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Summary 20 

 

1. Biotic interactions exert considerable influence on the distribution of individual 22 

species and should, thus, strongly impact communities. Implementing biotic 

interactions in spatial models of community assembly is therefore essential for 24 

accurately modelling assemblage properties. However, this remains a challenge due to 

the difficulty of detecting the role of species interactions and because accurate paired 26 

community and environment datasets are required to disentangle biotic influences 

from abiotic effects.  28 

2. Here, we incorporate data from three dominant species into community-level models 

as a proxy for the frequency and intensity of their interactions with other species and 30 

predict emergent assemblage properties for the co-occurring sub-dominant species. 

By analysing plant community and field-quantified environmental data from specially 32 

designed and spatially replicated monitoring grids, we provide a robust in vivo test of 

community models.  34 

3. Considering this well-defined and easily quantified surrogate for biotic interactions 

consistently improved realism in all aspects of community models (community 36 

composition, species richness and functional structure), irrespective of modelling 

methodology.  38 

4. Dominant species reduced community richness locally and favoured species with 

similar leaf dry matter content. This effect was most pronounced under conditions of 40 

high plant biomass and cover, where stronger competitive impacts are expected. 

Analysis of leaf dry matter content suggests that this effect may occur through 42 

efficient resource sequestration. 
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5. Synthesis. We demonstrate the strong role of dominant species in shaping multiple 44 

plant community attributes, and thus the need to explicitly include interspecific 

interactions to achieve robust predictions of assemblage properties. Incorporating 46 

information on biotic interactions strengthens our capacity not only to predict the 

richness and composition of communities, but also how their structure and function 48 

will be modified in the face of global change. 

 50 

Key-words: abiotic gradients, biotic interactions, community composition, determinants of 

plant community diversity and structure, functional structure, leaf dry matter content, species 52 

distribution modelling, species richness  

  54 
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Introduction 

 56 

Predicting the structure and function of species assemblages along environmental gradients is 

a fundamental goal of ecology and conservation science, but is a complex challenge (Mokany 58 

& Ferrier 2011; Nogués-Bravo & Rahbek 2011). Species are not independent entities, and 

can interact positively (e.g. facilitation) and/or negatively (e.g. competitive exclusion) with 60 

other species, and the search for principles explaining the local assembly of communities 

should therefore integrate the effect of these interactions (Lortie et al. 2004; Weiher et al. 62 

2011). In the same way that abiotic conditions can limit species distributions, biotic 

interactions may contribute to determining individual species ranges and, as a result, impact 64 

on spatial variation in species assemblages (Wisz et al. 2013). Thus, a modelling framework 

that accounts for both abiotic conditions and biotic interactions in species assembly processes 66 

could address some critical gaps in our understanding of biodiversity patterns. Indeed, 

improved biodiversity forecasts from such models would be particularly valuable for 68 

conservation efforts, specifically given the rapid shifts observed in species assemblages under 

recent global environmental changes (Lenoir et al. 2008, Elmendorf et al. 2012). However, to 70 

date, the problem of accurately and reliably detecting the influence of species interactions in 

community assembly has limited our ability to predict species assemblages in space 72 

(Götzenberger et al. 2012). 

 74 

Community assembly has been viewed as being guided by assembly rules (i.e. biotic 

restrictions on observed co-occurrence patterns in species assemblages), but such biotic 76 

assembly rules have been difficult to define in statistical models (Götzenberger et al. 2012). 

One approach, originally advocated to improve the ecological realism of predictions of 78 

individual species distributions, is the incorporation of biotic variables as surrogates for key 
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interspecific interactions (i.e. as proxy variables for biotic constraints) into statistical models 80 

that link species occurrence to environmental conditions (reviewed in Wisz et al. 2013). 

These species-distribution models (SDMs) can generate useful predictions of individual 82 

species occurrences across a region (Guisan & Thuiller 2005), and tend to be improved by the 

inclusion of variables representing important biotic interactions (Heikkinen et al. 2007; le 84 

Roux et al. 2013b). Summing predictions from individual species models (i.e. “stacking”) 

then enables the prediction of entire community assemblages from the species-level up 86 

(Guisan & Rahbek 2011). The accuracy of predictions from stacked species distribution 

models (SSDMs) for species assemblages tend to vary along ecological gradients (Pellissier 88 

et al. 2012; Pottier et al. 2013), but the inclusion of biotic variables may be expected to 

provide superior estimates of community-level ecological properties under all conditions. 90 

 

The traditional concept of assembly rules reflects the notion that species do not occur 92 

randomly but are restricted in their co-occurrence by interspecific competition, with the 

outcome of competitive interactions being determined by species functional traits (Keddy 94 

1992; de Bello et al. 2012; Götzenberger et al. 2012). As a result, statistical models of 

community assembly may integrate species traits based on functional assembly theory 96 

(Keddy 1992). Trait-based models can predict community attributes by comparing traits of 

individual species to modelled patterns of traits aggregated at the community level (Shipley 98 

et al. 2006; Laughlin et al. 2012). However, those models are generally focused on 

reproducing abiotic filtering processes and do not explicitly account for positive or negative 100 

biotic interactions (although see Schöb et al. 2012). Nonetheless, measuring functional traits 

that reflect resource acquisition strategies may help to detect and account for the influence of 102 

biotic processes (Lavorel & Garnier 2002). Indeed, in plant communities competition may 

drive directional functional shifts toward convergent values of traits conferring better 104 
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resource acquisition or sequestration abilities (Kunstler et al. 2012). In low resource 

environments, including arctic-alpine tundra, leaf dry matter content (LDMC) has been 106 

viewed as reflecting resource sequestration abilities (Kurokawa et al. 2010; Lavorel et al. 

2007). Thus, assuming that this trait is related to competitive ability, including biotic 108 

constraints into community models should improve predictions of community-level patterns 

of LDMC due to dominant species favouring the occurrence of species with similar LDMC 110 

values (Pellissier et al. 2010), thereby confirming our understanding of this ecological 

process.  112 

 

Irrespective of the methodology employed, there have been few attempts to constrain 114 

community-level modelling by incorporating biotic interactions or well-defined proxies 

thereof (Boulangeat et al. 2012). The scarcity of community models implementing biotic 116 

assembly processes may reflect the difficulty of detecting both positive and negative biotic 

processes acting on plant communities in observational studies (Götzenberger et al. 2012) 118 

and/or the detailed abiotic datasets required to avoid detecting spurious correlations due to 

shared habitat requirements (Ovaskainen et al. 2010; le Roux et al. 2013b). Here, we 120 

circumvent these problems by utilizing a unique survey design that is especially suitable for 

assessing the accuracy of community-level models, comprising a uniquely detailed dataset of 122 

abiotic parameters (field-quantified soil conditions and topography, see Table S1 in 

Supporting Information). Moreover, in the relatively simple arctic-alpine tundra environment 124 

competitive and facilitative effects can be clearly detected and a few dominant species are 

known to impact the occurrence of sub-dominant species (Rousset & Lepart 2000; Tybirk et 126 

al. 2000; Pajunen et al. 2011; le Roux et al. 2013b). As the influence of biotic interactions 

varies with environmental conditions (Bertness & Callaway 1994), the relative impacts of 128 

dominant species are not expected to be constant across a gradient of environmental severity, 
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but rather for negative inter-specific interactions (and therefore competitive exclusion) to be 130 

strongest under conditions of higher productivity (and visa versa for positive interspecific 

interactions; Michalet et al. 2006; Maestre et al. 2009). 132 

 

In this study we test whether including the cover of three dominant species as biotic 134 

constraints into statistical models improves predictions of three assemblage properties of the 

sub-dominant community (richness, composition and community-weighted mean of LDMC), 136 

using both direct modelling and stacked species distribution modelling. We used a robust 

cross-validation method to analyse detailed field-quantified data from two contrasting study 138 

sites on the northern and southern slopes of a mountain massif. Specifically, we test two 

hypotheses: i) biotic constraints significantly improve the accuracy of predictions of 140 

community properties compared to abiotic-only models for both direct and SSDMs modelling 

approaches, and ii) the improvement in model predictions is greater at the higher productivity 142 

site due to stronger competitive interactions (as indicated by higher biomass and vegetation 

cover; Table S1). 144 

 

Materials and methods 146 

 

Sampling design and methods 148 

Vascular plant species cover and environmental characteristics were quantified at two sites on 

the Saana massif (69° N 21° E; Fig. 1) in north-western Finland. The sites were located on 150 

north- (north site hereafter) and south-facing (south site) slopes, and had contrasting 

ecological condition (differing in mean biomass, vegetation cover and abiotic conditions, see 152 

Table S1). At both sites 6 grids, each comprising 160 contiguous 1 m2 quadrats in an 8 x 20 

arrangement, were located within areas of < 2 ha. Grids were separated by 20 - 131 m at each 154 
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site, thus minimizing variation in macro-environmental characteristics and species source 

pools. Grids were placed to sample the full range of environmental conditions at each site, 156 

focusing particularly on mesotopography and vegetation cover. Within each quadrat all 

vascular plants were identified and each species cover visually estimated, assigning species 158 

with very low cover a minimum value of 0.25 %. Six abiotic characteristics were recorded, 

based on previous studies which have demonstrated their importance for the occurrence of 160 

arctic-alpine plant species (Gough et al. 2000; Körner 2003; Bruun et al. 2006); 

mesotopography, soil moisture, maximum potential solar radiation, rock cover, soil 162 

temperature (recorded in each quadrat) and soil pH (recorded at 4 m intervals and 

interpolated to a 1 m resolution; details in Appendix S1 and in Aalto et al. 2013; le Roux et 164 

al. 2013a). Those field-measured predictors enable the dominant abiotic gradients to be 

accurately accounted for when analysing species occurrence patterns, reducing the risk of 166 

mistakenly identifying spurious correlations between species as the outcomes of true biotic 

interactions (Ovaskainen et al. 2010). 168 

 

Three biotic characteristics were extracted from the vegetation data for use as predictor 170 

variables: the cover of Empetrum nigrum ssp. hermaphroditum (crowberry; Empetrum 

hereafter), Betula nana (dwarf birch; Betula hereafter) and Juniperus communis ssp. alpina 172 

(common juniper, Juniperus hereafter). These are the only species to have ≥ 5 % mean cover 

at either (or both) sites, and together comprise 68 and 72 % of the total vascular plant cover 174 

in the south and north site respectively. Moreover, these species are known to affect local 

habitat conditions and the performance of other species (Rousset & Lepart 2000; Tybirk et al. 176 

2000; Eskelinen 2010; Pajunen et al. 2011; le Roux et al. 2013b). The abiotic and biotic 

predictor variables only exhibited moderate collinearity (across both sites maximum pairwise 178 

8 
 



rs = 0.78; all other correlations ≤ 0.56), and therefore all were retained for subsequent 

modelling. Analyses were conducted in R (R Development Core Team 2011). 180 

 

Leaf dry matter content is a key leaf trait reflecting species resource acquisition strategies and 182 

was selected for the analysis of community functional structure because it correlates with 

competitive ability in low resource environment (Lavorel et al. 2007; Pellissier et al. 2010). 184 

Species LDMC values were collected from the literature and online databases for as many of 

the species as possible (traits from Kleyer et al. 2008; Kattge et al. 2012; Pellissier et al. 186 

2013b; and supplemented by Bråthen & Odasz-Albrigtsen 2000; Austrheim et al. 2005; 

Cerabolini et al. 2010). 188 

 

Stacked species distribution modelling 190 

When modelling the distribution of individual species, a species had to have a minimum 

sample size of 8 records for calibrating models during cross-validation (i.e. ≥ 8 records in the 192 

grid where it was most common and ≥ 8 records in the other five grids combined) to be 

included in analyses for one site. A total of 114 vascular plant species were recorded in the 194 

1920 quadrats sampled, with 40 and 51 of these sub-dominant species well enough sampled 

in the north and south sites (respectively) to include in analyses.  196 

 

The distribution of individual species was modelled using three different statistical 198 

techniques to account for potential differences related to methodologies; generalized linear 

models (GLM), generalized additive models (GAM) and boosted regression trees (BRT; Elith 200 

et al. 2008). A binomial (or Bernoulli for BRTs) distribution of errors was used to model 

species occurrence (see le Roux et al. 2013b for further details). For all three statistical 202 
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techniques, a simple abiotic-only SDM and a more complex full SDM were constructed for 

each species: 204 

Occurrence = Mesotopography + Soil moisture + Soil temperature + Radiation + Soil pH + 

Rock cover    …[simple model] 206 

Occurrence = simple model + Betula + Empetrum + Juniperus    

      …[full model] 208 

 

Occurrence predictions from individual species distribution models were then summed across 210 

all modelled species to generate species richness predictions (i.e. stacked species distribution 

models). By stacking the distribution of individual species, we also generated predictions of 212 

two other assemblage properties for each quadrat: the community-weighted mean of LDMC 

and assemblage composition. Predictions of community-weighted mean (CWM) values for 214 

LDMC (hereafter LDMCCWM) were calculated from the occurrence predictions from both the 

simple and full models. Species missing trait values were excluded from analyses (for 216 

SSDMs n = 7 for north and n = 10 for south; in total 25 species were missing for the entire 

dataset but they only comprised 11 % of all occurrences and < 2 % of vascular plant cover). 218 

The resulting values were subtracted from observed CWMs, with the residuals from the 

simple and full models being compared using a paired t-test. The similarity of observed and 220 

predicted species composition (i.e. generated from the SSDMs) was calculated using the 

Sørensen similarity index. The 5th percentile of similarity values and mean similarity were 222 

calculated for both the simple and full models, using a paired t-test to test the significance of 

differences in mean similarity. 224 

 

Direct modelling 226 
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In addition to the SSDM approach, we also modelled species richness and LDMCCWM 

directly (i.e. using the observed values as response variables). Analyses were again repeated 228 

using all three statistical techniques, assuming a Poisson and a Gaussian distribution of 

errors, respectively. Following the methodology described above, two models were 230 

constructed for each analysis: 

Richness (or LDMCCWM) = Mesotopography + Soil moisture + Soil temperature + Radiation 232 

+ Soil pH + Rock cover   …[simple model] 

Richness (or LDMCCWM) = simple model + Betula + Empetrum + Juniperus  234 

      …[full model] 

 236 

Validation 

Six-fold cross-validation with non-random assignment was used to quantify the predictive 238 

power of all models. In this procedure data from five grids was used to calibrate the model 

which was then used to predict the occurrence of the species in the withheld grid, with the 240 

procedure repeated six times until each grid had been withheld once (following Wenger & 

Olden’s 2012 method of non-random assignment). After predictions had been made for each 242 

withheld grid, the predictions for all 960 quadrats were compared to the observed data. For 

occurrence data, this was done by calculating the area under the curve of a receiver operating 244 

characteristic plot (AUC; Fielding & Bell 1997) and the true skill statistic (TSS; Allouche et 

al. 2006). This cross-validation technique provides a strong test of model transferability and 246 

accounts for overfitting (i.e. estimates of predictive power are not automatically increased 

with the inclusion of additional variables; Wenger & Olden 2012). Moreover, cross-validated 248 

estimates of predictive power are fairly robust to the effects of spatial autocorrelation 

(Hijmans 2012), particularly when employing non-random cross-validation methods that 250 

create independent training and testing datasets (Wenger & Olden 2012). For species richness 
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and LDMCCWM the relationship between observed and predicted values was examined using 252 

a bootstrapped Spearman correlation (2000 repeats).  

 254 

To visualize the relationship between the cover of the three dominant plant species 

(“dominant plant cover” hereafter) and the richness of all other species, a loess smoother was 256 

fitted to the relationship between species richness and dominant plant cover.  In all analyses 

Empetrum, Betula and Juniperus were excluded from the response variable (i.e. species 258 

richness, community composition and LDMCCWM were calculated without the three dominant 

species). 260 

  

Results 262 

 

Stacked species distribution modelling 264 

The inclusion of the cover of the three dominant species when modelling the occurrence of 

individual species significantly increased AUC and TSS values based on independent 266 

evaluation data, irrespective of the statistical method used (Fig. S1). While the relative 

importance of predictors differed between the north and south sites, the contribution of the 268 

biotic variables exceeded that of some abiotic variables in all analyses (Fig. S2).  

 270 

Species richness predictions based on SSDMs generally correlated well with observed 

richness, but improved strongly and significantly after the inclusion of the three biotic 272 

variables (Fig. 2a). Predictions of variation in species richness along a gradient of dominant 

plant cover showed that the full model gave richness estimates closer to observed values than 274 

the simple models when the combined cover of the three dominant species exceeded c. 20 % 

(i.e. approximately half of the sampled cells, except for the GBM model for the north site; 276 

12 
 



Fig. 3a). Below 20 % dominant species cover the simple models provided more accurate or 

similar estimates of richness as the full model (Fig. 3a). Mean similarity between observed 278 

and predicted species composition was significantly higher for full models including biotic 

interactions than simple models, with marked improvement in the least accurate predictions 280 

in the south site (indicated by changes in the 5th percentile of similarity values; Fig. 4).  

 282 

Predictions of LDMCCWM from models including the cover of the three dominant species 

were significantly and consistently better correlated with observed values than predictions 284 

from the simple models for the higher productivity south site (Fig. 2c). However, this was not 

the case in the lower productivity north site where predictions from the full models were 286 

significantly worse than those of the simple model in four of the six analyses (Fig. 2c). This 

difference between the two sites was also reflected in the changes in LDMCCWM along the 288 

dominant plant cover gradient; at the south site LDMCCWM tended to increase with the 

combined cover of the three dominant species, especially as dominant cover increase up to 290 

30% (Fig. S3). This trend was better represented by the full model than the baseline model, 

although the accuracy of the full models depended on the modelling method implemented 292 

(with GBM performing worst). By contrast, a hump-shaped response of LDMCCWM to 

dominant plant cover was observed at the northern site (Fig. S3). This trend was poorly 294 

predicted by simple models, with slightly better performance by the full models at the south 

site (Fig. S3). Nonetheless, with increasing cover of the three dominant species the range of 296 

observed LDMCCWM values narrowed at both sites, suggesting with greater dominant cover 

the convergence of community-wide LDMC to values of c. 350, corresponding to the LDMC 298 

observed for the most dominant species, Empetrum hermaphroditum (Fig. S4). 

 300 

Direct modelling 
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Predictions of species richness that ignore species identity (i.e. the direct modelling approach) 302 

also improved with the addition of the three biotic variables (Fig. 2b). For all three statistical 

techniques the correlation between observed and predicted richness was significantly stronger 304 

for the full models than the simple models (Fig. 2b). The performance of simple and full 

species richness models varied along a gradient of dominant plant cover, with full models 306 

generally performing best in areas where the cover of the three dominant species exceeded 

20% (Fig. 3b). Directly modelling LDMCCWM with the full model gave significantly stronger 308 

correlations with observed values than the simple model for the south site, but not the north 

site (Figs 2d; in agreement with the results based on SSDMs). As for the SSDMs, the 310 

contribution of predictors differed between the two sites, with soil pH having the strongest 

relative importance at the south site, compared to soil moisture at the north site (Fig. S5). The 312 

three biotic variables had high relative importance for all models, except when modelling 

LDMC in the northern site (Fig. S5). 314 

 

Discussion 316 

 

Here we demonstrate that including biotic interactions (inferred from dominant species 318 

cover) into assemblage-level models provides better predictions of community properties, 

including species richness, composition and functional structure. By focusing on a relatively 320 

simple ecosystem, arctic-alpine tundra, we could reveal the strong biotic influence of 

dominant species for community-level models. Incorporating the cover of dominant species 322 

consistently improved predictions of community composition and gave better estimates of 

species richness at sites where dominants had moderate or high cover. The community-level 324 

value of a key functional trait, LDMC, was also predicted with significantly better accuracy 

at one of the two sites, suggesting that model improvements may be contingent on some site 326 
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characteristics (e.g. biomass). These improvements were consistent across the two prevailing 

modelling techniques; stacked species distribution models, which consider each component 328 

species separately, and direct modelling, which models aggregate community properties. 

Thus, our study highlights the necessity of including biotic interactions when modelling both 330 

individual species and entire communities, irrespective of the approach utilized. Moreover, as 

biotic interactions are thought to impact more strongly on species assemblages at lower 332 

latitudes (Pellissier et al. 2013a; and altitudes: Schemske et al. 2009), we expect this result to 

be true in a diversity of habitats. 334 

 

Interestingly, we found some contrasting results from the north and south sites, with 336 

improvements in predictions being stronger and more consistent at the south site when 

including biotic interactions. The sites differ considerably in ecological conditions that may 338 

affect the relative importance of facilitation and competition (and, therefore, of the three 

dominant species). Specifically, the growing season starts earlier at the south site due to 340 

earlier spring melting (c. three weeks), contributing to the higher biomass and vascular 

species cover at this site (see e.g. Litaor et al. 2008). As a result, the greater improvement of 342 

community property predictions at the south, but not the north, site may reflect the overall 

greater influence of the dominant species and competitive processes there. Indeed, the three 344 

dominant species considered in our models can efficiently sequester resource under low-

nutrient conditions (as evidenced by their high LDMC; see Fig. S6) and at the south site limit 346 

co-occurring individuals to species with similar sequestration abilities (i.e. comparable 

LDMC values; Pellissier et al. 2010; as suggested by Fig. S4). The same pattern is not 348 

observed at the north site (e.g. Fig. 2c, d), possibly due to the relative scarcity of species with 

low LDMC values (Table S1, Fig. S4) and/or the tendency for biotic interactions generally to 350 

have lower importance at that site (Figs S2 and S5). The greater influence of biotic 
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interactions at the south site is also evident when examining variable importance; results from 352 

both SSDMs and direct modelling consistently attribute a greater influence to the three 

dominant species in the south site than in the north site (Figs. S2 and S5). 354 

 

The rapid non-linear decrease in observed species richness with increased dominant plant 356 

cover was differentially captured by the simple (i.e. abiotic) and full (abiotic + biotic) models 

(Fig. 3). Both simple and full models correctly reproduced the steep decline of species 358 

richness with increasing cover of the dominant species (in agreement with, e.g., Tybirk et al. 

2000; Pajunen et al. 2011). However, when biotic interactions were not considered, richness 360 

was overpredicted under high cover of the dominant species. This reflects that relatively 

similar abiotic conditions occur in cells with high diversity and with high dominant cover, 362 

and that the consideration of dominant plant cover is necessary to accurately distinguish 

which assemblage will develop under those conditions. While models lacking the biotic 364 

variables predict only minor changes in mean richness across a dominant plant cover gradient 

at the south site, at the north site the drop in diversity as dominant cover increases from 0 to 366 

c. 20 % is surprisingly well represented by the simple models. This is because on the northern 

slope the total cover of dominant species is low in species-rich snowbeds (particularly those 368 

with temporary flooding; e.g. see Fig. 4 in le Roux & Luoto, 2014); a decline in snow 

accumulation may therefore simultaneously be correlated with lower species richness and 370 

lower dominant cover. Thus, abiotic conditions that accurately predict the total cover of 

dominant species may be adequate for explaining some competition-related variation in 372 

species richness, but only under limited conditions. 

 374 

Toward more ecological models 
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Plant assemblage predictions require considering biotic interactions (Wisz et al. 2013), which 376 

recent research suggests maybe the strongest mechanism explaining differences in realized 

niches across species ranges (Pellissier et al. 2013a). Our study demonstrates both the role of 378 

biotic interactions in plant community assembly in a tundra ecosystem and the need to 

include these interactions to achieve accurate biodiversity forecasts. In this research species 380 

cover was used as a proxy for the frequency and intensity of key biotic interactions, an 

assumption that is reasonable in this ecosystem given the previous experimental 382 

demonstration of the strong competitive and facilitative effects associated with the three 

dominant species examined (Rousset & Lepart 2000; Tybirk et al. 2000; Pajunen et al. 2011; 384 

le Roux et al. 2013b). However, if applying this method to other vegetation types it would be 

crucial to re-assess the validity of this assumption. Additionally, due to the correlative nature 386 

of this approach, complementary manipulative studies would be required to confirm the 

influence of dominant species where such data are lacking. 388 

 

While some previous studies have used interpolated abiotic variables when modelling species 390 

distributions (e.g. Boulangeat et al. 2012), in mountain environments spatial heterogeneity 

may create a mosaic of microhabitats and therefore fine-scale abiotic measurements are 392 

needed to account for this heterogeneity and to disentangle biotic and abiotic effects. 

Moreover, where biotic factors are to be used as predictor variables, it is important that they 394 

also be accurately quantified, as species cover may vary greatly over short distances and may 

be difficult to predict accurately (see e.g. Appendix S2). Our study design based on field-396 

quantified data offers a robust method to demonstrate the role of biotic interactions in 

community assembly (after accounting for abiotic covariates) and advocates for the further 398 

development of community models that are rooted in ecological theory.  

 400 
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So far, two main modelling approaches have been used to model assemblage composition, 

the first based on species occurrence (Guisan & Rahbek 2011; Pottier et al. 2013) and the 402 

second on species functional properties (Shipley et al. 2006). Our results suggest that both of 

these approaches to modelling communities are likely lead to unrealistic predictions if biotic 404 

interactions are not explicitly accounted for in the modelling process. In our relatively simple 

study system, a sound ecological understanding about plant-plant interactions (Rousset & 406 

Lepart 2000; Tybirk et al. 2000; Pellissier et al. 2010; Pajunen et al. 2011; le Roux et al. 

2013b) allowed us to select a priori the species with the most frequent (and therefore 408 

probably most influential) interactions to be included as biotic constraints in the models. 

However, in many cases, identifying the species which predict (and presumably drive) 410 

variation in community composition is not straight forward. Indeed, in systems with complex 

interaction networks, a priori selection of biotic interactions to be included in the models 412 

would be very challenging without detailed ecological knowledge of the system. Ideally the 

simultaneous calculation of competitive strength in pairwise interactions (Kunstler et al. 414 

2012) and of the effects of abiotic predictors (Guisan & Thuiller 2005) is required in a unified 

statistical framework. Further methodological development should focus on simultaneously 416 

modelling the hierarchical competitiveness of species (e.g. by considering species functional 

attributes) and their effect on species distribution patterns. 418 

 

Conclusion 420 

We demonstrate the strong role of biotic interactions in shaping multiple plant community 

attributes, and thus the need to account for them when forecasting assemblages in space. 422 

Irrespective of the modelling methodology applied, statistical models of communities are 

likely to be limited in their ability to predict spatial patterns of species assemblages’ richness 424 

and composition without accounting for biotic interactions. Moreover, incorporating 

18 
 



information on biotic interactions strengthens our capacity not only to predict composition of 426 

communities, but also how their structure and function will be modified in the face of global 

change. 428 
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SUPPORTING INFORMATION 

Additional supporting information may be found in the online version of this article: 596 

 

Appendix S1. Supplementary materials. 598 

Appendix S2. Modelling the cover of the three dominant plant species. 

Table S1. Biotic and abiotic characteristics of the two study sites.  600 

Fig S1. The fit of simple and full models of species occurrence, measured by AUC and TSS, 

for both the northern and southern study sites.  602 

Fig S2. Variable importance for species occurrence models in both the northern and southern 

study sites. 604 

Fig S3. Relationship between observed and predicted LDMCCWM and dominant plant cover, 

as fitted loess smooth curves. 606 

Fig S4. Relationship between raw LDMCCWM values and dominant plant cover. 

Fig S5. Variable importance for direct models of species richness and LDMCCWM. 608 

Fig S6. Histogram of leaf dry matter content of modelled species. 

Fig S7. Variable importance for models of the cover of the three dominant species. 610 
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 612 

Fig. 1. Location of the two study sites on the Saana Massif in north-western Finland, with the 

insets showing the relative location and orientation of the 12 study grids. 614 
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Fig. 2. Bootstrapped Spearman rank correlations between observed and predicted vascular 

species richness and community-weighted mean leaf dry content matter (CWM LDMC), for 618 

simple (six abiotic predictor variables) and full (six abiotic and three biotic predictors) 

models. Results are presented for the north (n = 40) and south (n = 51 species) study sites. 620 

Predicted values either reflect the combination of predictions for individual species (SSDM) 

or direct modelling (Direct) of the response variable. Three species distribution modelling 622 

techniques were implemented: generalized linear models (GLM), generalized additive models 

(GAM), and boosted regression trees (BRT). All pairs of simple and full models differ 624 

significantly in their Spearman correlation values (paired t-test; all P < 0.001), except where 

indicated by "n.s.".   626 
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Fig. 3. Loess smooth (± 95 % CI) fitted to the relationship between species richness 628 

(observed and predicted) and the combined cover of the three dominant species (Betula + 

Empetrum + Juniperus) in the north and south site. Predictions of species richness are 630 

calculated by a) summing the occurrence predictions for individual species or b) directly 

modelling total species richness. Three statistical methods were used; GLM = generalized 632 

linear models, GAM = generalized additive models, BRT = boosted regression trees. The 

“simple” predictions are models using only abiotic predictor variables, while the “full” model 634 

comprised both abiotic and biotic predictor variables. Observed and predicted species 

richness exclude occurrences of the three dominant plant species. 636 
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 638 

Fig. 4. Density distribution of community similarity values (assessed using the Sørensen 

index; excluding the three dominant plant species) for the north (n = 40) and south (n = 51 640 

species) study sites, as modelled using simple (six abiotic predictor variables) and full (six 

abiotic and three biotic predictors) models. Three statistical techniques were implemented: 642 

generalized linear models (GLM), generalized additive models (GAM), and boosted 

regression trees (BRT). Values of 1 indicate perfect predictions of community composition. 644 

Arrows indicate the 5th percentile, and horizontal bars indicate mean ± SE similarity values. 

All full models have significantly higher similarity values than their equivalent simple 646 

models (paired t-test; all P < 0.05).  
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