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Abstract

We introduce sheaves of A-modules of fractions (or just A-modules
of fractions), on a topological space X, with denominator a monoid-
subsheaf S of A; as a side worth noting result, we remark (Theo-
rem 2.4) that there is an isomorphism between the functors S−1 and
(S−1A)⊗ –. Moreover, we discuss the classical problem related to the
commutativity of the functors: Clifford functor Cl and algebra exten-
sion functor of the ground algebra K of a quadratic K-module (M, q).
As a particular case, we show (Corollary 3.5) that given a sheaf A of
algebras on a topological space X and S as above, the functor ClS−1A
commutes with the functor S−1ClA.
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Introduction

Abstract Differential Geometry (ADG in short) ([9, 10, 11]) offers a sheaf-
theoretic approach to classical Differential Geometry in the sense that one
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does not require the usual notion of differentiability in order to define funda-
mental concepts such as connections on principal bundles, curvature, char-
acteristic classes, and cohomologies. In fact, ADG centers around locally
free sheaves of A-modules over topological spaces unlike classical Differential
Geometry, which centers around vector bundles over differential manifolds.
Succinctly, (differential) functions that define differentiability on a manifold
are replaced instead by an arbitrary sheaf A of algebras, based on the under-
lying topological space of the manifold in question; that is, differentiability
is now characterized by the picked sheaf A. This sheaf of algebras may in
some cases contain a tremendous amount of singularities.

Yet, a particular instance of Abstract Differential Geometry that also
interests us consists of putting within this framework some recent results
pertaining to sheaves of Clifford A-algebras (in short, Clifford A-algebras)
of quadratic A-modules, defined on arbitrary topological spaces. As is men-
tioned in [5, p. 287], the motivating idea of constructing the Clifford A-
algebra for a quadratic A-module (E , q), given on any topological space X,
is underpinned by the need of expressing the A-quadratic morphism q as a
square of an A-morphism ϕ on E . (Our emphasis on the is justified by the
fact that Clifford A-algebras are unique up to isomorphisms. See [14].) In
fact, let K be a unital associative A-algebra; a sheaf morphism ϕ : E −→ K
is called a Clifford A-morphism if

ϕ(–)2 = ev(q, –) · 1(–),

where: (a) ev :Mor(E ,A)⊕ E −→ A is the evaluation A-morphism, viz

evU(ψ, s) := ψU(s),

for any open U in X and sections s ∈ E(U), ψ ∈ Mor(E ,A)(U) (some
standard convention: Mor(E ,A) stands for the sheaf of morphisms of E into
A), and (b) 1 ∈ MorX(E ,K) is the constant morphism 1V (t) = 1K(V ) for
every open V ⊆ X and section t ∈ E(V ). We also recall (see [14]) that by
a Clifford A-algebra of a quadratic A-module (E , q), defined on a topological
space X, we mean any pair (C, ϕC), where C is a unital associative A-algebra
on X and ϕC is a Clifford A-morphism of E into C, satisfying the following
properties:

(1) C is generated by the sub-A-algebra ϕC(E) and the unital line sub-A-
algebra 1C of C.
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(2) Every Clifford A-morphism ϕ ∈ HomA(E ,K), where K is an associative
and unital A-algebra, factors through the Clifford A-morphism ϕC,
i.e., there exist a 1-respecting A-morphism Φ ∈ HomA(C,K) such that
ϕ = Φ ◦ ϕC.

As a general remark, we assume that all the sheaves of A-algebras throughout
the paper are of characteristic 0, in order to avoid pathological cases such as
[6, p. 106, Example(3.1.3)], that is, cases where canonical A-morphisms
A −→ C and ϕC : E −→ C may not be injective. Equivalently, Clifford A-
algebras are also defined as follows: Let ACl(E , q) ≡ ACl(E), where (E , q) is a
quadratic A-module on a topological space X, be the category whose objects
are the Clifford A-morphisms ϕ ∈ HomClA(E ,K) ⊆ HomA(E ,K), with K being
any associative and unital A-algebra sheaf on X, and such that, given two
objects ϕ ∈ HomClA(E ,K) and ψ ∈ HomClA(E ,L), a morphism u : ϕ −→ ψ is
an A-morphism of A-algebras K and L such that ψ = u ◦ ϕ. If ACl(E , q)
contains an initial universal object ρ (which is unique up to A-isomorphism),
its target is called the Clifford A-algebra, associated with (E , q); we shall
denote it by ClA(E , q) ≡ Cl(E , q) ≡ Cl(E). A useful result pervading some
arguments in the paper states the following [15]: Let (E , q) be a quadratic
A-module on a topological space X, and consider the sheaf morphism Φ ≡
⊗◦∆− q : E −→ T E, where T E is the tensor algebra sheaf of E (see [12] for
T E) and ∆ is the diagonal A-morphism E −→ E ⊕ E with ∆U(s) := (s, s)
for any open U ⊆ X and section s ∈ E(U). Moreover, let I(E , q) be the
two-sided ideal sheaf in T E, generated by the presheaf Φ(E), and let

Cl(E , q) := T (E)/I(E , q).

Then, the A-morphism

ρ : E −→ Cl(E , q)

is an initial universal object in the category ACl(E , q).

As for an example, consider a quadratic line A-module E on a topolog-
ical space X; for any open set U in X, T (E(U)) is isomorphic to A(U)[e],
where e is a generator of E(U). It is clear that I(E(U), qU) is isomorphic to
the ideal generated by e2– qU(e); thus Cl(E(U), qU) is a free A(U)-module of
basis (1, e). Hence, Cl(E) ' A2.
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Section 1 contains nothing essentially new, though we state the results
in a novel way. A similar treatment of some of these results may be found in
[7]. Section 2 is concerned with sheaves ofA-modules of fractions on arbitrary
topological spaces ; its main result (Theorem 2.2) stipulates that given a sheaf
A of unital and commutative algebras on a topological space X and S a sheaf
of submonoids in A, the sheaf S−1A is an algebra sheaf on X. In Theorem
2.4, we show that the functor S−1 : A-ModX −→ (S−1A)-ModX is exact
and equivalent to the functor S−1A⊗ –, i.e. S−1E ' S−1A⊗ E . Finally, in
Section 3, we establish the commutativity between the Clifford functor and
the extension of the algebra sheaf A of scalars of an A-module E , which, in
turn, gives rise to the isomorphism depicted by the diagram of Corollary 3.6.

1 Preliminaries on basic algebra sheaves

Here we lay down useful results, pertaining to changes of basic algebra sheaves
in the category A-ModX of sheaves of A-modules on a fixed topological
space X. For instance, given a sheaf morphism ϕ : B −→ A of unital
and commutative algebra sheaves A ≡ (A, τA, X) and B ≡ (B, τB, X) and
an A-module E ≡ (E , π,X); E may be made in a natural way into a B-
module as follows: for all x ∈ X, b ∈ Bx and e ∈ Ex, the product be is
by definition ϕx(b)e, i.e., Ex is also a Bx-module. And clearly, the “exterior
module multiplication in E”, viz. the map

B ◦ E −→ E : (b, e) 7−→ be ≡ ϕx(b)e ∈ Ex ⊆ E ,

with τB(b) = π(e) = x ∈ X, is continuous. (For the sake of convenience, we
have used the notation B◦E := {(b, e) ∈ B×E : τB(b) = π(e)} in conformity
with [9, p. 87, (1.1)].) Such an algebra sheaf morphism ϕ : B −→ A is
called an extension of the algebra sheaf B, even though ϕ is not necessarily
injective. Our terminology is different from the terminology of Mallios, [9, p.
260ff], which states the following: given two A-modules E and F on X, any
short exact A-sequence of the form

0 // F // S // E // 0

is called an A-extension of E by F .



Commutativity of the Clifford and “extension of scalars” functors 5

Now, let us suppose that E is a free B-module of finite rank n on
X; we may derive from E two free A-modules, called the extensions of E ,
which are A⊗B E and HomB(A, E); in this vein, see [13] for complexification
of A-modules, which is defined to be the process of obtaining new free A-
modules by enlarging the R-algebra sheaf A to a C-algebra sheaf, denoted
AC. Indeed, for any x ∈ X, an element a ∈ Ax multiplies an element
a′ ⊗ e ∈ (A ⊗B E)x = Ax ⊗Bx Ex = Ax ⊗Bx (Bx)n = (Ax)n (the last three
equalities actually stand for Bx-isomorphisms; to corroborate this fact, see [9,
p.123, (3.18); p.130, (5.9); p.131, (5.18)]) or an element z ∈ HomB(A, E)x =
HomB(A,Bn)x = (A∗)nx = (A∗x)n = HomBx(Ax,Bnx), with these equalities
being valid within Bx-isomorphisms, in the following way:

a(a′ ⊗ e) = (aa′)⊗ e and (az)(a′) = z(aa′).

Yet, still under the assumption that E is a free B-module of finite rank
on a topological space X, and ϕ : B −→ A a sheaf morphism of unital and
commutative algebra sheaves A and B, the next lemma is related to the
canonical B-morphisms, E −→ A ⊗B E and HomB(A, E) −→ E , given, for
any x ∈ X, e ∈ Ex and z ∈ HomB(A, E)x ' HomBx(Ax, Ex), by e 7−→ 1Ax⊗e
and z 7−→ z(1Ax), respectively; the former is not always surjective, whereas
the latter is not always injective. When A = B, these B-morphisms are
bijective for any given B-module E , not necessarily free, and both B ⊗B E
and HomB(B, E) are B-isomorphic to E .

Lemma 1.1 Let A, B be unital and commutative algebra sheaves on a topo-
logical space X, ϕ : B −→ A a surjective sheaf morphism, and E ≡ (E , π,X)
a locally free B-module of rank n (i.e. a vector sheaf ). Then, A ⊗B E is
canonically B-isomorphic to the quotient E/(kerϕ)E, and HomB(A, E) is B-
isomorphic to the sub-B-module of E, whose stalks consist of elements z ∈ Ex
(π(z) = x ∈ X) such that (kerϕ)xz = (ker(ϕx))z = 0x.

Proof. Let ι : kerϕ −→ B be the natural injection, then, clearly,

0 // kerϕ ι // B
ϕ // A // 0 (1)

is exact. Tensoring (1) with the vector sheaf E yields an exact B-sequence
(see [9, p.131, Theorem 5.1]), viz.

0 // kerϕ⊗B E // B ⊗B E // A⊗B E // 0. (2)
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Note that, for x ∈ X,

(kerϕ⊗B E)x = kerϕx ⊗Bx Ex = (kerϕx)Ex = ((kerϕ)E)x, (3)

within Bx-isomorphisms (the second Bx-isomorphism in (3) is a classical
result ; see, for instance, the proof of [6, p.18, Lemma 1.9.1]). (kerϕ)E is
the B-module, obtained by sheafifying the presheaf

U 7−→ 〈(kerϕU)E(U)〉,

where 〈(kerϕU)E(U)〉 is the B(U)-module generated by the set (kerϕU)E(U),
that is, the set of t ∈ E(U) such that t = α ·s, with α ∈ kerϕU and s ∈ E(U).
The restriction maps for this presheaf are obvious. It follows from (3) that

kerϕ⊗B E = (kerϕ)E , (4)

within B-isomorphism. Since B ⊗B E = E within B-isomorphism, it follows,
taking also account of (4), that A⊗B E = E/(kerϕ)E within B-isomorphism.

For any x ∈ X, the following sequence of Bx-modules, namely

0 // HomBx(Ax, Ex)
µ // HomBx(Bx, Ex)

ν // HomBx(ker(ϕx), Ex) , (5)

where µ := HomBx(ϕ
∗
x, Ex) and ν := HomBx(ι

∗
x, Ex), is exact. (µ and ν are

given by: for f ∈ HomBx(Ax, Ex), µ(f) = HomBx(ϕ
∗
x, Ex)(f) := f ◦ ϕx; simi-

larly, for g ∈ HomBx(Bx, Ex), ν(g) = HomBx(ι
∗
x, Ex)(g) := g ◦ ιx.) . For (5),

see, for instance, [3, p.227, Theorem 1]. The exactness of (5) implies that
HomBx(Ax, Ex) is Bx-isomorphic to the sub-Bx-module of HomBx(Bx, Ex) ' Ex
consisting of z such that HomBx(ι

∗
x, Ex)(z) = 0x, i.e., ker(ϕx)z = 0x. Obvi-

ously, if U ≡ (Uα)α∈I is a local frame of E , i.e., for all α ∈ I, E|Uα = Bn|Uα ,
within B|Uα-isomorphism, then HomB(A, E)(Uα) = (A∗|Uα)n, within B|Uα-
isomorphism; consequently, for any x ∈ X, HomB(A, E)x = (A∗x)n within
Bx-isomorphism. On the other hand, HomBx(Ax, Ex) = HomBx(Ax,Bnx) =
(A∗x)n, within Bx-isomorphism (cf. [9, p.299, (5.8)]). Thus, HomB(A, E)x =
HomBx(Ax, Ex), within Bx-isomorphism. Hence, for all x ∈ X, the corre-
sponding stalk HomB(A, E)x is Bx-isomorphic to the sub-Bx-module of Ex
consisting of z such that ker(ϕx)z = 0x.

For the purpose of the sequel, while keeping with the notations of
Lemma 1.1, with the exception that the B-module E is not necessarily locally
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free, we shall need the following A-isomorphisms:

TA(A⊗B E) = A⊗B TB(E) (6)

and
SA(A⊗B E) = A⊗B SB(E), (7)

where TB(E) and SB(E) are tensor algebra and symmetric algebra sheaves of
E on X, respectively; they both are sheaves of B-algebras (or B-algebras,
for short) on X. These two notions are defined in a way similar to the way
the notion of exterior algebra of a B-module E on a topological space X is
defined. For convenience, recall (cf. [9, pp.307-315]) that the exterior algebra
of E , yet denoted

∧
E , is given by∧

E := ⊕∞n=0

∧
nE ,

where for every integer n ≥ 2, the n-th exterior power of E , i.e.
∧

nE , is
defined as the sheafification of the presheaf of B(U)-algebras

U 7−→
∧

n(E(U)) ≡
∧

n
B(U)(E(U)),

where U ranges over the open subsets of X. As per the classical theory, for
n = 0, 1, one sets∧

0(E(U)) := B(U) and
∧

1(E(U)) := E(U),

so that ∧
0E = B and

∧
1E = E ,

within B-isomorphisms.

Note that the exterior algebra
∧
E can be constructed (ibid.) as the

sheaf generated by the presheaf of B(U)-algebras, given by the correspon-
dence

U 7−→ ⊕∞n=0

∧
n(E(U)) ≡

∧
E(U),

where U is open in X. For the tensor algebra sheaf T E of E on X, one defines
the n-th (n ≥ 2) tensor power of E , denoted T nE , as the sheafification of the
Γ(A)-presheaf (U → T nE(U))X⊇U, open (the restriction maps of this presheaf
are obvious). On account of [9, p.101, (1.54)], it follows that T nE is also a
B-module on X, for any given B-module E on X and every integer n ∈ N,
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with n ≥ 2. Furthermore, again by following the classical pattern, we set, for
any open U in X,

T 0E(U) := B(U) and T 1E(U) := E(U),

so that one obtains
T 0E = B and T 1E = E ,

within B-isomorphisms. In a similar way, one defines the symmetric al-
gebra sheaf SE of E on X. We now show that the B-algebra TB(E) may
be constructed equivalently as the sheaf generated by the presheaf TE ≡
((TE)(U) := T (E(U)))X⊇U, open of B(U)-algebras, given by

U 7−→ ⊕∞n=0T
n(E(U)) ≡ T (E(U)),

where U ⊆ X is open, along with the obvious restriction maps. Indeed, with
every open U ⊆ X, one associates the following (canonical) B(U)-morphism

TE(U) ≡ ⊕∞n=0T
n(E(U))

φU // (TBE)(U) := ⊕∞n=0(T nB E)(U); (8)

therefore one obtains a morphism φ of the sheaves, generated by the presheaves
of B(U)-algebras, which appear in the two members of (8). It suffices to prove
that φ is a fiber-wise B-isomorphism. To this end, we observe the following
Bx-isomorphisms

(S(TE))x = (⊕∞n=0T
n(E(U)))x = lim−→

x∈U
(⊕∞n=0T

n(E(U)))

≡ lim−→
x∈U

(T (E(U))) = T (lim−→
x∈U
E(U)) = T (Ex) = ⊕∞n=0(T n(E(U)))x

= ⊕∞n=0(lim−→
x∈U

T n(E(U))) = (⊕∞n=0T nE)x ≡ (T E)x,

for every x ∈ X.

Since, by virtue of [9, p.130, (5.9)],

TA(A⊗B E)x = (TA)x(A⊗B E)x = TAx(Ax ⊗Bx Ex) = Ax ⊗Bx TBx(Ex),

within Ax-isomorphisms (see [6, p.18] for the last Ax-isomorphism), it fol-
lows, on the basis of [9, p.68, Theorem 12.1], that (6) is fulfilled. Likewise,
one obtains (7).
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Now, the next theorem is a connection between the functor Hom and
the bifunctor ⊗, which is classically called the adjoint associativity of Hom
and tensor product. This result is also established by Kashiwara and Schapira
[7, p.439, Proposition 18.2.3(ii)] for presheaves and sheaves constructed on a
site X with values in a certain category with suitable properties. We recall
that a site X is a small category CX endowed with a Grothendieck topology.
The adjunction associativity formula suggests the following: Let R be a sheaf
of rings on a site X, and kX a sheaf of k-algebras on X, where k denotes a
commutative unital ring. If we denote by PSh(R) the category of presheaves
of R-modules, then, given F ∈ PSh(Rop), G ∈ PSh(R) and H ∈ PSh(kX),
there is an isomorphism

HomkX (F ⊗R G,H) ' HomR(G,HomkX (F,H)), (9)

functorial in F , G and H. (The notations used are those of [7, p.439, Propo-
sition 18.2.3(ii)].) For the purpose of a version of the adjunction associativity
formula in our setting, let us notice that given algebra sheaves K and L on
a given topological space X, an (K,L)-bimodule E on X and a left K-module
F on X, the sheaf HomK(E ,F) is a left L-module. We assume that all the
sheaves involved in Theorem 1.2 are defined on a given topological space X.

Theorem 1.2 Let A, B be unital and commutative algebra sheaves, E a
locally free left B-module of rank m, G a left A-module. Moreover, let F be
an (A,B)-bimodule such that as a left A-module, F is locally free and of rank
n. Then,

HomB(E ,HomA(F ,G)) = HomA(E ⊗B F ,G) (10)

within isomorphism of group sheaves.

Proof. Let U and V be local frames of E and F , respectively. That W ≡
U ∩ V := {U ∩ V : U ∈ U , V ∈ V} is a common local frame of E and F is
clear. So, if U ∈ W , then, applying [9, p. 137, (6.22), (6.23), (6.24′)], one
has the following B|U -isomorphisms:

HomB(E ,HomA(F ,G))|U = HomB|U (Bm|U ,HomA|U (An,G|U)),

that is,
HomB(E ,HomA(F ,G))|U = Gmn|U . (11)
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In the same way, one shows that

HomA(E ⊗B F ,G)|U = Gmn|U (12)

within a A|U -isomorphism. On the other hand, for any open subset W of X,
one has the following morphism

HomB|W (E|W ,HomA(F ,G)|W )
ϕW // HomA|W (E|W ⊗B|W F|W ,G|W ),

which is given by

ϕW (α)(s⊗ t) := (αZ(s))Z(t) ≡ α(s)(t),

where α ∈ HomB|W (E|W ,HomA(F ,G)|W ), s ∈ (E|W )(Z) = E(Z), t ∈ F(Z),
with Z a subopen of W . Clearly, the family ϕ ≡ (ϕW )X⊇W, open yields an
A-morphism. We shall indeed show that the sheafification S(ϕ) ≡ ϕ̃ of ϕ is
an A-isomorphism. For this purpose, we notice that, by virtue of (11) and
(12),

HomB(E ,HomA(F ,G))x = Gmnx = HomA(E ⊗B F ,G)x, (13)

for any x ∈ X. The equalities in (13) are valid up to group isomorphisms.
Furthermore, as

HomB(E ,HomA(F ,G))x = HomBx(Ex,HomA(F ,G)x)

and
HomA(E ⊗B F ,G)x = HomAx(Ex ⊗Bx Fx,Gx),

for any x ∈ X, ϕx is an Bx-isomorphism (see [1, p. 198, Theorem 15.6]).
Whence, by [9, p. 68, Theorem 12.1], ϕ is an A-isomorphism, and the proof
is complete.

When E is a locally free B-module of finite rank as in Theorem 1.2, and
F an A-module, clearly one has the following canonical A-isomorphisms

HomA(A⊗B E ,F) = HomA(E ⊗B A,F) = HomB(E ,F). (14)

Moreover, by [9, p.130, (5.14) and (5.15)], one has

E ⊗B F = (A⊗B E)⊗A F (15)

within A-isomorphism.
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The fact that the category A-ModX of sheaves of A-modules, where
A is commutative and unital, on a fixed topological space X is an abelian
category [9, p.158] heralds the following.

Definition 1.3 (i) An object P ∈ A-ModX is projective if the functor

HomA(P , ·) : A-ModX −→ A(X)-Mod, (16)

where A(X)-Mod is the category of modules over the algebra A(X), is exact.
(ii) An object F ∈ A-ModX is flat if the functor E 7−→ F ⊗A E is exact.
(iii) Given a unital and commutative algebra sheaf B on X, an extension
B −→ A is called flat if A is a flat B-module.

Lemma 1.4 Let A, B be unital and commutative algebra sheaves on a given
topological space X, and ϕ : B −→ A a unity-preserving sheaf morphism. For
any locally free B-module E of finite rank on X, A⊗B E is A-projective if E
is B-projective. On the other hand, for any B-module F on X, the A-module
A⊗B F is A-flat if F is B-flat.

Proof. By the A-isomorphism (14), one has

HomA(A⊗B E ,F) = HomA(A⊗B E ,F)(X)

= HomB(E ,F)(X) = HomB(E ,F).

Therefore, if HomB(E , ·) is exact, then HomA(A⊗BE , ·) is exact, which means
that A ⊗B E is A-projective whenever E is B-projective. The remaining
assertion is also easy to prove.

Now, as in Lemma 1.4, we assume that E is a locally free B-module
of rank n, and F any B-module, both on the same topological space X.
Moreover, let us consider the following canonical A-morphism

Φ ≡ (Φx)x∈X : A⊗B HomB(E ,F) −→ HomA(A⊗B E ,A⊗B F) (17)

such that, for all x ∈ X,

Φx(a⊗ z)(a′ ⊗ e) := aa′ ⊗ z(e), (18)
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where a, a′ ∈ Ax, z ∈ HomB(E ,F)x = lim−→
U3x

HomB|U ((B|U)n,F|U) = Fnx =

HomBx(Bnx ,Fx) (with U a local gauge of E) and e ∈ Ex. Observe the following
Ax-isomorphisms

HomA(A⊗B E ,A⊗B F)x = lim−→
U3x

HomA|U (A|U ⊗B|U E|U ,A|U ⊗B|U F|U)

= lim−→
U3x

HomA|U (A|U ⊗B|U (B|U)n,A|U ⊗B|U F|U)

= lim−→
U3x

HomA|U ((A|U)n,A|U ⊗B|U F|U)

= lim−→
U3x

(A|U ⊗B|U F|U)n

= (Ax ⊗Bx Fx)n

(U is a local gauge of E); therefore, Φ is well defined.

Lemma 1.5 Let E be a locally free B-module of rank n on a topological space
X such that every stalk Ex is Bx-projective. Then, E is B-projective.

Proof. In fact, let

0 // S ′ // S // S ′′ // 0

be a B-exact sequence. Since exactness is transferred to stalks of sheaves (cf.
[9, p.113, (2.34)]) and, for any x ∈ X and B-module F onX, HomBx(Ex,Fx) =
Fnx = HomB(E ,F)x, one has

0 //HomB(E ,S ′)x //HomB(E ,S)x //HomB(E ,S ′′)x // 0. (19)

The exactness of (19) follows from the fact that Ex, x ∈ X, is Bx-projective
(see, for instance, [3, p.231, Proposition 4]). On the other hand, since any

complex G ′
ϕ // G ψ // G ′′ of sheaves is exact if and only if, for any x ∈ X,

the induced complex G ′x
ϕx // Gx

ψx // G ′′x is exact (cf. [16, p.99, Proposition

5.3.4], yet, [9, p. 113, (2.34)]), one obtains the following exact B-sequence

0 //HomB(E ,S ′) //HomB(E ,S) //HomB(E ,S ′′) // 0;
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whence the vector sheaf E is B-projective.

Keeping with the notations of Lemma 1.4, we have.

Theorem 1.6 Suppose that every stalk Ex of the vector sheaf E is Bx-projective,
then the canonical sheaf morphism (17) is an A-isomorphism.

Proof. Since every Ex is projective, it follows, by means of [6, p.19, Propo-
sition 1.9.7], that

Ax ⊗Bx HomB(E ,F)x = HomAx(Ax ⊗Bx Ex,Ax ⊗Bx Fx)

within Ax-isomorphism; whence the A-morphism Φ is an A-isomorphism
(see, for instance, [9, p.68, Theorem 12.1]).

Definition 1.7 [7, p.446, Definition 18.5.1] An A-module E on a topological
space X is said to be locally finitely presented if there is an open covering
U ≡ (Uα)α∈I of X such that, for every α ∈ I, the A-sequence

(A|Uα)m = Am|Uα // An|Uα // E|Uα // 0, (20)

where m, n ∈ N, is exact.

We shall state a useful property of flat A-extensions, which stipulates
that under certain conditions the functors ⊗ and Hom commute.

First, let us recall the following result; cf. [17, p.114, (?) and subsequent
remarks].

Lemma 1.8 Let (X,A) be an algebraized space and E a finitely presented
A-module on X. Then, for any A-module F on X and x ∈ X, the natural
morphism

(HomA(E ,F))x −→ HomAx(Ex,Fx) (21)

is an Ax-isomorphism.
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Theorem 1.9 Let A, B be unital commutative algebra sheaves on a topo-
logical space X, and ϕ : B −→ A a flat extension. For any locally finitely
presented B-module E on X,

A⊗B HomB(E ,F) = HomA(A⊗B E ,A⊗B F) (22)

within A-isomorphism, for any B-module F on X.

Proof. That (22) holds for free B-modules of finite rank is obvious. In fact,
suppose that E ' Bn (n ∈ N), then, one has,

A⊗B HomB(E ,F) = A⊗B Fn = (A⊗B F)n, (23)

with the preceding equalities being valid within A-isomorphisms. On the
other hand,

HomA(A⊗B E ,A⊗B F) ' HomA(An,A⊗B F) ' (A⊗B F)n. (24)

Fix x ∈ X; if a ∈ Ax, z ∈ HomB(E ,F)x = Fnx ,

Φx(a⊗ z)(a′ ⊗ e) := aa′ ⊗ z(e) = 0

for all a′ ∈ Ax and e ∈ Ex, a ⊗ z = 0; this implies that Φx is injective.
Moreover, since both A ⊗B HomB(E ,F) and HomA(A ⊗B E ,A ⊗B F) are
free as finite direct sums of A⊗B F (cf. (23) and (24)), it follows that Φx is
bijective. Hence, Φ is an A-isomorphism (see, for instance, [9, p.68, Theorem
12.1]).

Now, let us suppose that E is properly locally finitely presented; so, for
every x ∈ X, there are an open set U ⊆ X and locally free B-modules E1

and E0 of finite rank such that

E1|U ' Bm|U // E0|U ' Bn|U // E|U // 0

is exact. One thus obtains, by virtue of Lemma 1.8, the following diagram,
for every x ∈ X,

0 // Ax ⊗ Hom(Ex,Fx) // Ax ⊗ Hom(E0x,Fx) // Ax ⊗ Hom(E1x,Fx),
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with Ax⊗Hom(E0x,Fx) = Hom(Ax⊗E0x,Ax⊗Fx) and Ax⊗Hom(E1x,Fx) =
Hom(Ax⊗E1x,Ax⊗Fx) within Ax-isomorphisms. On the other hand, since

0 // Hom(Ax ⊗ Ex,Ax ⊗Fx) // Hom(Ax ⊗ E0x,Ax ⊗Fx),

it follows

Ax ⊗Bx HomB(E ,F)x = Ax ⊗Bx HomBx(Ex,Fx)
= HomAx(Ax ⊗Bx Ex,Ax ⊗Bx Fx) = HomA(A⊗B E ,A⊗B F)x

withinAx-isomorphisms. Since the lastAx-isomorphisms hold for any x ∈ X,

Φ : A⊗B HomB(E ,F) −→ HomA(A⊗B E ,A⊗B F),

where Φx is given by (18), is an A-isomorphism.

2 A-modules of fractions

Definition 2.1 Let X be a topological space, A ≡ (A, π,X) a sheaf of unital
and commutative algebras, and S ≡ (S, π|S , X) a sheaf of submonoids in A.
A sheaf of algebras of fractions of A by S is a sheaf of algebras, denoted
S−1A, such that, for every point x ∈ X, the corresponding stalk (S−1A)x is
an algebra of fractions of Ax by Sx; in other words,

(S−1A)x = S−1
x Ax (25)

for all x ∈ X.

Explicitly, fix x in X; the stalk Sx is a submonoid of the unital and
commutative algebra Ax. The algebra of fractions of Ax by Sx is defined (see
[8, pp. 107- 111]) by considering the equivalence relation, on the set Ax×Sx:

(r, s) ∼ (r′, s′)

provided there exists an element t ∈ Sx such that

t(s′r − sr′) = 0.
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The equivalence class containing a pair (r, s) is denoted by r
s
, and the set

of all equivalence classes is denoted by S−1
x Ax. The set S−1

x Ax becomes an
algebra by virtue of the operations

r

s
+
r′

s′
:=

s′r + sr′

ss′

and
r

s

r′

s′
:=

rr′

ss′
.

Theorem 2.2 S−1A is an algebra sheaf on X.

Proof. Let us consider the projection map

q : A ◦ S −→ S−1A (26)

given by

qx(r, s) :=
r

s
, (27)

for every x ∈ X, r ∈ Ax and s ∈ Sx. (A ◦ S is the subsheaf of the sheaf
A× S, given by A ◦ S := {(a, s) ∈ A× S : π(a) = π|S(s)}.) By considering
the topology coinduced by q on S−1A, that is, U ⊆ S−1A is open if and only
if q−1(U) is open in A ◦ S, with A ◦ S carrying the relative topology from
A× S, we quickly show that the map

σ : S−1A −→ X

such that

A ◦ S
q //

τ
##FF

FF
FF

FF
F S−1A

σ

{{xxx
xx

xx
xx

X

,

where τ is the obvious projection, is a local homeomorphism; hence S−1A ≡
(S−1A, σ,X) is a sheaf of algebras on X. Indeed, for any open U in X, we
clearly have that σ−1(U) is open in S−1A, which implies that σ is continuous.
To show that σ is a local homeomorphism, consider a point z ∈ S−1A and
let V be an open neighborhood of z in S−1A. Then, q−1(z) ⊆ q−1(V ), with
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q−1(V ) open in A◦S. Next, let u ∈ q−1(z) and W an open neighborhood of u
such that τ |W is homeomorphic. (The projection τ is a local homeomorphism
for the following reason: Given two sheaves of A-modules E ≡ (E , π,X) and
E ′ ≡ (E ′, π′, X) on X, the triple (E ⊕ E ′, σ,X), where E ⊕ E ′ := {(z, z′) ∈
E × E ′ : π(z) = π′(z′)} and σ : E ⊕ E ′ −→ X : (z, z′) 7−→ σ(z, z′) := π(z) =
π′(z′), is a sheaf on X, viz. σ is a local homeomorphism. See [9, p. 120].)
Since σ(z) ∈ X and σ is continuous, there exists an open neighborhood O
of σ(z) in X such that z ∈ σ−1(O). That σ|σ−1(O∩τ(W )) is homeomorphic
is clear. Indeed, let us first show that σ is bijective on σ−1(O ∩ τ(W )).
To this end, consider z1 6= z2 in σ−1(O ∩ τ(W )); so q−1(z1) ∩ q−1(z2) = ∅,
whence τ(q−1(z1) ∩W ) ∩ τ(q−1(z2) ∩W ) = ∅. Consequently, σ(z1) 6= σ(z2);
hence, σ|σ−1(O∩τ(W )) is injective. For surjectiveness, let α ∈ O∩ τ(W ). Then,
σ(q(τ−1(α))) = α, with q(τ−1(α)) ∈ σ−1(O ∩ τ(W )). Finally, let V be open
in σ−1(O ∩ τ(W )). It follows that q−1(V ) is open, and since

q−1(V ) ⊆ q−1(σ−1(O ∩ τ(W ))) = τ−1(O ∩ τ(W )) ⊆ W,

τ(q−1(V )) is open. But

τ(q−1(V )) = (σ ◦ q)(q−1(V )) = σ(V ),

therefore σ(V ) is open in O∩τ(W ). Thus, as required, σ is a homeomorphism
on σ−1(O ∩ τ(W )).

Given a sheaf A of unital and commutative algebras on a given topo-
logical space X, let C be the category of morphisms ϕ : A −→ P of sheaves
of unital algebras such that ϕ(S) ⊆ P•, where P• is the subsheaf of units of
P ; so, for any point x ∈ X and element z ∈ Sx, ϕx(z) is invertible in Px. If
ϕ : A −→ P and ψ : A −→ Q are two objects in C, a morphism u of ϕ to ψ
is a sheaf morphism u : P −→ Q making the diagram

A
ϕ //

ψ ��@
@@

@@
@@

P
u

��~~
~~

~~
~

Q

commute. The sheaf morphism A −→ 0 is a final universal object in C, and
in this case, if every Sx contains 0x, then the morphism A −→ 0 is the unique
object of C.
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Lemma 2.3 The sheaf morphism

ϕS : A −→ S−1A (28)

such that (ϕS)x(r) := r
1x
≡ r

1
, for every x ∈ X and r ∈ Ax, is a universal

initial object in C.

Proof. Clearly, ϕS can be decomposed as

ϕS = q ◦ ι, (29)

where ι : A −→ A ◦ S is the injection given by

ιx(r) = (r, 1),

for any r ∈ Ax ⊆ A (x ∈ X), and q is the projection (26). Thus, ϕS is
continuous. Since, in addition, ϕS is “fiber preserving”, it is a morphism of
sheaves of algebras A and S−1A.

Now, let ϕ : A −→ P be an object of C. It is clear that if r, r′ ∈ Ax,
s, s′ ∈ Sx, where x ∈ X, and r

s
= r′

s′
,

ϕx(r)ϕx(s)
−1 = ϕx(r

′)ϕx(s
′)−1;

so that we can define a map

ψ : S−1A −→ P

such that
ψx(

r

s
) = ϕx(r)ϕx(s)

−1,

for all r
s
∈ (S−1A)x. It is trivially verified that, for every x ∈ X, ψx is the

unique algebra homomorphism such that ψx ◦ (ϕS)x = ϕx. By virtue of (29),
we have that, for every open U in P ,

ϕ−1(U) = (ϕS)−1(ψ−1(U)) = ι−1q−1(ψ−1(U)),

with ϕ−1(U) open in A. But ι(A) is open in A ◦ S, therefore q−1(ψ−1(U))
is open in A ◦ S; so ψ−1(U) is open in S−1A, whence ψ is continuous. We
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deduce that ψ is the unique sheaf morphism such that ψ ◦ ϕS = ϕ, which
means that ϕS is the required initial universal object.

In keeping with the above notations, let, now, E ≡ (E , ρ,X) be an
A-module on a topological space X, and D the category whose objects are
the A-morphisms ϕ : E −→ P from E into any (S−1A)-module P ; given an
A-morphism ϕ′ : E −→ P ′, a morphism from ϕ to ϕ′ is an (S−1A)-morphism
u : P −→ P ′ such that ϕ′ = u ◦ ϕ. If D contains an initial universal object
ϕSE ≡ ϕE : E −→ M, then M, any (S−1A)-module, is called the sheaf
of (S−1A)-modules of fractions of E with denominator in S and is
denoted by S−1E .

We need to show that ϕE exists in the category D. For this purpose, we
set, on every stalk Ex×Sx, the following equivalence relation: Two elements
(e, s) and (e′, s′) of Ex × Sx, x ∈ X, are said to be equivalent if there exists
an element t ∈ Sx such that

t(s′e− se′) = 0;

the set of all equivalence classes in Ex × Sx is called the module of fractions
of the module Ex with denominator in Sx (see, for instance, [2, pp. 60-70],
[6, pp. 21-25]), and is denoted by S−1

x Ex. The equivalence class containing
the pair (e, s) in S−1

x Ex is denoted by e
s
. It is easy to see that every S−1

x Ex
becomes an S−1

x Ax-module under the operations

e1

s1

+
e2

s2

:=
s2e1 + s1e2

s1s2

and
p

q

e

s
:=

pe

qs
,

where e
s
, e1
s1

, e2
s2
∈ S−1

x Ex and p
q
∈ S−1

x Ax.

As for the sheaf of algebras of fractions S−1A above, one shows that
the space

S−1E :=
∑
x∈X

S−1
x Ex,

endowed with the final topology determined by the natural map

q : E ◦ S −→ S−1E



20 P.P. Ntumba, B.Y. Yizengaw

is a sheaf of (S−1A)-modules. (Again we have assumed the notation E ◦S :=
{(e, s) ∈ E × S : ρ(e) = π(s)}.) Moreover, the mapping

ϕE : E −→ S−1E (30)

such that
(ϕE)x(e) :=

e

1x
=
e

1
,

is an A-morphism; similarly to the proof of Lemma 2.3, one shows that ϕE
is an initial universal object in D.

Every sheaf S of submonoids in a sheaf A of unital and commutative
algebras over a topological space X yields a functor from the category A-
ModX of A-modules into the category (S−1A)-ModX of (S−1A)-modules;
more accurately, with every (A-ModX)-object E , we associate the (S−1A)-
module S−1E , and with every A-morphism ψ : E −→ F we associate the
(S−1A)-morphism S−1ψ : S−1E −→ S−1F , which is obtained in the following
way: because of the universal property of S−1E , the A-morphism

E −→ F −→ S−1F

can be factorized in a unique way through S−1E , that is,

S−1ψ : S−1E −→ S−1F

is unique and satisfies the equation

S−1ψ ◦ ϕSE ≡ S−1ψ ◦ ϕE = ϕF ◦ ψ ≡ ϕSF ◦ ψ. (31)

Explicitly, (31) implies that, for any x and element e
s
∈ (S−1E)x,

(S−1ψ)x(
e

s
) :=

ψx(e)

s
. (32)

Theorem 2.4 The functor S−1 : A-ModX −→ (S−1A)-ModX , S−1(E) :=
S−1E, S−1(ψ) := S−1ψ, for all (A-ModX)-object E and A-morphism ψ, is
exact. Moreover, there is a one-to-one correspondence between functors S−1

and S−1A ⊗ – : A-ModX −→ (S−1A)-ModX , such that E 7−→ S−1A ⊗ E,
and ψ 7−→ S−1A⊗ ψ := 1S−1A ⊗ ψ, for all A-module E and A-morphism ψ.
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Proof. Let us consider an exact sequence E ′
ϕ // E

ψ // E ′′ in the category

A-ModX . Since ψ ◦ ϕ = 0 and, for any x ∈ X and element e′

s′
∈ (S−1E ′)x,

on applying (32), one has

(S−1ψ ◦ S−1ϕ)x(
e′

s′
) = (S−1ψ)x(

ϕx(e
′)

s′
) =

ψx(ϕx(e
′))

s′
=

(ψ ◦ ϕ)x(e
′)

s′
= 0;

if follows
S−1ψ ◦ S−1ϕ = 0,

i.e., im S−1ϕ ⊆ kerS−1ψ. Now, let us show , for every x ∈ X, the inclusion

ker(S−1ψ)x ' (kerS−1ψ)x ⊆ (im S−1ϕ)x ' im(S−1ϕ)x

(cf. [9, pp. 108, 109; (2.11), (2.13)]); in other words, we must prove that every
fraction e

s
∈ ker(S−1ψ)x is contained in im(S−1ϕ)x. Since S−1E is an (S−1A)-

module, claiming that (S−1ψ)x(
e
s
) = 0 implies that (S−1ψ)x(

e
1
) = 0; whence

ψx(e) ∈ ker(ϕE ′′)x, where ϕE ′′ is the canonical mapping E ′′ −→ S−1E ′′. By
the classical result (cf. [6, p. 22]), which states that, given a unital and
commutative ring K, a multiplicative subset S of K, and a K-module M ,
an element x ∈ M belongs to the kernel of the canonical morphism M −→
S−1M , x 7−→ x

1
, if and only if there exist t ∈ S such that tx = 0, we have

that ψx(e) ∈ ker(ϕE ′′)x if and only if there exists t ∈ Sx such that tψx(e) =
ψx(te) = 0x ≡ 0. Therefore there exists e′ ∈ E ′x such that ϕx(e

′) = te, whence
e
s

= (S−1ϕ)x(
e′

st
) as required.

The proof of the second part is just as straightforward. In fact, there
is an (S−1A)-morphism S−1E −→ S−1A ⊗ E resulting from the universal
property of S−1E ; more accurately, for every x ∈ X and e ∈ Ex, we have the
following commutative diagram

e //

""EEEEEEEEE
e
1

��
1x ⊗ e.

(33)

On the other hand, the tensor product S−1A⊗E yields an (S−1A)-morphism
S−1A⊗E −→ S−1E such that, for any x ∈ X and elements r

s
∈ (S−1A)x and

e ∈ Ex, r
s
⊗e is mapped onto re

s
. The vertical arrow in (33) yields an (S−1A)-

morphism which maps re
s
∈ (S−1E)x onto r

s
⊗e ∈ (S−1A⊗E)x = (S−1A)x⊗Ex
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(the preceding equality actually stands for an Ax-isomorphism, cf. [9, p. 130,
(5.9)]). Clearly, the (S−1A)x-morphisms re

s
7−→ r

s
⊗ e and r

s
⊗ e 7−→ re

s
are

inverse isomorphisms. By [9, p. 68, Theorem 12.1], S−1E = S−1A⊗E within
(S−1A)-isomorphism, and if we denote this isomorphism by S−1

E , clearly, it
follows that S−1

E ′′ ◦ ψ = (1S−1A ⊗ ψ) ◦ S−1
E , i.e., the S−1

E ’s form an equivalence
transformation.

Corollary 2.5 The algebra sheaf extension A −→ S−1A is flat.

Proof. Indeed, the exactness of the functor E 7−→ S−1A ⊗ E follows im-
mediately from the exactness of the functor E 7−→ S−1E (cf. Theorem 2.4).

Corollary 2.6 For all A-modules E and F , one has

S−1(E ⊗A F) = S−1E ⊗S−1A S−1F (34)

within (S−1A)-isomorphism.

Proof. Indeed, by an easy calculation, one has:

(S−1A⊗A E)⊗S−1A (S−1A⊗A F) =
[
(S−1A⊗A E)⊗S−1A S−1A

]
⊗A F

=
[
S−1A⊗A (E ⊗S−1A S−1A)

]
⊗A F

= (S−1A⊗A E)⊗A F
= S−1A⊗A (E ⊗A F),

valid within (S−1A)-isomorphisms.

Relation (34) shows that the functors S−1 and ⊗ commute. In Theorem
2.7 below, we show that the functor S−1 commutes with the functor Hom
under certain conditions. See, for instance, [6, p. 19, Proposition 1.9.7] and
[2, p. 76, Proposition 19] for the classical case.

Theorem 2.7 For all A-modules E and F on a topological space X, the
(S−1A)-morphism

ϑ : S−1HomA(E ,F) −→ HomS−1A(S−1E ,S−1F), (35)
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given by

ϑx(f/s)(e/t) := f(e)/st, (36)

where x ∈ X, s, t ∈ Sx, e ∈ (S−1E)x, f ∈ HomA(E ,F)x, is an (S−1A)-
isomorphism, whenever E is a locally finitely presented A-module.

Proof. On the basis of Lemma 1.8, since E is a locally finitely presented
A-module, one has(

S−1HomA(E ,F)
)
x

= (S−1A)x ⊗Ax HomA(E ,F)x
= S−1

x Ax ⊗Ax HomAx(Ex,Fx)
= S−1

x HomAx(Ex,Fx),

therefore elements of the (S−1
x Ax)-module S−1

x HomAx(Ex,Fx) are of the form
f/s, with f ∈ HomAx(Ex,Fx) and s ∈ Sx ⊆ Ax. By Theorem 2.4, the functor
S−1 is exact, therefore, S−1E is a locally finitely presented (S−1A)-module
on X, so that

HomS−1A(S−1E ,S−1F)x = Hom(S−1A)x

(
(S−1E)x, (S−1F)x

)
;

hence, (36) is well defined, and ϑ is clearly an (S−1A)-morphism. By virtue
of Theorem 1.9 and Corollary 2.5, (35) is an (S−1A)-isomorphism whenever
E is a locally finitely presented A-module on X.

3 Change of the algebra sheaf of scalars

We are now in the position to use the definition of sheaves of Clifford A-
algebras (Clifford A-algebras in short) of quadratic A-modules, set over ar-
bitrary topological spaces as quotient sheaves of tensor algebra sheaves over
certain ideal sheaves to show that direct limits commute with the Clifford
functor Cl : A-ModX −→ A-AlgX , where A-ModX and A-AlgX stand for
the categories of sheaves of A-modules and A-algebras on X, respectively.
Finally, we draw our attention on to the change of the algebra sheaf A of
scalars in any Clifford A-algebra on a topological space X, and Clifford A-
algebras of orthogonal sums of A-modules.
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Theorem 3.4, which is concerned with the commutativity of the Clifford
functor Cl with the extension functor through tensor product, is proved by
means of Lemma 3.1. [6, p. 54, Lemma 2.1.3] is a classical counterpart of
Lemma 3.1.

Lemma 3.1 Let E be a free A-module on a topological space X, and F any
A-module, also on X. For any open subset U of X, let (eUi ≡ ei)i∈I be
a basis of E(U) and (tUi,j ≡ ti,j)i,j∈I be a family of sections in F(U) such
that ti,j = tj,i. Then, there exists a unique A|U -quadratic morphism q ∈
QuadA|U (E|U ,F|U) ≡ QuadA(E ,F)(U) such that

qV (ei|V ) = ti,i|V , i ∈ I, (37)

and
(Bq)V (ei|V , ej|V ) = ti,j|V , i 6= j in I, (38)

where Bq is the associated A|U -bilinear morphism of q.

Proof. If g is an A-bilinear morphism E ⊕ E −→ F , the sheaf morphism
ϕ : E −→ F such that

ϕV (s) = gV (s, s),

for any open V ⊆ X and section s ∈ E(V ), is A-quadratic; clearly, the
associated A-bilinear morphism is the sheaf morphism Bϕ ≡ (Bϕ,V )X⊇V, open
such that

Bϕ,V (s, t) = gV (s, t) + gV (t, s),

for all s, t ∈ E(V ). Next, define a total order on the indexing set I and let
g : E|U ⊕ E|U −→ F|U be the A|U -bilinear morphism such that

gV (ei|V , ej|V ) = ti,j|V , i, j ∈ I with i ≤ j,

and
gV (ei|V , ej|V ) = 0, i, j ∈ I with i > j.

The A|U -quadratic morphism q : E|U −→ F|U such that

qV (s) = gV (s, s),

for any open set V ⊆ X and section s ∈ (E|U)(V ), satisfies the conditions of
the lemma.
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Now, let us prove the uniqueness of q. To this end, suppose that there
is another A|U -quadratic q : E|U −→ F|U satisfying (8) and (6), that is,

(q)V (ei|V ) = ti,i|V , i ∈ I,

and

(Bq)V (ei|V , ej|V ) = ti,j|V , i 6= j in I,

for any subopen V of U . It follows that, for any i, j ∈ I and subopen V ⊆ U ,(
(q)V − (q)V

)
(ei|V ) = 0

and (
Bq−q

)
V

(ei|V , ej|V ) = Bq

(
(ei|V , ej|V )

)
−Bq

(
(ei|V , ej|V )

)
= 0.

By an easy calculation, one shows that, for any s ∈ E(U)(
Bq−q

)
V

(s|V , s|V ) = 2(q − q)|V (s|V ) = 0,

whence

q = q.

Here is a very useful result of this section.

Theorem 3.2 Let A, A′ be unital algebras sheaves on a topological space
X, ϕ : A −→ A′ a sheaf morphism, E and F two A-modules on X, and
q : E −→ F an A-quadratic sheaf morphism. Then, there exists a unique
A′-quadratic morphism q′ : A′ ⊗A E −→ A′ ⊗A F such that

q′ ◦ (1⊗ idE) = 1⊗ (q ◦ idE), (39)

where 1 ∈ EndA′A′ is the constant endomorphism of the underlying sheaf of
sets of A′ such that, for every s ∈ A′(U), where U is open in X, 1U(s) :=
1A′(U) ≡ 1 ∈ A′(U).
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Section-wise, (39) means that, for every open set U in X and sections
r ∈ A′(U), s ∈ E(U),

[q′U ◦ (1U ⊗ (idE)U)](r ⊗ s) := q′U(1⊗ s)
= 1⊗ qU(s) := [1U ⊗ (qU ◦ (idE)U ](r ⊗ s). (40)

Proof. It is clear that q′ is unique; we therefore simply need to prove its
existence. Suppose that E is free. For a fixed open set U in X, we let (si)i∈I
be a basis of E(U) and set ti,i = qU(si) ≡ q(si) for all i ∈ I, ti,j = (Bq)U(si, sj)
for all i, j ∈ I such that i 6= j. Since A′(U)⊗A(U)E(U) is a free A′(U)-module
with basis (1⊗ si)i∈I , according to Lemma 3.1, there exists a unique A′(U)-
quadratic mapping q′U : A′(U) ⊗A(U) E(U) −→ A′(U) ⊗A(U) F(U) such that
q′U(1 ⊗ si) = 1 ⊗ ti,i for all i ∈ I and (Bq′U

)(1 ⊗ si, 1 ⊗ sj) = 1 ⊗ ti,j for
all i, j ∈ I with i 6= j. Obviously, q′U satisfies (40). Since q′U is unique
and U is arbitrary, the family (q′U)X⊇U, open yields an A′-quadratic morphism
q′ : A′ ⊗A E −→ A′ ⊗A F satisfying the required condition (40).

Suppose now that E is not free. As above, fix an open set U in X;
E(U) being an A(U)-module is isomorphic to a quotient A(U)-module of a
free A(U)-module. By [6, p. 57, Theorem 2.2.3], one shows that there exists
a unique A′(U)-quadratic morphism

q′U : A′(U)⊗A(U) E(U) −→ A′(U)⊗A(U) F(U)

such that
q′U(1′ ⊗ s) = 1′ ⊗ qU(s)

for any s ∈ E(U). Besides, we note that the collections (A′(U) ⊗A(U)

E(U))X⊇U, open and (A′(U)⊗A(U)F(U)X⊇U, open induce the presheaves of mod-
ules Γ(A′) ⊗Γ(A) Γ(E) and Γ(A′) ⊗Γ(A) Γ(F), respectively; if τ ∗ denotes the
set of pairs (U, V ), where both U and V are open in X and such that V ⊆ U ,
we shall let (µUV )(U,V )∈τ∗ and (σUV )(U,V )∈τ∗ denote the restriction maps of the
preceding presheaves, that is, Γ(A′)⊗Γ(A) Γ(E) and Γ(A′)⊗Γ(A) Γ(F), respec-
tively. Since, for any (U, V ) ∈ τ ∗,

σUV ◦ q′U = q′V ◦ µUV ,

it follows that the family (q′U)X⊇U, open yields the sought presheaf morphism
of Γ(A′)⊗Γ(A) Γ(E) into Γ(A′)⊗Γ(A) Γ(F). It is obvious that (q′U)X⊇U, open is
unique.
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The relevance of Lemma 3.3 will be evident in the proof of Theorem
3.4, below.

Lemma 3.3 If (E , q) be a quadratic A-module on a topological space X,
then, for every x ∈ X,

Cl(E)x = Cl(Ex) (41)

within Ax-isomorphism, where Cl(Ex) is the usual Clifford algebra associated
with the quadratic Ax-module (Ex, qx).

Proof. If I(E , q) ≡ I(E) is the two-sided ideal sheaf in the tensor algebra
(sheaf) T (E) determined by the presheaf J(E , q), where, for any open set U
in X, J(E , q)(U) is a two-sided ideal of the tensor algebra T (E(U)) generated
by elements of the form

s⊗ s− qU(s) ≡ s⊗ s− q(s),

with s running through E(U), then, by [15, Theorem 2.1], the Clifford A-
algebra of E , denoted by Cl(E) ≡ Cl(E , q) ≡ ClA(E), is given by

Cl(E) := T (E)/I(E).

On account of [9, p. 115, (2.50)], for every x ∈ X,

Cl(E)x = T (E)x/I(E)x = T (Ex)/I(Ex) = Cl(Ex),

where the preceding equalities actually stand for Ax-isomorphisms.

As is known (cf. [6, p.110, Proposition 3.1.9]), let K and K ′ be unital
commutative algebras, f : K −→ K ′ an algebra morphism, which respects 1,

and (E, q) an object in the category KM̃od of quadratic K-modules. More-

over, let S : KM̃od −→ K′M̃od be such that

S(M, q) ≡ S(M) = K ′ ⊗K M ≡ K ′ ⊗K (M, q),

then

ClK′ ◦ S ' S ◦ ClK ; (42)
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that is, for every quadratic K-module (M, q),

ClK′(K
′ ⊗ (M, q)) = K ′ ⊗ ClK(M, q) (43)

within K ′-isomorphism. We shall see in Theorem 3.4 that the isomorphism
(42) also holds for categories of sheaves of quadratic modules. For the clas-
sical case, see, for instance, [4, p. 46, Proposition 3.1.4].

Theorem 3.4 Let A, B be unital commutative algebra sheaves on a topo-
logical space X, ϕ : A −→ B a morphism of algebra sheaves, and (E , q) a
quadratic A-module on X. The Clifford algebra sheaf ClB(B ⊗A E) of the
quadratic B-module B ⊗A (E , q) ≡ B ⊗A E ≡ B ⊗ E, obtained by extending A
to B via ϕ, is canonically isomorphic to the B-algebra B ⊗A Cl(E), that is,

ClB(B ⊗A E) = B ⊗A ClA(E) (44)

within B-isomorphism.

Proof. First, let’s observe the following fact. As in Lemma 3.3, let I(E , q)
be the two-sided ideal sheaf in the tensor A-algebra T (E), generated by the
presheaf (⊗◦∆− q)(E) of sets, which is such that, for any open U in X, and
section s ∈ E(U),

(⊗ ◦∆− q)U(s) := s⊗ s− qU(s) ≡ s⊗ s− q(s).

(∆ is the diagonal A-morphism E −→ E ⊕ E with ∆U(s) := (s, s).) The
Clifford A-algebra Cl(E) is generated by the presheaf (Cl(E(U)), ρUV )(U,V )∈τ∗ ,
where

Cl(E(U)) = T (E(U))/I(E(U)) (45)

and
ρUV (s+ I(E(U))) = λUV (s) + I(E(V ));

assuming that (T (E(U)), λUV )(U,V )∈τ∗ is a generating presheaf of the tensor
A-algebra T (E). Indeed, (45) is guaranteed by the definition of quotient A-
modules and the completeness of the presheaves (T (E(U)), λUV )(U,V )∈τ∗ and
(I(E(U)), λUV )(U,V )∈τ∗ . Now, consider a point x ∈ X; by Lemma 3.3,(

ClB(B ⊗A E)
)
x

= ClBx(Bx ⊗Ax Ex)
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and (
B ⊗A Cl(E)

)
x

= Bx ⊗Ax Cl(Ex),

within Bx-isomorphisms. By [6, p.110, Proposition 3.1.9], which is summa-
rized by the isomorphism (43),

ClBx(Bx ⊗Ax Ex) = Bx ⊗Ax Cl(Ex) (46)

within Ax-isomorphism. We denote the Ax-isomorphism by ϕx. Next, let ρA
and ρB be the Clifford maps that make ClA(E) and ClB(B⊗A E), respectively,
into sheaves of Clifford algebras; then (ρA)x and (ρB)x are Clifford sheaf
morphisms associated with Clifford algebras ClAx(Ex) and ClBx(Bx ⊗Ax Ex),
respectively. The Ax-isomorphism maps every (ρB)x(λ ⊗ z) (λ ∈ Bx and
z ∈ Ex) onto λ⊗ (ρA)x(z). Since the presheaf, written loosely as (B(U)⊗A(U)

Cl(E(U))) because its restriction maps are obvious, is a monopresheaf, it fol-
lows, from [9, p.68, Theorem 12.1], that the family (ϕx)x∈X ofAx-isomorphisms
yields the required A-isomorphism of ClB(B ⊗A E) onto B ⊗A Cl(E).

Corollary 3.5 Let A be a unital commutative algebra sheaf on a topological
space X, and S a sheaf of submonoids in A. Then, for any quadratic A-
module E on X, one has

ClS−1A(S−1E) = ClS−1A(S−1A⊗A E) = S−1A⊗A ClA(E) = S−1ClA(E),

valid within (S−1A)-isomorphisms.

One more corollary, indeed, follows from Theorem 3.4, but, for the sake
of self containedness of the paper, we recall the A-quadratic morphisms into a
fixed target A-module F constitute the objects of a category, denoted CA(F);
given two CA(F)-objects q ≡ (E , q,F) and q′ ≡ (E ′, q′,F), a morphism be-
tween them is an A-morphism ϕ : E −→ E ′ such that q′ ◦ ϕ = q.

Let’s assume the notations of Theorem 3.4. Then, we have

Corollary 3.6 The sheaf isomorphism of Theorem 3.4 results into an iso-
morphism of functors ClB(B ⊗ –), B ⊗ Cl(–) : CA(A) −→ CA(A) of the cate-
gory CA(A) of A-quadratic morphisms into A. Specifically, for any morphism
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ϕ : (E , q,A) ≡ (E , q) −→ (E ′, q′) ≡ (E ′, q′,A), the diagram

ClB(B ⊗ (E , q))
Cl(B⊗ϕ)

��

// B ⊗ Cl(E , q)
B⊗Cl(ϕ)

��
ClB(B ⊗ (E ′, q′)) // B ⊗ Cl(E ′, q′)

commutes. (The horizontal arrows in the diagram are isomorphisms.)
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