidate motif is selected from a nucleotide sequence
and aligned with the surrounding sequence. If at least two copies of the motif

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
30 ALGORITHMS

are aligned with the sequence, the TR is reported. In addition to qualifying
the candidate TRs, and producing the alignment which determines if the
candidate TR will be reported, the analysis component also addresses the
following issues:

e Multiple reporting of repeat at different pattern sizes: When several
motif sizes are possible, TRF limits them to at most three motif sizes.

e Consensus pattern and period size: The candidate pattern from the
Dy list is usually not the best pattern to align with the TR. In such
cases, a consensus pattern is determined to improve the alignment.

2.4.4 Approximate Tandem Repeat Hunter (ATRHunter)

As with Mreps and TRF, the ATRHunter algorithm proceeds in two phases
as well. These phases are the screening phase, which is performed first,
followed by the verification phase. The screening phase identifies candidate
ATRs of one of the types defined with respect to a scoring function ¢ [87].
The scoring function computes the similarity of two sequences—the higher
the score, the more similar are the sequences. The following are types of
ATRs as defined by Wexler et al [87] with respect to the scoring function ¢:

A simple ATR is a concatenation of nucleotide sequences T' = T1T5 - - - T,
for which there exists a sequence T, such that ¢(T;,T.) > n for ev-
ery i = 1,---,r. Put differently, T' consists of r (possibly) mutated
copies of a consensus motif T, with diversity limited by ¢(7;, T%) > 7.
This definition may allow T, to be different from each and every T;.
Alternatively, it may be required that T, be equal to at least one T;.

A neighbouring ATR is a concatenation of sequences T' = 1115 - - - T for
which ¢(T;,T;41) > n for every : = 1,--- ,r—1. This definition allows
the similarity between distant copies to be small.

A pairwise ATR which generalises the neighbouring ATR. definition, is
the concatenation of sequences T' = 1175 - - - T} for which the similarity
o(T;,T;) for every pair T; and T} is higher than the threshold 7;;. This
1;; limits the dispersal of distant sequences and is usually set to be a
monotonically decreasing function of |i — j|.

The first definition is concerned with similarities between two sub-strings
of sequences. The second definition focuses on two adjacent sub-strings,

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.4. OVERVIEW OF ALGORITHMS SELECTED FOR INVESTIGATION 31

whilst the last definition is concerned with two remote sub-strings. Using
the above model definitions, ATRHunter is capable of detecting the ATRs
as per the given definitions. The processes involved in this detection are
summarised below. A more elaborated discussion can be followed in Wexler
et al [87].

Screening phase

The screening phase generates a list of candidate regions in the sequence
that may contain ATRs. Thus, the screening phase identifies sub-strings
which have an unusually high chance of being ATRs. Adjacent sub-string
pairs in a repeat should be of a similar quality to an ATR. Therefore, this
phase determines whether a sub-string of length ¢ is similar to the adjacent
sub-string of approximately the same length. This similarity between two
adjacent sub-strings of length ¢ is tested by comparing segments of length [
of these two sub-strings. Every segment of length [(called l-window) in the
first sub-string is compared with the corresponding /-window in the second
sub-string. Details of how the parameter [is determined may be found
in [87]. The result of this comparison is a vector entry, which indicates
a match or a mismatch between corresponding pairs of nucleotides. This
vector is called g-quality vector if the number of matches is at least g x [,
where 0 < g < 1. The score Sy(7) is the number of ¢-quality vectors produced
by the comparisons of the [-windows in the sub-string of length ¢ starting at
position i. On the contrary, a gap Ay(7) is the number of vectors produced
which are not ¢-quality.

The algorithm iteratively slides two [-windows towards the end of a se-
quence starting at position 1 and t+ 1. At each iteration, the two windows
are slid towards the end of the DNA sequence whilst comparing their con-
tents. The results of this comparison are candidate ATRs of length ¢. These
candidate ATRs are kept in a vector of length [.

The candidate ATR identified should pass three similarity criteria in
which a balanced criteria will limit the number of false positives and neg-
atives. These criteria depend on motif length , the probability of match
(Pyr) between aligned nucleotides and the indel probability (P;) between
adjacent copies in an ATR. Py, is set to 0.25 if the distribution of the four
nucleotide symbols (A, C, G, T') is uniform. Some form of biological model
is used to determine P;.

According to Wexler et al [87] a sub-string of length ¢ starting at position
i is a candidate ATR if and only if it satisfies these three criteria:

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
32 ALGORITHMS

1. Score criterion: Sy(i) > o, where o, is the maximum permitted score
on motif length ¢.

2. Continuity criterion: Ay(i) < &, where §; is the continuity threshold
over the motif length ¢.

3. Distance criterion: Every g-quality vector in S;(i) is the result of
a comparison between two [-windows whose offset—the distance of
length ¢ between the two [-windows—is at least 0 but not more than
d' pmaz- d'mas is the maximum distance between two l-windows of length
t.

All candidate ATRs that came through the similarity criteria are still
subjected for verification. The verification phase is discussed next.

Verification phase

During the verification phase, the list of candidate ATRs from the screening
phase is validated to determine if the candidate ATRs are in fact plausible
ATRs. Every type of ATR, as discussed earlier, is subjected to a different
verification procedure. A two-phase procedure is performed for a pairwise
ATR (Wexler et al [87] does not discuss the other verification processes):

e Firstly, the candidate ATRs and a sub-string are aligned to test if the
alignment score passes a given threshold.

e Secondly, the ATR is extended by combining two-repeat ATRs into
a single ATR containing more repeats. The motif length of the com-
bined ATR is set to be the most common motif length among the
original two repeat ATRs that generated it.

According to Wexler et al [87], the verification procedure does not allow
overlapping ATRs with the same motif length. However, the algorithm may
report ATRs with various motif lengths but starting at the same position.
Nevertheless, if two ATRs have motif lengths for which one is a multiple
of another, then the shorter motif is reported only if it scores significantly
higher than the other ATR, or if it continues more to the non-overlapping
(occurring outside one another) region . A certain statistical framework is
used in determining the threshold, and further reading on it can be obtained
in Wexler et al [87].

To summarise, ATRHunter has two phases. The screening phase identi-
fies candidate ATRs. These candidate ATRs are not necessarily ATRs but

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.5. OVERVIEW OF TWO UNSELECTED ALGORITHMS 33

are repeats which have a high probability of being an ATR. Some form of
criterion that these ATRs should comply with is used to qualify a sub-string
as a candidate ATR. The verification phase is then applied to verify the can-
didate ATRs. This phase accepts or rejects candidate ATRs identified in
previous phase.

The algorithms that have been presented have some similarities in the
way they search for TRs. These algorithms start by identifying initial exact
TRs, which are later used as seeds (patterns) to find approximate TRs.
Approximate TRS are identified by extending the seeds to the left and
right whilst allowing errors within them. Although these algorithms possess
similarities, the techniques they use differ.

The above algorithms meet the criteria that were presented in Section 2.3
for algorithms forming part of this investigation. In addition, these al-
gorithms possess the Academic/Research Software (ARS) or Open Source
Software (OSS) properties, making them suitable for investigation in this
dissertation.

2.5 Overview of two unselected algorithms

As mentioned earlier, there are several algorithms that search for minisatel-
lites, other than those discussed above. However, most of them do not meet
the criteria that qualify them for further investigation in this dissertation.
There are, however, two algorithms that almost qualified to be part of this
dissertation, namely REPuter and FORRepeats. However, their standalone
software programs were not available online for experimentation. This sec-
tion very briefly surveys these packages for the sake of completeness. Ad-
ditional information can be found in the cited material.

2.5.1 REPuter

REPuter reports various kinds of repeats. For the purposes of this disser-
tation only TRs will be considered. The discussion of the other types of
repeats are beyond the scope of this report. However, the interested reader
can consult [42].

Given a DNA sequence, REPuter computes all maximal repeats of length
at least [, where [> 0. REPuter uses a variation of algorithms on exact
and inexact string matching. REPuter are inter alia implemented by suffix
trees.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
34 ALGORITHMS

A suffix tree is a data structure that represents the suffixes of a given
string in a way that allows for a particularly fast implementation of many
important string operations. The suffix tree for a string S is a tree whose
edges are labelled with strings, such that each suffix of S corresponds to
exactly one path from the tree’s root to a leaf. Figure 2.3 depicts a suffix
tree of string S = agge. Gusfield [25] may be consulted for more information
on suffix trees and their applications.

Figure 2.3: Suffix Tree of the string S = aggc [30].

9 g

Figure 2.4: Factor Oracle of the string S = agge [30].

The REPuter algorithm finds TRs in two phases which are discussed
next.

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.5. OVERVIEW OF TWO UNSELECTED ALGORITHMS 35

Phase 1: Finding exact repeats

Kurtz et al [40] use hashing as a method to compute maximal exact repeats.
Hashing involves generating table entries for each DNA sequence w of length
r and the positions P(w) in string S, where w occurs. To find maximal
repeats of length at least [, an exact repeat of length r is extended from
left and to the right to check if it is embedded in a maximal exact repeat
of the required length. Using the suffix tree for string S, Kurtz et al [40]
directly computed the maximal exact repeats using the algorithm proposed
by Gusfield [25].

In short, a table containing all the occurrences of a substring w is gen-
erated. From that table, w is extended from left and right until it can not
be extended any further. Such sub-strings are maximal (they cannot be
extended further) and are stored in a suffix tree data structure.

Phase 2: Finding approximate repeats

The mismatch repeat problem

A pair of sub-strings of equal length in a DNA sequence is a k-mismatch,
if and only if the sub-strings do not occupy the same positions and their
Hamming distance is at most k. The Hamming distance between two equal
length strings is the number of positions at which they differ [42, 38, 39].
A k-mismatch repeat is mazimal covering if it is not contained in any other
k-mismatch repeat. The “mismatch repeat problem” is handled by listing
all maximal covering k-mismatch repeats of length at least [that occur in
a string S.

REPuter uses a Maximal Mismatch Repeat (MMR) algorithm to address
the mismatch repeat problem. The MMR algorithm computes the seeds and
tests for each seed whether it can be extended to a k-mismatch repeat. In
other words seeds, are extended to the left and to the right allowing errors—
mismatches in this case. A detailed discussion and the proof of the MMR
algorithm can be found in Kurtz et al [41].

Indels: the difference repeat problem
The purpose of addressing the so called difference repeat problem is to
extend the algorithm to allow for insertions and deletions. A pair of sub-
strings is a k-difference repeat, if and only if the two sub-strings are not the
same string and their edit distance is at most k. The edit distance between
two strings of characters is taken to be the number of operations required to
transform one of them into the other. To cater for indels, another algorithm,

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
36 ALGORITHMS

Maximal Difference Repeats (MDR) is employed to compute seeds and try
to extend them to k-differences repeats. The k-differences repeats allows
for indels. More details on MDR algorithm and its proof is presented in
Kurtz et al [41].

The significance of repeats

Some of the detected repeats may not be considered to be biologically
significant. The final step is to remove those repeats. For each repeat found
by the algorithm, Kurtz et al [40] compute the value E as the number of
repeats of the same length or longer, with the same number of errors or
fewer than one would expect to find in a random DNA strings of the same
length. This value E is used to assess the significance of a repeat found by
the algorithm. A detailed explanation of how this £ — value is computed
is presented in Kurtz et al [41].

2.5.2 FORRepeats

A drawback of using suffix trees as described above, is that they are not
space economical. FORRepeats is a heuristic algorithm based on a data
structure called a factor oracle, which is space and time economical [44].
Figure 2.3 and Figure 2.4 both show data structures implementation of
string S = aggc. The suffix tree implementation is represented by Figure 2.3
whilst Figure 2.4 represents the factor oracle implementation. From the two
figures, it is evident that the suffix tree representation has the most states,
making it less efficient (in terms of space and time) than its counterpart.

Let p be a word of length m over the alphabet 3. A word w € ¥* is a
factor of p, if and only if, p can be written as p = uwv, where u,v € ¥*.
The word v and v is a suffiz and prefiz of p respectively, if and only if, p
can be written as p = uv with u,v € ¥* [1].

Factor oracle technology is an application of finite automata technology.
The factor oracle of a word p of length m, is a deterministic finite automaton
(@, qo, F,0) where @ = 0,1,...,m is the set of states, go = 0 is the starting
state, F' = () is the set of terminal states and ¢ is the transition function.
The factor oracle of a word p of length m has the following properties:

1. It has exactly m+ 1 states. In a string S = agge with m = 4 the total
number of states is m + 1 = 5 as illustrated in Figure 2.4.

2. It has between m and 2m — 1 transitions. The total number of tran-
sitions in Figure 2.4 are far less than those of Figure 2.3.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

2.6. CONCLUSION 37

3. It is homogeneous, meaning that for each state, all in-transitions are
on the same symbol.

4. Tt recognises at least the factors of p and possibly more words.

5. It is acyclic automaton, which means that the states in the automaton
are not connected in a closed chain.

The algorithm used by FORRepeats can be decomposed into two steps.
The first step searches for exact repeats in a sequence using a factor oracle.
The second step computes approximate repeats. This is done by extending
each exact repeat to the left and to the right, allowing errors. This is realised
until the similarity percentage between the two extended factors drops below
a value fixed by the user. This similarity percentage can be computed
using the Hamming distance. For the purposes of this dissertation, it is not
necessary to discuss further details relating to FORRepeats. Readers who
have more interest on the algorithm behind FORRepeats may consult [44].

The approaches employed by the various algorithms discussed have a
number of similarities. For example, the approach taken by each can be
divided into two parts. Firstly, possible seeds—in the form of PTRs—are
computed. Secondly, these seeds are used to find ATRs. The differences lie
in the techniques used to find and extend these seeds.

After selecting these algorithms, they were run on test data with the aim
of comparing their results. This selection of algorithms for this empirical
analysis was based on the availability and accessibility of the algorithm’s
implementation for experimentation. The results of these experiments will
be addressed later in this dissertation.

2.6 Conclusion

This chapter introduced two approaches commonly used to search for TRs.
The signature and library based approach requires a prior: knowledge on
regarding motifs pattern, whilst ab initio algorithms use techniques that
require no knowledge regarding patterns to search for. Both approaches use
algorithms to realise the goal of detecting novel TRs. However, using the ab
initio approach allows for the detection TRs without any prior knowledge
of their associated motifs.

Different algorithms which employed the ab initio approach for the de-
tection of minisatellites were also briefly explained. The details of these

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W’ YUNIBESITHI YA PRETORIA

CHAPTER 2. BACKGROUND: MINISATELLITE DETECTING
38 ALGORITHMS

algorithms have been discussed to the level deemed appropriate for the un-
derstanding of this dissertation.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g

Chapter 3

Background: Open Source
Software and the relationship to
Usability

3.1 Introduction

Apart from the fact that software should meet functional requirements, that
is, it should do computationally what it is supposed to do, software should
also meet certain non-functional requirements to be effectively used by any
user. Chapter 2 reported on the functional aspects, that is what the software
packages should accomplish—detect minisatellites.

Open Source Software (OSS) is often used as an alternative for commer-
cial software—sometimes called Proprietary Software (PS). It is believed
that OSS will be more beneficial to developing countries by reducing costs
as compared to using PS.

It was mentioned in Section 1.1 that ARS share similar properties with
OSS and some ARS products are also OSS products. It is in that regard
that issues applicable to OSS in this dissertation should also be viewed as
also applicable or related to ARS.

In this chapter the focus falls on the usability of ARS which detects
minisatellites. The rest of the chapter will be presented as follows. Firstly,
the usability challenges of OSS in general are investigated. The chapter
starts by defining different kinds of users as they will be referred to in this
dissertation, in Section 3.2. Section 3.3 explains what usability is focusing

39

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 3. BACKGROUND: OPEN SOURCE SOFTWARE AND THE
40 RELATIONSHIP TO USABILITY

on and problems associated with it, with particular attention being paid to
OSS. Section 3.4.1 gives a brief background on PS and its usability. This
will be followed by a discussion in Section 3.4.2 of the OSS usability issues
and suggested solutions to these problems by experts in the field.

The usability of software is related to its users. Therefore before dis-
cussing the concepts of usability in Section 3.3, a general overview of types
of computer software users in the context of this study is provided in the
next section, Section 3.2.

3.2 Computer software users

There are different types of software users within the computer community.
These users can be classified according to their level of expertise in software
development or use. For the purpose of this dissertation, developers and
end-users are distinguished as follows:

e Developers/Programmers: These users are developers and/or imple-
menters of algorithms. Sometimes they also use their self developed
software. They are often referred to as technical users.

e End-users: These users are non-expert users of the software—i.e. they
do not have high technical expertise. End-users may be everyday users
of the software or new users who are unfamiliar with the software.

This dissertation is concerned with computational biologists—those who
are experts in the field of computational biology, but who lack the technical
skills of a programmer. Within the context of this dissertation, the term
users will be used to refer to end-users including computational biologists.

3.3 Software usability

Non-functional requirements are features of a computer system software
that are not directly related to the specific actions that a system should
perform, but to the manner in which those actions are presented. In other
words, non-functional requirements describe not what the software will do,
but how the software will do it. FURPS is an acronym developed by
Hewlett-Packard as noted by Sivess [75] to categorise non-functional re-
quirements as:

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

3.3. SOFTWARE USABILITY 41

e Functionality: which are requirements that are concerned with the
features set, capabilities, generality and security of the system.

e Usability: addresses the human factors—user interaction, aesthetics—
look and feel, consistency and documentation of the system.

e Reliability: involves the frequency or severity of failure, recoverability,
predictability, accuracy and mean time between failure of the system.

e Performance: is concerned with speed, efficiency, resource manage-
ment, throughput and response time of the system.

e Supportability. Involves the testability, extensibility, adaptability, main-
tainability, compatibility, etc, of the system.

The importance of non-functional requirements differs from one software
system to another. For example, in some context the performance and
reliability requirement of a software system may be more important than
its usability. It is ideal to have a software system that complies with all
specified non-functional requirements. This chapter only focuses on the
usability requirement.

3.3.1 Alternative definitions of usability

Attempting to define usability, experts in the discipline have come up with
various usability models. According to Hornbak [29] usability of software
refers to the quality in use, or the capability to be used by humans easily and
effectively. A number of definitions of usability have resulted from the dif-
ferent approaches which have arisen. These definitions enable researchers to
evaluate the degree of usability of respective software packages. Proposers
of these definitions include Shackel [72], Nielsen [56], Eason [20] and the In-
ternational Organisation for Standardisation (ISO) [31, 32], an organisation
aiming to set acceptable standards for various systems. In these definitions,
various elements have been proposed as attributes that characterise usabil-
ity and by which usability should be measured. In all the definitions, the
attributes are not given any weighting to show their importance over other
attributes.

The proposed usability models together with their attributes are dis-
cussed next.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 3. BACKGROUND: OPEN SOURCE SOFTWARE AND THE
42 RELATIONSHIP TO USABILITY

Shackel’s definition

In the model by Shackel, usability consists of four attributes, namely:

e Flffectiveness: This attribute measures a user’s performance in accom-
plishment of tasks.

e Learnability: Learnability of the software system measures the degree
of learning required by the user who is not familiar with the software
to accomplish tasks.

o Flexibility: This attribute allows adaptation to some percentage vari-
ation in tasks and/or environments beyond those first specified.

e Attitude: The attitude attribute measures user satisfaction with a sys-
tem — within acceptable levels of human cost with regard to tiredness,
discomfort, frustrations and personal effort.

Shackel’s definition does not assign weights to these attributes because
these weights may vary from project to project [45].

Nielsen’s definition

According to Nielsen [56], software usability has five equally important at-
tributes which should be equally incorporated during software user interface
(UI) design. UI is the space where human and computer interact. These
attributes are:

e Learnability: This component requires that the UI should be easy
enough for new users to start using it, and get going.

o Efficiency: Once the Ul has been learned, the user should find the UI
easy to use to complete a similar task.

o Memorability: Once the Ul has been learned, a not-so-frequent user
of this Ul should be able to remember how to use it without too much
difficulty or relearning.

e FErrors: The Ul should prevent users from executing fatal errors, whilst
users should be allowed to easily recover from non-fatal errors. Error
rates should be kept minimal.

e Satisfaction: Users should enjoy using the interface of a computer
system. They should not try to avoid using it.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

3.3. SOFTWARE USABILITY 43

The definitions of both Shackel and Nielsen stress that users should
learn the new system, and after learning, they should be able to use the
system to perform their tasks. Once the tasks are completed, users should
be convinced that they have reach their goal. In addition to this, Nielsen
stresses that non-frequent users should remember how to use the system
after some time of not using it with relatively few errors.

Eason’s definition

In Eason’s definition of usability, the characteristics of the UI of the system
under consideration, the characteristics of the user and the characteristics
of the task will all determine the usability of the system [45]. These char-
acteristics are usability attributes.

The UI should have the following characteristics.

System (User Interface) Characteristics :

e Fase of use / Easiness: Ease of use refers to the effort required
to operate a system once it has been understood and mastered
by the user.

e Fase of learning: This attribute measures the effort required to
understand and operate an unfamiliar system.

e Task match: Herewith Eason refers to the extent to which the
information and functions provided by a system match the needs
of the user for a given task.

The characteristics of a task are as follows:
Task characteristics :

e [Frequency is the number of times a task is performed by the user.

e Openness is the number of options that an interface offers for a
task.

The user’s characteristics are:
User characteristics :

e Knowledge: This attribute refers to the pre-knowledge the user
has to apply to a task. It is easier to complete a task when a
user has some knowledge about how to go about doing the task.

© University of Pretoria

&
&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 3. BACKGROUND: OPEN SOURCE SOFTWARE AND THE
44 RELATIONSHIP TO USABILITY

e Discretion: Discretion refers to the user’s ability to choose to
use (or not use) some part of the system at hand. As an exam-
ple, someone may choose to learn to define one’s own formatting
styles in a word processor or choose to use tools in the package
that give the same results.

e Motivation: The level of motivation a user has, in order to use
a system to perform some tasks is measured by this attribute.
Motivated users are more likely to start and complete a given
task than less motivated users.

Eason’s definition reflects the importance of considering the character-
istics of the user as well as the characteristics of the respective tasks users
perform. In contrast to that, the definitions of both Shackel and Nielsen do
not give importance to the task at hand. According to Eason [20], usability
should therefore not be measured solely by evaluating the UI.

International Organisation for Standardisation (ISO)’s definition

The international Organisation for Standardisation (ISO) is an international
standard-setting body which is constituted by delegates from various na-
tional standards organisations. ISO provides two definitions of usability,
namely ISO 9241-11 and ISO 9126. According to Raza [65], ISO 9241-11
was developed by Human Computer Interaction (HCI, refer to Section 3.4.1)
specialists whilst the ISO 9126 was developed by software engineering ex-
perts. ISO 9241-11’s attributes include the following:

e Flffectiveness refers to the accuracy and completeness with which users
achieve specified goals.

o Efficiency refers to resources extended in relation to the accuracy and
completeness with which users achieve goals.

e Satisfaction refers to the comfort and acceptability of use of the sys-
tem.

The ISO 9241-11 standard explains how usability can be specified or
evaluated in terms of user performance view—effectiveness and efficiency,
and perception of the system—satisfaction.

ISO 9126 defines the following attributes to measure usability:

© University of Pretoria

UNIVERSITEIT VAN PRETORIA

&
Qe YUNIBESITHI YA PRETORIA

UNIVERSITY OF PRETORIA

3.3. SOFTWARE USABILITY

45

o Understandability is the ability of the software product to enable the
user to understand whether the software is suitable, and how it can

be used for particular tasks and conditions of use.

e Learnability is the ability of software product to enable the user to

learn its application.

e Operability is the ability of the software product to enable the user to

operate and control it.

o Attractiveness is the ability of the software product to be attractive

to the user.

The two ISO definitions are complementary, in that they both define

usability in a measurable design objective [23].

Table 3.1: Summary of usability definitions

(Subjective)

Shackel Nielsen Eason ISO 9241-11 | ISO9126
User per- | Learnability Learnability Easiness of
formance -time to learn learning
(Objective) | Learnability Memorability | Knowledge
-retention
Effectiveness - | Errors Effectiveness
errors
Effectiveness - | Efficiency Efficiency
time to com-
plete a task
Ease of use Operability
Discretion Task match Understandability
Flexibility Openness
Frequency
User view | Attitude Satisfaction Motivation Satisfaction Attractiveness

A summary of usability definitions is presented in Table 3.1 which is
derived from Folmer and Bosch [23]. From the aforementioned definitions,
it is possible to see that usability attributes can be divided into two facets:

e Objective orientated: These attributes measures user performance,

and they include efficiency and learnability.

o Subjective orientated: These attributes are subjective in that they

measure user perception, and include satisfaction, motivation and at-

tractiveness of the user.

Measuring the subject orientated usability attributes is not easy because

they vary from person to person. What may seem attractive or satisfying

for one user, may not be applicable to others.

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 3. BACKGROUND: OPEN SOURCE SOFTWARE AND THE
46 RELATIONSHIP TO USABILITY

Furthermore it should be noted that there is a lot of ambiguity in the
terms used for different attributes. As an example, in Shackel’s terms, us-
ability is influenced by the user’s attitude, (which is satisfaction in Nielsen’s
terms). Nevertheless, these definitions largely overlap. These differences
come from the authors’ terminology preferences and their opinions on what
they consider as meaningful usability attributes.

An understanding of attributes which contribute towards usability will
not, of itself, result in a usable Ul It is important to know how these
attributes may be incorporated into a UI for better usability. The next
section looks at approaches that enable usability attributes to be built into
a Ul

3.3.2 Design for usability

Folmer and Bosch [23] distinguish between two approaches that can be used
when designing for usability—a process oriented approach and a product
oriented approach.

Process oriented approach — user-centred design : User-centred de-
sign is a collection of techniques that specifically focus on providing
and collecting facets of functionality that makes software usable. Us-
ability is considered to be the design goal.

Product oriented approach — captured design knowledge : A prod-
uct oriented approach considers usability to be an attribute formed
by naming examples of product or system properties or qualities that
influence usability. The use of this approach has resulted in a collec-
tion of design knowledge which consists of a collection of properties
and qualities that have been proven to influence usability positively.
A product oriented approach can be divided into three categories,
namely:

e [nterface guidelines: provide suggestions and recommendations
for low level interface components (e.g. icons, windows, buttons,
ete.).

e Design heuristics and principles: suggest properties and princi-
ples that have positive effects on usability.

o Usability patterns: describe best practises, good design and cap-
ture experience in such a way that it is possible for others to
reuse this experience.

© University of Pretoria

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
&

“ UNIVERSITEIT VAN PRETORIA

A 4

3.4. USABILITY IN OPEN SOURCE AND PROPRIETARY SOFTWARE 47

This section discussed the usability models as proposed by different ex-
perts in the field. The differences in these models to a great extent have to
do with the differences in jargon that various authors use and prefer. Two
design approaches on designing for usability were also briefly mentioned.

3.4 Usability in open source and proprietary soft-
ware

The next section, Section 3.4.1 gives a brief introduction to PS and its
usability. It is followed by a discussion of some of the issues associated with
the usability of OSS, which are related to those of ARS, in Section 3.4.2.

3.4.1 Proprietary software and usability

Before the availability of desktop computers, computers were only used
by highly trained programmers. The price of these room-sized machines
could only be afforded by big organisations who could hire expert operators.
Problems with the Uls were contended by technical users. As technology
advanced computers got smaller and cheaper and more people were able
to afford these machines in terms of space and money. At that stage the
usability problems became more of an issue—unskilled users started to use
computers. Software developers needed to develop software that can be used
by non-highly trained users. Consequently, a new sub-discipline of Software
Engineering emerged, namely Human Computer Interaction (HCT).

HCI is a discipline concerned with the design, evaluation and imple-
mentation of interactive computer systems for human use [45]. The aim of
HCI is to enable developers/programmers to produce Uls that are usable
by ordinary people. HCI is concerned with:

e Methodologies and processes for designing interfaces.
e Methods for implementing interfaces.

e Techniques for evaluating and comparing interfaces.
e Developing new interfaces and interaction techniques.

e Developing models and theories of interactions.

Involving HCI experts in PS development resulted in more usable soft-
ware that is relatively easy to use by non-expert end-users. This can be

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 3. BACKGROUND: OPEN SOURCE SOFTWARE AND THE
48 RELATIONSHIP TO USABILITY

seen in the high level of PS usage by corporations, small businesses and
private users. Viorres et al [84] point out that the popularity of PS even
extends to disabled users, the majority of whom prefer PS because of its
greater accessibility and assistive technologies.

A detailed investigation of usability of PS is beyond the scope of this
study and will not be discussed any further. In the next section, Sec-
tion 3.4.2, OSS and its usability is discussed.

3.4.2 Open source software (OSS) and usability

Easy Internet access has led to the increased usage of free and open source
software. Popular successful OSS products include Linux OS, Apache web
server, Mozilla browser, GNU C compiler and MySQL DBMS [22]. It was
originally believed that most users of OSS would be technically adept. The
reason that led to this, is the development process followed by OSS pro-
grammers. However, non-technical users started to gain interest in OSS as
well.

OSS and ARS developers usually develop the software for themselves.
Schach [71] identified two informal phases that successful OSS (and/or ARS)
goes through. Phase one entails that an individual developer builds the first
version of the program and distributes it for free to anyone who might be
interested. The development moves to the next phase, phase two, where
the users become co-developers by reporting defects, whilst other users sug-
gest ways to fix those errors or propose ideas of extending the program and
implement those ideas. The unlimited expertise brought by these develop-
ers/users allegedly results in better quality code—Raymond [64] is of the
opinion that “given enough eyeballs, all bugs are shallow”. This means that
it is easy to spot errors if more people rather than a few people are using and
examining it. Thus, it is alleged that high quality code is in OSS products
because defects are found and fixed more rapidly.

In their study on what motivates these developers, Hars and Ou [26] in-
vestigated the motivation of OSS developers and identified what they refer
to as “internal and external” factors. The internal factors entail the person’s
hobbies and preferences. The external factors are rewards gained by a de-
veloper after he had associated himself with an OSS project. Self-marketing
that promises future monetary rewards is an example of an external factor.
Hobbyists and students are mostly internally motivated, whilst salaried and
contract developers may seek to sell similar products or services and are ex-
ternally motivated. According to Hars and Ou’s study, external factors

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

3.4. USABILITY IN OPEN SOURCE AND PROPRIETARY SOFTWARE 49

weigh more than the internal ones. However, Ye and Kishida [90] argue
that the biggest driving force behind people who associate themselves with
OSS communities is the process of learning.

The availability of minisatellite detecting ARS in this study for free
for academic users, impliedissuadings that the authors of this software are
probably both internally and externally motivated. Publishing academic
research or the intent to do so, may be viewed as the external motivation
for authors to be involved with ARS research projects. This is in turn a
self-marketing strategy especially in cases where a non-free version of that
software coexists.

Although the use of OSS is growing, the majority of computer end-users
only interacts directly with PS. Various researchers have stated that usabil-
ity issues are dissuading end-users from using OSS. Klencke’s stance [36]
is that usability issues with the UI of OSS, as well as the lack of usabil-
ity engineering skills are major contributors to this behaviour. Nichols and
Twidale [54] are also of the opinion that one of the reasons behind end-users’
non-preference of OSS is linked to OSS usability.

Raza [66] agrees that usability is a complicated issue even in PS and
that the issue is even worse when it comes to OSS. This could be due to
the lack of HCI usability experts. The unusual OSS and ARS development
strategy could also play a major role in contrast with PS development.

Viorres et al [84] noted that the “bottom-up” development approach
followed by OSS development has an influence on the poor usability of
OSS. The bottom-up approach gives lower priority to system modelling,
user interfaces and other related issues, whilst focusing more on technical
issues.

Nichols and Twidale [55] also provide a non-comprehensive list of fea-
tures in OSS development that may contribute to the poor usability. They
acknowledge that in many OSS products, developers are indeed users. This
fact leads to products that have interfaces which are unusable by a group
that is technically less skilled. They are also of the opinion that the non-
involvement of usability experts is related to the incentives in OSS—the
incentives for improved functionality are much higher than the incentives
for usability. Feller and Fitzgerald [21] mention that traditionally there has
been an overlap between OSS developers and users. The developers were the
users of their own products and thus, more attention has been paid to the
functionality rather than simplicity of the product. This tradition is slowly
changing as more novice users are becoming interested in OSS because of
the support that is being given by corporations like IBM.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 3. BACKGROUND: OPEN SOURCE SOFTWARE AND THE
50 RELATIONSHIP TO USABILITY

It is clear that many authors agree that non-technical user involvement
in OSS development has a strong influence on the weak relationship between
OSS and usability. (See, for example, [92, 90, 55, 21] and [13].). Bodker
et al [9] admit that the popularity of OSS products is threatened by its
poor usability. Andreasen et al [2] conducted an empirical study and found
that although OSS developers realise the importance of end-users, they still
fail to prioritise usability issues. This is mainly because of limited under-
standing of usability, lack of resources like HCI experts or usability experts,
evaluation methods that fit into the OSS paradigm, and the distinction
between a developer and a user.

ARS users can relate to the above issues, like the unavailability of hu-
man experts who are will to work for no monetary gains. ARS is also
developed with no end-user other than the developers themselves in mind.
Section 3.4.3 looks at proposed solutions for OSS usability which would also
benefit ARS usability.

3.4.3 Proposed OSS usability solutions

One potential solution suggested by Nichols and Twidale [55] involves using
commercially developed user interfaces on OSS to improve its usability.
While this solution can be seen as promising, Trudelle [83] believes that the
two partner’s interests may be in conflict.

Amongst the other potential approaches to improve OSS usability, Nichols
and Twidale [55] also suggested a Technical approach which implies:

e the automation of the evaluation of the interfaces to compensate for
the lack of HCI experts;

e greater academic and end-user involvement which encourages students
involved with HCI to participate in OSS projects whilst also encour-
aging end user’s to report usability flaws in a product; and

e more involvement of the HCI experts in educating OSS developers
about the importance of usability.

In their empirical study, Raza et al [66] found that the user require-
ments, incremental design approach, usability testing and knowledge of
user-centred design methods are key factors that strongly support OSS us-
ability.

Terry et al [81] noted that some usability problems are common in OSS
projects. The OSS and ARS community can improve its practises by being

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

3.4. USABILITY IN OPEN SOURCE AND PROPRIETARY SOFTWARE 51

aware of what others are already doing to improve software usability. One
way to accomplish this goal is to create a catalogue of the techniques that
can help improve usability, along with instructions on how to get the most
benefits from them.

Klencke [36] suggested standardisation, by adopting Graphical User In-
terface (GUI) standards, so as to reduce the inconsistencies that arise within
OSS products. Klencke [36] also mentions using up-to-date documentation
and tutorials to enhance end-user’s learnability—ease of learning—of the
system, encourage user feedback on usability on the software product and
the use of a GUI instead of relying on text command interfaces. To avoid
information overloading that may result when users report every usability
problem with the software, Terry et al [81] proposed that different tools
should be implemented for different user classes.

Similar to Nichols and Twidale [55], Klencke [36] acknowledges that it
is important to involve usability experts. These experts may be involved
by encouraging HCI students to be actively involved with OSS projects.
Cetin et al [14] proposed that one way to get experts into OSS projects
is to make developers more aware of basic usability principles. A model
for learning usability inspection for non-expert evaluators was proposed by
Zhao and Deek [91]. The objective of this is to transfer usability knowledge
to non-expert evaluators, whilst actively performing inspection tasks.

0SS usability improvement efforts

There has been a gradual improvement in OSS usability, as many of the
problems that are causing usability issues are now being addressed as fol-
lows:

e Several huge companies have started to support OSS usability by hir-
ing HCI experts and providing other necessary resources that the OSS
community does not have. These companies include IBM (Eclipse),
Oracle (OpenOffice.org) and Novell (evolution, Mono, SuSE Linux) [36].

e The Human Interface Guidelines (HIGs) have been documented to
give guidance regarding software application’s look and behaviour in
order to preserve consistency. GNOME* project’s HIG is one example
of many HIGs.

*GNOME is a desktop environment and graphical user interface that runs on top of
a computer operating system.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 3. BACKGROUND: OPEN SOURCE SOFTWARE AND THE
52 RELATIONSHIP TO USABILITY

e The OpenUsability project [61] was initiated to bring collaboration
between developers and usability experts. By using the experiences
of the members of the OpenUsability initiative, Reitmayr et al [68]
have given suggestions on how usability should be integrated with
OSS development.

e Towards Open Source Software Adoption (tOSSad) is a project funded
by the European Union. The project was initiated to improve the
outcomes of Free / Open Source Software (F/OSS) communities in
Europe by sharing usability aspects and requirements among usability
experts in order to help developers complete their OSS on time and
under budget. This is done by producing the “howtos”: tutorials,
guidelines and how to carry out OSS usability tests.

e Research into and training about OSS has come into various university
curricula and other training facilities. An MSc program in Turkey [62]
and skills development programs in Syria and Middle East [80] all
focusing on OSS, are two examples of such initiatives.

This dissertation entails an investigation into the usability of minisatel-
lite detecting ARS, with the aim of addressing the usability concern of these
software. Thus, addressing such concerns is likely to improve the adoption
of such software.

3.5 Conclusion

The usability in all types of software has been shown to be important for
software to gain maximum acceptance. Every developer’s goal should be to
develop a software products that will simplify the user’s task and be the
product of choice. Users should find it simple and enjoyable to complete
their task, instead of avoiding it. OSS Authors in the field have tried to
explain what is really meant by usability of software. Different qualities have
been identified and measures proposed to evaluate usability. Usability is still
regarded as something difficult to design by various researchers because of
the subjective qualities it possesses.

Many researchers believe that OSS usability is poor, but should improve
because it is in line with what happened to PS when desktop computers were
introduced. OSS and indeed ARS has something to learn form PS when it
comes to usability.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

3.5. CONCLUSION 53

Having looked at the background information on minisatellites detecting
algorithms and the usability issues faced by OSS and/or ARS, it is clear
that the two issues need further investigation. Their importance to human
life improvement, and the country’s economy in terms of purchase costs,
efficiency and licensing is apparent, and hence supports the significance of
this study.

The next chapter details how the two aspects of this dissertation will be
investigated.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

Chapter 4

Methodology

4.1 Introduction

The primary goal of this study is to investigate two research questions as
discussed in Section 1.3.1. These questions are:

1. Do the selected ARS implementations behave consistently with re-
spect to the occurrence and positioning of minisatellites, even though
they do not rely on information provided a priori about the position-
ing of minisatellites?

The following hypotheses were proposed in order to answer the above
question:

a) Hi: Equivalent minisatellites (PTRs) are detected by different
algorithms, when no mismatches and/or indels are allowed.

b) Hy: Equivalent minisatellites (ATRs) are detected by different
algorithms, when mismatches and/or indels are allowed.

¢) Hj: Non-equivalent minisatellites (PTRs and ATRs) are detected
by different algorithms when the meaning of “approximate” as-
sumed by the algorithms varies from one to the next.

2. How usable are the software packages previously investigated to ad-
dress the first question?

In order to answer this question, the following sub-questions were
derived:

95

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

56 CHAPTER 4. METHODOLOGY

a) To what extent do the selected minisatellite detecting open source
implementations follow usability guidelines suggested in the lit-
erature?

b) To what extent would implementing the usability guidelines as
proposed in academic papers improve the usability of one of the
ARS detecting minisatellites?

The first question will be investigated by setting up experiments, in
which selected ARS packages (that is, Mreps, Phobos, TRF and ATRHunter)
are executed on some sample genomic sequences. The outcomes of the
experiment will be analysed to determine the similarities, and hence, the
differences, between all the reported results.

To investigate the usability of the ARS implementations, Graphic User
Interfaces (GUIs) are evaluated. The GUIs of FireuSat, Phobos and TRF
will be considered. The evaluation will illuminate/answer the sub-question
with respect to the ARS packages considered in this study, and within the
constraints of the literature consulted.

After the evaluation has taken place, a new version of the FireuSat
GUI—denoted as FirepSatPlus in this dissertation—will be designed. The
suggestions on how OSS’s usability could be improved, as discussed in Chap-
ter 3, and the results of this evaluation will guide this design. Thereafter,
usability tests will be conducted on the old and new versions by users who
will perform identified tasks. Users’ experience on the old and the new ver-
sions are measured in the form of a survey. The results of the survey will
be used to answer the question in the positive or negative, depending on
the outcomes of the findings.

The remainder of this chapter is set out as follows, starting by address-
ing the first question, Section 4.2 focuses on data detection. Section 4.2.1
introduces the research design to be followed and Section 4.2.2 presents the
methodology used. The second question regarding software usability is ad-
dressed in Section 4.3 as follows: Section 4.3.1 briefly outlines the research
design anticipated whilst Section 4.3.2 discusses the methodology within
this context.

4.2 Minisatellites detection

The next subsections outline the research design and the methodology used
to investigate the first question as articulated in Section 4.1. That is, this

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

4.2. MINISATELLITES DETECTION Y

section focuses on the data detection question. Section 4.2.1 and 4.2.2
describe the research design followed and the accompanying methodology.

4.2.1 Research design

Mouton’s [52] interpretation of a research design is that it is an outline of
how one intended to carry out a study that is guided by certain research
questions. The research design followed in this part of the investigation is a
quantitative research. In order to explore the consistency of minisatellites
detected by ARS implementation packages, this study will use an experi-
ment as a research design. According to Hofstee [28] and Olivier [60], ex-
periments are done to test a hypothesis or theory. This study has therefore
identified three hypotheses to test in order to answer its research questions,
as noted in Section 4.1. In the light of that, the experiments will be used
to test these hypotheses. This technique was also used in a similar study
conducted by Leclercq et al [43] focusing on microsatellites.

One of the challenges in implementing this research approach in the
present context is to manage the large amount of data generated by the
various algorithms. One way of meeting this challenge is to use a relatively
small amount of input genomic data for sampling.

Figure 4.1 outlines the research design followed by this study. The next
section focuses on the methodology that will be used within this research
design.

4.2.2 Methodology

This section gives the instrument and how it will be used to investigate the
first research question. An experiment will be used as an instrument to
collect data.

Experiment

Four ARS implementations—Mreps, Phobos, TRF and ATRHunter—will
be run on a desktop computer. Each software package will be given sample
genomic sequences as input data. Appropriate settings for the various al-
gorithms will be explored. On the one hand, settings for generating PTRs
on each respective package will need to be determined. On the other, set-
tings for generating ATRs on the respective packages will also need to be

© University of Pretoria

&

3

A 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

o8 CHAPTER 4. METHODOLOGY

Research Design

v

Goal 1: Minisatellites
detection

v

Data collection

v

Experiment

v

Data analysis

v

Quantitative data:
Experiment

2

Report onresults

Figure 4.1: Research Design: Minisatellites detection

determined, but in such a way that the ATRs generated are as compatible
as possible*.

Each algorithm will be allowed to be executed on this data sequence.
The following algorithmic implementations will be investigated:

Mreps version 2.5.
Phobos version 3.3.10.
TRF version 4.00.
ATRHunter 1.00.

*It will be seen later why this is a non-trivial exercise and that it involved quite a
lot of parameter-tuning.

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

4.2. MINISATELLITES DETECTION 29

All the above software packages are freely downloadable from their respec-
tive websites. Table 4.1 indicates the sample genomic data files that will be
used to conduct the experiments and their respective sizes. The contents
of each of these files is a string of characters representing DeoxyriboNucleic
Acid (DNA) nucleotides. They look something like the following:

>sample test data

acgtgcacgtgcacgtgctgcacgtgcacgtgcacgaaaaaattttttttttttgtgtgtt

tttttgtgtgtttttttgtgttt

The first line—>sample test data in sample data identifies the se-
quence. This line is noted by the symbol > before the name followed by
one or more lines of nucleotide sequences. This is referred to as a FASTA
format’. The data files shown in Table 4.1 are all in FASTA format.

Each genomic file will be used to test one or more hypothesis. The
process will be repeated for each and every software package under inves-
tigation. All the minisatellites of the respective packages reported will be
recorded for later analysis.

Analysis

The results obtained from running experiments will be analysed manually by
comparing minisatellites detected by the respective algorithms for each run
of the experiment. Each comparison is based on the following minisatellite
properties as outlined in Section 1.3.1:

e The index position: The occurrence of a minisatellite in a genetic
sequence is at the same offset and last index position.

e The motif size: The motif size should be the same.

tA FASTA format is a text-based format for representing nucleotides sequences using
single-character codes. The format begins with a single-line description, followed by
(a)line(s) of sequence data

Table 4.1: Genomic data files.

Genomic Sequence Size
Human X Chromosome 450K B
Jejuni genome +1.60M B
Swam genome +8.30K B
Sample test data +1KB

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

60 CHAPTER 4. METHODOLOGY

e The motif sequence: The nucleotides sequence should be in the same
index position in the genetic sequence.

e The motif repeat count: The number of times a unit motif is being
repeated, should be the same.

e The same TR: The length, the number and index positions of nucleotides—

including errors—should be same.

Once the various algorithms have proposed their respective set of minisatel-
lites, their outcomes will be analysed for consistency. This consistency will
be based on the following facts:

e the same number of minisatellites, and
e the minisatellites from different algorithms are consistent.

The outcome of this comparison will then be reported and the final
conclusions will be made based on the results of the experiments.

4.3 Software usability

Now that the process and procedures have been discussed that are to be
followed when investigating minisatellite consistency once the minisatellites
have been detected by the various packages, the focus of this section is
shifted towards software usability. As has been mentioned, this study in-
vestigates two main questions; this section concentrates on the second ques-
tion which relates to usability. Section 4.3.1 and 4.3.2 describe the research
design and the underlying methodology, respectively.

4.3.1 Research design

To test the usability of the ARS implementations, a combination of evalu-
ative and survey research methods will be followed. Hofstee [28] describes
evaluative research as a technique that seeks to come to conclusions about
an effect or success level of some happening or intervention. Olivier [60]
refers to this as appreciative enquiry—a qualitative method that looks at
the current situation and appreciates (understands) what already exists
with a view to identifying possible areas for improvement.

A criterion is identified to evaluate the usability of the three GUIs men-
tioned earlier, i.e TRF, Phobos and FireuSat. The data obtained in this

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

4.3. SOFTWARE USABILITY 61

evaluation will be qualitative. Hofstee [28] warns about researcher bias
when using an evaluative research method. A survey is adopted to detect
any bias that may have been introduced. Obtained data from the survey
will be quantitative. In summary, this dissertation will:

1. Evaluate the three GUIs, i.e. TRF, Phobos and FireuSat based on
literature.

2. Build a GUI as an improvement of the FireuSat GUI.
3. Evaluate the new GUI and FirepSat GUI base on user experience.

In the context of this study, this intervention will be by constructing
a proof of concept prototype. This will occur when the new version of
FirepSat is constructed with suggested improvements. Olivier [60]’s stance
is that prototypes are used by researchers as a proof of concept. In other
words, researchers build prototypes to prove that a concept or an idea works.
The results of the survey will determine whether using usability guidelines
could improve open source minisatellite detecting software.

To summarise, this part of investigation uses the so called mixed-method
which involves a combination of qualitative and quantitative methods. The
qualitative method is used during appreciative enquiry, whilst the quantita-
tive method will be used during survey. Figure 4.2 shows a simplified view of
the research design followed in this part of the investigation. The methodol-
ogy that will be used during this investigation is discussed in Section 4.3.2,
which follows next.

4.3.2 Methodology

This section gives the instruments that are used to investigate the second
research question. Two research instruments are used to collect the required
data. These instruments are:

e Expert analysist: This instrument will be used during evaluation of
the GUIs and it is explained below.

e Questionnaire: to collect data on user’s perceptions of the GUIs.

Selected ARS GUIs are subjected to a usability evaluation. This is
done by evaluating the GUIs through expert analysis. According to Dix et

"Expert analysis is an evaluation of the system using a human expert or designer.
One of the approaches to expert analysis is heuristic evaluation.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
o= vunie

62 CHAPTER 4. METHODOLOGY

Research Design

4

Goal 2: Usability

|

Data collection

Evaluation: Survey:
Expert evaluation Questionnaire
i +
Data analysis Data analysis
4 +
Qualitative data: Quantitative data:
Expert evaluation Survey
W . I |

Reporting on

results

Figure 4.2: Research Design: Software usability

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

4.3. SOFTWARE USABILITY 63

al [19], this is the first evaluation of the system that should be performed
by designers to discover expensive mistakes that can arise when a design
is left for later testing by users. Various evaluation methods which depend
upon the designer, have been proposed. These methods take the design, and
access the impact it will have upon a typical user. The basic intention is to
identify areas that violate usability principles, and that are likely to cause
usability problems. One approach to expert analysis is through heuristic
evaluation.

Dix et al [19] refers to a heuristic as a guideline or general principle or
rule of thumb that can guide a design, or be used to critique a decision
that has already been made. Nielsen [56] proposed ten general heuristics
which can be used to critique and hence guide a design decision. Nielsen’s
heuristics seem to integrate most of the existing heuristics. They are also
widely used as trusted heuristics in the development of user interfaces. The
author of this dissertation will therefore use Nielsen’s heuristics to evaluate
the selected GUIs. The data obtained as a result of this evaluation will be
qualitative.

With possible areas that may experience usability problems identified,
this study will intervene and attempt to address these problems by follow-
ing possible solutions suggested by various OSS usability researchers (as
discussed in Chapter 3) and design a new GUIL. The new GUI will hopefully
be an improvement of an existing package, FireuSat [17]—initially devel-
oped to detect microsatellites and now under enhancement to incorporate
minisatellites [18] in its search. FirepSat has been developed like most ARS,
with more attention being paid to the functionality of the software than the
usability of the software. There is little work that has been done previously
to improve the usability of FireuSat user interface. This dissertation will
therefore improve the FireuSat GUI that was mainly built to aid the testing
of the functionality of the software.

FirepSat and the improved GUI called FireuSatPlus within the context
of this dissertation, are evaluated by conducting a usability test with users
who mimic intended users. Nielsen [57] recommends using 3 to 5 partici-
pants in order to collect sufficient data. This study will therefore use two
independent groups of 6 users. Appendix A gives a detailed explanation of
how these users will be recruited and the procedure to be followed when con-
ducting the usability test. User tasks will be identified and during usability
testing, users will complete typical tasks. An existing usability question-
naire (Appendix D) is used to capture user’s perceptions of the two GUIs.
The questionnaire was used by Ssemugabi [79] during the study on usability

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

64 CHAPTER 4. METHODOLOGY

evaluation methods. The advantage of using this questionnaire is two fold:
e its reliability has already been determined and
e it also measures usability based on Nielsen’s heuristics.

Users are requested to complete identified tasks (Appendix C) on the
GUIs and fill-out the questionnaire. Users’ responses will be captured in
the form on a five-point Likert rating scale} ranging from ’strongly agree’
to 'strongly disagree’. Thereafter, the results are analysed and reported.

Analysis

Qualitative data obtainable from the first evaluation is in the form of a
checklist in which the heuristic that the GUI adheres to is identified. Fur-
thermore, the level of compliance and/or non compliance of the GUI to a
specific heuristic should also be noted. From this data, it should be possible
to conclude on the GUIs’ usability or lack of it. The more a GUI complies
with usability heuristics, the greater are its chances of being easily usable.

The qualitative data that results from the survey as Likert scale re-
sponses will be tabulated. Using descriptive statistics, the mean scores of
the results will be calculated and be compared for the two groups. If the
results show that there is a difference, a student’s t-test will be used to
measure the statistical significance of this difference. Student’s t-test is a
statistical technique used to measure if two groups’ averages are statistically
significant or occurred by chance. Olivier [60] gives a brief introduction on
how this test is conducted and statistics books may be consulted for further
details on this topic. This analysis should draw conclusions about the
extent to which traditional design for usability techniques in software engi-
neering can be feasibly used for open source minisatellite detection software.

Limitations

A limitation regarding usability evaluation is the availability of minisatellite
detection software package users. As the result, a few users who mimic real

users are recruited to participate in the usability study. A sufficient number
will be recruited in order to meet the minimum number of users required in
usability testing as indicated by Nielsen [57].

§A Likert scale is a scale commonly involved in research surveys that employs ques-
tionnaires to scale response.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

4.4. CONCLUSION 65

Ethical considerations

Various authors, including Hofstee [28] agree that all research should follow
correct ethical procedures when conducting research. The participants were
made aware that they are testing the software and that their responses will
be treated in confidential. Users will be required to sign a consent form as
included in Appendix B.

4.4 Conclusion

In this chapter, the analysis of the processes which will be used to inves-
tigate the consistency between minisatellites detected by various software
packages was discussed. The guidelines on how the usability of these soft-
ware packages will be evaluated were also considered. Using experiments
and conducting usability testing on real users appears to be the best option
in order to determine the usability of open source minisatellites detection
software. In general, this study can be seen as mixed-method research.

The next chapter gives the results of the experiments conducted, while
Chapter 6 gives the usability testing results.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g

Chapter 5

Minisatellite detecting
algorithms: output comparison

5.1 Introduction

One approach used to discover novel minisatellites motifs is by using ab initio
based algorithms. Without relying on some library or database of some sort,
ab initio algorithms identify Tandem Repeats (TRs) from a given genomic
sequence. Using techniques employed by ab initio algorithms would most
likely increase the chances of discovering new minisatellite motifs and hence,
new minisatellites.

The aim of this chapter is to investigate the consistency of the outputted
minisatellites detected by different ab initio algorithms. This chapter en-
tails a comparison of the data detected by a number of algorithms which
detect minisatellites. The comparison is limited to selected algorithm im-
plementations as indicated in Section 2.3. A summarised content of this
comparison was presented in the Pattern Recognition Association of South
Africa (PRASA) conference in 2010 [4].

All the algorithms are reported on in the literature (report on Phobos
is limited) and are freely available from the Internet. The words software
and algorithm in this dissertation may be used interchangeably to mean an
executable implementation of an algorithm.

The overall goal of this chapter is to answer the question:

Do the selected ARS implementations behave consistently with
respect to the occurrence and positioning of minisatellites, even

67

© University of Pretoria

&
&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
68 COMPARISON

though they do not rely on information provided a prior: about
the positioning of minisatellites?

This question is answered by investigating the three hypotheses proposed
as follows:

e H: Equivalent minisatellites (PTRs) are detected by different algo-
rithms, when no mismatches and/or indels are allowed.

e H,: Equivalent minisatellites (ATRs) are detected by different algo-
rithms, when mismatches and/or indels are allowed.

e Hj: Non-equivalent minisatellites (PTRs and ATRs) are detected by
different algorithms when the meaning of “approximate” assumed by
the algorithms varies from one to the next.

This chapter is laid out as follows: Section 5.2 discusses the research
instruments, followed by an explanation of some of the parameters that are
deemed useful for this investigation in Section 5.3. The investigation itself
followed by discussion of results are presented in Section 5.5 and Section 5.6
respectively.

5.2 Research instruments

5.2.1 Test data

To investigate the question and the hypotheses, data files containing ge-
nomic sequences are used as shown in Table 5.1.

Table 5.1: Data files containing a representation of a genetic sequence.

Genomic Sequence Size Hypothesis
Human X Chromosome +50K B Hy and Hy
Jejuni genome +1.60M B H,

Sample test data (as in +1KB H,
Figure 5.1)
Swam genome +8.30K B H;

The data files are made available at www.dna-algo.co.za and are in-
cluded on the compact disk (CD) which accompanies this dissertation. A
simpler sequence was constructed to better analyse the behaviour of the
algorithms. The contents of this sequence are as shown in Figure 5.1. The
file is in FASTA format in which the top line is the name of the sequence

© University of Pretoria

www.dna-algo.co.za

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

5.3. SOFTWARE PARAMETERS 69

preceded by symbol > and the line succeeding that represents the sequence
itself.

>sample data
acgtgcacgtgcacgtgctgcacgtgcacgtgcacgaaaaaa
ttttttttttttgtgtgtttttttgtgtgtttttttgtgttt

Figure 5.1: Contents of sample test file.

5.2.2 Software

The four software packages under investigation are:
1. Mreps — http://bioinfo.1ifl.fr/mreps/,

2. Phobos —http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.
htm

Y

3. TRF — http://tandem.bu.edu/trf/trf. .html and
4. ATRHunter — http://bioinfo.cs.technion.ac.il/atrhunter/.

The following section briefly introduces the parameters for different soft-
ware under investigation. The list of these parameters does not represent
all available parameters for that software, but only those parameters that
are necessary for successful completion of this investigation.

5.3 Software parameters

There are two types of parameters namely, the searching parameters and
the filtering parameters. The searching parameters are necessary for the
program to find all the TRs in a sequence, whilst the filtering parameters
get rid of TRs which are not of particular interest to the user. In some cases,
distinguishing between the two may require deeper knowledge behind an
algorithm implementation, which is beyond the scope of this dissertation.
As an example, to search for minisatellites with motif length of, say eight,
algorithm A may start by searching for all possible minisatellites and then
remove all minisatellites with motif length not equal to eight. Algorithm
B on the other hand may immediately search for the required motif length
with no need for filtering, which could be more efficient than algorithm A.

© University of Pretoria

http://bioinfo.lifl.fr/mreps/
http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm
http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm
http://tandem.bu.edu/trf/trf.html
http://bioinfo.cs.technion.ac.il/atrhunter/

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
70 COMPARISON

In the former case, the motif length has been used as filtering parameter,
whilst it is used as the searching parameter in the latter case.

The next section discusses basic software package’s respective parame-
ters which are essential for the completion of this study. An exhaustive list
of parameters may be found on the web pages of the respective software.
In Section 5.3.1, the parameters of Mreps are discussed followed by param-
eters for Phobos in Section 5.3.2. Section 5.3.3 and Section 5.3.4 discusses
parameters of TRF and ATRHunter respectively.

5.3.1 Mreps

Below are some of the parameters that a user may need to specify when
searching for minisatellites when using Mreps. When these parameters are
not specified, Mreps uses default values. Note that this list is not exhaus-
tive, but shows only parameters that are important to successfully detect
minisatellites as per the interest of this study.

-from n : This command processes the DNA nucleotide sequence starting
from position n. This option is important when one has a very large
sequence, but part of it should be ignored when searching for repeats,
otherwise known as the flanking sequence.

-to n : This command indicates that the processing of the DNA nucleotide
sequence should end at position n.

-minp n : The -minp is the parameter for setting the minimum motif
length, referred to as “minimum period” by Kolpakov et al [37]. Only
repeats with a motif length greater than or equal to n will be reported.
Because Mreps can also search for microsatellites, this parameter will
be important to filter microsatellites by setting n to 6. Only TRs with
a minimum motif length of 6 will be reported. This parameter does
not affect other repeats reported. That is, setting them minimum
motif to 2 will yield the same minisatellites as when it is set to 6.

-maxp n : Indicates the maximum motif size of the repeat to be reported.
Similar to -minp parameter, -maxp will disregard satellites when n is
set to 100.

-exp x : The exponent indicates the number of repeated unit copies that
should occur before the repeat is reported. It is given by the ratio of
the whole repeat length to the motif length. Thus the parameter sets

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

5.3. SOFTWARE PARAMETERS 71

the algorithm to report only those repeats with an exponent greater
than or equal to x.

-res n : The resolution parameter for setting the resolution of the pro-
gram. It determines the amount of mismatches a TR is allowed to
have. When set to 0, only perfect minisatellites are detected. The
higher the value of n, the more errors (which may include indels) are
reported.

All the parameters of Mreps relevant to the current discussion have
been presented. In the next section, Section 5.3.2, the relevant parameters
of Phobos are discussed.

5.3.2 Phobos

These parameters apply to Phobos software package:

-M exact : This is the option that should be selected to search for Perfect
TRs (PTRs). Mayer [49] use the term exact repeat to refer to perfect
tandem repeats (PTRs).

-M imperfect : Searches for Approximate TRs (ATRs) or imperfect re-
peats. This is the default search mode of Phobos.

-u <int> : This parameter sets the minimum motif length. The user
should indicate the smallest motif length for which Phobos should
search as an integer value. This parameter is equivalent to Mreps’s
-minp parameter. This parameter will allow the exclusions of mi-
crosatellites during a search if it is set to 6. Similarly to Mreps, this
parameter does not affect other repeats reported. This means that,
setting them minimum motif to 2 will yield the same minisatellites as
when it is set to 6.

-U <int> : In contrast with parameter -u <int>, -U <int>, if represented
with an upper case letter U, indicates the maximum motif length.
(Mreps’s equivalent of this parameter is -maxp, which would limit the
search to minisatellites by setting its value to 100).

-indelScore : Penalty integer value given to indels, ranging from -4 to -6
with the latter being the default value.

-mismatchScore : Similar to -indelScore but, it is dedicated to mis-
matches.

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
72 COMPARISON

-minScore : For a TR to be reported by Phobos, that TR should meet the
minimum score which is set to 8 by default. As it was mentioned in
Chapter 2, computation details of the score are not known.

It can be seen that some of Phobos parameters are similar to that of
Mreps, whilst others are not the same—like the provision of scores.

5.3.3 Tandem Repeat Finder (TRF)

The format of the TRF’s parameters is not similar to that of Mreps and
Phobos in that these parameters are manipulated as a group than individ-
ually. These parameters are:

Alignment weights : Alignment weight for match, mismatch and indels is
provided as a tuple of three integer parameters. Matches are given pos-
itive values whilst the other two (mismatches and indels) are treated
as negative integers. TRF predefined the values of these parameters.
In other words, the user selects from a given pre-selected values given
as valid options. For example, the parameter values (2,7,7) indicates
that:

e The match is given a positive value of 2. In all options, a match
has a value of 2.

e The mismatch and indels are both treated as negative integers.
The value of these integers can be either 3, 5, or 7.

The lower weights i.e. 3 and 5, allow alignments to accommodate
more mismatches and indels in TR.

Maximum Motif Length : A maximum motif length of repeats to be de-
tected. The program can find all repeats with a motif length between
1 and 2000. However, the output can be limited to some other range,
say 100, in the case of minisatellites.

Alignment Score : A minimum alignment score to report repeat. When
two or more TR sequences are aligned, the so-called alignment score
is computed from based on the alignment weights selected. The
details of how this computation is performed is beyond the scope of
this dissertation. As with alignment weights, this alignment score
is predefined and all TRs with or exceeding this predefined score are
reported. The smallest score is 30 and the largest is 150. Higher

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

5.3. SOFTWARE PARAMETERS 73

scores are less permissive than lower scores, i.e. Most repeats will be
reported on score 30.

The Alignment weights parameter is equivalent to the -indelScore
and -mismatchScore parameters in Phobos, except that Phobos does not
provide a parameter to set the score of a match. TRF could have done
the same because the value of the match parameter is fixed, i.e. always a
positive 2. Likewise, Alignment Score and Phobos’s -minScore are also
equivalent. In contrast, whilst Mreps and Phobos allows the minimum
motif length to be manipulated, TRF does not have such a parameter.
This implies that when searching for minisatellites, microsatellites will also
be included in the report.

5.3.4 ATRHunter

ATRHunter follows a similar parameter format as the TRF. ATRHunter
has the following parameters which can be set:

Alignment weights : This parameter is similar to that of TRF except that
it has an additional parameter for terminal indels*. The terminal in-
dels are treated as negative integers, which is the same as mismatches
and indels. Similarly to TRF, a match score parameter is a positive
integer value fixed to 2. Predefined values are also provided as options
to choose from. These values varies depending on the definition used.

Definition of an ATR : ATRHunter supports different definitions of an
ATR. The modularity of ATRHunter allows the user to decide which
definition is more informative for one’s research [86]. These definitions
are based on the following kinds of ATRs:

e A simple TR,
e A neighbouring TR, and
e A pairwise TR.

Recall that the definitions of these ATRs were given in Section 2.4.4.

Minimum Similarity level or Alignment Score : The similarity level
or alignment score computed for the ATR must meet or exceed this

*Terminal indels are insertions or deletions that occur at the beginning or end of a
sequence.

© University of Pretoria

&
&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
74 COMPARISON

specified value for the repeat to be reported. Depending on the defi-
nition on an ATR chosen,(Recall that in Section 2.4.4 definitions were
given of three different kinds of ATRs: simple, neighbouring or pair-
wise.) ATRHunter uses either minimum Similarity level or Alignment
Score. This score can be compared to the alignment score of TRF.

Maximum Motif Length : Only repeats with a motif length shorter than
or equal to this value are reported.

Similarly to TRF, ATRHunter does not allow the minimum motif length
to be specified. The manual exclusions of repeats with unacceptable motif
length might be necessary at the end of the search.

Table 5.2: Summary of parameters

Parameter | Mreps Phobos TRF ATRHunter
Motif size Min. & Max. Min. & Max. Max Max

TR Type Resolution Par. | Perfect and Imperfect mode — —

Weights — — Align. weights | Align. weights
Score — mismatch and indel score Align. score Align. score

Table 5.2 indicates a summarised set of parameter for the four software
packages under investigation. As was noted earlier, this does not represent
the exhaustive list of parameters available.

The only parameters set were those deemed necessary in the accomplish-
ment of this study’s objectives.

The table highlights the fact that Mreps and Phobos have the param-
eters to manipulate the minimum motif, whilst TRF and ATRHunter do
not. Since this study focuses exclusively on minisatellites, it was considered
relevant to establish whether the use of the minimum motif parameters in
Mreps and Phobos would affect the nature or number of minisatellites de-
tected by these packages. It was found that they did not—i.e. that the
same minisatellites were detected by Mreps and Phobos for a given data
set, whether or not the minimum motif parameter was set. Because of this
consistent behaviour, the minimum motif for both Mreps and Phobos could
be set to 6 to attain maximum efficiency without losing confidence in the
results.

Another observation from Table 5.2 worth mentioning is the absence of
the parameters directly changing the type of TR—perfect or approximate—
in both TRF and ATRHunter. The TR type can be affected by adjusting the
weights and scoring parameters. However, it is not possible to exclusively
search for PTRs this way as these parameters only influence the chances or

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

5.4. SOFTWARE COMPARISON 75

PTR to be reported. Therefore, parameters in Table 5.2 were selected such
that they increase PTRs chances in the reported results.

The above parameters will be adjusted depending on the investigation’s
goal on what kind of minisatellites (perfect or approximate) are of interest.
These parameters will be set varying from low to high error tolerance. As a
result fewer and shorter minisatellites with few errors should be detected, in
contrast to long and highly imperfect minisatellites when parameters are set
more loosely. The more errors allowed, the higher the number of detected
minisatellites, can be expected.

5.4 Software Comparison

In order to investigate the aforementioned hypothesis presented in Sec-
tion 5.1, three comparisons based on the results reported on by the different
software packages were conducted. These comparisons were conducted by
running a sample genomic sequence on the four algorithms and setting the
algorithm’s parameters accordingly. The observations of the reported data
are then presented. The three comparisons are:

e Based on perfect detection of minisatellites — H;. The algorithm’s
parameters are set not to allow mismatches and/or indels.

e Based on approximate detection of minisatellites — Hy. The parame-
ters are set to allow as many mismatches and/or indels as possible.

e Perfect and approximate detection by TRF and ATRHunter using the
same TR definition — H3. Using TRF’s definition of a TR, which is
also implemented by ATRHunter, the parameters are set the same
and the results observed.

The following observations were noted when conducting the comparisons:
e The number of repeats reported on by different packages.
e The similarity between repeats detected by different packages.
e Unique repeats reported on by different packages.

e Shortest and longest, motif length and TRs reported on by different
packages.

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
76 COMPARISON

The following section, Section 5.5, reports on the noted observations
after the four algorithms were run on a genomic sequence and after the
parameters were appropriately set.

A brief analysis of the minisatellites reported on by the respective algo-
rithms follows, after the observations have been presented.

5.5 Observations

Table 5.3: Parameter settings for perfect tandem repeats (PTR) and ap-
proximate tandem repeats (ATR) for Mreps, Phobos, TRF and ATRHunter.

Search goal Algorithm Parameter Value

PTR Mreps res =0
Phobos Search mode=exact
TRF weights(2, 7, 7), Alignment score (50)

ATRHunter weights(2, 7, 7, 7), Similarity level (0.5)

ATR Mreps res =06
Phobos Search mode =imper fect,
indelScore, mismatchScore = —4
TRF weights(2, 3, 5), Alignment score (30)

ATRHunter weights(2, 3, 5, 5), Similarity level (0.7)

After experimenting with various parameter settings and tuning them so
that they produce competitive results, their setting in Table 5.3 were deemed
approximate for this investigation. It is important that each parameter
is tuned accordingly with respect to other parameters, especially on the
software packages that do not have a parameter for ATRs and PTRs. In
those cases, the weight parameter needs to balance with the alignment score
parameters.

The parameter settings used for each comparison are shown in Table 5.3
for every respective algorithm. On the other hand ATR search parameters
accommodate as many errors as the algorithm would allow. It should be
noted that Table 5.3 indicates only those parameters required to produce
PTRs and ATRs. Other parameters that do not influence the nature of TRs
detected have been excluded from the table. Examples of such parameters
include those affecting the minimum and maximum motif length. Phobos’s
scoring parameters were left to their default values where such parameter
values are not indicated.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

5
<
5.5. OBSERVATIONS 7

5.5.1 Comparison for perfect detection

H,: Equivalent minisatellites (PTRs) are detected by different
algorithms, when no mismatches and/or indels are al-
lowed.

Two genetic sequences were used as input data in the comparison of
PTRs namely, Jejuni genome sequence and the Human X Chromosome as
described in Table 5.1. The search parameters of the software packages
were set in such a way that only PTRs should be detected. The relevant
parameter setting are indicated on Table 5.3.

Table 5.4: The number of minisatellites reported for different motif lengths.
The algorithms were first run on the Jejuni genome then on the Human X
Chromosome.

Motif size Mreps Phobos TRF ATRHunter
Jejuni HX* Jejuni HX®* Jejuni HX® Jejuni HX*®
6 1328 35 1328 35 1222 4 6 2
7 263 11 252 9 241 6 0 0
8 98 5 94 5 89 4 0 0
9 98 3 95 2 90 2 98 3
10 10 1 10 1 35 1 10 4
11 10 0 10 0 15 1 10 0
12 11 1 11 1 25 0 11 1
13 0 1 0 1 0 0 0 1
14 0 0 0 0 0 0 0 2
15 1 0 1 0 2 0 1 0
16 0 0 0 0 1 0 0 0
17 0 0 0 0 1 0 0 0
18-20 0 0 0 0 0 0 0 0
21 1 0 1 0 1 0 1 0
22-100 0 0 0 0 0 0 0 0
Total 1820 57 1802 54 1722 18 137 13

“Human X Chromosome.

The results obtained are summarised in Table 5.4 and the accompanying
details of the reported results follows below.
Reported PTRs for the Jejuni Genome sequence

In this run, Mreps reported the highest number of repeats namely, 1820.
Phobos reported 1802 repeats whereas TRF and ATRHunter reported 1722
and 137 repeats respectively. Furthermore, the following was noted:

© University of Pretoria

&

3

A 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
78 COMPARISON

e All the software packages reported on the longest TR in the data.

e All the software packages reported on the TR in the data that had
the longest motif length, namely 21.

Mreps ATRHunter

Mreps ATRHunter

Figure 5.3: Venn diagram showing over-
Flgure 52 Venn diagram ShOWing over- lapplng PTRs from Human X Chromo_

lapping repeats from Jejuni sequence. some.

In Figure 5.2 a graphical representation of detected repeats is provided
as a Venn diagram’. The figure reflects the relationship of the number of
repeats detected by one software package with one another. Thus, the total
number of repeats that were detected by all the software packages is 125.
From Figure 5.2, it is clear that Mreps detected 3 repeats that were not
detected by any other software whilst TRF detected 49 repeats that were
not detected by any other software.

Reported PTRs for the Human X Chromosome sequence

Figure 5.3 shows reported data similar to that of Figure 5.2 except that
the numbers represent repeats detected within the Human X Chromosome.
When closely observed, it appears that 3 repeats were detected by all the
software packages. Although Mreps has detected the highest number of

"The Venn diagrams were generated using VENNY—a tool for comparing lists with
Venn Diagrams [59)].

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

5.5. OBSERVATIONS 79

repeats, it did not detect any repeats that were not detected by other soft-
ware packages. TRF discovered 1 repeat that was not found by any other
software package, and ATRHunter discovered 3 such repeats.

Mreps detected all the 54 PTRs found by Phobos, and found an addi-
tional 3. The situation is almost as good with respect to TRF and Mreps:
Mreps found all except one of the 49 PTRs found by TRF, and also found
an additional 9. The longest motif length reported on was 15, which was
detected by both TRF and ATRHunter. From the reported data, it is clear
that Mreps and Phobos detected more repeats when the motif length was
small. TRF and ATRHunter detected more minisatellites than Mreps and
Phobos when the motif length increases.

Analysis of algorithms for perfect detection

Clearly, there are some dissimilarities in the minisatellites report. To gain a
better understanding on the cause(s) of this diversity, a short DNA sequence
of length 84 (see Figure 5.1) was used as input data. Table 5.5 shows 5
different PTRs that were observed, and indicates the index position from
where each PTR starts. From the table, the following can be noted about
the software:

1. Only TRF did not report the repeat in PTR number 1. This could
be because a longer repeat with perhaps better alignment i.e. better
score, was reported in PTR number 2 instead of PTR number 1. A
large portion of PTR number 1 lies inside PTR number 2.

2. Phobos did not report on PTR number 2 and 3. These repeats occur
inside other repeats. It is possible that Phobos aims not to report on
a repeat more than once. Thus Phobos avoids reporting on internal
PTRs—PTRs occurring inside one another. That is, large parts of
both PTRs number 2 and 3 occur within PTR number 1. In fact,
according to the Phobos manual [49], in such cases only repeats with
high scores are reported.

3. Only Mreps reported PTR number 3 as a potential repeat. As men-
tioned before, this repeat falls within another repeat—it is partly
formed by the repeat in PTR number 2. All the other software pack-
ages use some scoring (refer to Chapter 2 of this dissertation) as a
mechanism to qualify repeats to be reported. A repeat is first eval-
uated and if it scores above the stated alignment score, it is then

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
80 COMPARISON

reported. In this case, this PTR appeared to have not met the score
requirement.

4. Only TRF did not report PTR number 4. The reason behind that
could be similar to that of item 1 of this list. Sequence 4 is embedded
in PTR number 1 as reported by TRF (See Table 5.0.).

To summarise, Mreps reports all PTRs that are present, whist the other
software packages filter out some. TRF and ATRHunter parameters allow
for the possibility of longer repeats with errors. From these observations, it
can be concluded that:

e Software parameters have an effect on the detection of minisatellites.
If these parameters are internal to the algorithm, the user has no
control over them.

e The nature of the repeat, e.g. a repeat occurring within another
repeat, may differ depending on parameters used for that algorithm.

As results based on perfect detection have been presented, the output
of the approximate detection are presented next.

5.5.2 Comparison for approximate detection

H,: Equivalent minisatellites (ATRs) are detected by different
algorithms, when mismatches and/or indels are allowed.

An extract from Human X Chromosome was used as the input data
to determine how the data reported on by the various software packages
differs in terms of the number of minisatellites reported. The parameters
were set as loosely as possible, that is, the parameters for each software
package were selected in such a way that the algorithm is given maximum
latitude to decide that a given sequence of nucleotides should be construed
as a minisatellite. Thus, each respective package was expected to report as
many minisatellites as it was capable of identifying. Refer to Table 5.3 for
the parameter settings applied for ATR search.

Figure 5.4 depicts the number of minisatellites detected by different soft-
ware packages in relation to one another. From this figure, it is evident that
TRF detected the largest number of minisatellites (186). Mreps detected
152 minisatellites. This is in contrast with the results obtained during the

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

5.5. OBSERVATIONS 81

Mreps ATRHunter

Figure 5.4: Venn diagram showing overlapping repeats TRs from Human X
Chromosome. The repeats include both perfect and approximate repeats.

search for PTRs where Mreps detected the 53 PTRs (49 for TRF, see Fig-
ure 5.3).

Similarly, ATRHunter reported more TRs (89) than Phobos (65) dur-
ing this search in which ATRs were allowed, whereas this situation was
reversed in the previously described search for PTRs. During the search for
PTRs, ATRHunter reported 9 PTRs and Phobos detected 54 PTRs (see
Figure 5.3).

The software packages were capable of detecting only 3 common min-
isatellites. The number of “unique” repeats—minisatellites reported by one,
and only one, of the software packages—increased drastically.

Analysis of algorithms for approximate detection

Using the same sample file in Figure 5.1 and running the software with
parameters set to allow as many errors as they could, the outcome of this
run is tabulated in Table 5.6.

Based on an analysis of Table 5.6, the following remarks can be made
in the case of Mreps:

e In addition to PTRs detected on the previous run in Table 5.5, Mreps
detected other new repeats when the resolution parameter was changed
as reflected in Table 5.6. These repeats do not necessarily contain er-
rors, for example, sequence number 2, 14, 17 and 19 are all perfect

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

L)
MINISATELLITE DETECTING ALGORITHMS

OUTPUT

CHAPTER 5.

COMPARISON

82

sdeay 1133 518953319 818133111 0 ¥l 6 GL €9 61
sdaxy 133 8353313333 8351513333 8181513133 1 0€'c 01 ¥8 1 29 8T
sdaay 133111 1515159111333 1598181111133 0 97T €T 8L 09 LT
soqoydq 133838931333 183838933333 183838333333 181815833133 i L3¢ 1T ¥8 6% 91
AUL 28 soqoyd 153181333333 538353333333 538351313331 815151333333 0 6'C 41 78 1 8¥ ST
soday 1333931 8189893111913 $15953333333% 0 Q1 €T 99 LY ¥1
sdaayy 11337 511131313181 813311118137 511131331119 811131135153 e 44 41 8 VY e1
AYL 19159311113 5151511133338% 5353333333999 8181513331111 i 8C At 78 VY 41
A4L 1313181399 13231815117 11115131811 1333331193 1338381333 S i% 0T 8 1 €V 1T
IUNHY LV 1595911113 1518181133 1338983393 13313133333 9 i 0T 79 eV 0T
DUNHYLY -535333333333333eeeeees 18389133333333)-yeeeeees 151533333333333)eeReees 0T 14 €2 z8 1 9¢ 6
sdeajn eeee 30e03) §ovd3) 30v03) 8oe03y ¢ 29°¢ 9 ov : 61 I
A4, 29 sdeay $0980e037) 30150003} 801801039 0 k4 6 L2 0T L
IUNHY LY 0©03938-0e)38 -0ed3130e03 203930103 ¥ z o1 Gg : G 9
AUL 2381801081801087 08130103130008) 089301e03180103} 0 4 qT [[«
IUNHYLV -180©0313010313 150©03130e03-3 1309e03730e0393 Z Z 71 1€ : ¢ i
PWNHY LV eeeerr3oro3180e03130e 037031800081300037300 287038180e033130e08)30% 9 4 12 Wl e
sdaay 80e03130e03130% 081031301003130003130% 03103180©08130103130% 0 LT 12 9¢ 1 T 4
A4 2 soqoyd 8oe 08318o% 08930r 93130 0818o€ 03730e 03130® 083180% ¢ G'9 9 9¢ : 1 T
arem)jog aousnbag JIOJN sIiolre # ojey ‘dey JIJO]N [UIBuo[JIO]N ‘SO Pue jIe}g # ‘bog
.mwwdxodm oIeMm3JOs Inoj .\m@ Po3oalop Saj[[ojesiuliua GP@EMNO.HQmTQﬂ :9°G 91q%e],
18131319913 313

e -15333333 S18181311199 813898113339 6°G 48 78 - 8V g

PWNHYLY %
soqoyd ‘sdeajy $8oe033 30e03) 30e03y 8oe03y < 9 9¢ : 6T i
sdaajn 08989039 03930103 089809039 4 6 L2 0T e

A49L %

IOYUNHY LV 23980033300

‘sdoapy -89 038780e08130e03}) 93130e038730103) 4 [[T 2 4

PIWNHYLY %
soqoyd ‘sdeijy 031380e 0898o® 03930e 28130® e 9 /T ' T 1
ajex uorjisod #
axemijos aouanbag JIIoO]N yeadaa JIjoIN yjSuo[JIIO]Nl pue 23 ael§ ‘bag

‘sogeyoed o1eM)JOS INOJ oY) AQ Pa}O9)ep SOYI[RYRSIUIW 109]I0 :G'G 9[(R],

1a

ty of Pretori

iversi

© Un

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

5.5. OBSERVATIONS 83

repeats. However in this run, Mreps did not report all sequences which
were previously reported i.e. sequence 5 of Table 5.5. Thus, when us-
ing Mreps different PTRs may be reported at different resolutions.

e The repeat in sequence number 5 of Table 5.5 was detected by Mreps
when the resolution parameter was set to 0. When the resolution
parameter was set to 6, Mreps did not picked-up this repeat as indi-
cated in sequence number 15 of Table 5.6. Thus, different PTRs may
be reported by Mreps when different resolution parameter settings are
used.

e Some repeats were made longer by including a few errors in them.
For example, repeat in sequence number 4 in Table 5.5 extended by
allowing 3 errors, as shown in Table 5.6 sequence number 8.

Similarly, the following can be observed for Phobos:

e In some cases, Phobos combines adjacent repeats by allowing errors
between them to form longer repeating sequences. For example, se-
quence number 1 in Table 5.5 and sequence number 1 in Table 5.6.

From the above observations, the following can be concluded about the
algorithms which have been studied:

e The preferences of Mreps and Phobos are for short and perfect repeats.
In contrast to that, TRF and ATRHunter are more prone to report
longer and approximate repeats. This may be due to the parameters
settings of TRF and ATRHunter which are more similar to each other
as opposed to Mreps and Phobos.

e Although Mreps, ATRHunter and Phobos do report overlapping re-
peats, Phobos does not report an overlap if it is a multiple of another
repeat [49]. TRF limits these repeats to at most three pattern
sizes [6].

e Mreps reports partial repeats—repeats with a motif repeated less than
two times. All the other software packages require that a motif be
repeated at least twice before it can be reported.

It has been made clear that the algorithms in the study can detect dif-
ferent minisatellites on the same genomic sequences. These observations
certainly contradict the aforementioned hypothesis—H;. These differences

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
84 COMPARISON

seem to have been caused by different “search logic” used by these algo-
rithms.

In order to ascertain if the parameter settings and/or the definitions of
minisatellites are the only causes of the different minisatellites detected by
the algorithms under consideration, a TRF definition of minisatellites will
be used to test the last hypothesis — Hs. Section 5.5.3 explains the details
of the test process.

5.5.3 Comparison between TRF and ATRHunter

The previous section showed clearly that different minisatellite searching
algorithms under this study detect different minisatellites, even when pre-
sented with the same genomic sequence as input data. The possible cause
for this behaviour is the different definitions of minisatellites employed by
these algorithms, and hence, the parameters they use. What one algorithm
regards as a minisatellite, may not necessarily be regarded as a possible
minisatellite by another algorithm.

ATRHunter provides three different definitions of TR and three imple-
mentations which correspond to these definitions (Section 2.4.4). One of
these definitions is claimed to correspond to TRF’s definition [88]. To test
Hj, an implementation of ATRHunter which corresponds to TRF’s defini-
tion with the same parameter settings was used.

Hj: Non-equivalent minisatellites (PTRs and ATRs) are de-
tected by different algorithms when the meaning of “ap-
proximate” assumed by the algorithms varies Hs from
one to the next.

In order to do that, two comparisons on the same data were conducted.
The first comparison used ATRHunter’s default definition of a TR. The
second comparison used the definition by TRF. The swam genomic sequence
was used for this comparison as indicated in Table 5.1.

Using ATRHunter’s default TR definition

Figure 5.5 indicates detected minisatellites with alignment weights set to
allow as few errors as possible. It can be seen that each package reported
the same number of minisatellites (10). However, jointly they detected
17 different minisatellites only 18% (3) of which were detected by both
packages.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

5.5. OBSERVATIONS

TRF-a ATRHunter-a

Figure 5.5: TRF weights(2, 7, 7) align-
ment score 30. ATRHunter (default def-
inition) weights(2, 7, 7, 7) Similarity
level 0.7.

85

TRF(2,3,5) ATRHunter(a)

7SN

ATRHunter(b)

Figure 5.6: TRF weight(2, 3, 5)
Align. Scr 30. ATRHunter-a(2, 3, 5, 5),
ATRHunter-b(1, 0, 1, 0) and both have
Similarity level. 0.7

To determine which role the parameters have in this observation, the

parameters for the two algorithms were loosened to allow by all means

every minisatellite a greater chance of being detected. Firstly, ATRHunter’s
alignment weights are set similar to that of TRF (ATRHunter(a)), then set
to their maximum (ATRHunter(b)), as it appears in Figure 5.6.

TRF detected 32 minisatellites, whilst ATRHunter(a)and ATRHunter(b)
reported 30 and 49 respectively. When parameters are loosened, more re-
peats were detected. Although the number of minisatellites common to
(TRF and ATRHunter(a)) and (TRF and ATRHunter(b)) is 6 in both cases,
2 minisatellites are lost and 2 new are reported. This is probably due to

increased motif sizes, as more errors are being tolerated.

Using the same (by TRF) definition

Figure 5.7 shows the relationship of TRF and ATRHunter using the param-
eters as highlighted in the figure. The following can be noted about using

this common definition:

e The number of repeats detected by ATRHunter is 69, whereas TRF

has detected 32.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
86 COMPARISON

ARTHunter-a ATRHunter-b

TRF ATRHunter

Figure 5.7: TRF weight (2, 3, 5) alignment score 30. ATRHunter-a and
ATRHunter-b using the default definition weight (2, 3, 5, 5) and weight (1, 0,
1, 0) respectively with both Similarity Level of 0.7. ATRHunter uses the TRF’s
definition of TR with the weights set to (2, 3, 5, 5) and alig. Scr. of 30.

o ATRHunter has discovered 8 minisatellites in common with TRF that
were not found by the variants ATRHunter-a and ATRHunter-b. In
total, 14 minisatellites were detected by both TRF and ATRHunter.

e Two of TRF’s minisatellites were detected by ATRHunter’s default
minisatellite definition (ATRHunter-b in Figure 5.7) that were not
detected when using ATRHunter’s TRF definition (ATRHunter in
Figure 5.7).

e ATRHunter (TRF definition) and ATRHunter-b (default definition
with very loose parameter settings) detected 14 minisatellites which
are common to both.

From the above results, it is clear that TRF’s definition enabled ATRHunter
to detect more minisatellites than TRF and the two ATRHunter variants
(ATRHunter-a and ATRHunter-b). Loosening the parameters increased the
chances of detected minisatellites that were previously detected by TRF.
This can be quantified. Of TRF’s 32 TRs, ATRHunter-b detects 8 (i.e.
25%), and ATRHunter detects 14 (i.e. 44%). This is evidence that the
definition on a TR does affect reported minisatellites.

© University of Pretoria

5.5. OBSERVATIONS

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

87

Table 5.7: Similarities and difference between TREF and ATRHunter se-

quences.
Package Start Motif Sequence
Both TRF & 75 tcact®attaaat tcactattaaat tcacgattaaat
ATRHunter tcacgbattaaat tcactattaaat tcacgattaaat
5679 aatgaaggg aatgaaggg aatgaatgg?
aatgaaggg aatgaatgg aatgb
6497 ataatt ataatt ataatt ata®
ataatt ataatt ataa’
6524 aaaagataaaaaaaataagb aaaagataaaaaaaataag aaaa-
‘ataaaaaaaataa
aaaagataa® aaaagataa aaaaaataa gaaaaataa
aaaaaataa
7233 ttttete ttttcte ttttete t¢
ttttcte ttttete tt°
7922 ggtgct getgct ggtget ggt
TRF 6526 aagataaaaaaaat aagataaaaaaaat aaga-aaaataaaa
only 6630 aaccttcgggag aaccttcgggag aacc-tcggga
6905 ttatttaa ttatttaa ttatttaa t
6974 tcttatatatat tcttata-atat tcttatatatat
ATRHunter 1095 gattcattt gattcattt gattcattt
only 3300 tgaaggaaccaagtt tgaaggaaccaagtt tgaaggaaccaagtt
5879 atactagtag atactagtag atactaatag
6740 acctacatt acctacatt acctgcatt
6857 ttaaaatac ttaaaatac ttaaaagac
6910 taattatttaa taattatttaa taattatttta
*ATRHunter.
bTRF.
¢Indel

Analysis of the results when the same definition is used

Table 5.7 shows the detected minisatellites. The upper part of the table
shows those minisatellites detected by both algorithms, the middle part and
the bottom part shows minisatellites detected by only TRF and ATRHunter

respectively.

Starting with common minisatellites, those detected by both TRF and
ATRHunter, the following was noticed:

e Sequence 75: Here, each package interprets the same sequence as a
TR, but each assigns a different motif to the TR. Curiously, the mo-
tif used by TRF matches the last repeat rather than the first repeat
(which is the conventional notion of a motif). Notice that the differ-

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
88 COMPARISON

ence in motif choices does not affect the total number of matching
errors. In each case there are only two repeats, and one contains a
mismatch relative to the other, irrespective of which repeat is des-
ignated the motif. From this perspective, TRF could therefore have
selected the first repeat as the motif, but did not do so for reasons
that lie embedded at the coding logic.

o Sequence 5679: Both ATRHunter and TRF reported this TR as hav-
ing the same motif. However, TRF appended aatg at the end of its
TR sequence— a partial repeat sequence that does not fully cover the
motif. This makes TRF’s TR four nucleotides longer than that of
ATRHunter.

o Sequence 6497: Once again, both ATRHunter and TRF reported this
TR and used the same motif. In this case ATRHunter’s last sequence
group is ata whilst TRF’s is ataa.

e Sequence 6524: In this case, the choice of the motif size is differs.
ATRHunter’s motif is 9 nucleotides, whilst TRF’s motif is only 19.
This leads to a sequence being regarded as a TR, but viewed as having
different characteristics by the different packages.

e Sequence 7233: The TR identified by both ATRHunter and TRF at
this offset has similar characteristics to that identified at 6497: in each
case, the TR has the same motif. ATRHunter’s last sequence group
is simply ¢ whilst TRF’s is tt.

o Sequence 7922: At this offset, ATRHunter and TRF report exactly
the same minisatellite.

The above minisatellites have similar starting positions, but they differ in
one way or the other. These differences may result not only from the motif,
but also on the repeating sequence itself. A trade-off between longer TRs
(with more errors) and shorter TRs (with fewer errors) remains important.
Terminal minisatellite nucleotides may in turn affect the offset position of
the subsequent minisatellite, otherwise resulting in overlapping TRs.

The table also highlights minisatellites that were detected by TRF but
not by ATRHunter (at offsets 6526, 6630, 6905 and 697}) and vice-versa
(at offsets 1095, 3300, 5879, 6740, 6857 and 6910). Although some min-
isatellites were detected by certain software packages and totally missed by

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

5.6. DISCUSSION OF RESULTS AND CONCLUSIONS 89

others, some minisatellites were embedded within one another. As an ex-
ample, the minisatellite detected by TRF at starting position 6905 is part
of the minisatellite reported by ATRHunter at position 6910.

Certainly, the above results belie the hypothesis proposed earlier. From
the above observations, it is evident that ATRHunter detected different
minisatellites, although ATRHunter claimed to use the same minisatellite
definition as TRF. One possible explanation for this difference, may again
point to the use of parameters. Although ATRHunter and TRF define the
weight and alignment score similarly, ATRHunter’s weight parameter is not
exactly the same as that of TRF. TRF’s weight parameter is a tuple of three
whereas ATRHunter’s weight parameter is a four-tuple. The fourth weight
is for terminal indels—indels at end positions.

5.6 Discussion of results and conclusions

The results from the first comparison have shown hypothesis H; to be false.
From these results, it is possible to conclude that Mreps and Phobos are bet-
ter as ATR detectors, than TRF and ATRHunter—this is due to parameter
settings that can favour longer TRs for the latter group. Therefore, Mreps
and Phobos are arguably more suitable to be used as seed generators—
that is, be used to find new motifs that can be used by other algorithms,
including those that rely on minisatellite databases for their search.

Similarly, the second hypothesis H, was falsified by the comparison of ap-
proximate TR detection. The reported results revealed that no matter how
loosely the parameters are set, differences between minisatellites reported
still exist. In fact, the more errors that are allowed within a minisatel-
lite, the more divergences between minisatellites identified by the different
packages.

The possibility that this is as a result of the different minisatellite def-
initions used by these algorithms was investigated using hypothesis Hj.
The outcome of this investigation did produce enough evidence to support
hypothesis Hs. In this investigation, ATRHunter produced more repeats
than its rivals, TRF and ATRHunter (using the default definition), and
this is supported by experimental results conducted by the developers of
ATRHunter [88]. Although ATRHunter algorithms claim to use the same
definition of a TR as TRF, this definition was implemented differently from
that of TRF i.e. the inclusion of terminal indels by ATRHunter. This
somehow has resulted in these differences. Other implicit parameters that

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. MINISATELLITE DETECTING ALGORITHMS: OUTPUT
90 COMPARISON

are internally employed by the algorithms in their search may also have
something to do with this difference.

Although the high-level definition of minisatellite used by investigated
software packages more or less correspond, there are differences in the actual
minisatellites detected. These differences mainly result from the decisions
about the extent to which a minisatellite is allowed to stretch (maximally,
or in the case of Mreps, minimally) and still be regarded as a minisatellite.
Depending on the algorithm, this maximal stretching may affect whether
the subsequent minisatellite will be reported or not. FError tolerance of
the algorithm is another cause of these differences. This can be seen in an
algorithm’s preference for PTRs versus ATRs. The sensitivity of parameters
influencing this tolerance differ from one algorithm to another.

Following the investigation and the presentation of the evidence, it
should be concluded that the minisatellites detected by ab initio algorithms
tend to differs from one algorithm to the next.

It could be possible that divergences amongst these algorithms could be
reduced by agreeing on a more detailed definition of what a minisatellite is.
This definition should specify what parameters and their sensitivity level
is, are allowed. As an example, on the ATRHunter’s implementation of TR
definition of TRF, there is a fourth parameter dedicated to terminal indels.
This parameter does not exists in TRF’s implementation, and is probably
another cause of the difference between the two implementation results. In
theory, techniques used by different algorithms should not result in different
outcomes, when initially the goal is the same—finding minisatellites.

The software packages discussed in this chapter are yet to undergo us-
ability evaluations, which is the topic for the next chapter, Chapter 6.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g

Chapter 6

Minisatellite detecting
algorithms: usability comparison

6.1 Introduction

It was reported in Chapter 5 that different implementations of algorithms
identified do not report on exactly the same minisatellites. This holds in the
case of detection of a variety of PTRs as well as ATRs. It was explained how
these differences came about in some cases, although a full understanding
of the internal workings of the algorithms is required to fully explain the
causes of these dissimilarities—something that is beyond the scope of this
dissertation, not least because of the incomplete public information about
these algorithms.

On the other hand, it should be borne in mind that discovering novel
repeats is one of the reasons for employing an ab initio approach to min-
isatellite detection. In this sense, it might be advantageous that various
algorithms detect different minisatellites since this might occasionally un-
cover interesting minisatellite-like strings that would have been missed if
a rigid minisatellite definition has been used. Such minisatellites could be
viewed as having more biological significance by one algorithm depending on
what that algorithm regards as significant. In that case, it could be benefi-
cial to allow the user to choose an algorithm or a combination of algorithms
depending on the user’s intentions.

A Graphical User Interface (GUI) could be created for the user to search
for minisatellites. The user can set the parameters, and in addition to that,

91

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
92 COMPARISON

choose which algorithm(s) to use. The output of this search would show
minisatellites detected by say, all the algorithms that were chosen, followed
by minisatellites detected by only a single algorithm.

The problem with this solution however, is the different parameters used
by these algorithms. The user will be expected to set the parameters for
each algorithm chosen. This would mean that the user has to have a deeper
understanding of every algorithm the user wishes to use. In addition, the
user has to be able to tune the parameters between algorithms so that the
algorithms detect desired results, i.e. constraining one algorithm’s parame-
ters, whilst relaxing the other, may not yield desired results.

Due to the restrictions on availability of source codes of some of these
algorithms, and the time constraint placed for the completion of this study,
this dissertation will not try to implement the above solution. This disser-
tation will however evaluate and improve a readily available algorithm de-
veloped by De Ridder et al [17] called FireuSat. The algorithm was initially
developed to detect microsatellites. FireuSat is currently being extended as
‘FireSat’ to detect minisatellites as well. For the purpose of this disserta-
tion, the algorithm behind FireSat need not be discussed. The interested
reader may consult De Ridder et al [18]. This dissertation uses the name
FirepSatPlus to refer to the GUI behind FireSat.

In their study on improvements of OSS usability, Raza et at [67] sug-
gested the following key factors:

e User requirements: understanding the user requirements helps in
designing systems that are more usable.

e Usability expert’s opinions: usability could be improved by in-
volving experts during the design of the system.

e An incremental design approach: asopposed to building the whole
system at once, different features in this approach are added incre-
mentally. This means essential features are added first, whilst the
nice-to-have features are implemented last.

e Usability testing: testing the system with real users will iden-
tify those requirements which are important to the user but were not
apparent to experts.

e Knowledge of user-centred design methods: knowledge of these
methods is likely to encourage designers to apply them appropriately.

© University of Pretoria

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
&

“ UNIVERSITEIT VAN PRETORIA

A 4

6.2. HEURISTIC EVALUATION OF TR SOFTWARE GUI 93

With these key points in mind, this chapter will evaluate the available
GUIs—FirepSat, TRF and Phobos—using Nielsen’s ten heuristics in Sec-
tion 6.2 as the expert evaluation technique. This is followed by task analyses
to identify user requirements of the GUI in Section 6.3. Section 6.4 presents
the improved GUI and the actual usability testing is reported on in Sec-

tion 6.5.

Table 6.1: Nielsen’s ten heuristics.

Heuristics

Description

Visibility of system sta-
tus.

User should be kept informed about what is going
on, using appropriate feedback.

Match between system
and the real world.

System should speak user’s language, rather than
system-oriented terms.

User control and free-
dom.

Users often choose system functions by mistake, in
that case, they should be allowed to leave unwanted
state without too much difficulty.

Consistency and stan-
dards.

Users should not wonder if actions, words, or
phrases mean the same thing in different context.

Error prevention.

The system should make it hard to make errors.

Recognition rather than
recall.

Objects, actions and options should be visible.
Users should not have to remember information
from one part of the dialogue to another.

Flexibility and effi-

ciency of use.

The user interface should allow users to customise it
so that frequent actions are easy to perform as the
user wants. This can be accomplish by for exam-
ple,using accelerator keys and keyboard short-cuts
and allow users to create their own short-cuts. Ac-
celerator may speeding actions for expert users.

Aesthetic and minimal-
ist design.

Dialogues should not have irrelevant information.

Help users recognise, di-
agnose and recover from
erTor.

Provide informative error messages in plain lan-
guage.

Help and documenta-
tion.

Provide instructive help and documentation on the
use of the system.

6.2 Heuristic evaluation of TR software GUI

It was mentioned in Section 6.1, that the opinion of a usability expert could
significantly contribute to improving OSS usability. This would also appli-
cable to Academic/Research Software (ARS). Table 6.1 shows ten heuristics

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
94 COMPARISON

proposed by Nielsen [56] as a guide when designing the usability aspects of
a User Interface (UT). A heuristic is a guideline or general principle than can
guide or critique a design decision [19]. Heuristics are generally useful for
evaluating a Ul design early during its development by software usability
experts. The advantage of using this expert evaluation technique is that
it is conducted early during system design, and therefore design flaws can
be discovered and corrected earlier. The time and cost of re-performing us-
ability testing with intended real users is thus minimised. After all, Lewis
and Rieman [46] acknowledge that a user’s time is almost never a free or
unlimited resource.

A screen-shot of FireuSat, TRF and Phobos GUIs appears in Figures 6.1,
6.2 and 6.3 respectively. Typical user tasks were performed on the software
packages and reported on the GUI based on the heuristics. Using Nielsen’s
ten heuristics, the three GUIs—FireuSat, TRF and Phobos—were evaluated
and the summary of that evaluation is presented next.

7 FireMuSat GUI Shell HEE
Source file: Substring Error Options
I | Max substring error:
Output file: IWODUU il
IC:\FireMuSat.reI\FiesuIt.txl | Mismatch penalty:
Flanking sequence: Motif Range Options ,1.0 L]
IU i] [~ Specify a custom motif range Delete penalty:

Motif length: otart motil ,0'5 LI
I3 ﬂ l Insert penalty:

End motif
Max motif error: , IU'S LI
i =l
Max adjacent ATR elements: Min required TR elements: E
[100000 ElE 3] ROCARO

Figure 6.1: FireuSat GUI.

Below is the evaluation of the three GUlIs, i.e. TRF, Phobos and
FirepSat, based on Nielsen’s heuristics.

1. Visibility of system status:
Requires that the user be informed about what the system is doing.

© University of Pretoria

6.2.

&

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
¥ YU

NIBESITHI YA PRETORIA

HEURISTIC EVALUATION OF TR SOFTWARE GUI

95

n Tandem Repeats Finder

(=l s

File Parameters Directories Options Run View Help

5| @] | 8| B G

Alignment Parameters (match, mismatch, indel)

Parameters

Minimum Alignment Score To Report Repeat

Maximun Period Size 100 ~

2,11 hd

50 <

- Output D

Directory CALAB\Data

File Prefix jejuni

Sequence
CALAB\Dataljejuni.txt

tgaaaatt

>Campylobacter jejuni NCTC11168 length: 1641481 httpiiwww.sanger.ac.ukiProjectsC._jejunil

aagcec
9 g

aactat

tttaaaatt:

gaatacgaa

gatcttttagttttt

g 99

ggc qcq

scannsng...i — x
m Progress bar

Figure 6.2: Tandem Repeat Finder GUI.

Welcome to Phobos - a tandem repeat detection tool

Input sequence file: |C:.'LABIDalalje]uni.m

Browse

Qutput phobos file: |C:.'LABJDala/]e]uni.phobos

Search modes:

@ Imperfect search
© Perfect search
© Extend exact search

[~ Save repeat-r

General options:
Analyse sequence range (blank for firs
From |1 to

Repeat unit size range:

From |1 to |10

[T Treat N's as missense instead of neutral

B Maximum number of successive N's
allowed in a repeat:

Output options:
General output format:

Browse

Options for imperfect search:
Mismatch score: (typical -3 to -6) I?
Gap score: (typical 3to 6) [5
Recursion depth: |5_
[~ Maximum score reduction

Typical analysis] Typical masking |

Load parameters

Save parameters

Reset parameters

Run analysis

About

Quit

il

Requirements on satellites to be reported:
Minimum length of a satellite:
0+ F *(unit-length), but not less than

Minimum score of a satellite:
0+ [1 *(unit-length), but not less than

Minimum and maximum percentage perfection:
Minimum: |0 %

Typical length constraint |

Maximum:

o
F

100 %

Typical score constraint |

Treating N's when computing perfection:

Printing mode for repeat sequence:
[print repeat alignment ~]

Print flanking nucleotides: |0

[hm— >

Figure 6.3: Phobos GUI.

© University of Pretoria

Germany

|extended phobos format ~] |as mismatch 4|

Copyright
Printing mode for satellite unit Remove hidden repeats: oo f]“'?swpi:""fg;h
[normalized (cyclic+rev. complement) ~] [remove hidden] A e]

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
96 COMPARISON

This heuristic requires that users be informed about what the system
is doing. As an example, searching a very large genome sequence on
slower machines may require more time for an algorithm to complete
executing. In cases like that it is important that the user be able to
tell if the system is running or not.

e TRF: As indicated in Figure 6.2, the system status is indicated
on the status bar on the bottom left of the GUI in the form of
informative text and a progress bar. The progress bar gives an
estimate indication of how far the search is from completion.

e Phobos: Phobos uses the status dialogue as shown in Figure 6.4.
Although this dialogue indicates how long the search process has
been running, it does not give clues about the progress towards
completion.

e FireuSat: No explicit system status is given.

The system status in both TRF and Phobos is made visible to users.
Phobos’s system status gives more information on the current process
but fails to indicate the progress of the search. In other words, users
cannot make an informed decision when requiring to interrupt the

f b
4 ®7 Progress of phobos analysis |
i - -

- -

Phobos version: 3.3.10
Analysis started: 07/05/12 10:04:36

Real time: 00.00.05
| seq. number: 1
| Seq. name: Campylobacter
Pattern length: 7
Status: running

Figure 6.4: Phobos search status indicating the systems busy status.

' y
- =

- - o —

? Are you sure you want to stop this analysis?

o

Figure 6.5: Phobos requiring a confirmation before executing a milestone
action.

© University of Pretoria

6.2.

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

HEURISTIC EVALUATION OF TR SOFTWARE GUI 97

search. It might not be wise to interrupt a process that has been
running for several hours and is near its completion. On the other
hand, it might be a good decision to stop a process that has run for
few hours and still requires few hours or days to complete. However,
this feature may not be necessary for a process that takes a few seconds
to complete.

2. Match between system and the real world:

The choice of language used on the system should be consistent with the
language the users speak everyday. Using natural everyday language
and matching the system with the real world, allows the users to in-
teract with a system in a way that seems natural to the users. In
other words, the behaviour of the system as a result of some action
should be predictable to the user. The following can be noted about
the GUIs with regard to this heuristic:

e TRF: The use of a magnifying glass icon on a piece of paper in
Figure 6.2 may be misinterpreted for a search icon instead of
view icon. However, TRF uses tooltips*, which helps in guiding
user’s choices.

e Phobos: The language used by Phobos (Figure 6.3) is in every-
day language. In other words, computer jargon has been kept to
the minimum.

e FireuSat: In Figure 6.1, the use of the word Ezecute which is
intended to mean start searching, may be debatable by different
users. Other words that could be used include Start, Search and

Run.

The choice of icons is very important as to not bring confusion on their
meaning. Cultural differences may also affect their meaning, that is
to say, an icon may mean one thing in one community and another
thing in the other. In such cases, the use of tooltips can help clarify
the misunderstandings.

. User control and freedom:

It is important for users to have control over the system. As an exam-
ple, if wrong parameters were chosen and the user realises that just

*A tooltip is a text that appears when a mouse pointer is hovered over a GUI element

without clicking on it.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
98 COMPARISON

after starting the search process, the user should not have to wait until
a task is completed. As said before, with large genomes, it may take
a while before a search task is completed.

e TRF: There is no explicit means of stopping the process once it
has started.

e Phobos: While the search process is busy running, the status
dialogue allows users to terminate the search by pressing the stop
button anytime during the search as it can be seen on Figure 6.4.

e FireuSat: The GUI (Figure 6.1), like the GUI of TRF, does
not give this ‘emergency exit’ control.

Phobos users are given control and freedom over the system by al-
lowing the user to stop the search anytime. However, such freedom
is restricted to the user by not providing information that may be
necessary for good decision making.

4. Consistency and standards:
Section 3.3 of Chapter 3 brought up the importance of learnability as a
usability attribute. Hence, this heuristic may support the learnability
of the GUI by users, because previous knowledge gained from using
other GUIs can be applied to the new GUI. Learning the new GUI is
thus made easier.

e TRF: TRF uses the word Period to mean motif.

e Phobos: Phobos uses the word Unit and Gap to mean motif and
indel respectively.

e FireuSat: This GUI uses the Min and Max in reference to vari-
ous settings such as motif error, required TR elements, substring
error, etc. On the other hand, it refers to start motif and end
motif under the heading of motif range. It would be more consis-
tent to speak in this context of Min motif length and Mazx motif
length respectively.

FirepSat’s uses of the word Ezecute is also in contrast with ter-
minology used by Phobos and TRF, both using Run.

It was mentioned in Chapter 1 Section 1.2, that the terminology used
in a discipline may vary over different authors. Some of the incon-
sistencies mentioned above are due to lack of standards within the

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

6.2. HEURISTIC EVALUATION OF TR SOFTWARE GUI 99

research community investigating minisatellite detecting algorithms.
These inconsistencies cause difficulties in transferring knowledge learnt
from one software package to the other.

5. Error prevention:
The risk that actions may put the system into an error mode, should
be minimised by making them hard to perform, especially by novice
users.

e TRF: TRF has few parameters in which the user has to select
from a list of predefined options. Providing predefined values
makes it hard, if not impossible, for the user to choose invalid
parameters.

e Phobos: The use of a ComboBox' for fields like Gap scores in
which its value is limited to a range from -3 to -6, could be
more appropriate than EditBox*. This is more error preventing
because the user will know the available options to chose from,
and this minimises invalid inputs from being entered.

e FireuSat: The controls in FireuSat GUI have been selected to
help minimise users making errors.

Providing users with predefined options makes it less likely to make
errors. This is the route taken by TRF and FireuSat. It is however,
not always possible to go this route as pointed out in point 9 below.

6. Recognition rather than recall:

This heuristic requires that the system should reduce users’ memory
load. In other words, users should not heavily rely on their memory
but the system should assist users to recall whatever is required by
the system. Although this heuristic seems to be more appropriate
for applications involving multiple of screens/pages , the provision of
means to browse for input and output data files by all the GUIs is
noticeable.

7. Flexibility and efficiency of use:
Providing accelerator keys® and keyboard short-cuts makes the system

tA ComboBox is a GUI control that displays options available to the user as a drop
down list. The user can either edit or choose from the list.

fAn EditBox is a GUI text field in which the user can edit.

§ Accelerator keys appear as underlined characters on the GUIL The user has to press
the A1t + key to access them.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
100 COMPARISON

more efficient to use by frequent users. In addition, providing alter-
native ways to accomplish the task makes the system more flexible to
cater for different users.

e TRF: There are two ways to manipulate parameters, that is di-
rectly, or via the menu, on the GUL

e Phobos: Parameters could be manually entered on the GUI or
be loaded and/or saved for later reuse.

e FireuSat: This GUI does not provide for this heuristic.

TRF and Phobos give alternative ways for manipulating parameters
but they do not provide the use of short-cuts for speedy manipulation
by expert users.

8. Aesthetic and minimalist design:
Too much unnecessary details on an application’s GUI may hinder the
user’s performance by diverting the user’s focus away from intended
goals.

e TRF: TRF shows the most minimalist design. The design looks
simple and the flow—it is easier to see which parameter to set
next—in setting parameters is predictable.

e Phobos: Of the three GUIs, the Phobos GUI is the most de-
tailed. Thus, the GUI may look complicated and overwhelming
for novice users at first glance.

e FirepSat: FireuSat’s GUI does not show inappropriate infor-
mation that may interfere with the user’s intentions. The GUI
looks very minimal in its design.

Complicated or aesthetically unpleasing GUIs may result in users
avoiding to use them. However, as discussed in Chapter 3, usabil-
ity has attributes which are subjective. Users also need to see how
they are supposed to move around the GUI. Having to revisit param-
eters that have already been set as a result of unclear flow of control,
may jeopardise productivity.

9. Help users recognise, diagnose and recover from error:

The GUI should not allow users to set the system into an error mode.
If that cannot be prevented, then users should be able to realise the

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

6.2. HEURISTIC EVALUATION OF TR SOFTWARE GUI 101

10.

—_— -
Gfiremusat ﬁ

Start motif: "2" is of incorrect size

Figure 6.6: FireuSat error message.

consequences of those actions and reverse or gracefully recover from
such actions.

e TRF: It would be difficult, if not impossible for users to put the
system into a fatal error state. This is because of preventative
built-in safeguards taken by predefining only valid user inputs as
available user options.

e Phobos: Figure 6.5 shows the results of an intentional, but possi-
bly erroneous interruption of the search process. The latter gives
the user an opportunity to recover from the possibly erroneous
interruption.

e FirepSat: Similarly to TRF, putting FireuSat in to a dangerous
error state would be hard but not impossible. As an example,
Figure 6.6 shows an error message that is displayed after the user
has entered ‘2’ as the starting motif. Although the message may
be helpful to the user in recognising what went wrong, it does
not give a hint on what the starting motif should be.

Although forgetting the input file may be regarded as an example of
an error that users should be able to recognise from the error message
and take required action, such errors are not actually fatal. Hence,
such errors do not impose a significant usability threat.

Help and documentation:

The availability of online documentation enhances the learnability of
the system by providing user assistance online—users do not have to
move away from the application GUI to find help.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
102 COMPARISON

e TRF: TRF provides help via context sensitive tooltips as shown
in Figure 6.2 and documentation that can be directly accessed

from the GUI.
e Phobos: No help is directly available from the GUI.
e FireuSat: Similarly to Phobos, no help is provided.

Even though it is recommended that help facilities should be made
available, it should not be seen as compensating for a poor design.

Table 6.2: GUI evaluation summary

Heuristic TRF Phobos FireuSat

Visibility of system v —
Match between system and the real world —
User control and freedom.

Consistency and standards

Error prevention.

Recognition rather than recall.

Flexibility and efficiency of use.

Aesthetic and minimalist design.

Help users recognise, diagnose and recover from error.
Help and documentation.

DR NN N
I N N I NENEN
RN NN

®This observation is solely based on accidentally stopping the search process prema-
turely. In this case only Phobos allows that and hence, gives users the opportunity to
reconsider their actions.

This section highlighted some of the important aspects of usability as
guided by heuristics. Table 6.2 summarises these aspects and gives an indi-
cation of which aspects were achieved , and which were overlooked. FireuSat
seems to have overlooked the usability of its GUI more than the other GUIs.

It should be noted that a GUI’s non-compliance with one or more of
the above heuristics does not necessarily imply that the GUI has usability
problems. It merely indicates a potential usability problem in relation to the
heuristic concerned. In the commercial world, consideration of the extent
to which a GUI matches heuristics such as these, is generally carried out by
a team of experts within the company. However, in the ARS context where
software development resources are usually limited, such an approach is not
feasible. Hence, the above evaluation was conducted solely by the author
of this dissertation.

Depending on intended users and their tasks, one heuristic may be more
appropriate for one GUI than the other. Using the above evaluation, this
dissertation will eventually suggests and implement some improvements on

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

6.3. TASK ANALYSIS 103

the FiruSat GUIL In doing that, this dissertation will follow the guide-
lines used in traditional software development for designing user interfaces.
Therefore, task analysis is presented in Section 6.3 followed by requirements
capturing in Section 6.3.2.

6.3 Task analysis

Lewis and Rieman [46] have pointed out the importance of understanding
users and their tasks in order to design good interfaces. In other words, one
should know the intended users of the computer system and what they will
want to do with the system in order to know how the interface should be
to best support users needs. Task analysis is the process of analysing the
way people perform their jobs—that is, things they do, things they act on
and things they need to know [19]. Richardson et al [69] noted that task
analysis proved a method, to formally or semi-formally, analyse users’ tasks.
Analysing users’ tasks may reveal other sub-tasks and the order they ought
to be performed. Dix et al [19] mentions three techniques used in task
analysis, and these are:

e Task decomposing: This looks at the way a task is split into sub-tasks,
and the order in which these are performed.

e Knowledge-based techniques: These techniques focus on what the user
already knows about the objects and actions involved in a task.

e Entity-relation based analysis: Thus is an object-based approach where
the emphasis is on identifying actors and objects, the relationship be-
tween them, and the actions they perform.

After looking at these three techniques, it was decided that task decompo-
sition would be a more appropriate technique to use within the context of
this dissertation.

6.3.1 Task analysis of FireuSatPlus

Consider the following task that a typical user might like to perform using
the FireuSatPlus GUI to search for Tandem Repeats (TRs):

1. Task 1: Search for approximate TRs of size n, where 2 < n < 100.

2. Task 2: Search for perfect minisatellites of size range from y to z,
where y < z and y,z = 2---100.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
104 COMPARISON

3. Task 3: Search as in Task 2, but starting at index position ¢ of the
DNA sequence. In addition, manipulate the nature of TRs to be
reported by changing the following:

a) Minimum number of TR elements to be reported.

b

)

) Maximum number of errors allowed.

c¢) Penalties for mismatch and indel errors respectively.
)

d) Maximum number of adjacent ATR elements.

The above is just a summary of tasks a user is likely to want to perform
with the system. Each of the above tasks can be broken down into smaller
sub-tasks that should be completed in order to reach the goals of the main
task. These sub-tasks may need to be completed in a specific order. Dix
et al [19] refers to a Hierarchical Task Analysis, as a hierarchy of tasks and
sub-tasks and also plans describing the order in which this tasks should be
performed.

Task 1: Decomposition

0. Approximate TRs of size n.
1. Select size of n
2. Select TR type.
3. Start the search.

Plan 0: do 1 and 2 in any order
then do 3.

Figure 6.7: Task decomposition of task 1.

Figure 6.7 shows the sub-tasks that need to be completed for Task 1 to
be realised. Within these sub-tasks, sub-tasks 1 and 2 can be completed in
any order, whilst sub-tasks 3 should be performed last.

Similarly, Figure 6.8 and 6.9 denote sub-tasks to be completed in order
for Task 2 and Task 3 to be realised respectively. In both situations,
the sub-sub-tasks can also be completed in any order within a sub-task
e.g. Task 2 has sub-task 1, with sub-sub-tasks 1.1 and 1.2, which can be
completed in any order. In addition, a sub-task does not need to be fully
complete before another sub-task is started. Take Task 3 for example, a

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

6.3. TASK ANALYSIS 105

user may start with sub-task 1 and complete sub-sub-task 1.1, then decide
to do sub-task 2 before going back to sub-sub-task 1.2. In short, the first
7 sub-tasks of Task 3 can be performed in any order but they all have to
complete before the last sub-task is initiated.

The importance of breaking down these main tasks into sub-tasks is
to assist in capturing the requirements of the system and performing a
detailed design of the interface.

6.3.2 Requirement capturing and detail interface design

Using the output of a task analysis as discussed in Section 6.3.1 the require-
ments of the GUI may be gathered and used to design the initial system.
The breaking down of tasks into sub-tasks provides clues on what the sys-
tem must provide to meet user’s needs. The following requirements were
identified as the results of the task analysis done above:

1. Motif size: Users should be able to set the motif size. The size
could either be for a single motif or a range of motifs.

2. TR type: The TR type should be specified as either ATR and/or
PTR. It should be possible to search for all TR types.

3. Search index: The index of the DNA sequence could be provided
from at which the search is to start and/or end.

4. Penalties: The GUI should allow the user to set penalty scores for
mismatches and indels.

Task 2: Decomposition

0. Perfect minisatellite of size range y to z.

1. Select the motif size.
1.1 Select size of y.
1.2 Select size of z.

2. Select TR type.

3. Start the search

Plan 0: do 1 and 2 in any order
then do 3.

Figure 6.8: Task decomposition of task 2.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY

106

COMPARISON

Task 3: Decomposition

0. Perfect
1.

6
7.
8.
Plan 0:

minisatellite of size range y to z.
Select the motif size.

1.1 Select size of y.

1.2 Select size of z.

Select TR type.

Select DNA search index

3.1 Select start index position.
3.2 Select end index position.
Set penalties

4.1 Select mismatch.

4.2 Select deletion.

4.3 Select insertion.

Set maximum error

5.1 Select motif error.

5.2 Select substring error.

Set minimum TR elements
Set maximum adjacent ATR
Start the search

do 1 to 7 in any order

then do 8.

Figure 6.9: Task decomposition of task 3.

5. Maximum Error: Users should be able to indicate the maximum num-

ber of errors that are to be allowed in a minisatellite. These errors

could be motif and/or sub-string errors.

6. Minimum TR elements: Users should be able to specify the minimum

number of Tandem Repeat Elements (TREs) before the minisatellite

is reported.

7. Adjacent ATR element: There may be a need to specify the maxi-

mum number of ATR elements adjacent to each other.

The above requirements are converted into a design in conjunction with

Nielsen heuristics. The requirements will inform the design on what param-

eters should be included in the system, whilst the heuristics help inform

how these parameters should be provided, as seen in the next section.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

6.4. SUGGESTED FIREuSAT GUI IMPROVEMENTS 107

6.4 Suggested FireuSat GUI improvements

In the light of the above interface requirements and the evaluation based
on Nielsen’s heuristics, this section attempts to improve FireuSat GUI. Ac-
cording to Dix et al [19], in Uls, dialogue is often taken to mean the order
and structure of inputs and outputs between human and computer system.
In HCI, there are two dialogue description notations used, and these are
diagrammatic and textual notations. Examples of diagrammatic notations
are: State Transition Networks (STN), Petri nets, state charts, etc. Textual
notation includes grammars, production rules and event algebras to name
a few. Dialogues notations make it easier to analyse the structure of the
dialogue (or the interaction) separate from the actual program semantics.
In that way, potential usability problems can be discovered. This disserta-
tion will use the diagrammatic notation, which is widely used in dialogue
design [19].

The State Transition Network (STN)—a type of formal specification [12]
of part of system—in Figure 6.10 shows the proposed GUI design. According
to Dix et al [19], STN helps to ensure that a design is complete and does
not lead to error states from which it may be impossible to recover.

Par. Subsysiem

T P
\ Search f 2 Yy Nomal Finish f

| Start | o 1

.../:LSC =
(w: FemEsd

~

Cortinue ssarch
WOk

Stop search

Figure 6.10: Complete STN for FirepuSatPlus GUI.

The sequence of user interactions with the GUI is depicted in Figure 6.10.
The circles in the figure represent the states in which the system can be at
a given time during the interaction and the arrows denote the transitions
which are triggered by users or system actions as labelled on the arrows.
Other sub-systems that the system can get into are indicated as small rect-

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
108 COMPARISON

angles. The user’s interaction with this system can be viewed as follows:

e Start state: At this state a user may choose to quit without doing
anything, or use the help subsystem which should provide assistance on
how to use the GUI. Users familiar with the GUI can select parameters
as required, which will lead to state 1.

e State 1: A user has an option to set or reset parameters before mov-
ing to the next state. Help and ESCY options are also available im-
mediately to the user at this state.

e State 2: If everything in the previous state is correct, that is, all
required parameters have been set, the searching can begin on state 2.
Unlike the former states, help and ESC' on this state are not instantly
available. Stopping the search at this state is considered critical and
therefore requires precautions be taken before premature exit. This is
because the system is busy searching and the results written on the
output file may not be complete and therefore should not be used.

e State 3: Should the user opt to stop the search at state 2, the system
may not allow this immediately, but should issue a warning and the
opportunity to reconsider that action. This leads the system to state 3.
If the user confirms that those actions are intentional, the search will
stop (and go to state 1), otherwise the search continues (the system
returns to state 2). This state is also critical, and hence no exit is
possible.

e Finish state: If state 2 progresses to completion, then the system
moves to the finish state which in turn goes back to the start state.
The transition from state 2 to finish state is triggered by the system,
and not the user as in other states.

6.4.1 Analysis of the STN

In analysing the dialogue design, Dix et al [19] mentions five properties of
dialogue, and they are:

e Completeness: This property requires that the system remains intact
during unforeseen circumstances as a result of user action. These
actions should not have disastrous consequences.

YESC represents the escape system which is used as an exit.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

6.4. SUGGESTED FIREuSAT GUI IMPROVEMENTS 109

e Determinism: Determinism requires that no single action, leads the
system to two different states. The user should be clear what action
leads to which state.

e Reachability: Reachability ensures that every state is reachable. In
other words, there should be at least one path to each and every state.

e Reversability: This is a special case of reachability, which can be seen
as the undo.

All these properties can be automatically checked on the dialogue. Looking
back on Figure 6.10, it is observable that no unanticipated action by the user
may lead the system into an unstable state. Each action leads to one state,
and all states are reachable, whilst dangerous states are hard to reach. As
an example, stopping the search in state 2 does not automatically go to the
start state. Although, the start state is not the dangerous state, but to go to
this state from state 2 is not considered as a desired route. This is ensured
by placing state 3 as the intermediate state. The reverseability property
can be seen in state 3 which gives the opportunity to undo an action. In
summary , the presented STN is complete, deterministic, reachable and
reverseable.

Using the parameter requirements identified in Section 6.3.2, the STN
design, and Nielsen Heuristics as guidelines, a more detailed design of the
GUI is constructed.

6.4.2 Detail design

This section uses the requirements captured during task analyses and inte-
grates them with a created interaction dialogue, to produce a more detailed
UI prototype. The prototype is constructed in line with Nielsen’s heuristics
and in an incremental fashion as suggested in Section 6.1, as follows:

Aesthetic and minimalist design: Aesthetic refers to the GUI’s look and feel,
whilst the minimalist design requires that the GUI does not contain irrele-
vant information. An aesthetic GUI should encourage users to use it, and
minimalist design promotes productivity, by removing information that can
distract users. A simple GUI also promotes learnability, enabling novice
users to easily adapt to the GUI, and as they become familiar with the
application, they can progress to use the application’s more advanced func-
tions.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
110 COMPARISON

FireMuSatPlus

Input jomefthemba/FiremusSat/FireMusatCB/data/swam50.txt | | Brows...

Output jomefthemba/Firemusat/FireMuSatCB/data/swam50.txt | | Brows...

Motif size TR type:
Size & Pefect
) Microsats | Approximate
- Run search
& Minisats
X

select for motif size from 6 to 100

| Help | | Close |

| More settings |

Shows more advanced
settings

Figure 6.11: FirepuSatPlus default run mode. This mode is suitable for both
novice users as well as advanced users requiring a quick search. Starting
the search without setting any parameter will give results of perfect min-
isatellites as these are the default settings. Pressing the ‘More Settings’
button will reveal advance setting as shown in Figure 6.12.

Figure 6.11 shows a simple FireuSatPlus GUI prototype. This represents
a minimalist design which is easy to use by non-frequent users. The design
facilitates easy learning by:

e Using pre-set defaults: Defaults allow users to search for minisatellites
without setting a single parameter. As users become familiar with
the application, they can adjust the parameters as necessary. As an
example, after inputting the data source and the output file, a user
may just click on Run search. The results of this search will be perfect
minisatellites, as indicated by default values in the figure.

e Use of tooltips: Context sensitive tooltips may assist new users to
making choices of parameters, as displayed in Figure 6.11, by provid-

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

6.4. SUGGESTED FIREuSAT GUI IMPROVEMENTS

FireMuSatPlus

Input | /home/themba/Firemusat/FireMuSatRyan/swam50.txt | | Brows... |

Output | /home/themba/FiremuSat/FireMuSatRyan/swam50.txt | | Brows... |

Motif size TR type:
™ Pefect

[] Approximate

Run search

& Range:
Min. | 7 Simax. | O C
| Help | | Close |
[More setting |
'_'b5earch Seq. Index Substring Errors

Max Error | 99999 |
Penalties:

Mismatch | 1.0 2|

Max Motif Error |0 = Deletion |0.5 *

- |

Min TR elements |2 s | Insertion 0.5 =

- |

Max adjectent ATR elements 1000

111

Figure 6.12: FireuSatPlus extended mode. This mode is more suitable
for advanced users knowing what they are doing. Selecting the ‘Search
seq. index’ will activate the ‘Start’ value to 0 which is the start of the

sequence and ‘End’ value from -99 to the size of the sequence.

ing additional information. In the same figure for example, the tooltip

shows the motif size for minisatellites as from 6 to 100.

e Hiding advanced settings: Advanced settings, which may be more dis-

tracting for non-frequent users, are well hidden to such users , unless

specifically requested. Users can access these settings by using the
more settings button which will bring up an interface similar to

that of Figure 6.12. These advance settings are for users interested in

TRs which meet specific conditions. These conditions may be seen as

too complicated for novice users.

On the other hand, Figure 6.12 displays advanced settings, which can
be changed by a user who knows exactly how they want their results to

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
112 COMPARISON

appear. The screen is obtained by asking for ‘more settings’ These
settings rely on default values and requires users who are knowledgeable
about the application to change them.

Flexibility and efficiency of use: Frequent users are allowed to use accelerator
keys, as shown in Figure 6.11 and 6.12. Not visible on the GUI are additional
short-cuts which speedup productivity of more advanced users. Users can
learn about these short-cuts in the documentation of the application. These
key strokes are:

e Ctrl + 0 — open dialogue box for input file.
e Ctrl + S — open dialogue box for output file.
e Alt + S — start the search.

e F1 — access help system.

e ESC — Exit the system.

In addition, users are allowed the opportunity of choosing parameters
like the motif sizes, in an easy, flexible and efficient way—fexible in the
sense that users have more than one way of making a selection.

The GUI is efficient in the sense that users can opt for quicker predefined
options i.e. default options or individualised options.

Match between system and the real world: As was pointed out in Section 6.2,
simple everyday language is encouraged over jargon-laden system language.
The purpose of this software is to search for tandem repeats (TRs). There-
fore it makes it more relevant to use the literal expression ‘Run search’
to search for TRs, than using ‘Frecute’” which means initiating the algo-
rithm that searches for TRs. The word ‘Search’ hides the internal working
of the software from the user and assures the user of the consequences of
performing that action.

Consistency and standards: Consistency is important not only within the
application itself, but amongst similar applications. In this regard, use
of the word flanking sequence to mean the part of DNA sequence to be ig-
nored during the search is not consistent with software packages like Mreps,
TRF and ATRHunter. Instead of using “flanking sequence” terminology,
Search sequence index, which basically refers to the sequence position to

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

6.4. SUGGESTED FIREuSAT GUI IMPROVEMENTS 113

be analysed, is more comprehensible as everyday language, as shown in

Figure 6.12.

Searching...

|. Abort |

Figure 6.13: Initial FireuSatPlus system status and user control.

FireMuSatPlus

Searching...

' Stop search |

Figure 6.14: Newer improved FirepSatPlus running system status.

Visibility of system: Nielsen [56] has noted the importance of setting the
system status visible to the users. The system status shows the user what
the system is doing at a specific time. Users need to be assured that the
system is still busy, or be informed if some error has occurred. Not in-
dicating this to users may leave them thinking that the action they have

™ FireMuSatPlus
Searching complete.
6 Press ok to view results?

OK

Figure 6.15: FireuSatPlus assuring the user of successful completion of the search.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
114 COMPARISON

performed is not being carried out. This may result in, for example, a but-
ton being pressed multiple times which may result in an unexpected system
behaviour.

To avoid such confusion, the new FireuSatPlus GUI prototype displays
its searching status as soon as searching commences. This can be seen on
the GUI screen shot in Figure 6.13. During the re-evaluation of the design,
it was apparent that this visibility is still limited to the user. This design
only shows that the system is busy, but does not indicate to the user how far
the progress is from completion. A more informative design with “progress
bar” was adopted as indicated in Figure 6.14. Users are also assured if the
search was successful as indicated on Figure 6.15.

User control and freedom: As was mentioned in Section 6.2, users need to
be in control of the system, and not the other way around. With the older
version of FirepSat GUI, not only did it leave the system status invisible to
the users, it also did not give an obvious means of interrupting the search
process before it is completed.

Figure 6.14 shows how this control is shifted to the user by allowing the
user to stop the search before it completes. The design also gives enough
information to the user to decide whether to stop or allow the search to
continue to completion.

Error prevention and helping users recognise, diagnose and recover from error:
Giving users wide control of the system may seem to be a good option,
but it may introduce new problems when necessary precautions are not
taken. Users make mistakes and, as Norman [58] acknowledges, since to err
is human , measures need to be taken to prohibit such mistakes. As an
example, the means that provides user control of the system may turn out
to be disastrous if the ‘Stop search’ button is mistakenly pressed. For small
amounts of data it may not be such a problem, but with large amounts of
data, where a user has to wait hours for results, accidentally pressing ‘abort’
would mean that the whole search process has to be restarted.

The FireuSatPlus GUI prototype prevents such erroneous disruptions
by informing the user about the consequences of that action, and requests a
confirmation that the action was intentional. Figure 6.16 shows the systems
dialogue box interventions as a result of such actions. As a result, if the
action was not intentional, users may recover from it, by reacting appropri-
ately. The warning message makes it harder for users to over-look this, by

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

6.4. SUGGESTED FIREuSAT GUI IMPROVEMENTS 115

@ Confirm cancel

- The search process has been stopped.
“ Press Yes to cancel the search?

| No | Yes

Figure 6.16: FireuSatPlus error prevention and recovery. No is the default button
requiring the user to explicitly select Yes to confirm the cancellation, which further
complicates unintentional abortion of the process.

requiring them to explicitly press the Yes button to confirm that cancelling
the task was intentional.

The flexibility gained by permitting users to specify exactly the range of
motif sizes they desire, has consequences. Users could enter infeasible ranges
for the motif sizes. This can be prevented by enforcing a precondition that
the minimum motif size should always be equal or less than the maximum
motif size. Should this condition not be the case, an appropriate error
message is displayed for the user to react. Such a message is shown in
Figure 6.17.

Help and documentation: Tool tips, an example of which can be seen in
Figure 6.11, are informative and can be used as a quick reference for non-
frequent users. In some cases the users may require detailed information and
extra form of assistance is required. The help facility is provided for that
purpose. Although this facility is not currently implemented, it is envisaged
that it should contain the application’s printed manual and online tutorial
to assist users on how to complete common tasks. In the case of an ARS
product, the bug reporting facility should be implemented, to allow users
to report and offer suggestions on improvements to the software as noted
by Nichols and Twidale [55].

Using Nielsen’s heuristics to evaluate the GUI has shown that many
usability issues could be detected early during the design, and be addressed.
Under normal ARS conditions, the GUI should be made available to the
public for users to do real testing. However, for the sake of this dissertation,
this GUI was subjected to potential intended users and their feedback is
given in Section 6.5. The source code for this GUI is attached in appendix E
for interested readers.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
116 COMPARISON

(o et

- Minimum motif length must be less than maximum motif —
0 length

OK

Run search

[Approximate

Help

| More settings |

R e e b e = S =

Figure 6.17: FireuSatPlus error message as a result of invalid parameters’
combination.

6.5 Usability testing on FireuSat and FireuSatPlus
GUIs

The minisatellites user community is currently very small. As a result, it is
a challenge to find a truly representative sample for this usability testing.
In the light of that, a small sample group of students in the School of Com-
puting at University of South Africa (UNISA) were approached to mimic
real users. Appendix A provides more detail pertaining to the conduct of
usability testing. The group was given tasks to complete and a question-
naire to complete in order to evaluate their attitudes towards the two GUIs.
Two groups of six users were used for this purpose.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g

6.5. USABILITY TESTING ON FIREuSAT AND FIREuSATPLUS GUIS117

"SnJesreIg +Sd)
eI (S,

%0°0

%9°2T

%80

%94°2T

%491

%8°ST

%< 6%

%L 1T

%E°€€

%S L

[ej07 @Sejuodiag

o

~
N

Ll

~
N

(=]
N

[=2]
0

©
N

(=]
<

(=]

[e10L

o]
i

o

uorjejyuaWNOOp pue d[of

JOI1I9 WO I9A0JI pue asouderp ‘@sru8odal siosn d[of]

™| O

uSISop JSI[RWIUIW pUe DI121}SoY

asn Jo Adusije pue A[IqIXs[

[[e991 Uey[) Ioy}el UOTITUS09Y]

uotjuaadld I01IH

spIepuejs pue AousjsISuo))

WOPISI] PUR [OIJUOD I9S[)

(=) (oo [ev) [en] [en) [en] [en) [en) [an)

QIO |~ OO |F | |O

PIIOM [BDI ST} PU® WIDISAS WOaMId(] TIIRIN

o

hull bl il (ool lenll fen)l In] fen)l L]

il [==) [e=]) [eo]) [en]) [en) [en) [en] [en) [an)

0O | O | [[O [~ [

O || [—[ANO [O | (™D

[|ONO |~ (0 |O

[Ial (el [aal Ll Al laall Nofl Noji [o ol)

o

woYsAs Jo AYIIqIsIA

+s4d

Sd

+s4

Sd

+s4d

2] —
o [V o o0 O | [T [V |O |5y

w10 |- [© |~ |t~ [~ |© [[0 |1

+
=

N
€]

1 +sda

S

:SOIISIINSE]

9aa3esip A[8uoalg

9aalesi(q

aqAeN

9013y

9913e A[Suoalg

SN[JyegrfoIr,] pue yegQroIl] I0J S9I00s 9[RS I €' J[qe],

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
118 COMPARISON

Appendix C and D gives the tasks and questionnaire used respectively.
The questionnaire was adapted from the questionnaire used during the study
conducted by Ssemugabi and de Villiers [79]. The questionnaire uses a five
point Likert scale as shown below,

Strongly Agree

Agree
Maybe
Disagree

N W | Ot

Strongly Disagree

where users are required to select one of the five options for each ques-
tion.

The results of the tests are summarised in Table 6.3. This table shows
for every question, the total number of points awarded by the users. Fig-
ure 6.18 depicts the resulting mean scores of the two GUIs on each heuristic.
From the figure, it can be noted FireuSatPlus prototype has an improved
usability in comparison with the older version—FireuSat. This is especially
noticeable in the following Nielsen heuristics:

Visibility of system status. This is because the older version does not
show the current system status.

e User control and freedom. The old version does not allow users to
interrupt the system in any way.

e Flexibility and efficiency. Catering for both novice and expert users
is not supported by the old version.

e Help and documentation. No form or indication of where assistance
could be found is available on FirepSat.

The proposed new version has addressed the above problems by using
suggested solutions to OSS usability issues as was shown in Section 6.1.
Clearly, it is observable that there is an improvement in FireuSatPlus over
FirepSat. However, to test if these differences are statically significant, a
student’s t-test!l that does not assume equal variance was performed.

IStudent’s t-test is used to assess whether the means of two groups are statistically
different from each other.

© University of Pretoria

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

uN
UN
Yu

L)
6.5. USABILITY TESTING ON FIREuSAT AND FIREuSATPLUS GUIS119

00T STE E8'E 9T EEE L9°E SL'E 00z F4 a0z jesriaig m
207 LTF B85F 0S¥ B20F ST¥ SL'E [la 85 FAS 4 snjdiesriaid m
JETUREY] ugisap P 4 plaom |22l "
7O “amuSoIay » MmayIsaY 7 AR 3 g 15ISU0D | g ol n ynen 10 AuIgIS A

1es1iaalg s/A snjdiesriauig isynsas Aaaans Ajjigesn

050

00T

0s'T

05'¢

24025 Ueapy

05'€

[lon 4

o5’y

"SOI00S UeoUl SUI)sa) AJ[Iqes) Q1 9 9INSI

1a

ty of Pretori

iversi

© Un

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
o= vunie

CHAPTER 6. MINISATELLITE DETECTING ALGORITHMS: USABILITY
120 COMPARISON

The results of the test: The mean score of FireuSat (Mean = 2.69, SD =
1.002**, N = 10'1.) is significantly smaller than the score for FireuSatPlus
(Mean = 4.11, SD = 0.302, N = 10.) using the two-sample t-test for
unequal variances, p < 0.00124. This low p value implies that the difference
between FirepSatPlus and FirepSat is not by chance. Even though the
underlying distribution is not normal, as required by the t-test, the results
support the conclusion that can be drawn by simple observation: namely
that in 90% of the questions, the average scores for FireuSatPlus were higher
than FirepSat. In the remaining case (10% of the observations) the two
GUIs were equally ranked.

Figure 6.19 and Figure 6.20 give a summary of users’ perceptions about
the usability of both FireuSat and FirepSatPlus. From the figures, it is
clear that users ranked FirepuSatPlus more favourably than FireuSat.

FirepSat

FirepSatPlus

Disagree
Strongly agree 1%
7%

0%

Strongly disagree

Figure 6.20: Summerised Likert

Figure 6.19: Summerised Likert scale scale scores for preferences
scores for FireuSat. FireuSatPlus.

6.6 Conclusion

This chapter has attempted to identify usability issues regarding selected
ARS applications using expert evaluation techniques. These techniques

**Standard deviation shows how much variation exists from the average.
TN is the number of observations

© University of Pretoria

for

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

6.6. CONCLUSION 121

are important early during the design, as they can cut costs in software
development. These costs include, but are not limited to, monetary costs;
they are also the time and resources required when usability testing with
real users is conducted.

Using the results of this evaluation and the suggested guidelines, a new
version of FireuSat GUI was developed. This version was subjected to
usability testing and the result showed an improvement over the old version.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

Chapter 7

Conclusion

7.1 Introduction

This study has investigated two themes, namely, the consistency of the
output produced by a selection of open source minisatellite detecting al-
gorithms, and the usability of that software. Detailed discussion of the
outcomes of these investigations was provided in Chapters 5 and 6 respec-
tively.

This chapter outlines the journey taken by this study to investigate
these two themes. Section 7.2 give a brief review of the investigations. The
implications of the findings and their limitations are looked at in Section 7.3
and 7.4 respectively. The chapter ends with general conclusions about the
whole dissertation.

7.2 Overview

The importance of detecting Tandem Repeats (TRs), and hence, minisatel-
lites was discussed in Chapter 1 in the beginning of this dissertation. During
that discussion later on, two approaches used by algorithms to detect min-
isatellites were noted: the library or database based approach, which is lim-
ited to searching for known motifs only; and the ab initio based approach,
with the potential to discover novel motifs and hence, new minisatellites.
The focus of this dissertation was only on the algorithms that used the
latter approach to detect minisatellites.

Chapter 1 also highlighted the importance of using Academic Research

123

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

124 CHAPTER 7. CONCLUSION

Software (ARS) and/or Open Source Software (OSS), especially in devel-
oping countries. It was said that these software could decrease costs and
should therefore be considered as an alternative to a proprietary software
(PS).

As the advantage of using ab initio based approach was made obvious—
finding novel minisatellites without a priori information about motifs—the
question of whether two algorithms would detect the same minisatellites if
given the same genomic sequence, remained debatable. To investigate this
question the following hypotheses were set out:

e H;: Equivalent minisatellites (PTRs) are detected by different algo-
rithms, when no mismatches and/or indels are allowed.

e H,: Equivalent minisatellites (ATRs) are detected by different algo-
rithms, when mismatches and/or indels are allowed.

e Hj: Non-equivalent minisatellites (PTRs and ATRs) are detected by
different algorithms when the meaning of “approximate” assumed by
the algorithms varies from one to the next.

Gathered evidence from the literature review discussed in Chapter 3
suggested that most OSSs have problems with regard to usability. It was
suggested in the literature that some of these problems are as a result of
the way in which OSS is developed. The similarities between OSS and ARS
with regard to their development suggested that both these software would
experience similar usability issues. Hence, the literature suggested that
borrowing guidelines from PS development could potentially alleviate these
problems. This dissertation has therefore investigated the usability of min-
isatellite detecting ARS packages that are based on an ab initio approach.
In addition, this dissertation used the guidelines suggested by academic pa-
pers to improve one of the user interfaces. In summary, this theme was
investigated by attempting to answer the following questions:

1. To what extent do the selected minisatellite detecting academic /research
implementations follow usability guidelines suggested in the litera-
ture?

2. To what extent would implementing the usability guidelines as pro-
posed in academic papers improve the usability of one of the ARS
detecting minisatellites?

The overall objectives of this dissertation were:

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

7.3. IMPLICATION OF THE FINDINGS 125

e To learn whether and to what extents there are similarities and/or
differences in output minisatellites detected by the algorithms imple-
mented in the ARS software under study that rely on an ab initio
approach.

e To assess the usability of open source minisatellite detection software
and consider how it could be improved.

The findings of this study and whether or not its research questions were
met are presented in Section 7.3. Section 7.3 also provides information on
the assessment of whether the above objectives of this study were attained.
That is followed by the limitations of this study in Section 7.4.

Chapter 4 introduced the instruments that were used in these investi-
gations. Firstly, a set of experiments would be conducted to test the three
hypotheses. Secondly, an evaluation by human expert and usability testing
would be used to investigate the second theme. Chapter 4 also indicated
how the data from these two investigations would be analysed. The actual
investigation is reported in Chapter 5 and 6 for the investigation of objec-
tives 1 and 2 respectively. The next section summarises the findings of this
dissertation.

7.3 Implication of the findings

To remind the reader, this dissertation investigated two main questions.
The first question that was investigated was:

Do the selected ARS implementations behave consistently with
respect to the occurrence and positioning of minisatellites, even
though they do not rely on information provided a priori about
the positioning of minisatellites?

In order to answer this first question, three hypotheses (H;, Hy and Hj)
were formulated as mentioned in Section 7.2. After the appropriate experi-
ments were conducted, it was seen that the obtained results did not support
hypotheses H; and H, relating to equivalence of minisatellites detected. In
the case Hs, the results showed very few similar minisatellites whilst most of
them were different. In other words, there were more differences than simi-
larities between reported minisatellites. Looking at these results may make
one to wonder what the causes of these differences are . One possible ex-

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

126 CHAPTER 7. CONCLUSION

planation could lie in the definition of a TR used by a particular algorithm.
Hypothesis Hj investigated this possibility.

The assumption here was that these algorithms may be implemented
based on the same or different definition of a TR—minisatellite. Initially,
the different definitions of TR were used and later the same definition was
used. The results from two cases were compared. The results obtained when
the comparison based on same definition and different definition showed
differences in output minisatellites , although the same input data was used.
This led to the conclusion that ab initio approaches do not yield consistent
minisatellites within different algorithms. In other words, what is reported
as being a minisatellite by one algorithm, is not always reported by the
rival algorithms. Although identifying novel repeats is desirable, and this is
indeed a way of achieving this, it raises concerns in deciding which of these
outcomes are truly minisatellites.

It is with no doubt that the results of the output minisatellites were
not consistent in all the hypotheses. Potential causes of these differences
were briefed in Chapter 5. It is however, proposed that a more formal
definition of what constitutes a TR, hence a minisatellite, should be derived
and agreed on. All these algorithms should adhere to the same definition, to
minimise or eliminate those concerns entirely. This proposal is based on the
observation that when using the same definition, more similar minisatellites
were reported that when different definitions were used. This can be seen in
Figure 5.7 as one looks at the total number of similar minisatellites reported
by TRF and the variants of ATRHunter. With all of that being said, this
study has met its first objective as mentioned in Section 7.2.

The second question addressed by this dissertation is:

How usable are the software packages previously investigated to
address the first question?

To aid the investigation, this question was decomposed into two sub-
questions as outlined in Section 7.2. The first sub-question related to the
usability of the packages per se. It was investigated using Nielsen’s ten
heuristics. Out of ten literature-derived heuristics, the package compliance
varied between about 30% and 60%. It should be noted an interface was
treated as complying with a heuristic, even if its compliance was only partial.
Therefore, there range above could be slightly less than indicated. With that
in mind, one should agree that thirty percent compliance is rather too low
to say that guidelines were followed.

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

7.4. LIMITATIONS OF THE STUDY 127

The second sub-question related to the effectiveness of usability improve-
ments made to one of the packages. To answer the second sub-question, a
survey was conducted. The results of the survey suggested that there was
an overall of 34% improvement on the new prototype developed using the
suggested guidelines. To be more precise , only 48% of the users agreed
that the old interface was usable, whilst 84% of users were positive about
the new interface.

To return to the main usability question, it is clear from the results
obtained that one can confidently say that these packages are not user
friendly. The investigation did not stop on saying the packages are hard
to use, but also offered evidence that they can be improved. This outcome
supports the second objective of the study.

7.4 Limitations of the study

This study only focused on a selection of ARS implementations of min-
isatellite detection software packages. Although PS alternatives for these
packages may exist, this study did not investigate such alternatives. This
dissertation also did not fully explain the precise reasons for differences
across packages in reported minisatellites. It was however mentioned that
the full explanation is beyond the scope of this study.

During usability evaluation of the ARS packages, only one user interface
was upgraded. Under ideal circumstances, it would have been interesting
to attempt a usability upgrade of more than one, and preferably of all ARS
packages that were examined. This would have lent stronger support to
the claims made in this study. While time limitations precluded such a
comprehensive undertaking, the results to date offer prima facie evidence
that there is considerable scope for improving the usability of the existing
ARS packages.

Furthermore, this study focused only on subjective measures, guided
by Nielsen’s heuristics [56] . Apart from these measures, software usability
testing could also be measured in terms of scenario completion success rates,
adherence to dialogue scripts and error rates. Measuring these metrics in an
ARS development environment would have required special data loggers to
record each user’s actions installed with the software to be tested. As was
indicated in Chapter 3, the OSS community often uses tools to automate
bug reporting. Using such tools to record users’ actions on the interaction
level so as to identify usability problems, could complete usability testing

© University of Pretoria

&
&

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

128 CHAPTER 7. CONCLUSION

in such environments.

Clearly, the conclusion to this study applies only to the investigated
packages. This fact, together with the aforementioned limitations affect the
generalisability of this study and should be kept in mind when assessing the
implications of this study.

7.5 Future research

The potential future research that arises from this study would be to inves-
tigate PS implementations that detect minisatellites, and to compare those
findings with the findings of this study. The evidence collected from that
investigation might suggest a more generalised conclusion that all ab initio
based approaches do not produce identical results, and not just those im-
plemented as ARS. This in turn would strengthen the call for standardised
definitions of TRs—minisatellite.

Other potential research would be to evaluate ARS implementations
using other usability metrics, such as scenario completion success rates,
adherence to dialogue scripts, and error rates. It might be possible to
identify reliable tools to automate this in an ARS environment.

Another point worth mentioning is with regard to principles borrowed
from PS development practises. Evidence that the PS development practises
work should be investigated by applying them and testing results, preferably
over a sample of more than one package.

A methodology to integrate the two development disciplines represented
by ARS development and PS development should be investigated to provide
guidelines on how to integrate the two approaches without compromising
one another.

7.6 Conclusion

This chapter gave a summary of the important aspects of this dissertation.
It indicated what the problems were, and the significance of investigating
those problems. The instruments used and procedures followed in investi-
gating those problems were also pointed out, with reference to the relevant
chapters which in turn give a detailed justification of the chosen methodol-
ogy. The justification of such a methodology made it convincing that the
methods used would undoubtedly answer the questions needed to address
these problems.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

7.6. CONCLUSION 129

After the investigation, conclusions were drawn based on the evidence
collected. Section 7.3 provides the inference of those conclusions to this
dissertation. The extent to which the conclusions of this study can be gen-
eralised was also considered, noting the limitations of this study. Possible
future research was mentioned which could address some of these limita-
tions.

To summarise, firstly, this study has concluded that there is inconsis-
tency between the minisatellites detected using the ab initio approach by
algorithms implemented as ARS packages. Secondly, this investigation con-
firmed that there are also usability problems with the software packages
examined. It also offered evidence of how their usability could be improved
in the future.

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

Bibliography

ALLAUZEN, C., CROCHEMORE, M., AND RAFFINOT, M. Factor oracle: A
new structure for pattern matching. In SOFSEM 99: Theory and Practice

of Informatics (1999), Springer, pp. 295-310. [cited at p. 36]

ANDREASEN, M., NIELSEN, H., SCHR@DER, S., AND STAGE, J. Usability
in open source software development: Opinions and practice. Information
technology and Control 35A, 3 (2006), 303-312. [cited at p. 50]

ARMOUR, J., ANTTINEN, T., MAy, C. A., VEGA, E. E., SAJANTILA, A.,
Kipp, J. R., Kipp, K. K., BERTRANPETIT, J., AND PAABO, SVANTE JEF-
FREYS, A. J. Minisatellite diversity supports a recent African origin for mod-
ern humans. Nature Genetics Journal 13, 2 (1996), 154 — 160. [cited at p. 6]

AUTHOR 1, AUTHOR 2 AND AUTHOR 3. [cited at p. 21, 67]

BENNETT, S., LUCASSEN, A., GouGH, S., POwELL, E., UNDLIEN, D.,
PriTCHARD, L., MERRIMAN, M., KAwWAGUCHI, Y., DRONSFIELD, M.,
Pocior, F., Nerup, J., BouzEkRI, N., CAMBON-THOMSEN, A., RON-
NINGEN, K., BARNETT, A., BAIN, S., AND ToDD, J. Susceptibility to
human type 1 diabetes at IDDM2 is determined by tandem repeat variation
at the insulin gene minisatellite locus. Nature Genetics Journal 9, 3 (1995),
284-376. [cited at p. 6]

BENSON, G. How does tandem repeats finder work? Online: http://
tandem.bu.edu/trf/trfdesc.html. accessed 01 May 2011. [cited at p. 29,
83

BENSON, G. Tandem repeats finder. Online: http://tandem.bu.edu/trf/
trf.html. accessed 20 January 2010. [cited at p. 29)

BENSON, G. Tandem repeats finder. Nucleic acids research 27, 2 (November
1999), 573-580. [cited at p. 20, 29]

131

© University of Pretoria

http://tandem.bu.edu/trf/trfdesc.html
http://tandem.bu.edu/trf/trfdesc.html
http://tandem.bu.edu/trf/trf.html
http://tandem.bu.edu/trf/trf.html

132

[12]

[13]

[14]

[15]

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY

BODKER, M., NIELSEN, L., AND ORNGREEN, R. Enabling user cen-
tered design processes in open source communities. In Usability and
Internationalisation, HCI and Culture, 2nd International Conference on Us-
ability and Internationalisation, UI-HCII 2007. [cited at p. 50]

BoevA, V., FRIDMAN, M., AND MAKEEV, V. Relationship between micro-
and minisatellites in the human genome|. Biofizika 51, 4 (2006), 650.
[cited at p. 16]

Camp, N., Corer, H., AND GOMPERTS, R. High-throughput
BLAST. Online:http://www.sgi.com/industries/sciences/chembio/
resources/papers/HTBlast/HT_Whitepaper.html. accessed 25 June 2010.
[cited at p. 17]

CARROLL, J. HCI models, theories, and frameworks : toward a

multidisciplinary science. San Francisco, Calif.: Morgan Kaufmann, 2003.
[cited at p. 107]

CETIN, G., AND GOKTURK, M. Usability in open source community. ACM
Interactions 14, 6 (2007), 38—-40. [cited at p. 9, 10, 50]

CETIN D. VERzULLI, G., AND FRINGS, S. An analysis of involvement
of HCI experts in distributed software development: Practical issue. On-
line communities and social computing, 2nd international Conference, HCII
2007, pp. 32-40. [cited at p. 51]

DANEK, A., POKRZYWA, R., MAKALOWSKA, 1., AND POLANSKI, A. Appli-
cation of the burrows-wheeler transform for searching for approximate tan-
dem repeats. In Pattern Recognition in Bioinformatics, vol. 7632. Springer
Berlin Heidelberg, 2012, pp. 255—266. [cited at p. 20]

DE RIDDER, C. Flexible finite automata-based algorithms for detecting mi-
crosatellites in dna. Master’s thesis, University of Pretoria, 2010. [cited at p. 9]

DE RIDDER, C., KOURIE, D., AND WATSON, B. FireuSat: Meeting the
challenge of detecting microsatellites in DNA. South African Institute of
Computer Scientists and Information Technologists (SAICSIT) (2006), 111
120. [cited at p. 16, 17, 19, 63, 92]

DE RIDDER, C., REYNEKE, P., WATsON, B. W., REva, O., AND KOURIE,
D. G. Cascading finite automata for minisatellite detection. In The 22nd
Annual Symposium of the Pattern Recognition Association of South Africa

(PRASA) (2011), pp. 31-36. [cited at p. 63, 92]

Dix, A., FinLAy, J., ABowD, G., AND BEALE, R. Human computer
interaction. Pearson, 2004. [cited at p. 63, 94, 103, 104, 107, 108]

© University of Pretoria

 http://www.sgi.com/industries/sciences/chembio/resources/papers/HTBlast/HT_Whit epaper.html
 http://www.sgi.com/industries/sciences/chembio/resources/papers/HTBlast/HT_Whit epaper.html

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY 133

[20]

[21]

[27]

[29]

EAson, K. Towards the experimental study of usability. In Behaviour and
information technology (1984), vol. 3, pp. 133—143. [cited at p. 41, 44]

FELLER, J., AND FITZGERALD, B. A framework analysis of the open
source software development paradigm. In Proceedings of the twenty first

international conference on Information systems (2000), Association for In-
formation Systems, pp. 58—69. [cited at p. 9, 10, 49, 50]

F112GERALD, B. The transformation of open source software. Mis Quarterly
(2006), 587-598. [cited at p. 48]

FoLMER, E., AND BoscH, J. Architecting for usability: a survey. The
Journal of Systems and Software 70 (2004), 61-78. [cited at p. 45, 46]

Fonzo, V. D., ALUFFI-PENTINI, F., AND PARisi, V. JSTRING: A
novel java tandem repeats searcher in genomic sequences with an interactive
graphic output. The Open Applied Informatics Journal, 2 (2008), 14-17.
[cited at p. 20]

GUSFIELD, D. Algorithms on strings, trees, and sequences: computer science

and computational biology. Cambridge University Press, New York, NY,
USA, 1997. [cited at p. 34, 35]

Hars, A., AND Ou, S. Working for free? motivations of participating
in open source projects. In System Sciences, 2001. Proceedings of the
34th Annual Hawaii International Conference on (2001), IEEE, pp. 9—pp.
[cited at p. 48]

HENKE, L., FiIMMERS, R., JosepHI, E., CLEEF, S., DULMER, M., AND
HENKE, J. Usefulness of conventional blood groups, DNA-minisatellites,
and short tandem repeat polymorphisms in paternity testing: a comparison.
Forensic Science International 103, 2 (1999), 133-142. [cited at p. 6]

HorsTEE, E. Constructing a good dissertation: A practical guide to
finishing a Masters, MBA or PhD on Schedule. Sandton: EPE, 2006.
[cited at p. 57, 60, 61, 65]

HorNBAK, K. Current practice in measuring usability: Challenges to usabil-
ity studies and research. International Journal of Human-Computer Studies
64, 2 (Feb. 2006), 79-102. [cited at p. 41]

ILie, L. Factor oracle, suffix oracle. www.csd.uwo.ca/faculty/ilie/
Factor’200racle.ppt. accessed: 21 November 2012. [cited at p. 34]

ISO 9126. Software engineering—product quality—part 1: Quality model.
International Organisation for Standardisation, 2001. [cited at p. 41]

© University of Pretoria

www.csd.uwo.ca/faculty/ilie/Factor%20Oracle.ppt
www.csd.uwo.ca/faculty/ilie/Factor%20Oracle.ppt

134

[32]

33]

[35]

[39]

[40]

[41]

[42]

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY

ISO 9241-11. Ergonomics requirements for office work with visual display
terminals (vdts)—part 11: Guidance on usability. International Organisation
for Standardisation, 1998. [cited at p. 41]

JACEwICZ, R., BERENT, J., PROSNIAK, A., DoBosz, T., KOWALCZYK,
E., AND SzZrRAM, S. Paternity determination of the deceased defendant in
STR against RFLP analysis. International Congress Series (2004), 523 —
525. Progress in Forensic Genetics 10. [cited at p. 6]

JORDA, J., AND Kajava, A. V. T-REKS: identification of tandem REpeats
in sequences with a k-means based algorithm. Bioinformatics 25, 20 (2009),
2632-2638. [cited at p. 20]

Karaca, M., BILGEN, M., ONus, A. N., INCE, A. G., AND ELMASULU,
S. Y. Exact tandem repeats analyzer (E-TRA): A new program for dna
sequence mining. Journal of Genetics 84, 1 (2005), 49-54. [cited at p. 20]

KLENCKE, M., AND AMSTERDAM, V. U. Advancements in Open Source
Software Usability, 2005. [cited at p. 49, 51]

KorLprakov, R., BANA, G., AND KucHEROV, G. mreps: Efficient and
flexible detection of tandem repeats in DNA. Nucleic Acids Research 31, 13
(2003), 3672-3678. [cited at p. 18, 19, 23, 24, 25, 26, 27, 70]

Korrakov, R., AND KUCHEROV, G. Finding maximal repetitions in a
word in linear time. In Foundations of Computer Science, 1999. 40th Annual
Symposium on (1999), pp. 596 —604. [cited at p. 35]

Kovrpakov, R., AND KUCHEROV, G. Finding approximate repetitions un-
der hamming distance. Theoretical Computer Science 303, 1 (2003), 135
156. [cited at p. 35

Kurrz, S., CHOUDHURI, J., OHLEBUSCH, E., SCHLEIERMACHER, C.,
STOYE, J., AND GIEGERICH, R. REPuter: the manifold applications of
repeat analysis on a genomic scale. Nucleic Acids Research 29, 22 (2001),
4633-4642. [cited at p. 35, 36]

Kurrz, S., OHLEBUSCH, E., SCHLEIERMACHER, C., STOYE, J., AND
GIEGERICH, R. Computation and visualization of degenerate repeats in
complete genomes. In ISMB (2000), Citeseer, pp. 228-238. [cited at p. 35, 36]

KuUrTZ, S., AND SCHLEIERMACHER, C. REPuter: fast computation of
maximal repeats in complete genomes. Bioinformatics 15, 5 (1999), 426—
427. [cited at p. 18, 20, 33, 35]

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY 135

[43]

[44]

[54]

[55]

LECLERCQ, S., RivaLs, E., AND JARNE, P. Detecting microsatellites
within genomes: significant variation among algorithms. Bioinformatics 8,
125 (2007). [cited at p. 22, 57]

LEFEBVRE, A., LECROQ, T., DAUCHEL, H., AND ALEXANDRE, J. FOR-
Repeats: detects repeats on entire chromosomes and between genomes.
Bioinformatics 19, 3 (2003), 319-326. [cited at p. 20, 36, 37]

LEVENTHAL, L., AND BARNES, J. Usability engineering: process, products

and examples. Pearson Prentice Hall, 2008. [cited at p. 42, 43, 47]

Lewis, C., AND RIEMAN, J. Task-Centered User Interface Design: A
practical introduction. 1993. [cited at p. 94, 103]

Ma, B., Tromp, J., AND L1, M. PatternHunter: Faster and more sensitive
homology search. Bioinformatics, 18 (2002), 440-445. [cited at p. 18]

MAYER, C. Phobos—a tandem repeat search tool for complete genomes.
http://www.ruhr-uni-bochum.de/spezzoo/cm/cm_phobos.htm, 10 2007.
Accessed: Feb 2008. [cited at p. 19, 23]

MAYER, C. Phobos ver 3.3.2 user manual: A tandem repeat search program,
2007. [cited at p. 23, 71, 79, 83]

MiTTAL, P., AND SINGH, J. Merits and demerits of open source soft-
ware. International Journal of Research in Computer and Communication

Technology, 3 (March 2013). [cited at p. §]

MokwaNA, D. Investigating software detecting minisatellites. Tech. rep.,
UNISA, 2013. [cited at p. 21]

MouToN, J. How to succeed in your Master’s and Doctoral studies. Van
Schaik, 2001. [cited at p. 57]

MTSWENI, J., AND BIERMANN, E. Challenges & factors influencing the
oss adoption rate in the SA government. In the proceedings of the track
of the 2008 Free and Open Source Software for Geospatial Conference
(FOSS4G2008). [cited at p. 9]

NicHoLs, D., AND TWIDALE, M. The Usability of Open Source Software.
First Monday 8 (2003), 1-6. [cited at p. 49]

NicHoLs, D., aAND TwiDALE, M. B. Usability and Open Source Soft-
ware. Online http://www.cs.waikato.ac.nz/~{}daven/docs/oss-wp.
html, 2002. accessed 25 May 2010. [cited at p. 9, 10, 49, 50, 51, 115]

© University of Pretoria

http://www.ruhr-uni-bochum.de/spezzoo/cm/cm_phobos.htm
http://www.cs.waikato.ac.nz/~{}daven/docs/oss-wp.html
http://www.cs.waikato.ac.nz/~{}daven/docs/oss-wp.html

136

[56]

[57]

[58]

[59]

[61]

[62]

[64]

[67]

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY

NIELSEN, J. Usability Engineering. Boston: Academic Press, 1993.
[cited at p. 41, 42, 63, 94, 113, 127, 144, 146]

NIELSEN, J. Heuristic Evaluations. In: J. Nielsen & R.L. Mack. (Eds),
Usability Inspection Methods. New York: John Wiley & Sons, 1994.

[cited at p. 63, 64]

NoRMAN, D. The design for everyday things. New York : Doubleday, 1990.
[cited at p. 114]

OL1vEROS, J. VENNY. an interactive tool for comparing lists with venn
diagrams. Online: http://bioinfogp.cnb.csic.es/tools/venny/index.
html, 2007. accessed 20 November 2012. [cited at p. 78]

OLIVIER, M. Information Technology Research: A practical guide for

Computer Science and Informatics, 2nd edition ed. Pretoria: Van Schaik,

2004. [cited at p. 57, 60, 61, 64]

OPENUSABILITY. Online: http://www.openusability.org/. [accessed 11
October 2012]. [cited at p. 52]

OzEL, B., GENCER, AND STEPHENSON, C. An msc programme in open
source information systems. In Towards Open Source Software Adoption
(2006), OSS 2006 tOSSad workshop proceedings. [cited at p. 52]

PANDE, S., AND GOMES, N. Article: Human resource information systems:

A review in the adoption of open source. International Journal of Computer
Applications 61, 8 (January 2013), 11-18. Published by Foundation of Com-

puter Science, New York, USA. [cited at p. 8]

RaymonD, E. The cathedral and the bazaar: Musings on Linux and
open source by an accidental revolutionary. O’Reilly Media, Inc., 1999.

[cited at p. 48]

RAzA, A. A Usability Maturity Model for Open Source Software. PhD the-
sis, The University of Wesstern Ontario, 2011. [cited at p. 44]

RAzA, A., AND CAPRETZ, L. Contributor’s preference in open source
software usability: an emperical study. International Journal of Software
Engineering and Applications 1, 2 (2010), 45-64. [cited at p. 49, 50]

Raza, A., CAPRETZ, L. F., AND AHMED, F. Improvement of open source
software usability: an empirical evaluation from developers’ perspective.
Advances in Software Engineering 2010 (2010). [cited at p. 92]

© University of Pretoria

http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://www.openusability.org/

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY 137

[68]

[75]

[76]

[77]

[78]

[79]

REITMAYR, E., BALAZS, B., AND MUHLIG, J. Integrating usability with
open source software development: Case studies from the initiative open
usability. In Towards Open Source Software Adoption (2006), OSS 2006
tOSSad workshop proceedings. [cited at p. 52]

RICHARDSON, J., ORMEROD, T., AND SHEPHERD, A. The role of task

analysis in capturing requirements for interface design. Interacting with
Computers 9 (1998), 367-384. [cited at p. 103]

SAHA, S., BRIDGES, S., MAGBANUA, Z., AND PETERSON, D. Compu-
tational approaches and tools used in identification of dispersed recitative
DNA sequences. Tropical Plant Biology, 1 (2008), 86-96. |[cited at p. 16, 17,
18, 19]

SCHACH, S. Object-Oriented and Classical Software Engineering. McGraw-
Hill, 2007. [cited at p. 48]

SHACKEL, B. Ergonomics in design for usability. In Human-Computer
Interaction (1986). [cited at p. 41]

SHARMA, D., Issac, B., AND RAGHAvA, G. Spectral repeat finder

(SRF): identification of repetitive sequences using fourier transformation.
Bioinformatics, 20 (2004), 1405-1412. [cited at p. 18]

SHARMA, D., Issac, B., RacHAavA, G. P. S., AND RAMASWAMY, R. Spec-
tral repeat finder (srf): identification of repetitive sequences using fourier
transformation. Bioinformatics 20, 9 (2004), 1405-1412. [cited at p. 20]

S1vESS, V. Non-functional requirements in the software development pro-
cess. Software Quality Journal 5, 4 (Dec. 1996), 285-294. [cited at p. 40]

SmiT, A., HUBLEY, R., AND GREEN, P. Repeatmasker documentation.
Online: http://www.repeatmasker.org/webrepeatmaskerhelp.html. ac-
cessed 25 May 2010. [cited at p. 17]

SONNHAMMER, E., AND DURBIN, R. A dot-matrix program with dynamic

threshold control suited for genomic dna and protein sequence analysis.
Gene, 167 (1995), 1-10. [cited at p. 18]

SOUTH AFRICAN GOVERNMENT. Criminal law (forensic procedures) amend-
ment bill. Tech. rep., Minister for justice and constitutional development,
December 2008. Government Gazette No. 31759. [cited at p. 9]

SSEMUGABI, S. Usability evaluation of a web-based e-learning application:
a study of two evaluation methods. Master’s thesis, UNISA, November 2006.
[cited at p. 63, 118]

© University of Pretoria

http://www.repeatmasker.org/webrepeatmaskerhelp.html

138

[80]

[81]

[83]

[84]

[85]

[36]

[87]

(8]

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY

TAwILEH, A. Experiences in building a free and open source software
training and certification programme. In Towards Open Source Software
Adoption (2006), OSS 2006 tOSSad workshop proceedings. [cited at p. 52]

TERRY, M., KAy, M., AND LAFRENIERE, B. Perceptions and practises of

usability in the free/open source software (FoSS) community. ACM Press,
New York, New York, USA, 2010, p. 999. [cited at p. 50, 51]

THE QCBS WIKI. Mining genomic data for tandem repeats. On-
line: http://qcbs.ca/wiki/bioinformatic_tools_to_detect_
microsatellites_loci_from_genomic_data. accessed 10 May 2012.
[cited at p. 19]

TRUDELLE, P. Shall we dance? ten lessons learned from netscape’s flirtation
with open source ui development. Presented at the Open Source Meets
Usability Workshop, Conference on Human factors in Computer Systems
(CHI 2002), 2002. [cited at p. 50]

VIORRES, N., XENOFON, P., STAVRAKIS, M., VLACHOGIANNIS, E.,
KoutsaBasis, P., AND DARZENTAS, J. Major HCI challenges for open
source software adoption and development. Online Communities and So-
cial Computing, 2nd International Conference, HCII 2007, pp. 455—464.
[cited at p. 48, 49]

VIRTANEVA, K., DAMATO, E., Miao, J., KoskiNiEMI, M., NoORIO, R.,
AvaNzINI, G., FRANCESCHETTI, S., MICHELUCCI, R., TASsSINARI, C.,
OMER, S., PENNACcCHIO, L., MYERS, R., DIEGUEZ-LUCENA, J., KRAHE,
R., CHAPELLE, A., AND LEHESJOKI, A. Unstable minisatellite expansion
causing recessively inherited myoclonus epilepsy, EPM1. Nature Genetics
Journal 15, 4 (1997), 393-399. [cited at p. 6]

WEXLER, Y., YAKHINI, Z., KAsHI, Y., AND GEIGER, D. ATRHunter:
Experimental results. Online: http://bioinfo.cs.technion.ac.il/
atrhunter/ATRexperiments.htm. accessed 25 May 2010. [cited at p. 73]

WEXLER, Y., YAKHINI, Z., KasHI, Y., AND GEIGER, D. Finding
approximate tandem repeats in genomic sequences. In: Proceedings of

the Eighth Annual International Conference on Computational Molecular
Biology (2004), 223-232. [cited at p. 6, 18, 20, 30, 31, 32]

WEXLER, Y., YAKHINI, Z., KAsHI, Y., AND GEIGER, D. Finding ap-
proximate tandem repeats in genomic sequences. Journal of Computational
Biology 12, 7 (2005), 928-924. [cited at p. 84, 89]

© University of Pretoria

http://qcbs.ca/wiki/bioinformatic_tools_to_detect_microsatellites_loci_from_geno mic_data
http://qcbs.ca/wiki/bioinformatic_tools_to_detect_microsatellites_loci_from_geno mic_data
http://bioinfo.cs.technion.ac.il/atrhunter/ATRexperiments.htm
http://bioinfo.cs.technion.ac.il/atrhunter/ATRexperiments.htm

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY 139

[89]

[90]

[91]

WirawaN, A., Kwon, C., Hsu, L., AND KoHn, T. INVERTER:
Integrated variable numbER tandem repeat finder. In Computational

Systems-Biology and Bioinformatics, vol. 115 of Communications in

Computer and Information Science. Springer Berlin Heidelberg, 2010,

pp- 151-164. [cited at p. 20]

YE, Y., aAND KisHIDA, K. Toward an understanding of the motivation
of open source software developers. International conference on software
engineering. [cited at p. 9, 10, 49, 50]

Zuao, L., aND DEEK, F. Exploratory inspection - a learning model for
improving open source software usability. In: CHI ’06 extended abstracts
on Human factors in computing systems. CHI EA ’06. [cited at p. 51]

ZHOU, Y., AND MISHRA, B. Quantifying the mechanisms for segmental
duplications in mammalian genomes by statistical analysis and modeling.
In: Proceedings of the National Academy of Sciences of the United States

of America 102, 11 (March 2005), 4051-4056. [cited at p. 9, 10, 50]

© University of Pretoria

Appendices

141

© University of Pretoria

&
&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

Appendix A

Usability Test Plan

A.1 Document Overview

This document describes a test plan for conducting a usability test of
FireuSat Graphic User Interface (GUI) and FireuSatPlus prototype. The
goals of this usability testing include identifying potential design concerns to
be addressed in order to improve the efficiency, productivity, and end-user
satisfaction.

The usability test objectives are:

e To determine design inconsistencies and usability problem areas within
the user interface and content areas. Potential sources of error may
include:

— Navigation errors — failure to locate functions, excessive keystrokes
to complete a function, failure to follow recommended screen
flow.

— Presentation errors — failure to locate and properly act upon
desired information in screens, selection errors due to labelling
ambiguities. Control usage problems — improper toolbar or entry
field usage.

e Use the user interfaces under controlled test conditions with represen-
tative users. Collected data will be used to access whether usability
goals regarding an effective, efficient, and well-received user interface
have been achieved.

143

© University of Pretoria

&
&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

144 APPENDIX A. USABILITY TEST PLAN

e Establish baseline user-satisfaction levels of the user interface for fu-
ture usability evaluations.

FirepSat and FireuSatPlus are developed for computational biologist
who are not computer experts. In this test, computer science students will
be used to mimic computational biologists. The test will be conducted with
about 5 to 8 participants.

A.2 Purpose

This test will evaluate FireuSat and FireuSatPlus user interfaces based on
Nielsen’s Ten heuristics [56] as summarised in Chapter 6.

A.3 Methodology

This test will involve two separate groups of five to eight participants. One
group will test the FireuSat and the other will test the FireuSatPlus pro-
totype. Each participant will be ask to complete predefined tasks on the
UL

At the end of the test, each participant is requested to complete a ques-
tionnaire about his experience on using the GUI. Finally the questionnaire
will be analysed and the results be reported.

A.3.1 Participants
The participants will be recruited orally based on the following questions:
e Do you or have you studied computer science?
e Do you have ability to use a computer?
e Are you interested in participation in this usability study?
e Are you available to participate in usability study?

The participants’ responsibilities will be to attempt to complete a set of
representative task scenarios presented to them in as efficient and to pro-
vide feedback regarding the usability and acceptability of the user interface.
The participants will be directed to provide honest opinions regarding the
usability of the Uls, and to participate in post-session subjective question-
naires.

No experience on performing these tasks as training will be provided.

© University of Pretoria

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
&

“ UNIVERSITEIT VAN PRETORIA

A 4

A.4. USABILITY TASKS 145

A.3.2 Training

Participants will be given a brief training on tandem repeats and their
detection background. The participants will receive an overview of the
usability test procedure, equipment—input data—and software.

A.3.3 Procedure

Participants will be given a copy of the relevant GUI for testing. The test-
ing will happen on participants’ own computers on their own time, so as to
follow real Academic/Research Software (ARS) and/or Open Source Soft-
ware (OSS) development and testing practises. Within OSS development
environment, software is released to the user community who use it and
report bugs to developers as part of testing.

The facilitator will brief the participants on the application and instruct
the participant that they are evaluating the application, rather than the
facilitator evaluating the participant. Participants will sign an informed
consent that acknowledges that: the participation is voluntary, that par-
ticipation can cease at any time, and their privacy of identification will be
safeguarded. A sample consent form appears in Appendix B. The facilitator
will ask the participant if they have any questions and how to be contacted
in case that participants requires additional help.

After completing the tasks, the participant will complete the post-task
questionnaire.

A.4 Usability tasks

Refer to Appendix C for tasks to be completed.

A.5 Usability metrics

Usability metrics refers to user performance measured against specific per-
formance goals necessary to satisfy usability requirements. Subjective eval-
uations against Nielsen’s guidelines will be used in this test.

A.5.1 Subjective evaluations

Subjective evaluations regarding user’s perception of the Ul will be collected
via questionnaire. The questionnaire is based on ten guidelines identified

© University of Pretoria

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
&

“ UNIVERSITEIT VAN PRETORIA

A 4

146 APPENDIX A. USABILITY TEST PLAN

by Nielsen [56].

A.6 Usability goals

The next section describes the usability goals for this study.

A.6.1 Subjective measures

Subjective opinions about specific tasks, features, and functionality will be
surveyed. The results of each group will be analysed and areas that do not
meet the Nielsen’s guidelines be identified. At the same time, the results
of the two groups will be analysed to identify which of the two software
application comply more to the guidelines.

A.7 Reporting results

The Usability Test Report will be provided at the conclusion of the usability
test. It will consist of a report and/or a presentation of the results; evaluate
the usability metrics against the pre-approved goals, subjective evaluations,
and specific usability problems.

© University of Pretoria

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
&

“ UNIVERSITEIT VAN PRETORIA
A 4

Appendix B

Consent Form

Evaluation of the FireySat and FireuSatPlus

at
University of South Africa

Student consent form

I (First name and Sur-

name) and student number , a student at University of

South Africa state that

e [have not been put under any pressure to participate in this evaluation
exercise, and

e have willingly participated in it.
e [know that my participation can cease at any time I want.

e | realise that the findings of the evaluation will be used for research
purposes, and

e that the findings will be published without revealing my identity.

147

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

Appendix C

Tasks

The following tasks have to be completed by following appropriate instruc-
tions.

Assumptions: The input sources file and the output file have been selected
before commencement of each task.

Task 1: Purpose: To investigate the easy to use the Graphic User Interface
(GUI) design.

o Use the GUI default values to search for all Perfect minisatellites.

Task 2: Purpose: To investigate the advance use of the system GUI.

e Search for minitsaltellites with the following parameters:
Min. motif size: 7
Max. motif size: 12
TR type: Approximate
Deletion penalty: 0.5
Insertion penalty: 0.5

Mismatch penalty: 0.1

Task 3: Purpose: To investigate user control of the system GUI.

e Use parameters as in task 2 and start the search search. Stop the
search before it completes and include the Perfect TRs in the search.

149

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

150 APPENDIX C. TASKS

Task 4: Purpose: To investigate error handling.

e Use parameters as in task 3 but change the Max motif to 5. Start the
search.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

ey
e
<

Appendix D

Questionnaire

Visibility of System Status
The system keeps me informed through feedback about what it is doing.

Strongly agree L1 Agree (0 Maybe O Disagree (1 Strongly disagree [
For every action I make, I can see or hear the results of that action.
Strongly agree 1 Agree [~ Maybe 0 Disagree 0 Strongly disagree [

Comment:

Match between System and the Real World
The language used is natural, since the terms, phrases and concepts are
similar to those used in my day-to-day working environment.

Strongly agree 1 Agree 1~ Maybe [0 Disagree [Strongly disagree [J
I am not confused by the use of terms.

Strongly agree L1 Agree [Maybe 1 Disagree (1 Strongly disagree [

Comment:

151

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

ey
e
<

152 APPENDIX D. QUESTIONNAIRE

User control and freedom
I control the system, rather than it controlling me.

Strongly agree 3 Agree 1 Maybe O Disagree O Strongly disagree U
The system works the way I want it to work.
Strongly agree 1 Agree 0 Maybe 1 Disagree (1 Strongly disagree [

Comment:

Consistency and adherence to Standards
The same convention (words) is used throughout the GUI.

Strongly agree 3 Agree 1 Maybe O Disagree O Strongly disagree U

The convention used on the GUI is similar to the ones on other GUI I am
use to.

Strongly agree 1 Agree 1~ Maybe [0 Disagree 1 Strongly disagree [J

Comment:

Error Prevention
The system supports me in such a way that it is not easy to make serous
mistakes.

Strongly agree 0 Agree 1 Maybe [0 Disagree [Strongly disagree [J
Whenever a mistake is made an error message is given.
Strongly agree 1 Agree 0 Maybe 1 Disagree (1 Strongly disagree [

Comment:

Recognition rather than Recall
There is an obvious relationship between controls and their actions.

Strongly agree 0 Agree 1 Maybe [0 Disagree [Strongly disagree [J
Options to be selected are easy to recognise.
Strongly agree L1 Agree 1~ Maybe 1 Disagree [1 Strongly disagree [

Comment:

© University of Pretoria

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&

&

“ UNIVERSITEIT VAN PRETORIA
A 4

153

Flexibility and efficiency of use
The GUI caters for different levels of users, from novice to expert.

Strongly agree 3 Agree 1 Maybe O Disagree 0 Strongly disagree U]
There is an option to use the keyboard alone to perform tasks.
Strongly agree L1 Agree (0 Maybe O Disagree (1 Strongly disagree [

Comment:

Aesthetic and Minimalistic Design
The information on GUI is not too much to confuse or distract me.

Strongly agree 1 Agree 1 Maybe O Disagree 0 Strongly disagree [
There are no excessive use of graphics and images.
Strongly agree L1 Agree 0 Maybe O Disagree (1 Strongly disagree [

Comment:

Help Users Recognise, Diagnose and Recover from Errors
Error messages are expressed in plain language.

Strongly agree 1 Agree 1~ Maybe O Disagree 0 Strongly disagree U]
Each error message gives information on how to fix the error.
Strongly agree L1 Agree (0 Maybe O Disagree (1 Strongly disagree [

Comment:

Help and Documentation
I find the online help facilities AAS useful.

Strongly agree 1 Agree 1~ Maybe O Disagree 0 Strongly disagree U]
Links to other resources are helpful.
Strongly agree L1 Agree (0 Maybe O Disagree (1 Strongly disagree [

Comment:

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g

Appendix E

FireySatPlus GUI source code

main.cpp file:

#include <QtGui/QApplication>
#include "FireMuSatPlus.h"

int main(int argc, char *argvl[])

{
QApplication a(argc, argv);
FireMuSatPlus w;
w.show() ;
return a.exec();
}

155

© University of Pretoria

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
&

“ UNIVERSITEIT VAN PRETORIA

A 4

156 APPENDIX E. FIREuSATPLUS GUI SOURCE CODE

FireMuSatPlus.h file:

#ifndef FIREMUSATPLUS_H
#define FIREMUSATPLUS_H

#include <QMainWindow>
#include <QtGui/QFileDialog>
#include <QFutureWatcher>

namespace Ui {
class FireMuSatPlus;

class FireMuSatPlus : public QMainWindow

{
Q_OBJECT

public:
explicit FireMuSatPlus(QWidget *parent = 0);
“FireMuSatPlus();

public slots:
// int busy();
void searchStatus();
void adjWinSize();
bool par0k();

private slots:
void on_toolButton clicked();
void on_toolButton 2 clicked();
void on_btnHelp_clicked();

private:
Ui::FireMuSatPlus *ui;
QFutureWatcher<void> FutureWatcher;

};

#endif // FIREMUSATPLUS_H

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g
157

FireMuSatPlus.cpp file:

#include "FireMuSatPlus.h"
#include "ui_FireMuSatPlus.h"
#include <QtGui/QMessageBox>
#include <QtGui/QProgressDialog>
#include <QtGui/QProgressBar>
#include <QtGui/QFileDialog>

FireMuSatPlus: :FireMuSatPlus(QWidget #*parent)
QMainWindow (parent),
ui(new Ui::FireMuSatPlus)

ui->setupUi(this);
ui->extension->hide ();
this->adjustSize (O ;

FireMuSatPlus:: “FireMuSatPlus()
{

delete ui;

void FireMuSatPlus::searchStatus (){
if (par0k()){
int numTRs = 99990;
QProgressDialog progress("Searching...", "Stop search", O,numTRs, this);
progress.setWindowModality (Qt: :WindowModal) ;
// progress.setRange(0,0);
progress.show() ;
for (int i = 0; i <= numTRs; i++) {

progress.setValue(i);

if (progress.wasCanceled()){
(MessageBox: :StandardButton ret;
ret = QMessageBox::warning(this, tr("Confirm cancel"),
tr("The search process has been
stopped.\n" "Press Yes to cancel the search?"),

QMessageBox: :No | QMessageBox::Yes);
if (ret == (MessageBox::Yes)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g

158 APPENDIX E. FIREuSATPLUS GUI SOURCE CODE

break;
else if (ret == (QMessageBox::No){
progress.reset();
progress.show();

}
//... search
gApp->processEvents() ;
}
if (!progress.wasCanceled()){
QMessageBox: :StandardButton ret2;
ret2 = (QMessageBox::information(this, tr("FireMuSatPlus"),
tr("Searching complete.\n"
"Press ok to view results?"),
QMessageBox: : 0k) ;

bool FireMuSatPlus: :par0k()
{
if (lui->grbRange->isChecked())
return TRUE;
else if (ui->spbMin->value() >ui->spbMax->value()){
QMessageBox: :warning(this, tr("Invalid input"), tr("Minimum motif
length must be
less than maximum motif length"), QMessageBox::0k);
return FALSE;}
else
return TRUE;

void FireMuSatPlus::adjWinSize ()
{
if (lui->btnMore->isChecked ()){
this->resize (550, 16777215);
this->adjustSize ();

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g

159

void FireMuSatPlus::on_toolButton_clicked()

{
QString inputDialog;
inputDialog = QFileDialog: :getOpenFileName (this, tr("Open File"),
QDir: :currentPath (), tr("Files(*.txt ;;All Files (*x)"));
ui->1ldtInput->setText (inputDialog) ;
}

void FireMuSatPlus::on_toolButton_2_clicked()

{
QString saveDialog = QFileDialog::getSaveFileName (this, tr("Save as"),
QDir: :currentPath (), tr("Files (*.txt)"));
yui->1dtOutput->setText (saveDialog);
X

void FireMuSatPlus::on_btnHelp_clicked()
{
QMessageBox: :about (this, "FiremuSatPlus",
"This app for detecting microsaltellites and minisatellites
in a DNA sequence."
"\nMore inforation on parameters are
available at www.dna-algo.co.za\n"
"Bye.\n");

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

List of Symbols
and Abbreviations

Abbreviation Description Definition
DNA DeoxyriboNucleic Acid page 5
TR Tandem Repeat page 5
ATR Approximate Tandem Repeat page 6
PTR Perfect Tandem Repeat page 6
ARS Academic/Research Software page 10
0SS Open source software page 10
PS Proprietary software page 9
GUI Graphic User Interface page 12
1SO International Organisation for Standardisa- page 44
tion
HCI Human Computer Interaction page 47
161

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

List of Figures

2.1
2.2
2.3
24

4.1
4.2

5.1
5.2

Classification of selected algorithms 22
TRF alignment sequence. 28
Suffix Tree of the string S =agge 34
Factor Oracle of the string S =agge 34
Research Design: Minisatellites detection 58
Research Design: Software usability 62
Sample test file. L 69
Venn diagram showing overlapping repeats from Jejuni sequence. 78

5.3 Venn diagram showing overlapping PTRs from Human X Chro-
TMOSOMEC. .« © v v v v e et b e e e e 78
5.4 Overlapping minisatellites from Human X Chromosome 81
5.5 ATRHunter vs TRF using default TR definition (PTR). 85
5.6 ATRHunter vs TRF using TRF’s TR definition (PTR). 85
5.7 ATRHunter vs TRF using TRF’s TR define (ATR) 86
6.1 FirepSat GUL 94
6.2 Tandem Repeat Finder GUL. 95
6.3 Phobos GUL. 95
6.4 Phobos search status. o000 96
6.5 Phobos warning.o 96
6.6 FirepSat error message. Lo 101
6.7 Task decomposition of task 1. 104
6.8 Task decomposition of task 2. 0. 105
6.9 Task decomposition of task 3. 106
6.10 Complete STN for FirepSatPlus GUL.. 107
6.11 FirepuSatPlus default runmode. L. 110
162

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

LIST OF FIGURES 163
6.12 FirepSatPlus extended mode. L. 111
6.13 Initial FireuSatPlus system status and user control. 113
6.14 Newer improved FireySatPlus running system status. 113
6.15 FirepuSatPlus search complete. 113
6.16 FirepSatPlus error prevention and recovery. 115
6.17 FirepuSatPlus error message. L. 116
6.18 Usability testing mean scores. 119
6.19 Summerised Likert scale scores for FirepSat. 120

6.20 Summerised Likert scale scores for preferences for FirepuSatPlus. 120

© University of Pretoria

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

List of Tables

3.1

4.1

5.1
5.2
5.3
5.4
9.5
0.6
5.7

6.1
6.2
6.3

Summary of usability definitions
Genomic data files.

Data files containing a representation of a genetic sequence.

Summary of parameters
Parameters settings for various software packages.
Perfect minisatellites detection.
Perfect minisatellites detected by the four software packages. . .
Approximate minisatellites detected by four software packages. .
Similarities and difference between TRF and ATRHunter se-
QUENCES. + « v v v e e e e e e e e e

Nielsen’s ten heuristics.
GUI evaluation summary
Likert scale scores for FirepSat and FirepSatPlus.

164

© University of Pretoria

68
74
76
77
82
82

	Contents
	1 Introduction
	1.1 Background information
	1.2 Definition of terms and concepts
	1.3 Research goals, objectives and questions
	1.3.1 Research questions
	1.3.2 Research objectives
	1.3.3 Delineation and limitations

	1.4 Brief chapter overview
	1.5 Concluding remarks

	2 Background: Minisatellite detecting algorithms
	2.1 Introduction
	2.2 Classification of TR searching algorithms
	2.3 Selection of algorithms for investigation
	2.4 Overview of algorithms selected for investigation
	2.4.1 Phobos
	2.4.2 Mreps
	2.4.3 Tandem Repeat Finder (TRF)
	2.4.4 Approximate Tandem Repeat Hunter (ATRHunter)

	2.5 Overview of two unselected algorithms
	2.5.1 REPuter
	2.5.2 FORRepeats

	2.6 Conclusion

	3 Background: Open Source Software and the relationship to Usability
	3.1 Introduction
	3.2 Computer software users
	3.3 Software usability
	3.3.1 Alternative definitions of usability
	3.3.2 Design for usability

	3.4 Usability in open source and proprietary software
	3.4.1 Proprietary software and usability
	3.4.2 Open source software (OSS) and usability
	3.4.3 Proposed OSS usability solutions

	3.5 Conclusion

	4 Methodology
	4.1 Introduction
	4.2 Minisatellites detection
	4.2.1 Research design
	4.2.2 Methodology

	4.3 Software usability
	4.3.1 Research design
	4.3.2 Methodology

	4.4 Conclusion

	5 Minisatellite detecting algorithms: output comparison
	5.1 Introduction
	5.2 Research instruments
	5.2.1 Test data
	5.2.2 Software

	5.3 Software parameters
	5.3.1 Mreps
	5.3.2 Phobos
	5.3.3 Tandem Repeat Finder (TRF)
	5.3.4 ATRHunter

	5.4 Software Comparison
	5.5 Observations
	5.5.1 Comparison for perfect detection
	5.5.2 Comparison for approximate detection
	5.5.3 Comparison between TRF and ATRHunter

	5.6 Discussion of results and conclusions

	6 Minisatellite detecting algorithms: usability comparison
	6.1 Introduction
	6.2 Heuristic evaluation of TR software GUI
	6.3 Task analysis
	6.3.1 Task analysis of FireSatPlus
	6.3.2 Requirement capturing and detail interface design

	6.4 Suggested FireSat GUI improvements
	6.4.1 Analysis of the STN
	6.4.2 Detail design

	6.5 Usability testing on FireSat and FireSatPlus GUIs
	6.6 Conclusion

	7 Conclusion
	7.1 Introduction
	7.2 Overview
	7.3 Implication of the findings
	7.4 Limitations of the study
	7.5 Future research
	7.6 Conclusion

	Bibliography
	A Usability Test Plan
	A.1 Document Overview
	A.2 Purpose
	A.3 Methodology
	A.3.1 Participants
	A.3.2 Training
	A.3.3 Procedure

	A.4 Usability tasks
	A.5 Usability metrics
	A.5.1 Subjective evaluations

	A.6 Usability goals
	A.6.1 Subjective measures

	A.7 Reporting results

	B Consent Form
	C Tasks
	D Questionnaire
	E FireSatPlus GUI source code
	List of Symbols and Abbreviations
	List of Figures
	List of Tables

