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ABSTRACT
Two-phase adiabatic flow of refrigerant R134a waslied

and an automated flow regime detection algorithms wa

developed. For a saturation temperature of 15°€ovithta was
captured for mass fluxes from 100 kg/m2s to 40QmRg/in
smooth horizontal tubes. The vapour quality vatetiveen O
and 1, the I.D. was 8 mm. Slug flow, intermittetawf and
annular flow were discerned. Several parameters@mgputed
for each video, characterizing the video with bietmporal and
spatial information. Linear discriminant analysis used to
reduce the dimension of the data. The classifinasodone by
unsupervised clustering with the expectation mazatidn
algorithm. All of the slug and annular flows arerreatly

recognized, intermittent flows are identified witB5%
accuracy.
INTRODUCTION

A lot of research has already been done on autahfloe
regime detection. Several different principles t&nused, but
three steps can always be discerned.

Firstly, a signal is obtained from the flow. Tanadt [1]
used the difference in electrical resistance beatwide two
phases of the refrigerant in a technique calledctiétal
resistance tomography. The difference in eledtdapacitance
was used by Caniére et al. [2]. The two-phase fllso
produces pressure fluctuations on the tube wadlbémnberg et

al. [3] studied this fluctuation of the static gsare, Sun et al.

[4] used the fluctuation of the differential pressuwover a
Venturi tube. The difference in refractive indicbgetween
vapour and liquid phase also allows for opticahtéques to be
used. By placing a light source and a detectorpposite sides
of the tube, Keska et al. [5] studied the intensitgransmitted
light. Van Rooyen et al. [6] recorded the flow withigh speed
camera and computed the average pixel intensitgdoh

250

frame. All spatial information contained in the &a@ data is

lost. All these techniques clearly produce a sigviaich varies

in time. Several other researchers have also uged data as a
basis for the flow regime classification. Both Zhetwal. [7] and

Jassim et al. [8] use each frame of a video strasma different
data point. Each frame of a video is interpreted aas

independent signal, which contains no time-freqyenc
information.

Secondly, several characteristic parameters aneediefrom
the measured signal. For time-signals several s$tzil
parameters are used, like mean, standard devigtiobability
density function, probability distribution functioand so on.
Time-frequency parameters have been useful in cteizing
the signal. Ding et al. [9] compared the Fouriemsform,
wavelet transform and Hilbert-Huang transform.

Finally, an algorithm classifies the different s
according to flow regime, based on the derived paters.
There is a whole field of research dedicated ts tiroblem.
Many different algorithms exist and a lot of theawvh already
been applied to the classification of flow regimeklahvash
and Ross [10] used a continuous hidden markov m@teu
et al. [7] classified their data by means of suppgctor
machines. Both of these techniques need a datasedin the
algorithms where the researcher has to providetasetwith
the “correct” classification and hence these meshae called
supervised. Rosa et al. [11] studied the use ofat@etworks,
both supervised and unsupervised versions. Unsiseerv
algorithms have no need for a dataset used fonitgi
Clustering algorithms group the data points togelfased on a
criterion for distance between the points. This wasd by
Caniere et al. [2].

It is apparent that all techniques except fondideo frame-
based ones use a signal that fluctuates in tinrgagong time-
frequency information, whereas the video frame-tase
techniques use a single instant in time, contaimogtime-
frequency information. Hence, a logical extensientreating



every video stream as whole as a data point andr@sg a

flow regime to a video stream instead of to a grfghme. This
allows for using both time-frequency informationathhas

proven to be useful for classification in the otherhniques as
well as spatial information from the video imagé&kis should

allow for a more accurate identification of theviloegime.

NOMENCLATURE
X [ Data vector containing the parameters
X1 [m] First LDA coordinate
X'z [m] Second LDA coordinate
Xi [m] Component i of vectax

EXPERIMENTAL SETUP

The experimental setup consists of a refrigeramp,l@ hot water
loop and a cold water loop. In Figure 1 only th&igerant loop is
shown. The preheater is a tube-in-tube heat exehraitg length can
be varied between 1 and 15 m by adjusting shutraffes. Hot
water flows through the annulus of the preheatansferring heat to
the refrigerant in the inner tube. By changing tbagth of the
preheater (using valves to bypass or connect ftffifereit heat
exchangers), the hot water inlet temperature anssrflaw rate, the
vapour quality at the preheater outlet can be set.

Testsections

Condenser

,,,,,,,,,,,,,,,,,,,,,,,,,

Mass flow Preheater
meter

in watertank
Figure 1 Schematic of the refrigerant loop

After the preheater the refrigerant flows througte of the
test sections. Each test section consists of aihaiith a bend
radius R of 11mm and an inner diameter ID of 8mime hner
tube wall is smooth and the test sections are at@bThe
section for flow observation consists of a straiite made out
of quartz glass. The flow is filmed with a monoammeatic
camera (Basler A602f - 640x480 pixels) at 200 franper
second. After the test section, the two phase fioixture is
condensed and subcooled in the condenser, befoeeingna
buffer vessel. This vessel is immersed in an opatembath.
The refrigerant saturation temperature is deterchibg the
temperature of the water surrounding the vesseliargket at
15°C for all measurements.

PARAMETER CHOICE
For each set of conditions of mass flow rate angoua

quality at the inlet of the optical test sectionyideo of 10
seconds is recorded at 200 frames per second. tifhés is
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sufficiently long to statistically capture even trsowest
phenomena for all the conditions. Therefore, eadkosstream
contains all the data required for flow regime sifisation.

There are 2000 frames, each containing 200 x 30€liThis
amounts to a dimension of the data vector of Gionilvalues.
This enormous dimension prohibits classificatiod dlustrates
the need for choosing characteristic parameterg @itire
video stream vector is reduced to a much smalletove
containing fewer parameters. This reduction hadd¢odone
with as little loss of useful classification dat @ossible. Even
though algorithms exist to perform this reductioptimally,

they are not advised because of the enormous diomengthe

data vector. For this reason the characteristiarpaters will be
chosen manually, based on parameters that havepbeesn to
be effective for classification by other studigs.order to limit

the influence of this manual choice on the eventual

classification and to reduce the loss of informatés much as
possible, a sufficiently large amount of parametechosen.

The video streams are also manually inspected ssidreed
to a flow regime. All vectors corresponding to \adstreams
with the same flow regime are said to belong tosdme class.
It is important to keep in mind that this manualsdification is
subjective and not entirely accurate. Three differow
regimes were distinguished: slug/plug flow, intdtant flow
and annular flow.

Four main items are defined to derive further pasiams
from. For a fixed pixel position and varying ting) average is
made. By doing this for every pixel position, anage is
obtained, called the mean image. By taking the dstah
deviation instead, the standard deviation imagebisined. By
taking the average and standard deviation for wgrypixel
position and fixed time, for all the time instancéso time
signals are constructed. These will be called itne tariation
of the average and the time variation of the stethdaviation.

Note that both images still contain 200x300 datatsceach
and both time series still contain 2000 data poedsh. The
dimension will be further reduced by constructiraygmeters
based on these four items.

# Description

1 maximum of the mean image along the middle
column

2 position where this maximum occurs

3 standard deviation of the time variation of the
standard deviation

4 mean of the time variation of the standard
deviation

5 minimum of the mean image along the midgl
column

6 position where this minimum occurs

7 standard deviation of the time variation of the
average

8 mean of the time variation of the average

9-16 energy fractions of the 3D wavelet packet
components of the time variation of the average




17 value of the central autocorrelation peak
components of the time variation of the average

18 width of this peak

19 percentage of the total frequency content of|the
time variation of the average that is below 10 Hz

20 frequency with maximal amplitude

21-28 energy fractions of the 3D wavelet packet
components of the time variation of the standard
deviation

29 value of the central autocorrelation peak of the
time variation of the standard deviation

30 width of this peak

31 degree of symmetry of the mean image

32 mean of the time variation of the degree| of
symmetry

33 standard deviation of the time variation of the
degree of symmetry

34 maximum - minimum of the time variation of the
degree of symmetry

Table 1List of selected parameters

Now every video is summarized in a 34 dimensiorahd
vector. If the choice of parameters is sufficiehg data vectors
will contain enough discriminatory information bdsen the
original videos to be able to separate the diffeflerv regimes.

Of course a
Furthermore, several of these parameters are nrob@lply
strongly correlated. For example, the energy foadtiof the
mean signal and the standard deviation signal. n§tyo
correlated parameters increase the dimension opnameter
vector without adding any new information. Beforairg) the
classification, as an intermediate step these petemwill be
eliminated from the parameter space. This is dosigu
principal component analysis (PCA) [12]. This alkovior
parameters to be added without having to be cordeafout
possible correlation with previously chosen paramstthus
without increasing the dimension unnecessarily.

Another important remark is that the possible sprefall
the variables is different. For example, pixel idigy can
theoretically vary between 0 and 255, whereas grieagtions
can only assume values between 0 and 1. In ordgivéothese
parameters the same weight in the classificatigordghm, all
parameters are linearly scaled so that their maxinand
minimum over a large dataset are the same. Themuaxiis
chosen equal to 100, the minimum to -100. The &ctalaes
are of no importance, the relative scaling of tlaeameters is
what matters. The dataset used for this scaling tbhabe
representative for all possible situations. Thiy waest vector
not included in the dataset will also be scaled gensible way.

In order to classify the different data vectorssht@ques
from image recognition will be used. Both PCA arakeédr
discriminant analysis (LDA) [13] are widely usedr fthis
purpose [14].
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lot more parameters can be chosen.

PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA centers the dataset and aligns the axes aloag t
directions of maximum spread of the dataset. Byongny the
axes corresponding to small global spread, a piojeds
obtained that reduces the dimension of the datagele
conserving as much global spread as possible.

The relative scaling of the axes of the originatsyn will
have a strong influence on the axes of the nevesyst
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Figure 2 PCA reduction to two dimensions.
intermittent, x annular: slug

Figure 2 shows the result of PCA dimension rédnco
two dimensions. All the 34-dimensional vectors prejected
on the two dimensions corresponding to the maxigiabal
spread. All the vectors of the same class are gatpgether in
the projected space. This gives confidence in theice of
parameters; they contain enough data from the raigiideo
streams to observe a difference between the claggéisout
the manual classification though, it would not Beac from
Figure 2b where to draw lines to separate the etatkere’s no
clear distinction between the classes. An unsupeavi
classification algorithm would not suffice in th® PCA space.
Furthermore, a line separating the intermittent tredannular
classes would have to be quite curved. This makesfitiing
likely in case a supervised classification algarthvould be
used.

A supervised algorithm can use the knowledge pexvidy
manual classification of a training data set toagobta new
coordinate system that is better able to sepataedifferent
classes than PCA. PCA results in maximal consematf
global spread, but it is the spread between thesekawhich is
important.



LINEAR DISCRIMINANT ANALYSIS (LDA)

Linear discriminant analysis finds the directions Which a
certain criterion is maximized. For the most bdsien of LDA
this is the Fisher discriminant. The Fisher disamant is a

fraction where the numeratds a measure for the spread

between the classes, and the denominator is a meefsuthe
spread within the classes, in the projected LDAcspédn the
literature it is proven that the LDA space is atsmd-1

dimensional, with K the number of classes. Fordhge K=3,
as studied here, this means the LDA space will Wwe- t
dimensional.

The equation for the projection requires the inerof a
matrix which is singular, because of high dimenaliin
compared to the amount of training data. This ikedathe
small sample size problem, for which several sohdiexist.
Since the dimensionality of the vectors is limitedjculating
the pseudo-inverse suffices [15].

Using the entire dataset as training it will becoapparent
whether LDA is sufficient to separate the differefdasses, or
whether a more complicated nonlinear function isessary
instead of the linear Fisher discriminant.
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Figure 3LDA projection using entire dataset as training
data.o intermittent, x annulart slug

Figure 3 shows the projection of the data vectorsthe
LDA space. The abscissa and ordinate have no ngasithey
depend on the scaling of the parameters, whichrbgrary.
Given that the transition between intermittent andular flow
is gradual, there will never be a clear distinctimween these
two classes. With this in mind the separation betwé¢he
classes using LDA is more than adequate, anddbigluded
that a linear criterion suffices to separate thessbs. Three
different clusters can be distinguished.

Starting from N=34 different parameters LDA constsu
two new parameters that are linear combinatiorth@friginal
ones, in such a way that these two new parametaisally
separate the classes.
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X; = Z bix;

i=1
For each parameter the valuga? + b7 indicates the
contribution of the parameter to the LDA parametérkis
value will be referred to as the parameter weidfdriables
with quite small values for the contribution can le¢t out
without large changes in the solution, since atapeeters are
scaled to vary between the same minimum and maximum
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Figure 4 Parameter weights

From Figure 4 it is apparent that parameters 6arid 30
can be omitted as they have very little influencetioe LDA
parameters.

It is important to keep in mind that the coeffidena; andb;
depend on the chosen training set. Both directiyces the
training set determines the LDA projecti@s indirectly, since
the training set also determines the relative sgatif all data
vectors. This implies that the influence of thértireg set on the
final classification will need to be checked.

With the chosen set of parameters a reduction abail
spread of 1% using PCA prior to using LDA has ateui
detrimental effect on the separation, as showniguar€ 5. This
corresponds to a dimension reduction to only lmampaters.
This means that the parameters are strongly cteckl&Vhen
the global spread can only be reduced ®y®, the dimension
is reduced to 30. In this case there is no viditfleaence on the
LDA projection. This high sensitivity to the rediast in global
spread in the prior PCA step is caused by the &nigyiof the
LDA transformation [16].
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EXPECTATION MAXIMIZATION CLUSTERING (EM)

For the final classification, it is necessary tpamte the
LDA space in different regions, where each regiorrespond:
to a flow regime. There is a multitude of technigjavailable
for this, both supervised and unsupervisMany of these
techniqueshave already been applied to two phase !
identification problems, among others support veatachines
[7] and neural networks [11for the supervised algorithm
Unsupervised clustering algorithms likemeans clustering
have also been applied [2h order to achieve more objecti
flow regime identification, an unsupervised aldamt is
preferred. A supervised algorithm can learn to quenf the
same subjective classificatios avas used in the training .
An unsupervised algorithm is not influenced by sciibje
manual classification of a training set.

Seeing as though several clusters can indeed héfied in
the LDA space, an unsupervised clustering algoritis
applicablefor the final classification of the data. Since
transition between the different flow regime clasgegradual
each data vectawill be assigned a membership grade to ¢
of the flow regime classes. The algorithm that Wil used i
called expectation maximization [17]EM finds the
multivariate Gaussian distributions that best erpldhe
observed dataset. With a given amount of clusteks, will
identify the different clusters and determine theam anc
covariance matrices for each clustBnere is no need to choc
any parameters other than the amount of clustersde
identified, which is why EM was selected.
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Figure 6 LDA space with EM clustering
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The clusters found by EM are illustrated by the maad
the 50% equiprobability contour. For each point DA space
the probability of this point being gerated by each of clusters
can be calculated. Tha#ashe lines represent the points where
these probabilities are equal for two classes. @hkses
effectively separate the clusters. A small amouh6%) of
vectors which were manually identified as coponding to
intermittent flow is erroneously identified as ataruflow. All
slug flow and all annular flondata vectors are correctly
classified. This shows that the combination of LBAd EM
clustering is capable of separating the differawfregimes

INFLUENCE OF TRAINING DATA SET

Once the scaling and LDA projection has been deberth
from the training set, test vectors can be scatatl @ojectec
on the same space. Then [ test vectors and training vectors
are clustered by the EM algorithm, andflow regime is
assigned. If the training dataset is representétivall possible
test vectors and there is no overfitting, the classifara
assigned to the test vectavdl be accurat.

The subjective influences are lted to the choice of
parametersand to the determination of the LDA projecti
through the manual classification of a trainingadaet. The
choice of parameters directly influences the evalr
classification because it determines which disaratory
information available ithe raw video data is kept and whict
discarded. By choosing a large amount of parametedsther
reducing the dimension, the influence of this parsnchoice
is reduced. Because of the simple projection oy@etplane
as opposed to on more compated surfaces, the risk of
overfitting during the dimension reduction is reddc This
means the influence of noise on the raw data, agerroneous
manual classification and measurement error isoed

However, because of the enormous dimension o
original data, the training set will necessarily 4 small tha



removing a few training vectors from the datasét wfluence
the projection (small sample size problem). Hettoe effect of
the specific vectors in the training set on theggmiion and on
the final classification is studied.

The relative scaling of the different parameters is
determined by the training dataset and hence infleg the
projection indirectly. There is also a direct irghce, since the
projection is the one that optimally separates ttening
dataset. This implies that it is necessary to yetifat the
classification of a random test vector does nainglty depend
on the specific vectors included in the trainingadset. Ideally
a separate validation dataset would have to be tesgdlidate
the algorithm. However due to the time needed tfopm each
measurement this was not deemed feasible. Hencec2@be
full dataset is randomly selected and used as tadtgs, the
remaining 80% is used as the training data. The lpbdection
is determined using the training data. The tesh datthen
projected and classified using the clustering allgor. The
fraction of correctly classified test vectors ienhcalculated.
This process is repeated 30 times, the resultas/shn Figure
7.
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Figure 7 Fraction of correctly classified test vectors

Figure 7 shows that the classification is quite djo®n
average 95% of all intermittent flow regimes arassified as
such, slug flow and annular flow are always cotyect
identified. The classification does indeed depemdhe specific
vectors included in the training dataset, but tteépendency is
weak. With a larger training dataset this depengemould be
further reduced. In the worst case 10% of thermnitent
flows are incorrectly classified, which consideritige gradual
transition of intermittent to annular flow is stidl very good
result.
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Figure 8 Variation of parameter weights for different
training sets

The composition of the training set determines LA
projection. Hence the parameter weights are exairfimeeach
of the tests. The average parameter weights anersoo the
bar plot of Figure 8, the error flags correspondiwice the
standard deviation. It is apparent that there isubstantial
variation in the parameter weights. This corresgond a
variation in the LDA projection. Even though theojection
itself varies, from Figure 7 it can be seen that tas no severe
impact on the results of the classification. Appé#se the
separation of the different flow regimes in LDA spais
sufficient for the different projections.

Even though there is variation in the parameterghisi
several parameters are consistently more impottamt others.
The average degree of symmetry (32) and the degfee
symmetry of the average flow (31) are importantapseters.
On average annular flows are more symmetric theerinittent
flows, which are more symmetric than slug flow. Ewehen
not combined with other parameters, these parametartain
valuable information. On the other hand, the positiof
minimum pixel intensity for the mean image (6) ansistently
not useful. This position does not vary much fo thifferent
flows and hence is a bad parameter. The width & th
autocorrelation peak (30) is another parameter tloats not
contribute to the classification. It is theoretigglossible that a
parameter only becomes significant in combinatiath wther
parameters. This means that it is not possibletzlade that a
single parameter will always be useless based @pahameter
weight.

CONCLUSION

An automated flow regime classification algorithmasv
developed which used a video stream as input d&@.video
stream is converted into a set of data by considespatial and
temporal information separately. A set of paranseterthen
calculated based on these data series. These pararhave
been manually selected. To reduce the dimensionthef
parameter space, LDA was used, combined with Eldteting
for the final classification. . This allows for awbjective
identification of the flow regime. The algorithm vks well, on
average 95% of the classifications for intermittefiaw



correspond to the visual classification, for slugd aannular
flow this is 100%.
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