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Abstract 

 

Artemisinin is produced in the leaves of Artemisia annua and is currently one of the most 

valuable antimalarial treatments. A. annua is of Asian origin but many other family members 

have been identified worldwide. A. annua however, is the only one that produces artemisinin. 

Synthetic production of artemisinin is not yet feasible, not to mention very expensive and the 

product yields are relatively low. The aims of this study were threefold: 1) To regenerate 

callus, cell cultures and plants from genetically modified root cultures of A. afra into which an 

artemisinin biosynthetic gene was inserted from A. annua 2) To investigate the probability 

that fungal endophytes are responsible for the production of artemisinin and 3) To establish 

two fields of high yielding varieties of A. annua plants and evaluate whether artemisinin 

production of these two locations will remain high. 

 

Callus and cell cultures of the genetically modified A. afra root cultures were established, but 

no shoots have been produced as of yet and this is an on-going investigation. Fungal 

endophytes were sampled and none of the endophytes produced artemisinin. Five different 

lines of A. annua were cultivated, successfully grown and harvested. Measurements were 

taken at different stages of processing, these were compared and analysed using various 

methods such as height and mass comparisons.  Comparisons revealed that the production 

of artemisinin is correlated to local sets of conditions rather than the variety of individual 

lines. The genetic potential to produce high quantities of artemisinin appears to have been 

lost, instead of being maintained. We confirmed that secondary compound production and 

specifically, artemisinin, is enhanced by certain stress factors on the plants. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

1.1 Artemisia annua background 

 

Artemisia annua L. is commonly known as sweet wormwood, sagewort, sweet Annie or 

Qinghaosu (Figure1.1). Due to the importance of A. annua it has been distributed from its 

Asian origin across the world and much cultivation has been attempted (Ferreira et al., 

1997).  There are about 200 described species in the genus, Artemisia. The African family 

member known as A. afra, is found in South Africa and other regions of Africa up to Ethiopia 

(Van Wyk et al., 1997). A. afra is also known in isiZulu as Umhlonyane. Most species of 

Artemisia have medicinal value in certain cultures and share the same bitter taste of which 

many stories and expressions have been told. A. absynthia is infamous for its powerful 

hallucinogenic properties in a drink known as, Absynth. This drink contains the detrimental 

compound thujone and has been banned in many countries outside of Europe preceding the 

20th century (Silbernagel et al., 1990). The levels of this compound are however neglectable 

in aqueous extracts, but treatment using this or any of the other related species for longer 

than three weeks, is not advised. In addition there is a naturalized American relative called 

A. vulgaris that is often confused with another medicinal plant, Saint John’s wort, because of 

its common name, Saint John’s plant (Wright, 2004). 

 

A. annua is an aromatic annual herb which grows vigorously and can reach heights of up to 

three metres. The African relative is a perennial shrub which seldom reaches heights of over 

two metres and is usually found in groups. Both species of plants produce one main stem 

growing upwards but these stems however, can be replaced if the main growth points have 

been damaged. Thereafter other stems will develop from branching and continue with 

upward growth until the maximum allowed height is reached (Ferreira et al., 1997; Van Wyk 

et al., 1997).  

 

A new market has developed around the Artemisia genus pertaining to the aromatic/ volatile 

compounds being produced and there are current investigations into the perennials for the 

production of essential oils for various products and consumables, including perfumes and 

scents (Gravenet al.,1990). 
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The uses of A. annua and its African relative are quite diverse. A. annua has been used for 

more than 2000 years in Asia as a Chinese herbal medicine. The dried leaf material was 

cooked and then the solid particles were filtered leaving a tea-like drink. The substance was 

used to treat symptoms of malaria and different types of fevers, tuberculosis, jaundice, 

anxiety, constipation and as an antiseptic, anti-periodic and for digestive problems. 

 

 African wormwood has been used in ethnobiology to treat conditions such as colic, 

headaches, intestinal parasites, moth repellent and is used as an organic insecticidal spray 

(Watt et al., 1964). The raw leaves are often put into the nose of a patient to treat congestion 

of the nasal cavities and similarly to relieve ear pain, hence the Afrikaans common name of 

‘oorpynhoudjie’ directly translated as ear pain wood. Later, it was found that these plants 

may yet hold more potential in the treatment of cancers (Peng et al., 2006). 
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1.4 Artemisinin mode of action 

 

The action of artemisinin against malaria appears to be related to the heme-mediated 

decomposition of the endoperoxide bridge. This produces free radicals with carbon centres. 

Heme is the iron and pigment containing part of haemoglobin while haemoglobin is the 

protein part of erythrocytes (red blood cells), where the malaria parasite is found, thus this is 

the target point for the action of artemisinin and its derivatives (Meshnick, 2002).  

 

In comparison with other medication used for the treatment of malaria, artemisinin has a few 

additional advantages. The parasites responsible for malaria have acquired certain levels of 

resistance to most of the treatments of quinine-related drugs which used to be the leader in 

treatment against this epidemic. That is why research has switched to alternative medicines 

and alternative treatments (Cocquyt et al., 2011). 

 

Artemisinin is readily taken up by the human system. It quickly spreads through the body 

binding to the parasite and its remnants, disabling them and leading to cell death. The dead 

cells are then removed from the system. This process happens with sufficient speed to 

prevent the parasite from building up resistance to the treatment in the body (Cocquyt et al., 

2011). 

 

There are however debates as to which mechanism is used and what the reason is for the 

rapid action (Figure 1.12). One theory is the potent protein alkylation ability of artemisinin. 

This alkylation of a protein molecule then leads to plasmodium death via another debated 

pathway (O’Neil and Paul, 2010). Another hypothesis is that there is interference with the 

endoplasmic/sarcoplasmic proteins and a third is damage to the normal mitochondrial 

functions of the plasmodium cells (Li and Zhou, 2010). 
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1.5 Extraction of Artemisinin 

 

With the discovery of artemisinin and its antimalarial effects the next step was the synthetic 

production of this compound, but as of yet artemisinin has not been successfully synthesised 

to completion, although some of its precursors have been created chemically. Many 

treatments for malaria are simple and natural, making use of the combinational therapy 

concept. They usually use one to two heaped dining spoons of dried, finely ground, leaf 

material in combination with a litre of water as a day’s treatment in the form of a drink or tea. 

This treatment then has to be taken for at least ten consecutive days to try and eradicate the 

parasite from the system (Wright et al., 2002). 

 

Extraction of artemisinin has mostly been done by hexane, but many other methods have 

since been investigated and developed. Each method has a number of advantages as well 

as drawbacks. While hexane is the cheapest, it is the least effective and is harmful to the 

environment (Lapkinet al., 2006). Ethanol has almost been completely removed from the list 

of solvents because it is also dangerous and less effective. The tendency is to move away 

from flammable solvents and remove the chances of explosions during processing. Other 

solvents also being used are water, ethyl acetate and carbon dioxide (Lapkinet al., 2006). 

 

The market is tending towards an increase in the use of derivatives of artemisinin in 

combinational therapies and this too is putting pressure on the production of artemisinin as a 

whole. Artimether is created by reducing artemisinin with sodium borohydride to generate 

dihydroartemisinin and then treating it with methanol and an acid catalyst (Haynes and 

Vonwiller, 1994). In Table 1.1 the three main methods used to extract artemisinin with their 

relative efficacy, costs and environmental impact are discussed.  
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Table 1.1: Extraction methods and their characteristics (TechnoServe, 2004) 

Extraction method 
Process efficiency 
(inc. solubility and 

selectivity) 

Total capital and 
running costs 

Environmental 
impact assessment 

Mixed liquid extraction 
ethyl acetate / n-
hexane 

Ethyl acetate has the 
best solubility 
properties, while 
carbon dioxide and n-
hexane have the best 
selectivity 
characteristics.  

Significantly higher for 
carbon dioxide than 
for either ethanol or 
mixed solvents 

Impact greater with 
mixed solvent than 
with a carbon dioxide 
extraction plant 

Hypercritical carbon 
dioxide extraction 

Only carbon dioxide 
can significantly alter 
its properties through 
changes in 
temperature and 
pressure and may 
have wider alternative 
uses than ethanol or 
mixed solvent. 

Carbon dioxide plant 
of approximately the 
same capacity as a 
mixed solvent plant 
requires almost 100 % 
greater capital cost 
(estimated). 

However, newer 
equipment can 
minimize solvent 
losses in conventional 
mixed solvent 
extraction plant. 

Ethanol extraction Ethanol was 
determined not to be a 
recommended option 
because mixed 
solvents are more 
selective solvents 
than ethanol, and the 
latter is more 
expensive (due to 
special tax). 

In addition, carbon 
dioxide plant requires 
additional 
maintenance and 
repair of high pressure 
equipment (up to 
50bar). 

Major competitors in 
developing countries 
are utilizing mixed 
solvent extraction 
plants. 
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1.6 NMR methods and uses 

 

Analyses of plant material for artemisinin can be done using various methods. LC-MS (liquid 

chromatography mass spectrometry) is one of the most popular methods. It combines two 

methods i.e. physical separation by chromatography through a column and then analysis by 

spectrometry.  Mass spectrometry measures the mass to charge ratio of the charged 

particles contained in a sample while chromatography is basically a filtration system that 

filters out compounds in to different categories dependant on size and charge.  

 

In this study the focus will be on nuclear magnetic resonance spectrometry (NMR) to 

quantify artemisinin (Liu et al., 2010). NMR gives data on the molecular conformation of a 

compound, which can be “translated’’ into chemical structures. It does this by reading the 

spin and charges of the components of a compound. Many methods have been developed 

from basic NMR principles of which the best known is in the health sector, MRI (magnetic 

resonance imaging) (Edwards, 2006). 

 

NMR was developed by a group of dedicated scientists at Massachusetts Institute of 

Technology and University of Stanford in the U.S.A. during the 1950’s. NMR makes use of a 

very large magnet and the fact that the nuclei of atoms have magnetic properties contained 

in their centres. Each part has a spin but they usually cancel out in most atoms because they 

are paired, except the ones with uneven proton and neutron numbers e.g. 1H, 13C, 31P, 15N, 
19Fetc. These atoms have spin in their nuclei. It is due to these properties that NMR can give 

detailed images of chemical structures or suggestions for chemical structures dependant on 

which software is used (Edwards, 2006). 

 

Artemisinin has a unique structure and molecular composition that shows characteristic 

peaks at specific places on an NMR spectrum. To quantify it comparisons with an internal 

standard of known concentration using the integrals, are done. The integrals are then 

compared and the concentrations calculated via a formula containing the molecular mass of 

the two different compounds (Liu et al., 2010). 
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Endophytes are divided into specific categories, those that are fungal by nature and those 

that are bacterial by nature. In most cases there are mutualistic or symbiotic relationships 

between the plant host and the ‘in-living’ endophytes. The relationships sometimes entail 

protection by production of a certain chemical compound being produced by the endophyte 

and the plant host provides nutrients for the endophyte.  

 

 

Many interesting and novel compounds have been found to be produced by endophytes, 

several of these are antifungal agents, but host specifity plays a crucial role.  One compound 

that is of particular interest in the medical world is the production of taxol which is a highly 

rated compound to treat cancer (Strobel, 2003).  

 

 

A small number of the thousands of plant species in the world have had their full spectrum of 

endophytes identified. These are mostly grass species which leaves a substantial lack of 

information because most plants species have not all been fully examined. A vast number of 

endophyte species are contained in a single plant which could provide potential medical 

advances in the treatment of many disorders and diseases (Strobel, 2003).  

 

 

Some of the endophytes that have already been identified from A. annua show novel 

compounds being produced such as 3β,5α-dihydroxy-6β-acetoxyergosta-7,22-diene and 

3β,5α-dihydroxy-6β-phenylacetoxyergosta-7,22-diene, which are  steroids  produced by a 

fungal endophyte, Colletotrichum sp. These steroids and others collected from A. annua 

showed antifungal properties against certain crop pathogens. This endophyte has also been 

found to have the capability of promoting the growth of the host callus (Luet al., 2000). 

 

 

C. gloeosporioides an endophytic fungus from another species in the Artemisia genus (A. 

mongolica) was found to produce a novel antimicrobial tridepsidec olletotric acid (Zhouet al., 

2000).  
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1.8 Genetically modified organisms and tissue cultures 

 

The concept of genetically modified organisms (GMO) is currently a hot topic of debate 

worldwide. This is often because of the misconception that the foreign genes that have been 

inserted would be harmful. Further, religious groups have accused scientists of breaking 

ethical laws (Winter and Gallegos, 2006; Key et al., 2008). GMO’s are also referred to as 

transformed plant’s i.e. plants which have a foreign gene/ sets of genes inserted.  

 

World hunger has been a driving force in the development of GMO crops. With the 

population increasing at its current rate and the amount of arable land decreasing, GMO 

crops became a possible solution. This is especially the case in rural and famine stricken 

parts of the world where poverty and skilled farm practises as well as pest control are 

severely lacking.  None of the claims that GMO foods are detrimental have been confirmed 

to date. But the problems that might occur with GMO crops in specific areas are that they 

might become resistant to herbicides. The herbicide resistance may lead to weeds attaining 

these properties through crossbreeding, leading to super weeds. In the case of insects, it is 

possible that they might develop an affinity for the developed “insect resistant” crops by 

adaption (Uzogara, 2000; Konig et al., 2004).  

 

Tissue culture (also known as micropropagation) refers to the growing of a cell or specific 

tissue on a growth medium (liquid or solid), outside of the donor organism. The growth is 

usually in a new sterile, artificial environment that has been supplemented with nutrients. 

Tissue culture is most often used for the growth of a newly transformed species into which 

foreign DNA has been inserted (Hildebrandt, 1972).The pieces of the plant that are used are 

referred to as the explants. Selection is usually made for explants that are in a young and 

fast growing phase to aid in the uptake and growth after transformation. The development 

and growth of the transformed plant in vitro can then be controlled by the addition of 

compounds and hormones in different concentrations. The initiation is usually followed by 

the production of callus at the open ends of the wounds and areas in contact with the growth 

medium. Calli or calluses (these terms are used ambiguously) are tissue cells that are 

undefined in function and are omnipotent. This means that they have the potential to 

differentiate into any plant organ, determined by the stimulation of hormones 

(Sathyanarayana and Varghese, 2001). 
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1.9 Plant hormones 

 

Plant growth hormones or phytohormones as they are also known, are chemical compounds 

that influence growth and the plant organ development linked to it. They can act as chemical 

triggers for various plant growth functions at very low concentrations. The influence of plant 

hormones can be found at various levels of transcription. Each cell has the potential to 

produce plant hormones. ‘Plant growth regulators’ is a term coined for the production of 

synthetic i.e. man-made plant hormones. Many plant processes are usually controlled by 

hormones and their onset. Examples include flowering, fruit production and senescence etc. 

(Kende and Zeevaart, 1997). 

 

Plant hormones can be divided into five main classes. There are however other classes of 

hormones but their roles are smaller and more specifically linked than the larger classes. 

The first two discovered and most widely studied are: Auxins and cytokinines. Auxins are the 

hormones that are closely linked to the initiation of root production while cytokinines are 

linked to shoot propagation. Under these two groups, synthetic and naturally occurring 

hormones can be found. Combinations of auxins and cytokinines are often added to growth 

media for the development of different plant organs at different stages of tissue cultures (Liu 

et al., 2003). 

 

Auxins generally stimulate cell enlargement and elongation and the most common example 

of an auxin is indole-3-acetic acid (IAA). Cytokinines are linked to cell division and the onset 

of senescence. It is also believed to be involved with the transport of auxins through the 

plant systems. Zeatin is the most commonly found cytokinine in plants (Kende and Zeevaart, 

1997).  

 

Abscisic acid (ABA) is associated with inhibitory roles, for example the closing of stomata 

with water stress and inhibiting shoot growth but may even sometimes aid it. Ethylene is a 

hormone that is a gas. It is formed from the disassembly of methionine which is present in 

most plant cells.  It is also known to have a tripple response in stimulating shoot and root 

growth and differentiation but is most commonly associated with ripening of fruit. Gibberillins 

(GA) have many compounds in its class. Most gibberillins share the gibberellane skeleton 

and gibberillic acid (GA3) was the first discovered in this class. They are mostly associated 
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with elongation of stems (internode elongation) and growth by counteracting the effect of 

ABA. In addition, they stimulate bolting and flowering because of day length differences 

(Kende and Zeevaart, 1997). 

 

Plant hormones can be added directly to an area where the plant has been wounded and 

some experiments even include injecting or superficial addition of plant hormones to attempt 

to stimulate the development of a different plant organ at a particular stage of development.  
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A salinity stress was done by Qian et al. (2007) on A. annua and it was found to increase the 

artemisinin content by a percentage of dry weight. Wang et al. (2001) tested different types 

of light showing that white and red light had the most promising results of increasing the 

amount of artemisinin. Water stress results are contradictory; Charles et al. (1990) showed 

that water stress had little effect on the artemisinin content except causing a decrease at 

extreme stress levels before harvest. They also suggest that different drying methods might 

increase the level of artemisinin. Sun et al.’s (2009) paper contradicts these results and 

showed that plants at 50% soil moisture had the highest production of artemisinin.  
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 1.11 Aims and objectives of study 

 

The aims of this study were to firstly establish calli from hairy root cultures of a GMO and 

determine whether they produce artemisinin and also to attempt to induce the formation of 

plants from the calli.  

 

Secondly, establish endophyte cultures from A. annua and subject the endophyte cultures to 

NMR examination to detect whether it might be the endophytes producing the artemisinin, 

rather than the plant. 

 

Thirdly, compare different varieties of A. annua that have been grown at two locations with 

two different sets of conditions. Analysis was done on the plant growth and production of 

artemisinin, with the latter being analysed using NMR analysis.  

 

 1.12 Scope of dissertation  

 

Chapter 1 gives an introduction to A. annua and some plant background followed by an 

overview of techniques and terms associated with the practices around artemisinin. Chapter 

2 is the first experimental chapter focussing on the production of GMO calli of A. afra and the 

attempts to produce plantlets of these calli by the addition of hormones. Chapter 3 

investigates the possibility that artemisinin production might be linked to endophytes and 

cultures were accordingly tested. The final experimental chapter is Chapter 4 which shows 

that location conditions play an important role in the production of artemisinin from different 

varieties produced in the field. Chapter 5 gives a general discussion and concluding remarks 

on the experiments, while Chapters 6 and 7 are comprised of the references and statistical 

data used for the production of this dissertation. 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



36 
 

Chapter 2: Tissue culturing of  GMO Artemisia afra 

  

2.1Introduction 

 

Not much research has been done on the genes required for the production of artemisinin. 

Investigation into the South African species A. afra showed that it contained most of the 

genes required to produce the precursors required in the metabolic path to the end product, 

artemisinin. However one of the last genes required for the final conversion to artemisinin, 

amorpha-4,11-diene synthase (ADS) is lacking (Figure 1.6). This enzyme is required for the 

conversion from artemisinic acid to artemisinin. If the successful insertion of the gene and 

production of genetically modified A. afra plants could be established, it could change the 

way in which artemisinin is produced and harvested.  A. afra is a perennial plant compared 

to the annual A. annua. This could mean that if a GMO is produced successful, consecutive 

seasons of planting would no longer be necessary and different harvesting practices could 

be developed and costs could be saved. In addition, insertion of multiple copies of the genes 

in combination with improved agricultural practices could lead to higher yields of artemisinin 

being obtained. All these factors combined could lead to cheaper and more efficient ways of 

treating malaria. 

 

Whipkey et al. (1992) did tissue culturing of A. annua on Murashige and Skoog (MS) 

medium with supplementation of different plant hormones and found 6-benzylamino purine 

to be the best for producing shoots from the leaf material. Wang et al. (2001) used 

Agrobacterium rhizobium co-culture with leaf discs of A. annua to produce hairy roots on 

hormone free MS medium. Nair et al. (1986) also used MS medium for the culturing of 

different plant parts of A. annua. He supplemented the MS with naphthalene acetic acid and 

6-benzyladenine. All the literature used sucrose concentrations of approximately 3% and 

constant temperatures of 25°C. The concentrations of the hormones al ranged from 0.5mg/l 

to 2.5mg/l. 
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  2.2 Materials & Methods 

 

Genetically modified (GM) hairy root cultures of A. afra were obtained from a previous study 

with Professor Toshiya Muranaka, of the University of Osaka. The hairy roots were cut in 3 

mm pieces using a sterilized blade in a laminar flow cabinet. The cuttings were then placed 

on solidified medium (25ml) under sterile conditions. The medium consisted of a solution of 

half strength Murashige and Skoog shoot multiplication media, 3% sucrose, 0.8% agarose, 

at a pH of 5.8 and various concentrations of plant hormones were added in a number of 

combinations (Table 2.1). The hormones used were naphthalene acetic acid (NAA) (2mg/l, 

1mg/l and 0.5mg/l) and zeatin (1mg/l, 0.5mg/l and 0.1mg/l). These applications were 

adapted from the methods used by Nair et al. (1986) and other supplementary literature. 

 

Table 2.1: The first sets of combinations of plant hormones 

Flask numbers Plant hormone concentrations 

1-3 2.0mg/l NAA 

4-6 1.0mg/l NAA 

7-9 0.5mg/l NAA 

10-12 1.0mg/l Zeatin 

13-15 0.5mg/l Zeatin 

16-18 0.1mg/l Zeatin 

19-21 2.0mg/l NAA + 1.0mg/l Zeatin 

22-24 1.00mg/l NAA + 0.5mg/l Zeatin 

25-27 0.5mg/l NAA + 0.1mg/l Zeatin 

28-30 2.0mg/l NAA + 0.1mg/l Zeatin 

31-33 0.5mg/l NAA + 1.0mg/l Zeatin 

34-36 No plant hormones were added 
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A forth sub-culturing of the callus and roots received 1mg/l 6-benzyladenine (BA) and 1mg/l 

NAA. Half of the cultures were added to a solid medium and half were added to a liquid 

medium which lacked agarose. The samples on solid medium were placed in the incubator 

while the samples in liquid medium were subjected to shaking at 100 revolutions per minute 

in an incubator, set at 25˚C and constant darkness.  

 

A fifth sub-culturing was done to keep a constant stock and supply. Stocks were maintained 

and treated with combination of other hormones in an attempt to regenerate shoots. These 

hormones were TDZ (thidiazuron) and kinetin and were added in concentrations of 1mg/l 

and 2mg/l. 

 

When contamination was encountered the samples were either discarded or sterilized by 

submerging plant material in 70% alcohol solution for 3 seconds, rinsing in distilled water 

and then sub-culturing. 

 

Cultures were regularly harvested, ground in liquid nitrogen, mixed with distilled chloroform, 

concentrated, dried and subjected to NMR analysis. These were done on a 200MHz Varian 

NMR in deuterated chloroform. 

.  
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The production of an A. afra GMO plant that synthesis artemisinin needs more investigation. 

The successful production of such a plant can be utilized in the battle against malaria in 

countries where medication is very expensive and out of the reach of most of the infected. A 

large scale Artemisia crop producing more of the active compound with less intense farming 

practices and better adapted to African conditions, would be the best choice. 

 

It has been reported in literature that artemisinin can be produced by calli. Nair et al. (1986) 

stated that artemisinin was produced in tissue culture calli, but only in calli originating from 

stems and leaves and not those originating from roots. This could be because the production 

of artemisinin is usually associated with occurrence of trichomes, which are found on leaves 

and flowers and to a lesser extent on stems. Most of the studies used leaf and stem cuttings 

to produce calli. However Wang et al. (2001) showed that hairy root cultures of A. annua did 

produce artemisinin with the introduction of external stimuli but again leaf discs were used to 

create the hairy root cultures.  

 

Hairy root cultures are usually used for the insertion of foreign genes, but the material used 

to create the hairy roots may pass certain elements on to the hairy roots. These elements 

might be carried on to calli. This could be the reason for the occurrence of artemisinin in 

tissue cultures and calli suggested by literature earlier. 

 

The explants used in our experiment were from hairy root cultures which did not contain 

trichomes. This might be the reason why there is no artemisinin production as artemisinin is 

usually associated with trichomes. 
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Chapter 3: Production of artemisinin by endophytes  

 

 3.1 Introduction 

 

Endophytes are known to live commonly in plants and usually share in symbiotic 

relationships with them. In the case of most secondary metabolites, like artemisinin, their 

original reason for production might have been lost through evolutionary changes. For 

example a compound being produced by a plant to ward off a herbivore, but the herbivore is 

now extinct, yet the plant still produces the metabolite.  

 

In symbiotic relationships between endophytes and plants one would many times find that 

the endophyte produces a compound to be used either for warding off of an attacker or 

parasite in return for protection or nutrients shared by the plant. Wang et al. (2001) induced 

increased production of artemisinin in sterile tissue culture with the addition of a fungal 

endophyte elicitor. This specific endophyte is usually found on the stems of A. annua. 

 

Artemisinin might be produced by endophytes in A. annua and culturing of the endophytes 

might lead to different ways of producing artemisinin and further investigation. Eurotium 

amstelodani and Aspergillus niger are two microbes that have been used to produce novel 

derivatives from artemisinin (Parshikov et al., 2006). No production of artemisinin by 

microbes or endophytes other than transformed Escherichia coli and Agrobacterium 

tumefaciens could be found in literature. 
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3.2 Materials & Methods 

 

Various samples were taken from an A. annua plant that was kindly donated by Riana 

Kleynhans of the Agricultural Research Council (ARC) Roodeplaat. This plant had been 

growing under shade nets and in a pot of about 1m2.  

 

Samples were taken from the leaves, the stem and the roots, cut into approximately five mm 

by five mm pieces and then cleansed to clear away bacterial contaminants inside a laminar 

flow cabinet. This was done by submerging the cut plant parts in a 3% solution of bleach. 

The samples were submerged for approximately 5 seconds, removed and rinsed in sterilized 

distilled water. The stem and root samples were then cut open and the open parts as well as 

the uncut leaves were then placed on different media.  

 

The media were soy flower media (SFM) with 1% PDA (potato dextrose agar) and pure 

PDA. The samples were placed in Petri dishes inside a Labotec IncoCool incubator with no 

light at 25° C. The plates were left for a few days before observations were made.  

 

Extensive microbial growth resulted and pure, single fungal colonies were selected.  These 

selected colonies were grown up in four one litre containers on a shaker inside a 

temperature controlled incubator and then extracted.  

 

The fungal broth were thoroughly mixed and poured in separating funnels and extracted 

using distilled chloroform (artemisinin dissolves well in chloroform). The mixtures were then 

collected leaving the more polar compounds behind in the separating funnel, dried and 

concentrated using a Buchi rotary evaporator. The dried and concentrated samples were 

dissolved in 1ml deuterated DCM (dichloromethane) and subjected to NMR analysis. 

 

A 200 MHz nuclear magnetic resonance (NMR) machine was then used to determine if 

artemisinin was present within each sample by comparing it to the spectrum of pure 

artemisinin. Pure artemisinin was added to the samples after their first round of analysis and 

they were again subjected to NMR analysis. This was done because pH and contaminants 
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Figures 3.2 and 3.3 showed small peaks in the area where the characteristic H12 peak for 

artemisinin usually occurs. With artemisinin added (Figure 3.3) there was a small peak in at 

5.8 ppm. The resolution on the 200 MHz NMR might have been too low to detect artemisinin 

in the samples with only 200 scan cycles. The experiment was redone running the samples 

for 3000 scan cycles and adding a substantially higher amount of purified artemisinin. The 

NMR spectra were then obtained, combined and superimposed using MestReNova (Figure 

3.4). From the figure it can be seen that there was in fact no artemisinin being produced by 

the fungal colony. None of the other plant organs’ endophytes showed any signs of 

artemisinin production.  

 

 

Figure 3.4: NMR spectra for fungal root growth of Artemisia annua with the bottom spectrum 

containing a purified addition of artemisinin, indicated by the arrow. 
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Wang et al. (2001) has discovered that endophytes play an important role in host plant 

secondary metabolism. An endophyte (Colletotrichum sp.) identified in A. annua was added 

to hairy root cultures, originating from leaf discs, and induced higher production levels of 

artemisinin. However no literature could be found where endophytes themselves produce 

artemisinin. 
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Chapter 4: Influence of location on artemisinin varieties 

 

 4.1 Introduction 

 

Artemisinin yields are very low per plant and effort has been made to try and increase the 

yields. It would appear as if location might play a role as varied yields have been attained all 

over the world. Wallaart et al. (2000) stated that there might be chemotypes associated with 

geographical location.  This means that different yields of artemisinin might be found at 

different locations and that the plants at one location might differ from plants at other 

locations. Delabays et al. (2001) stated that large variations in artemisinin have been 

observed in leaves originating from different sources. 

 

The malarial drug market needs higher yielding varieties as extraction is quite expensive and 

of less use if the percentages extracted are low. Importers usually only purchase for 

production if the percentages are adequate. In South Africa we lack artemisinin processing 

facilities however there are some institutes that might be able to produce at a large enough 

scale to market products.  

 

A great deal of focus has also been put into breeding higher yield varieties. Arsenault et al. 

(2010) discussed the over-expression of certain genes in GMO A. annua varieties but the 

results vary. He also mentioned the selection for hybrids with high yields of artemisinin for a 

location. Some literature claim very high artemisinin yields but whether these high yields will 

be produced in consecutive seasons under different sets of circumstances remains to be 

seen (Damtew et al., 2011).  

 

This chapter deals with the differences between varieties of A. annua and the effect that 

locations might have on the yield of artemisinin.  Criteria like soil composition and rainfall for 

each location is noted and compared and effect on artemisinin yield discussed between the 

varieties. Proton NMR and multivariate data analysis software were used for the analysis 

between the varieties. This software included MestReNova 8.1.1 (Mestrelab Research), 

Excell (Microsoft Excel 2010) and SIMCA-P 13.0.0 (Umetrics, Umeå, Sweden). 
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MestReNova converts the NMR spectra to a more user-friendly interface and allows for 

simpler editing of data. Fields that can be edited include baseline correction, normalization, 

scaling and binning (Heyman, Unpublished). 

 

SIMCA is designed to show patterns and similarities based on the statistical analyses of 

data. SIMCA can group samples and show their similarities and can be used to differentiate 

between two slightly different samples at compound and concentration level. This can be 

used to show for example differences in the metabolic pathways of samples as they will also 

be separated at compound level (Hedenström et al., 2008).   

 

Principal component analysis (PCA) can be performed with SIMCA which is a pattern 

recognition technique that does not ‘’discriminate’’ between the data being analysed. 

Another pattern recognition technique used by SIMCA is orthogonal projection to latent 

structure-discriminate analysis (OPLS-DA). This discriminating method contains a filter more 

suited to noisy variables commonly associated with biological data (BylesjÖ et al., 2006). 

 

 

 

 4.2 Materials & Methods 

 

  4.2.1 Seed germination and seedling establishment  

 

Five different varieties of A. annua seeds were obtained for field trials. Two high yielding 

varieties were obtained from Dr. Frank van der Kooy of the University of Leiden. One variety 

was produced during earlier stress-induced studies at the University of Pretoria and the 

other two varieties were received from the Agricultural Research Council of South Africa 

(ARC) at Roodeplaat, courtesy of Riana Kleynhans (Table 4.1).  
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The seeds were then sown on top of the mixture and the trays were marked according to the 

varieties planted. All the trays were transferred to a glass house at the ARC Roodeplaat’s 

facilities with a controlled temperature at 25°C, receiving sun most of the day. The seeds 

and seedlings were watered daily or as appropriately needed and a second set of seeds 

were added where germination was too low. After a month the seedlings were transplanted 

to other planting trays in order to have a single plant in each well and thereby removing 

competition. These seedlings were allowed to grow for a month after which they were 

transplanted to the field at the specific locations. One ARC variety (r2=purple) had really low 

germination rates and these seedlings only sprouted later and were transplanted later. 

 

4.2.2 Location of field trials 

 

The Agricultural Research Council Vegetable and Ornamental Plant Institute (ARC-VOPI) 

situated at Roodeplaat (coordinates: 25°35’59.81”S 28°21’45.49”E, elevation 1164m) and 

the University of Pretoria’s (UP) LC de Villiers experimental farm (coordinates: 

25°45’02.15’’S 28°14’46.48’’E, elevation 1305m) were the two localities for the experiment. 

The two areas are about 30km apart with two different soil compositions and altitudes 

(Figure 4.2). 

 

Soil sampling was done (Figure 4.3) and sent to the ARC Institute for Soil, Climate and 

Water (ARC-ISCW) for analysis and comparison. Samples were taken of the top 30cm of 

soil (0cm to 30cm) followed by the second layer of soil (30cm to 60cm) in a grid layout over 

the plot areas.  
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4.2.6 NMR and Multivariate data analysis 

 

These samples were subjected to 600 MHz NMR analysis courtesy of UNISA and the CSIR 

and spectra were obtained and reduced to ACSII files using the analytical software, 

MestReNova 8.1.1 (Mestrelab Research). Normalisation was done by scaling the spectral 

intensities to 0.1% TMS. The region of 0.00 to 10.00 ppm was reduced to bins of 0.04 ppm 

in width. A second set of ASCII files were generated and then imported to Microsoft Excel 

2010 for secondary variable labelling and transposing. The transposed and labelled Excel 

files were then imported to statistical software SIMCA-P 13.0.0 (Umetrics, Umeå, Sweden). 

Data was Pareto scaled before being subjected to PCA and OPLS analysis (Heyman et al., 

Unpublished 2013). 

 

The integrals of the maleic acid peak (6.1 ppm) and the H-12 artemisinin peak (5.9 ppm) 

were inserted into a formula (Equation 4.1) to calculate the concentration of artemisinin (Liu 

et al., 2010).  

 

	
	

2
282.332
116.1

0.2 

Equation 4.1: The equation to calculate artemisinin concentration from a NMR spectrum 

 

Maleic acid contains two hydrogen atoms that are bonded to carbons two and three in its 

chemical structure. NMR uses the spin of protons to fulfil its diagnostic functions. Artemisinin 

has a characterising proton at C-12 which forms a singlet peak at 5.9 ppm on the NMR 

spectrum (Figure 4.13). 

 

The equation takes the integral value of artemisinin divided by the integral value of maleic 

acid multiplied by 2 (for the 2 protons of maleic acid). This value was then multiplied by the 

molecular mass of artemisinin, divided by the molecular mass of maleic acid and then finally 

multiplied by 0.2 representing the concentration of maleic acid that was added. 
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 4.3 Results &Discussion 

 

4.3.1. Rainfall and soil analysis 

 

Appendixes B and C contain weather station information that can be used to compare the 

different climates and what role they played in our trial. The ARC received 50mm more 

rainfall than UP during the time that the experiment was conducted. Higher solar radiation 

was received at the ARC and this would lead to higher evaporative values. The difference in 

moisture content between the two locations could perhaps be nullified by the ARC having 

both higher rainfall and solar radiation values. Some readings are missing on the rainfall 

chart for UP because of power outages, but it would be safe to mention that no rain fell 

during those periods as no rain fell during the same time at the ARC and this was also in the 

dry winter months. 

 

Charles et al. (1993) stated that water stress can be related to retardation in growth of A. 

annua. They also stated that artemisinin content is negatively influenced by water stress and 

this statement is contradicting to the work of Fluck, 1955 and Gershenzon, 1984 that share 

the opinion that secondary metabolites are positively influenced by plant stresses. In this 

study the locations only differed slightly in rainfall. Considering this statement, the location 

that received the most rain and least stress should produce the highest plants and the 

highest yields of artemisinin according to Charles et al. (1993), but the inverse is observed. 

Investigation in to other factors could hold the reasons. 

 

Factors like mean temperatures and wind are relatively similar for the two locations and no 

influences on the performance can be observed or great differences between the two 

locations (Appendix B and Appendix C). 

 

The influence of soil composition is shown in Table 4.2 and this indicates that there are 

some differences in composition between the two locations. There is no element lacking at 

either site but the concentrations per location differ with the ARC having higher 

concentrations per block and on average in Table 4.3 of everything except nitrogen. 
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The reduced amount of compounds like phosphorous (P), potassium (K), calcium (Ca), 

magnesium (Mg) and sodium (Na) could lead to a type of stress condition which could lead 

to greater artemisinin production. Omer et al. (2013) stated that artemisinin percentages 

were increased in the cultivation on sandy loam soil compared to clay soil. In this experiment 

however the soils were of the same type only differing in concentration of elemental 

composition. Our results differ slightly, this is because even though the soils are similar, the 

soil with the highest amount of clay (23.2% compared to 20.6%) produced the highest 

artemisinin percentage. Omer et al. (2013) also stated that clay soils yield better growing 

plants which our data supports. Soils higher in clay usually contain more macro elements 

(Omer et al., 2013) but at UP previous trials may have depleted some sources. 

 

Fertilizer trials mostly focus on N, P and K levels. Singh (2000) showed that an introduction 

of N could increase the yield of artemisinin but only to a certain extent. When the optimal 

concentration is reached adding more N will not really increase the production of artemisinin. 

The effects of P and K are extremely small and not noteworthy. In our experiment N was the 

same for both locations while all the other elements were found in a lower concentration at 

UP. 

 

Salinity stress does not have an effect on artemisinin according to Prasad et al. (1998) but 

the ratio of potassium to sodium does (K:Na) does have a negative effect on dry mass 

production. This supports our data where the ration at the ARC is 1:3 and UP is 1:4 and UP 

plants produced lower wet and dry masses for all the varieties. 
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4.3.2 Growth rate and plant height 

 

Figures 4.13 and 4.14 contain the relative height measurements for the locations in their 

Latin squares. Fall out plants (plants that died) are represented by zeros. The inner plants 

were all measured and their heights were averaged per location and per variety (Table 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: The plant heights measured in cm at the ARC on the 17th of April 2012 

 

73  166  48  5  0  65  80  0  0  60  90  78  104  85  100 
80  73  70  70  55  15  78  90  63  72  85  0  70  90  107 
70  30  80  70  90  60  95  65  70  89  94  0  90  100  90 
64  60  70  100  101  15  86  0  50  96  100  64  90  90  100 
57  75  42  70  80  80  84  51  85  95  100  70  90  112  112 

45  75  52  80  80  95  55  98  107  100  73  88  75  80  68 
80  42  77  37  70  90  73  100  94  98  80  86  85  70  60 
90  75  60  62  10  50  0  115  97  95  87  77  50  68  70 
80  82  60  62  30  0  107  100  89  97  58  84  80  72  88 
78  63  70  60  0  76  110  87  87  74  90  75  60  35  50 

60  100  75  70  0  75  90  0  42  78  74  37  80  68  75 
106  100  85  68  80  70  72  34  0  89  12  45  75  70  70 
0  90  80  20  65  68  62  82  44  47  80  33  70  40  90 
90  75  90  84  65  88  78  0  22  78  10  98  70  82  70 
78  90  100  10  80  0  64  95  90  76  89  80  30  75  30 

64  60  80  78  90  90  70  54  75  85  93  78  90  112  90 
50  70  72  73  85  65  90  48  80  52  76  72  100  90  80 
68  30  27  80  90  80  68  102  85  77  8  79  90  80  88 
50  40  60  101  85  0  82  80  35  77  85  70  80  80  90 
68  60  0  90  92  80  52  32  82  82  75  59  50  95  85 

76  65  60  15  150  80  97 120 85 85  107 114 80  70  80 
70  35  35  76  80  58  87 89 85 86  96 92 80  85  70 
40  67  50  80  120  50  95 78 75 107  91 100 90  60  65 
70  42  80  90  23  100  110 110 72 100  100 92 70  75  80 
40  30  0  100  100  80  116 112 80 110  100 110 80  60  72 

f0=orange  f1=green  f2=blue  r1=red  r2=purple 
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Figure 4.14: UP experimental farm heights of plants measured in cm on the 19th of April 

2012 

 

 

Table 4.4: The average height of varieties of plants for the two locations 

 

ARC  f0=orange  f1=green  f2=blue  r1=red  r2=purple 

averages 75.70  60.30 69.80 64.40 88.50 

UP  f0=orange  f1=green  f2=blue  r1=red  r2=purple 

averages 85.20  87.60 80.70 80.70 16.60 

 

 

 

100  100  107  75 120  105  23 13 12 80 40 60 80  85  87
110  113  116  107 100  110  10 20 12 70 76 90 40  100  110
90  105  99  93 110  110  13 13 20 70 80 70 0  70  90

102  110  100  90 110  110  10 13 20 80 90 60 100  0  80
110  116  100  104 100  100  20 16 15 83 85 75 100  75  102

83  70  100  10 15  6  90 75 55 40 90 99 85  110  40
55  80  100  23 15  15  105 70 92 70 73 92 100  85  75

100  90  69  12 16  12  100 110 93 80 80 95 82  100  87
77  70  101  25 25  16  80 10 110 80 75 80 75  82  100
70  85  80  12 21  12  93 95 0 62 85 100 80  85  90

75  0  98  100 100  110  92 0 97 25 15 11 90  80  60
83  85  95  100 60  60  85 55 100 11 20 15 65  70  70
70  90  90  110 122  80  30 90 82 20 15 20 0  60  60
75  94  120  110 122  110  0 100 100 15 22 10 50  90  65
82  102  103  118 90  110  90 100 70 15 15 20 50  35  62

20  17  17  90 110  90  75 92 80 80 86 95 82  80  67
10  13  120  90 90  80  112 100 85 90 90 90 90  80  80
15  15  10  102 115  90  110 110 80 85 70 65 70  90  82
10  30  16  100 114  117  110 110 110 92 75 82 80  95  110
19  16  9  90 115  110  100 90 70 79 65 92 80  80  110

110  90  93  100 85  110  105 85 80 95 80 80 60  25  20
110  111  109  115 100  90  100 115 100 80 70 70 65  22  15
93  90  102  110 54  120  80 104 86 87 78 70 25  13  15
93  102  0  10 84  110  108 100 75 80 87 90 20  10  19
93  70  89  90 102  90  100 90 70 80 0 73 12  25  15

f0=orange  f1=green  f2=blue  r1=red  r2=purple 
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Statistical analysis and comparison was done to identify the best performing variety in the 

various categories. The software program used, GenStat (version 15.1), uses algorithms that 

are specifically designed for use with the Latin square designed experiments. The data 

produced showed a significant difference between the varieties. The second variety received 

from the ARC (r2=purple) were the shortest since they were planted at the UP experimental 

farm at a later stage, as there was a lack of viable plants in trays ready for transplantation. 

Therefore these datasets (r2=purple) were excluded for the plant height aspects and the 

statistical analysis was redone. The Latin square software’s parameters could therefore not 

be used for this analysis and instead the data was entered into the same programme but as 

four different sets of experiments. This result showed no specific variety had an increase in 

rate of growth (Appendix A). However, all varieties planted at UP’s experimental farm, are 

taller than the varieties at the ARC. The average height at UP (83.53 cm) is higher than the 

average height at ARC (67.53 cm), these values are statistically significantly different 

between the locations. 

 

The differences between the two locations can be because the plants at the ARC were 

planted on top of ridges (30cm from level with 45° inclination) whereas the plants at UP’s 

experimental farm were planted on a more level surface. Planting on top of the ridges could 

have given rise to more side branch development and less to height growth as is also 

observed by Simon et al. (1990)’s spacing trials. 

 

4.3.3. Wet plant mass 

 

The wet mass of aerial plant parts per variety per block per location are shown in Figure 4.15 

and 4.16.  

11.80  13.90 17.50 16.50 22.90 

13.40  15.60 22.30 17.30 17.15 

17.95  12.75 16.00 14.30 14.10 

12.05  19.65 13.80 17.85 18.75 

5.60  12.15 16.00 19.35 14.35 
Figure 4.15: ARC wet mass of aerial plant parts in kg per block 
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16.95  16.00 0.75 10.00 9.75 

15.75  2.40 13.45 11.15 11.95 

18.65  16.75 13.20 1.10 5.80 

2.40  18.00 17.09 11.66 10.05 

19.95  21.16 17.5 12.55 2.70 

 

Figure 4.16: UP experimental farm wet mass in kg per block 

 

The values from Figures 4.15 and 4.16 were averaged in Table 4.5 as per variety of plants 

per area. 

 

Table 4.5: Averages of the variety per area for wet mass (kg) 

 

ARC:  f0=orange  f1=green f2=blue  r1=red  r2=purple 

averages  15.48  14.13 13.84 14.72 20.43 

UP:   f0=orange  f1=green f2=blue  r1=red  r2=purple 

averages  14.31  14.53 13.96 14.67 1.87 

 

 

The Genstat data with the four different sets of combined experiments excluding the second 

variety received from the ARC (r2=purple), revealed no statistically significant differences 

between the wet mass of the different varieties of the plants (Appendix A pages 100 and 

116). These results seem to be supporting the height data that showed no specific variety 

doing better. The wet mass averages for the two locations were also similar (ARC: 14.54kg 

to LC: 14.38kg). 
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4.3.4. Dry plant mass 

 

The dry mass of the aerial plant parts (Figures 4.17 and 4.18) are between 25% and 40% of 

what the wet mass was. In Table 4.6 the variety averages between the different locations are 

compared.  

 

4.60  4.95 5.70 4.30 6.90 

4.50  5.35 7.45 6.20 5.90 

5.85  4.40 4.95 4.70 5.80 

4.65  7.20 4.90 5.70 7.40 

2.15  5.05 5.40 7.10 5.55 

 

Figure 4.17: The average dry plant mass per block for the ARC in kg. 

 

5.70  5.80 0.20 3.70 2.35 

5.25  0.60 3.50 2.50 3.70 

6.30  2.40 5.30 0.30 2.15 

0.60  5.90 4.65 3.35 3.35 

5.10  6.80 5.85 2.50 0.65 
 

  Figure 4.18: The average dry mass per block for UP in kg 

 

Table 4.6: The average dry mass of plant material per variety per location in kg 

ARC:  f0=orange  f1=green  f2=blue  r1=red  r2=purple
Total 
average 

averages  5.20  4.94 5.03 5.26 6.90 5.11 

UP:  f0=orange  f1=green  f2=blue  r1=red  r2=purple
Total 
average 

averages  3.34  4.62 4.51 4.76 0.47 4.31 
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The dry mass yield trend was similar to the wet mass yield as the group with the highest wet 

mass produces the highest dry mass. This differs slightly with the plant heights seeing as the 

plants from UP’s experimental farm were on average 13cm higher than the plants at the 

ARC. The differences between the averages per location (UP 4.31kg and ARC 5.10kg) are 

not statistically significant.  

 

4.3.5. Dry leaf mass 

 

The results of the dry leaf mass can be seen in Table 4.7 and Figures 4.19 and 4.20. 

 

1.89  0.93 1.05 0.86 1.59

0.66  0.92 1.28 1.14 1.13

1.41  1.00 1.09 0.90 1.25

0.99  1.43 1.11 1.09 1.37

0.49  1.105 1.28 1.42 0.90

 

Figure 4.19: Dry leaf mass of different blocks at the ARC in kg 

 

 

1.21  1.15 0.10 0.59 0.70

0.98  0.15 0.89 0.68 0.78

1.28  0.96 0.55 0.09 0.49

0.13  1.08 1.01 0.92 0.75

1.07  0.96 0.84 0.57 0.15

 

Figure 4.20:  Dry leaf mass of different blocks at the UP in kg 
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Table 4.7: Comparing of the average dry leaf mass per variety in kg 

 

ARC:  f0=orange  f1=green  f2=blue  r1=red  r2=purple
Total 
average 

Averages  1.03  0.96 1.23 1.01 1.42 1.13 

UP:  f0=orange  f1=green  f2=blue  r1=red  r2=purple
Total 
average 

Averages  0.90  0.83 0.80 0.94 0.12 0.72 

 

 

In the above data one can see that no variety is outperforming another.  It would however 

seem that the plants at the ARC might have performed a little better than the plants of UP in 

all cases, except for height, but the numbers are not statistically significant at p<0.001 

(appendix A). One probable reason for the ARC plants having a higher mass production with 

lower height is the production of more side branches. Side branches would lead to higher 

amounts of leaf production and so an increase its biomass. The plants planted on top of the 

rows might have had more space for side branch development.  

 

 

4.3.6. Artemisinin yields 

 

The software program MestReNova allows one to standardise the NMR results by setting 

the integral value of maleic acid to 1. The artemisinin integrals subsequently adjust by the 

same ratio (Table 4.8). The differences in artemisinin percentages are averaged and shown 

between the two different locations and the different varieties (Tables 4.15, 4.16 and 4.17). 
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Table 4.8:  The integrals and calculation of percentage artemisinin per gram of dry leaf mass 

 

 UP    ARC  
% Art / g dry leaf mass 

 

Block  Art integral   Art Integral UP     ARC 

A  0.38   0.34 0.37    0.33 

B  0.27   0.28 0.26    0.27 

C  0.45   0.29 0.44    0.28 

D  0.31   0.52 0.30    0.51 

E  0.5   0.25 0.49    0.24 

F  0.43   0.24 0.42    0.23 

G  0.55   0.31 0.53    0.30 

H  0.24   0.40 0.23    0.39 

I  0.24   0.27 0.23    0.26 

J  0.61   0.37 0.59    0.36 

K  0.42   0.33 0.41    0.32 

L  0.48   0.23 0.47    0.22 

M  0.57   0.31 0.55    0.30 

N  0.37   0.3 0.36    0.29 

O  0.23   0.32 0.22    0.31 

P  0.55   0.27 0.53    0.26 

Q  0.35   0.34 0.34    0.33 

R  0.3   0.29 0.29    0.28 

S  0.53   0.32 0.52    0.31 

T  0.48   0.28 0.47    0.27 

U  0.31   0.34 0.30    0.33 

V  0.53   0.36 0.52    0.35 

W  0.40   0.30 0.39    0.29 

X  0.60   0.24 0.58    0.23 

Y  0.38   0.34 0.37    0.33 
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Table 4.9: The percentage yield of artemisinin per variety and per location  

 

 

The yields within a variety are similar per location but between the locations performances of 

varieties differed (Table 4.7). This could indicate differences between the two locations. 

 

It appears that the variety supplied by Prof Meyer (yellow variety, f0), was the highest 

artemisinin yielding variety at the ARC and that the first variety received from Dr Van der 

Kooy (green variety, f1), is the highest producing variety of artemisinin at the UP location. If 

one averages the percentage of yield over both locations for the best variety for the 

production of artemisinin, Dr Van der Kooy’s first variety (green, f1) is the best.  However, 

the Genstat program can identify only slight significant differences (p<0.001) between the 

varieties. This is because the varieties that are first and second in production of artemisinin 

differ only slightly from each other but both differ greatly from the lowest producing variety. 

The roles are however interchanged with a change of location.  

 
 

Location ARC f0=orange f1=green f2=blue  r1=red  r2=purple

0.35 0.29 0.23 0.33  0.33

0.27 0.33 0.28 0.31  0.26

0.32 0.31 0.22 0.30  0.29

0.39 0.26 0.23 0.36  0.30

0.51 0.33 0.24 0.27  0.28

Average at ARC per variety 0.37 0.30 0.24 0.31  0.29

Total average at ARC 
combined varieties   0.30

Location UP f0=orange f1=green f2=blue  r2=red  r2=purple

0.37 0.58 0.39 0.52  0.30

0.34 0.53 0.47 0.52  0.29

0.36 0.55 0.47 0.41  0.22

0.23 0.53 0.42 0.59  0.23

0.37 0.49 0.30 0.44  0.26

Average UP per variety 0.33 0.54 0.41 0.50  0.30

Total average per variety 0.35 0.42 0.33 0.41  0.28

Total average at UP combined varieties 0.41
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If one compares the averages of the artemisinin production per location, the plants at UP 

outperformed the plants at the ARC location (p<0.001). Both of these sets of results are 

statistically significant. In other words, UP produced the highest plants with the highest 

artemisinin concentrations, while the ARC produced the plants with the greatest wet mass, 

dry mass and dry leaf mass.  

 

It has already been suggested that the plants at the ARC had increased development of side 

branches leading to more plant material but it would seem as if the production of artemisinin 

could be linked to height of the plants or a competitive stress increasing the yield of 

artemisinin. Simon et al. (1990) and Damtew et al. (2011)’s data agrees with other studies 

showing a positive correlation between plant height and planting density in A. annua and 

other plants. There is however a threshold of plant density, when this is exceeded (plants 

planted too close to each other) height growth is also negatively influenced. Damtew et al. 

(2011)’s work also states that there is a negative correlation between the production of side 

branches and height in A. annua.  
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The varieties do not group well and are scattered (Figure 4.21). However one can already 

see from this PCA figure that there seems to be a grouping on the two localities. ARC plants 

group more to the left and the UP plants more to the right, irrespective of varieties. The 

different localities were then individually put through the same process (Figures 4.22 and 

4.23) giving only the grouping for a single location.  

 

 

Figure 4.22: PCA plot for the different varieties just at UP 

 

There is slight grouping visible for the different varieties. Strong grouping might indicate a 

variety that contains something unique not present in the others. It could possibly provide a 

reason for increase in yields between varieties and indicate differences that might lead to 

Wallaart et al. (2000)’s proposed existence of chemotypes. Wallaart et al. (2000) proposes 
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the idea that chemotypes exist between locations of origin of A. annua. In our experiment the 

varieties were obtained from two different continents. Three varieties have been propagated 

in South Africa for a few trial years and the other varieties were produced in Eastern Europe. 

This was the first trial year for the European varieties in South Africa and a slight grouping 

might indicate the chemotype or another influence. 

 

Figure 4.23: PCA spectrum for the varieties just at ARC 

 

Figure 4.22 and 4.23 differ completely. Figure 4.23 show the comparison of the varieties at 

the ARC only. There is a great amount of grouping but the grouping is not because of the 

varieties. At the ARC the varieties are still not grouping, but there appears to be clear 

difference between some blocks. This was further investigated to determine the cause of the 

split. The spectrum was redone excluding chemical shifts of water and methanol (Figure 

4.24). This was done because it was recalled that two separate methanol bottles were used 

during the NMR extraction. 
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Figure 4.24: PCA spectrum of plants grown at the ARC with H20 and MeOH chemical shifts 

excluded that probably lead to the severe split in Figure 4.23. 

 

With the removal of values of methanol and water from the data, no grouping is seen 

between varieties. It is interesting that the metabolic analysis could discriminate between two 

bottles of methanol from different suppliers. In summary, grouping could not be clearly seen 

from the PCA plots on variety but slight grouping was seen per location. 
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OPLS spectra (Figure 4.26) in general are more sensitive and ‘’discriminate’’ more efficiently 

than standard PCA spectra. This is because discrimination factors can be entered. In Figure 

4.26 the discriminating factor entered was the locations of the samples. Clear grouping 

occurs between the samples from the ARC and UP.  The varieties again only showed slight 

grouping.  

 

 

 

Figure 4.25: OPLS plot of the different varieties with the two locations grouping well (UP 

varieties underlined) 

 

It is apparent that the grouping occurs between the two locations and this suggests that 

there are differences between the locations as seen in the data produced by the growth 

rates/heights, relative masses and artemisinin yields. A contribution plot was drawn up 

(Figure 4.26) and the differences between the two locations seem to be only on one factor, 

the concentrations of compounds, which could correlate with the findings pertaining to the 
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soil compositions and concentrations of artemisinin produced. Other chemicals, precursors 

and metabolic paths pertaining to higher secondary metabolite productions due to stress 

would also be higher. 

 

 

Figure 4.26: Contribution plot of all varieties on both locations. ARC plants (top) showing 

higher concentrations in general (buckets 3-4 removed). 

 

The soil of the ARC contained higher concentrations of elements and also produced higher 

plant mass. The ARC samples could contain higher concentrations of most compounds 

except for artemisinin and other secondary compounds which could be higher at UP. The 

positive bars represent higher concentrations of compounds at the ARC and the negative 

bars represent compounds that occur at higher concentrations at UP. The few negative bars 

could possibly represent compounds involved in the metabolomic pathway of artemisinin.  
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A summary of all the parameters analysed can be seen in Table 4.10 which summarizes the 

data in all the different categories for the different varieties and two locations. The values are 

also shown for the yields that can be obtained per hectare. 

 

The yields of artemisinin are low at an average of 0.3% as yields of more than 1.0% are 

required to meet the current market trend.   

 

In Table 4.10 the column, % yield of dry mass on wet mass, gives an estimation of the water 

content of the plants. On average the plant’s wet mass contained 65% water mass. The 

percentages can be useful when conducting experiments to compare water loss between 

varieties.  The average dry mass of just the leaves is 20% of the total dry mass of the plant 

including stems. The average percentage of the dry leaf mass that will be harvested from the 

initial wet mass is about 6.50%. That suggests for the sale of a kg of dry leaf material for 

about 15kg wet mass plant material will be required.  

 

The variety that produced highest artemisinin percentage at the ARC was the variety 

produced by Professor Meyer (f0=yellow), this variety might have a better epigenetic 

background as the seeds were collected from a water stressed (speculated to increase 

artemisinin yield) trial group, and at UP it was Dr Van der Kooy’s first variety (f1=green). The 

variety that best performed in this category considering an average between both locations 

was again Dr Van der Kooy’s first variety.  

 

The plants that produced the highest wet mass and thus the highest dry leaf mass at the 

ARC was Professor Meyer’s variety and at the UP was ARC’s first variety (r1=red).  The best 

average between the two locations was however Dr Van der Kooy’s second variety 

(f2=blue). 
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Chapter 5: General discussion and conclusion 

 

In conclusion it would seem as if there are a number of factors which can influence the 

production of artemisinin.  Stresses like competition, soil nutrients and even water could lead 

to the production of greater yields. Varieties bred for high production can be used for follow-

up years of high production if conditions are kept appropriately constant, however the effects 

of location and the stresses paired with the large scale production might be sufficient to 

lower the yields.  

 

Much can be learnt from this study and conditions can be adapted in order to produce even 

higher concentrations of artemisinin in Artemisia annua which could lead to even greater 

gains on a larger scale.  

 

The correct manipulation of circumstances could lead to great increases in an array of yield 

possibilities. This study showed that plant spacing can be used to manipulate the length or 

mass and the production of side branches in A. annua. However, if the increase in the yield 

of artemisinin is the goal, these factors’ roles could be reversed. Careful notification must be 

made of the stresses received by the plants as this study showed that a new stress on the 

plant increased its artemisinin yield, this has to be followed up in consecutive seasons as 

this trial was only to screen for the effects of more natural South African conditions on A. 

annua. 

 

This study also showed that there are many avenues for the production of an artemisinin 

GMO to be explored. Even with the limited success of the tissue culturing of the GMO A. afra 

it showed promise for further attempts at this process. An alteration in the protocol to make 

use of the leaf material of a host plant for calli production is advised, even if shooting might 

not occur the calli could produce artemisinin in that case.  

 

The idea of endophytes producing artemisinin might not be too far from accurate as it has 

already been shown that the addition of endophytic elicitors increased the production of 

artemisinin in the host A. annua plants. The application of endophytes could even be applied 

in tissue culture scenarios as another avenue to be explored.  
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5.1. TISSUE CULTURING OF GMO ARTEMISIA AFRA 

 

Artemisinin can be produced in tissue cultures of A. annua as proven by Wang et al. (2001) 

but the mother material should be from leaves as our study found and this agrees with Nair 

et al.’s (1986) finding. This could be because trichomes are found lacking on roots and they 

do not naturally produce artemisinin. The leaf trichomes and material originating from leaf 

cuttings contain trichomes and more readily produce artemisinin. It was also shown by Liu et 

al. (2010) that the host plant A. afra does not produce artemisinin. Thus if gene transfer was 

successful and the callus originated from leaf not root material, leaves would still have to be 

produced for the expression of artemisinin to be realised.  

 

 

5.2. PRODUCTION OF ARTEMISININ BY ENDOPHYTES 

 

Many endophytes have been identified in Artemisia species as mentioned by Wang et al. 

(2001), but none have been identified in A. annua that might be responsible for the 

production of artemisinin as our study also showed. However the influence of endophytes 

cannot be underestimated as shown by Kampoor et al. (2007). Their studies show that the 

addition of certain mycorrhiza and their interactions with the host plants could increase the 

density of trichomes and overall artemisinin production. This information is of great 

importance in the studies to increase the yields of artemisinin without detrimental effects on 

the general production of the plant. 

 

5.3. INFLUENCE OF LOCATION ON HIGH YIELDING VARIETIES  

OF ARTEMISININ 

 

Stress factors have an enormous role to play in the synthesis of secondary compounds in 

most plants as many studies have showed. Most studies focused on the general production 

of plants i.e. height, amount of foliage, etc. Limiting stress factors are the main goals of most 

of these studies. They attempt to increase traits like height, biomass, yield, etc., usually 

linked to primary metabolism and production of the plants, by stimulating them with 
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additional positive factors like fertilization and nutrient supplementation. In A. annua the 

production of these traits can be increased by a manipulation of the environment (i.e. plant 

density) or addition of a nutrient source (N-fertilizer). These points were confirmed by 

Damtew et al. (2011) and Singh (2000), but they also showed that there are threshold values 

related to these factors and that production will decrease once these thresholds have been 

passed.  

 

Stress factors are believed to be responsible for the increase in production of secondary 

metabolites (Fluck, 1955; Gershenzon, 1984; Selmar and Kleinwachter, 2013). Artemisinin is 

a secondary metabolite thus it is expected that stress factors will increase its production. 

From our study and confirmed by Omer et al. (2012), there seems to be a negative 

relationship between primary and secondary metabolism. With the increase of stress factors 

the primary production declines and secondary production increases. But these effects are 

nullified on the ‘economic production scale’ because a stressed plant might produce more 

secondary metabolites but at the cost of plant mass (a primary production point). 

 

From this study and suggestions by Omer et al. (2012) and Kampoor et al. (2007) it is 

suggested that focus for the increased production of artemisinin should rather take into 

consideration the effect on primary plant production. Methods should be investigated that 

can increase the yield of artemisinin without limiting primary production. Omer et al. (2012) 

showed that micro-elements like Zn and Mn might play a role without limiting production and 

Kampoor et al. (2007) found that yields increased by introduction of mycorrhiza. 

 

The locations will have an influence on general production and the synthesis of artemisinin, 

as our study showed each location has its own set of stress factors to be accounted for and 

taken into consideration. 
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Appendix A: Comprehensive Statistics: 

 
 file Artemisia annua 2012.gen  
 =================== Artemisia annua data   
 
Message: You have input sufficient data, READ terminated. 
 
  Identifier  Minimum  Mean  Maximum  Values  Missing  
 Plantht1  3.470  28.62  55.53  50  0  
 Plantht2  15.33  74.71  105.2  50  0  
 Flowering  0.0000  0.5000  3.000  50  0     Skew 
 Freshmass  0.7500  13.79  22.90  50  0  
 Drylfmass  0.09000  0.9276  1.890  50  0  
 Artemisinin  0.2300  0.3664  0.6100  50  0  
 
  Identifier  Values  Missing  Levels 
 LOC  50  0  2 
 ROW  50  0  5 
 COL  50  0  5 
 LINE  50  0  5 
 REP  50  0  5 
 
  
 ========================= All five lines ==================== 
 

Analysis of variance 
 
Variate: Plantht1 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  2120.31  2120.31  35.13 <.001 
Residual 8  482.90  60.36  2.48  
 
Loc.REP.*Units* stratum 
LINE 4  4407.31  1101.83  45.33 <.001 
LOC.LINE 4  2414.12  603.53  24.83 <.001 
Residual 32  777.82  24.31   
 
Total 49  10202.46    
 
 

Tables of means 
 
Variate: Plantht1 
 
Grand mean  28.62  
 
 LOC  Roodeplaat  LC 
   22.11  35.13 
 
 LINE  1  2  3  4  5 
   35.59  36.66  33.65  25.71  11.48 
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   28.13  23.22  25.09  15.81  18.27 
 LC   43.04  50.11  42.21  35.60  4.69 
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Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
rep.  25  10  5  
e.s.e.  1.554  1.559  2.511  
d.f.  8  32  33.07  
Except when comparing means with the same level(s) of 
LOC    2.205  
d.f.    32  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  25  10  5  
l.s.d.  5.067  4.491  7.223  
d.f.  8  32  33.07  
Except when comparing means with the same level(s) of 
LOC    6.351  
d.f.    32  
 
 
 

Stratum standard errors and coefficients of variation 
 
Variate: Plantht1 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  3.475  12.1 
Loc.REP.*Units*  32  4.930  17.2 
 
 

Fisher's protected least significant difference test 
 
 

LINE 
 
 
  Mean  
 2  36.66  a 
 1  35.59  a 
 3  33.65  a 
 4  25.71  b 
 5  11.48  c 
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Fisher's protected least significant difference test 
 
 

LOC.LINE 
 
 
  Mean  
 LC 2  50.11  a 
 LC 1  43.04  b 
 LC 3  42.21  b 
 LC 4  35.60  c 
 Roodeplaat 1  28.13  d 
 Roodeplaat 3  25.09  d 
 Roodeplaat 2  23.22  de 
 Roodeplaat 5  18.27  ef 
 Roodeplaat 4  15.81  f 
 LC 5  4.69  g 
 
 
  
 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 28.13 80.14 43.04 28.61 
 2 23.22 65.13 50.11 18.01 
 3 25.09 59.75 42.21 17.07 
 4 15.81 19.31 35.60 17.95 
 5 18.27 8.54 4.69 0.68 
 Margin 22.11 59.81 35.13 276.95 
 
 
 LOC Margin  
  Mean Variance 
 LINE  
 1 35.59 110.07 
 2 36.66 237.77 
 3 33.65 115.48 
 4 25.71 125.31 
 5 11.48 55.28 
 Margin 28.62 208.21 
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 LOC  REP  COL  LINE  Plantht1  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  22.86  23.63  -0.769 
 Roodeplaat  1  2  4  18.40  14.35  4.051 
 Roodeplaat  1  3  2  16.23  21.75  -5.523 
 Roodeplaat  1  4  1  29.38  26.67  2.713 
 Roodeplaat  1  5  5  16.33  16.80  -0.473 
 Roodeplaat  2  1  1  22.23  25.23  -2.997 
 Roodeplaat  2  2  2  18.50  20.31  -1.813 
 Roodeplaat  2  3  5  17.67  15.36  2.307 
 Roodeplaat  2  4  4  18.87  12.91  5.961 
 Roodeplaat  2  5  3  18.73  22.19  -3.459 
 Roodeplaat  3  1  5  19.07  13.62  5.449 
 Roodeplaat  3  2  1  16.15  23.48  -7.335 
 Roodeplaat  3  3  4  16.00  11.17  4.833 
 Roodeplaat  3  4  3  18.21  20.45  -2.237 
 Roodeplaat  3  5  2  17.86  18.57  -0.711 
 Roodeplaat  4  1  4  8.20  17.15  -8.951 
 Roodeplaat  4  2  5  15.40  19.60  -4.205 
 Roodeplaat  4  3  3  29.21  26.43  2.779 
 Roodeplaat  4  4  2  29.00  24.55  4.445 
 Roodeplaat  4  5  1  35.40  29.47  5.931 
 Roodeplaat  5  1  2  34.50  30.90  3.601 
 Roodeplaat  5  2  3  36.46  32.77  3.685 
 Roodeplaat  5  3  1  37.50  35.81  1.687 
 Roodeplaat  5  4  5  22.87  25.95  -3.079 
 Roodeplaat  5  5  4  17.60  23.49  -5.895 
 LC  1  1  2  55.53  50.96  4.571 
 LC  1  2  4  42.40  36.45  5.947 
 LC  1  3  5  4.73  5.55  -0.817 
 LC  1  4  3  39.33  43.06  -3.729 
 LC  1  5  1  37.92  43.89  -5.973 
 LC  2  1  3  40.07  40.79  -0.717 
 LC  2  2  5  4.40  3.27  1.125 
 LC  2  3  1  44.21  41.62  2.589 
 LC  2  4  4  31.67  34.18  -2.511 
 LC  2  5  2  48.20  48.69  -0.487 
 LC  3  1  4  36.86  36.47  0.385 
 LC  3  2  1  49.00  43.91  5.085 
 LC  3  3  2  50.46  50.98  -0.521 
 LC  3  4  5  5.27  5.57  -0.299 
 LC  3  5  3  38.43  43.08  -4.651 
 LC  4  1  5  3.47  4.36  -0.895 
 LC  4  2  2  52.13  49.78  2.353 
 LC  4  3  3  47.73  41.88  5.853 
 LC  4  4  1  37.07  42.71  -5.641 
 LC  4  5  4  33.60  35.27  -1.671 
 LC  5  1  1  47.00  43.06  3.939 
 LC  5  2  3  45.47  42.23  3.243 
 LC  5  3  4  33.47  35.62  -2.151 
 LC  5  4  2  44.21  50.13  -5.917 
 LC  5  5  5  5.60  4.71  0.885 
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Analysis of variance 
 
Variate: Plantht2 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  8.95  8.95  0.11  0.749 
Residual 8  652.52  81.56  0.94  
 
Loc.REP.*Units* stratum 
LINE 4  5089.05  1272.26  14.71 <.001 
LOC.LINE 4  16766.74  4191.69  48.47 <.001 
Residual 32  2767.54  86.49   
 
Total 49  25284.80    
 
 

Tables of means 
 
Variate: Plantht2 
 
Grand mean  74.7  
 
 LOC  Roodeplaat  LC 
   75.1  74.3 
 
 LINE  1  2  3  4  5 
   84.8  78.3  75.6  79.4  55.4 
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   79.7  65.7  69.8  68.6  92.0 
 LC   89.9  90.9  81.5  90.3  18.8 
 
 

Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
rep.  25  10  5  
e.s.e.  1.81  2.94  4.14  
d.f.  8  32  39.98  
Except when comparing means with the same level(s) of 
LOC    4.16  
d.f.    32  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  25  10  5  
l.s.d.  5.89  8.47  11.82  
d.f.  8  32  39.98  
Except when comparing means with the same level(s) of 
LOC    11.98  
d.f.    32  
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Stratum standard errors and coefficients of variation 
 
Variate: Plantht2 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  4.04  5.4 
Loc.REP.*Units*  32  9.30  12.4 
 
 

Fisher's protected least significant difference test 
 
 

LINE 
 
 
  Mean  
 1  84.78  a 
 4  79.42  ab 
 2  78.27  ab 
 3  75.64  b 
 5  55.43  c 
 
 

Fisher's protected least significant difference test 
 
 

LOC.LINE 
 
 
  Mean  
 Roodeplaat 5  92.03  a 
 LC 2  90.88  ab 
 LC 4  90.28  ab 
 LC 1  89.91  ab 
 LC 3  81.53  abc 
 Roodeplaat 1  79.65  bcd 
 Roodeplaat 3  69.76  cde 
 Roodeplaat 4  68.56  de 
 Roodeplaat 2  65.65  e 
 LC 5  18.83  f 
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 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 79.65 154.5 89.91 64.0 
 2 65.65 64.7 90.88 123.1 
 3 69.76 44.7 81.53 158.1 
 4 68.56 115.3 90.28 75.0 
 5 92.03 38.7 18.83 17.0 
 Margin 75.13 167.1 74.29 886.0 
 
 
 LOC Margin  
  Mean Variance 
 LINE  
 1 84.78 126.3 
 2 78.27 260.2 
 3 75.64 128.6 
 4 79.42 215.6 
 5 55.43 1513.2 
 Margin 74.71 516.0 
 
 
 
 LOC  REP  COL  LINE  Plantht2  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  70.53  72.08  -1.548 
 Roodeplaat  1  2  4  62.57  70.88  -8.314 
 Roodeplaat  1  3  2  74.75  67.97  6.778 
 Roodeplaat  1  4  1  84.08  81.97  2.106 
 Roodeplaat  1  5  5  95.33  94.35  0.980 
 Roodeplaat  2  1  1  68.60  79.73  -11.128 
 Roodeplaat  2  2  2  61.69  65.73  -4.036 
 Roodeplaat  2  3  5  94.21  92.10  2.106 
 Roodeplaat  2  4  4  84.13  68.64  15.492 
 Roodeplaat  2  5  3  67.40  69.83  -2.432 
 Roodeplaat  3  1  5  87.07  85.81  1.260 
 Roodeplaat  3  2  1  64.85  73.43  -8.584 
 Roodeplaat  3  3  4  64.58  62.34  2.236 
 Roodeplaat  3  4  3  61.73  63.54  -1.808 
 Roodeplaat  3  5  2  66.33  59.43  6.898 
 Roodeplaat  4  1  4  57.07  67.06  -9.992 
 Roodeplaat  4  2  5  84.21  90.53  -6.318 
 Roodeplaat  4  3  3  69.00  68.26  0.744 
 Roodeplaat  4  4  2  71.20  64.15  7.050 
 Roodeplaat  4  5  1  86.67  78.15  8.518 
 Roodeplaat  5  1  2  54.29  70.98  -16.688 
 Roodeplaat  5  2  3  80.13  75.08  5.046 
 Roodeplaat  5  3  1  94.07  84.98  9.090 
 Roodeplaat  5  4  5  99.33  97.36  1.974 
 Roodeplaat  5  5  4  74.47  73.89  0.580 
 LC  1  1  2  105.20  93.29  11.913 
 LC  1  2  4  102.93  92.69  10.239 
 LC  1  3  5  15.33  21.24  -5.907 
 LC  1  4  3  73.93  83.94  -10.009 
 LC  1  5  1  86.08  92.32  -6.237 
 LC  2  1  3  82.00  76.63  5.365 
 LC  2  2  5  15.67  13.93  1.737 
 LC  2  3  1  84.14  85.01  -0.873 
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 LC  2  4  4  80.07  85.39  -5.317 
 LC  2  5  2  85.07  85.98  -0.913 
 LC  3  1  4  90.14  87.11  3.027 
 LC  3  2  1  100.13  86.74  13.391 
 LC  3  3  2  83.92  87.71  -3.789 
 LC  3  4  5  16.60  15.66  0.941 
 LC  3  5  3  64.79  78.36  -13.571 
 LC  4  1  5  22.47  21.69  0.779 
 LC  4  2  2  100.20  93.74  6.459 
 LC  4  3  3  95.60  84.39  11.207 
 LC  4  4  1  82.40  92.77  -10.371 
 LC  4  5  4  85.07  93.14  -8.075 
 LC  5  1  1  96.79  92.70  4.089 
 LC  5  2  3  91.33  84.32  7.007 
 LC  5  3  4  93.20  93.07  0.125 
 LC  5  4  2  80.00  93.67  -13.671 
 LC  5  5  5  24.07  21.62  2.449 
 

Analysis of variance 
 
Variate: Freshmass 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  185.44  185.44  14.90  0.005 
Residual 8  99.55  12.44  1.04  
 
Loc.REP.*Units* stratum 
LINE 4  93.15  23.29  1.95  0.126 
LOC.LINE 4  679.60  169.90  14.22 <.001 
Residual 32  382.41  11.95   
 
Total 49  1440.16    
 
 

Tables of means 
 
Variate: Freshmass 
 
Grand mean  13.79  
 
 LOC  Roodeplaat  LC 
   15.72  11.87 
 
 LINE  1  2  3  4  5 
   14.90  14.33  13.90  14.70  11.15 
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   15.48  14.13  13.84  14.72  20.43 
 LC   14.31  14.53  13.96  14.67  1.87 
 
 

Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
rep.  25  10  5  
e.s.e.  0.706  1.093  1.552  
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d.f.  8  32  39.99  
Except when comparing means with the same level(s) of 
LOC    1.546  
d.f.    32  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  25  10  5  
l.s.d.  2.301  3.149  4.437  
d.f.  8  32  39.99  
Except when comparing means with the same level(s) of 
LOC    4.453  
d.f.    32  
 
 
 

Stratum standard errors and coefficients of variation 
 
Variate: Freshmass 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  1.578  11.4 
Loc.REP.*Units*  32  3.457  25.1 
 
 

Fisher's protected least significant difference test 
 
 

LINE 
 
Warning 2, code UF 2, statement 159 in procedure AMCOMPARISON 
 
Fisher's protected LSD is not calculated as variance ratio for LINE is not significant.  
 
 

Fisher's protected least significant difference test 
 
 

LOC.LINE 
 
 
  Mean  
 Roodeplaat 5  20.43  a 
 Roodeplaat 1  15.48  b 
 Roodeplaat 4  14.72  b 
 LC 4  14.67  b 
 LC 2  14.53  b 
 LC 1  14.31  b 
 Roodeplaat 2  14.13  b 
 LC 3  13.96  b 
 Roodeplaat 3  13.84  b 
 LC 5  1.87  c 
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 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 15.48 5.95 14.31 16.58 
 2 14.13 25.03 14.53 7.56 
 3 13.84 4.55 13.96 36.78 
 4 14.72 4.06 14.67 14.84 
 5 20.43 4.38 1.87 0.77 
 Margin 15.72 13.43 11.87 38.85 
 
 
 LOC Margin  
  Mean Variance 
 LINE  
 1 14.90 10.39 
 2 14.33 14.53 
 3 13.90 18.37 
 4 14.70 8.40 
 5 11.15 97.98 
 Margin 13.79 29.39 
 
 
 
 LOC  REP  COL  LINE  Freshmass  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  11.80  14.64  -2.840 
 Roodeplaat  1  2  4  13.90  15.52  -1.620 
 Roodeplaat  1  3  2  17.50  14.93  2.570 
 Roodeplaat  1  4  1  16.50  16.28  0.220 
 Roodeplaat  1  5  5  22.90  21.23  1.670 
 Roodeplaat  2  1  1  13.40  16.91  -3.510 
 Roodeplaat  2  2  2  15.60  15.56  0.040 
 Roodeplaat  2  3  5  22.30  21.86  0.440 
 Roodeplaat  2  4  4  17.30  16.15  1.150 
 Roodeplaat  2  5  3  17.15  15.27  1.880 
 Roodeplaat  3  1  5  17.95  19.73  -1.780 
 Roodeplaat  3  2  1  12.75  14.78  -2.030 
 Roodeplaat  3  3  4  16.00  14.02  1.980 
 Roodeplaat  3  4  3  14.30  13.14  1.160 
 Roodeplaat  3  5  2  14.10  13.43  0.670 
 Roodeplaat  4  1  4  12.05  15.42  -3.370 
 Roodeplaat  4  2  5  19.65  21.13  -1.480 
 Roodeplaat  4  3  3  13.80  14.54  -0.740 
 Roodeplaat  4  4  2  17.85  14.83  3.020 
 Roodeplaat  4  5  1  18.75  16.18  2.570 
 Roodeplaat  5  1  2  5.60  11.90  -6.300 
 Roodeplaat  5  2  3  12.15  11.61  0.540 
 Roodeplaat  5  3  1  16.00  13.25  2.750 
 Roodeplaat  5  4  5  19.35  18.20  1.150 
 Roodeplaat  5  5  4  14.35  12.49  1.860 
 LC  1  1  2  16.95  13.35  3.598 
 LC  1  2  4  16.00  13.49  2.508 
 LC  1  3  5  0.75  0.69  0.058 
 LC  1  4  3  10.00  12.78  -2.782 
 LC  1  5  1  9.75  13.13  -3.384 
 LC  2  1  3  15.75  13.03  2.718 
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 LC  2  2  5  2.40  0.94  1.458 
 LC  2  3  1  13.45  13.38  0.066 
 LC  2  4  4  11.15  13.74  -2.592 
 LC  2  5  2  11.95  13.60  -1.652 
 LC  3  1  4  18.65  13.90  4.748 
 LC  3  2  1  16.75  13.54  3.206 
 LC  3  3  2  13.20  13.76  -0.562 
 LC  3  4  5  1.10  1.10  -0.002 
 LC  3  5  3  5.80  13.19  -7.392 
 LC  4  1  5  2.40  1.84  0.558 
 LC  4  2  2  18.00  14.50  3.498 
 LC  4  3  3  17.09  13.93  3.158 
 LC  4  4  1  11.66  14.28  -2.624 
 LC  4  5  4  10.05  14.64  -4.592 
 LC  5  1  1  19.95  17.22  2.734 
 LC  5  2  3  21.16  16.86  4.296 
 LC  5  3  4  17.50  17.57  -0.074 
 LC  5  4  2  12.55  17.43  -4.884 
 LC  5  5  5  2.70  4.77  -2.074 
 

Analysis of variance 
 
Variate: Drylfmass 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  2.08897  2.08897  69.67 <.001 
Residual 8  0.23986  0.02998  0.47  
 
Loc.REP.*Units* stratum 
LINE 4  0.35923  0.08981  1.40  0.257 
LOC.LINE 4  2.69643  0.67411  10.50 <.001 
Residual 32  2.05402  0.06419   
 
Total 49  7.43851    
 
 

Tables of means 
 
Variate: Drylfmass 
 
Grand mean  0.928  
 
 LOC  Roodeplaat  LC 
   1.132  0.723 
 
 LINE  1  2  3  4  5 
   0.971  0.899  1.017  0.975  0.776 
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   1.034  0.960  1.228  1.010  1.428 
 LC   0.908  0.838  0.806  0.940  0.124 
 
 

Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
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rep.  25  10  5  
e.s.e.  0.0346  0.0801  0.1071  
d.f.  8  32  37.85  
Except when comparing means with the same level(s) of 
LOC    0.1133  
d.f.    32  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  25  10  5  
l.s.d.  0.1129  0.2308  0.3066  
d.f.  8  32  37.85  
Except when comparing means with the same level(s) of 
LOC    0.3264  
d.f.    32  
 
 
 

Stratum standard errors and coefficients of variation 
 
Variate: Drylfmass 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  0.0774  8.3 
Loc.REP.*Units*  32  0.2534  27.3 
 
 

Fisher's protected least significant difference test 
 
 

LINE 
 
Warning 3, code UF 2, statement 159 in procedure AMCOMPARISON 
 
Fisher's protected LSD is not calculated as variance ratio for LINE is not significant.  
 
 

Fisher's protected least significant difference test 
 
 

LOC.LINE 
 
 
  Mean  
 Roodeplaat 5  1.4280  a 
 Roodeplaat 3  1.2280  ab 
 Roodeplaat 1  1.0340  bc 
 Roodeplaat 4  1.0100  bc 
 Roodeplaat 2  0.9600  bc 
 LC 4  0.9400  bc 
 LC 1  0.9080  c 
 LC 2  0.8380  c 
 LC 3  0.8060  c 
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 LC 5  0.1240  d 
 
 
  
 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 1.0340 0.08618 0.9080 0.01817 
 2 0.9600 0.08290 0.8380 0.08877 
 3 1.2280 0.14582 0.8060 0.06053 
 4 1.0100 0.01055 0.9400 0.06835 
 5 1.4280 0.01142 0.1240 0.00078 
 Margin 1.1320 0.08758 0.7232 0.13531 
 
 
 LOC Margin  
  Mean Variance 
 LINE  
 1 0.9710 0.05079 
 2 0.8990 0.08043 
 3 1.0170 0.14118 
 4 0.9750 0.03643 
 5 0.7760 0.47776 
 Margin 0.9276 0.15181 
 
 
 
 LOC  REP  COL  LINE  Drylfmass  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  1.8900  1.3600  0.5300 
 Roodeplaat  1  2  4  0.9300  1.1420  -0.2120 
 Roodeplaat  1  3  2  1.0500  1.0920  -0.0420 
 Roodeplaat  1  4  1  0.8600  1.1660  -0.3060 
 Roodeplaat  1  5  5  1.5900  1.5600  0.0300 
 Roodeplaat  2  1  1  0.6600  0.9300  -0.2700 
 Roodeplaat  2  2  2  0.9200  0.8560  0.0640 
 Roodeplaat  2  3  5  1.2900  1.3240  -0.0340 
 Roodeplaat  2  4  4  1.1400  0.9060  0.2340 
 Roodeplaat  2  5  3  1.1300  1.1240  0.0060 
 Roodeplaat  3  1  5  1.4100  1.4260  -0.0160 
 Roodeplaat  3  2  1  1.0000  1.0320  -0.0320 
 Roodeplaat  3  3  4  1.0900  1.0080  0.0820 
 Roodeplaat  3  4  3  0.9000  1.2260  -0.3260 
 Roodeplaat  3  5  2  1.2500  0.9580  0.2920 
 Roodeplaat  4  1  4  0.9900  1.0760  -0.0860 
 Roodeplaat  4  2  5  1.4300  1.4940  -0.0640 
 Roodeplaat  4  3  3  1.1100  1.2940  -0.1840 
 Roodeplaat  4  4  2  1.0900  1.0260  0.0640 
 Roodeplaat  4  5  1  1.3700  1.1000  0.2700 
 Roodeplaat  5  1  2  0.4900  0.8680  -0.3780 
 Roodeplaat  5  2  3  1.1100  1.1360  -0.0260 
 Roodeplaat  5  3  1  1.2800  0.9420  0.3380 
 Roodeplaat  5  4  5  1.4200  1.3360  0.0840 
 Roodeplaat  5  5  4  0.9000  0.9180  -0.0180 
 LC  1  1  2  1.2100  0.8648  0.3452 
 LC  1  2  4  1.1500  0.9668  0.1832 
 LC  1  3  5  0.1000  0.1508  -0.0508 
 LC  1  4  3  0.5900  0.8328  -0.2428 
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 LC  1  5  1  0.7000  0.9348  -0.2348 
 LC  2  1  3  0.9800  0.7788  0.2012 
 LC  2  2  5  0.1500  0.0968  0.0532 
 LC  2  3  1  0.8900  0.8808  0.0092 
 LC  2  4  4  0.6800  0.9128  -0.2328 
 LC  2  5  2  0.7800  0.8108  -0.0308 
 LC  3  1  4  1.2800  0.8908  0.3892 
 LC  3  2  1  0.9600  0.8588  0.1012 
 LC  3  3  2  0.5500  0.7888  -0.2388 
 LC  3  4  5  0.0900  0.0748  0.0152 
 LC  3  5  3  0.4900  0.7568  -0.2668 
 LC  4  1  5  0.1300  0.1788  -0.0488 
 LC  4  2  2  1.0800  0.8928  0.1872 
 LC  4  3  3  1.0100  0.8608  0.1492 
 LC  4  4  1  0.9200  0.9628  -0.0428 
 LC  4  5  4  0.7500  0.9948  -0.2448 
 LC  5  1  1  1.0700  0.9028  0.1672 
 LC  5  2  3  0.9600  0.8008  0.1592 
 LC  5  3  4  0.8400  0.9348  -0.0948 
 LC  5  4  2  0.5700  0.8328  -0.2628 
 LC  5  5  5  0.1500  0.1188  0.0312 
 

 
 
Analysis of variance 
 
Variate: Artemisinin 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  0.139392  0.139392  110.63 <.001 
Residual 8  0.010080  0.001260  0.39  
 
Loc.REP.*Units* stratum 
LINE 4  0.145092  0.036273  11.33 <.001 
LOC.LINE 4  0.166948  0.041737  13.04 <.001 
Residual 32  0.102440  0.003201   
 
Total 49  0.563952    
 
 

Tables of means 
 
Variate: Artemisinin 
 
Grand mean  0.3664  
 
 LOC  Roodeplaat  LC 
   0.3136  0.4192 
 
 LINE  1  2  3  4  5 
   0.3610  0.4340  0.3350  0.4160  0.2860 
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   0.3780  0.3140  0.2500  0.3240  0.3020 
 LC   0.3440  0.5540  0.4200  0.5080  0.2700 
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Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
rep.  25  10  5  
e.s.e.  0.00710  0.01789  0.02372  
d.f.  8  32  37.17  
Except when comparing means with the same level(s) of 
LOC    0.02530  
d.f.    32  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  25  10  5  
l.s.d.  0.02315  0.05154  0.06796  
d.f.  8  32  37.17  
Except when comparing means with the same level(s) of 
LOC    0.07289  
d.f.    32  
 
 
 
 

Stratum standard errors and coefficients of variation 
 
Variate: Artemisinin 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  0.01587  4.3 
Loc.REP.*Units*  32  0.05658  15.4 
 
 

Fisher's protected least significant difference test 
 
 

LINE 
 
 
  Mean  
 2  0.4340  a 
 4  0.4160  a 
 1  0.3610  b 
 3  0.3350  bc 
 5  0.2860  c 
 
 

Fisher's protected least significant difference test 
 
 

LOC.LINE 
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  Mean  
 LC 2  0.5540  a 
 LC 4  0.5080  a 
 LC 3  0.4200  b 
 Roodeplaat 1  0.3780  bc 
 LC 1  0.3440  cd 
 Roodeplaat 4  0.3240  cde 
 Roodeplaat 2  0.3140  cdef 
 Roodeplaat 5  0.3020  def 
 LC 5  0.2700  ef 
 Roodeplaat 3  0.2500  f 
 
 
  
 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 0.3780 0.008220 0.3440 0.003530 
 2 0.3140 0.000880 0.5540 0.001330 
 3 0.2500 0.000550 0.4200 0.004950 
 4 0.3240 0.001130 0.5080 0.005620 
 5 0.3020 0.000670 0.2700 0.001250 
 Margin 0.3136 0.003666 0.4192 0.014024 
 
 
 LOC Margin  
  Mean Variance 
 LINE  
 1 0.3610 0.005543 
 2 0.4340 0.016982 
 3 0.3350 0.010472 
 4 0.4160 0.012404 
 5 0.2860 0.001138 
 Margin 0.3664 0.011509 
 
 
 
 LOC  REP  COL  LINE  Artemisinin  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  0.2500  0.2484  0.00160 
 Roodeplaat  1  2  4  0.3700  0.3224  0.04760 
 Roodeplaat  1  3  2  0.3200  0.3124  0.00760 
 Roodeplaat  1  4  1  0.2800  0.3764  -0.09640 
 Roodeplaat  1  5  5  0.3400  0.3004  0.03960 
 Roodeplaat  2  1  1  0.5200  0.3944  0.12560 
 Roodeplaat  2  2  2  0.2700  0.3304  -0.06040 
 Roodeplaat  2  3  5  0.3000  0.3184  -0.01840 
 Roodeplaat  2  4  4  0.3200  0.3404  -0.02040 
 Roodeplaat  2  5  3  0.2400  0.2664  -0.02640 
 Roodeplaat  3  1  5  0.2900  0.3064  -0.01640 
 Roodeplaat  3  2  1  0.4000  0.3824  0.01760 
 Roodeplaat  3  3  4  0.3100  0.3284  -0.01840 
 Roodeplaat  3  4  3  0.2900  0.2544  0.03560 
 Roodeplaat  3  5  2  0.3000  0.3184  -0.01840 
 Roodeplaat  4  1  4  0.2800  0.3144  -0.03440 
 Roodeplaat  4  2  5  0.3100  0.2924  0.01760 
 Roodeplaat  4  3  3  0.2300  0.2404  -0.01040 
 Roodeplaat  4  4  2  0.3400  0.3044  0.03560 
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 Roodeplaat  4  5  1  0.3600  0.3684  -0.00840 
 Roodeplaat  5  1  2  0.3400  0.3044  0.03560 
 Roodeplaat  5  2  3  0.2400  0.2404  -0.00040 
 Roodeplaat  5  3  1  0.3300  0.3684  -0.03840 
 Roodeplaat  5  4  5  0.2700  0.2924  -0.02240 
 Roodeplaat  5  5  4  0.3400  0.3144  0.02560 
 LC  1  1  2  0.5000  0.5748  -0.07480 
 LC  1  2  4  0.6100  0.5288  0.08120 
 LC  1  3  5  0.2300  0.2908  -0.06080 
 LC  1  4  3  0.4800  0.4408  0.03920 
 LC  1  5  1  0.3800  0.3648  0.01520 
 LC  2  1  3  0.3100  0.4108  -0.10080 
 LC  2  2  5  0.2400  0.2608  -0.02080 
 LC  2  3  1  0.3700  0.3348  0.03520 
 LC  2  4  4  0.5300  0.4988  0.03120 
 LC  2  5  2  0.6000  0.5448  0.05520 
 LC  3  1  4  0.4500  0.4808  -0.03080 
 LC  3  2  1  0.2400  0.3168  -0.07680 
 LC  3  3  2  0.5700  0.5268  0.04320 
 LC  3  4  5  0.3000  0.2428  0.05720 
 LC  3  5  3  0.4000  0.3928  0.00720 
 LC  4  1  5  0.2700  0.2868  -0.01680 
 LC  4  2  2  0.5500  0.5708  -0.02080 
 LC  4  3  3  0.4800  0.4368  0.04320 
 LC  4  4  1  0.3500  0.3608  -0.01080 
 LC  4  5  4  0.5300  0.5248  0.00520 
 LC  5  1  1  0.3800  0.3428  0.03720 
 LC  5  2  3  0.4300  0.4188  0.01120 
 LC  5  3  4  0.4200  0.5068  -0.08680 
 LC  5  4  2  0.5500  0.5528  -0.00280 
 LC  5  5  5  0.3100  0.2688  0.04120 
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 ========================= Without line 5 ==================== 
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Analysis of variance 
 
Variate: Plantht1 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  3870.47  3870.47  58.59 <.001 
Residual 8  528.51  66.06  2.28  
 
Loc.REP.*Units* stratum 
LINE 3  736.69  245.56  8.48 <.001 
LOC.LINE 3  203.33  67.78  2.34  0.099 
Residual 24  695.31  28.97   
 
Total 39  6034.31    
 
 

Tables of means 
 
Variate: Plantht1 
 
Grand mean  32.90  
 
 LOC  Roodeplaat  LC 
   23.06  42.74 
 
 LINE  1  2  3  4  5 
   35.59  36.66  33.65  25.71  
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   28.13  23.22  25.09  15.81  
 LC   43.04  50.11  42.21  35.60  
 
 

Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
e.s.e.  1.817  1.702  2.766  
d.f.  8  24  27.20  
Except when comparing means with the same level(s) of 
LOC    2.407  
d.f.    24  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
l.s.d.  5.927  4.968  8.022  
d.f.  8  24  27.20  
Except when comparing means with the same level(s) of 
LOC    7.026  
d.f.    24  
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Stratum standard errors and coefficients of variation 
 
Variate: Plantht1 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  4.064  12.4 
Loc.REP.*Units*  24  5.383  16.4 
 
 

Fisher's protected least significant difference test 
 
 

LINE 
 
 
  Mean  
 2  36.66  a 
 1  35.59  a 
 3  33.65  a 
 4  25.71  b 
 
 

Fisher's protected least significant difference test 
 
 

LOC.LINE 
 
Warning 4, code UF 2, statement 159 in procedure AMCOMPARISON 
 
Fisher's protected LSD is not calculated as variance ratio for LOC.LINE is not significant.  
 
 
  
 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 28.13 80.14 43.04 28.61 
 2 23.22 65.13 50.11 18.01 
 3 25.09 59.75 42.21 17.07 
 4 15.81 19.31 35.60 17.95 
 5 * * * * 
 Margin 23.06 68.91 42.74 44.98 
 
 
 LOC Margin  
  Mean Variance 
 LINE  
 1 35.59 110.07 
 2 36.66 237.77 
 3 33.65 115.48 
 4 25.71 125.31 
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 5 * * 
 Margin 32.90 154.73 
 
 
 
 LOC  REP  COL  LINE  Plantht1  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  22.86  23.75  -0.887 
 Roodeplaat  1  2  4  18.40  14.47  3.933 
 Roodeplaat  1  3  2  16.23  21.87  -5.641 
 Roodeplaat  1  4  1  29.38  26.79  2.595 
 Roodeplaat  2  1  1  22.23  24.65  -2.420 
 Roodeplaat  2  2  2  18.50  19.74  -1.236 
 Roodeplaat  2  4  4  18.87  12.33  6.538 
 Roodeplaat  2  5  3  18.73  21.61  -2.882 
 Roodeplaat  3  2  1  16.15  22.12  -5.973 
 Roodeplaat  3  3  4  16.00  9.80  6.196 
 Roodeplaat  3  4  3  18.21  19.08  -0.874 
 Roodeplaat  3  5  2  17.86  17.21  0.652 
 Roodeplaat  4  1  4  8.20  18.20  -10.002 
 Roodeplaat  4  3  3  29.21  27.48  1.728 
 Roodeplaat  4  4  2  29.00  25.61  3.394 
 Roodeplaat  4  5  1  35.40  30.52  4.880 
 Roodeplaat  5  1  2  34.50  31.67  2.832 
 Roodeplaat  5  2  3  36.46  33.54  2.916 
 Roodeplaat  5  3  1  37.50  36.58  0.917 
 Roodeplaat  5  5  4  17.60  24.26  -6.664 
 LC  1  1  2  55.53  51.16  4.367 
 LC  1  2  4  42.40  36.66  5.743 
 LC  1  4  3  39.33  43.26  -3.933 
 LC  1  5  1  37.92  44.10  -6.177 
 LC  2  1  3  40.07  40.51  -0.435 
 LC  2  3  1  44.21  41.34  2.870 
 LC  2  4  4  31.67  33.90  -2.229 
 LC  2  5  2  48.20  48.41  -0.206 
 LC  3  1  4  36.86  36.55  0.310 
 LC  3  2  1  49.00  43.99  5.010 
 LC  3  3  2  50.46  51.06  -0.596 
 LC  3  5  3  38.43  43.16  -4.725 
 LC  4  2  2  52.13  50.00  2.130 
 LC  4  3  3  47.73  42.10  5.629 
 LC  4  4  1  37.07  42.93  -5.865 
 LC  4  5  4  33.60  35.49  -1.894 
 LC  5  1  1  47.00  42.84  4.160 
 LC  5  2  3  45.47  42.01  3.465 
 LC  5  3  4  33.47  35.40  -1.930 
 LC  5  4  2  44.21  49.91  -5.696 
 

 
Analysis of variance 
 
Variate: Plantht2 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  2973.0  2973.0  43.23 <.001 
Residual 8  550.2  68.8  0.62  
 
Loc.REP.*Units* stratum 
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LINE 3  442.9  147.6  1.34  0.285 
LOC.LINE 3  406.3  135.4  1.23  0.321 
Residual 24  2647.3  110.3   
 
Total 39  7019.7    
 
 

Tables of means 
 
Variate: Plantht2 
 
Grand mean  79.5  
 
 LOC  Roodeplaat  LC 
   70.9  88.1 
 
 LINE  1  2  3  4  5 
   84.8  78.3  75.6  79.4  
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   79.7  65.7  69.8  68.6  
 LC   89.9  90.9  81.5  90.3  
 
 

Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
e.s.e.  1.85  3.32  4.47  
d.f.  8  24  31.00  
Except when comparing means with the same level(s) of 
LOC    4.70  
d.f.    24  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
l.s.d.  6.05  9.69  12.89  
d.f.  8  24  31.00  
Except when comparing means with the same level(s) of 
LOC    13.71  
d.f.    24  
 
 
 

Stratum standard errors and coefficients of variation 
 
Variate: Plantht2 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  4.15  5.2 
Loc.REP.*Units*  24  10.50  13.2 
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Fisher's protected least significant difference test 
 
 

LINE 
 
Warning 5, code UF 2, statement 159 in procedure AMCOMPARISON 
 
Fisher's protected LSD is not calculated as variance ratio for LINE is not significant.  
 
 

Fisher's protected least significant difference test 
 
 

LOC.LINE 
 
Warning 6, code UF 2, statement 159 in procedure AMCOMPARISON 
 
Fisher's protected LSD is not calculated as variance ratio for LOC.LINE is not significant.  
 
 
  
 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 79.65 154.5 89.91 64.0 
 2 65.65 64.7 90.88 123.1 
 3 69.76 44.7 81.53 158.1 
 4 68.56 115.3 90.28 75.0 
 5 * * * * 
 Margin 70.91 109.0 88.15 104.0 
 
 
 LOC Margin  
  Mean Variance 
 LINE  
 1 84.78 126.3 
 2 78.27 260.2 
 3 75.64 128.6 
 4 79.42 215.6 
 5 * * 
 Margin 79.53 180.0 
 
 
 
 LOC  REP  COL  LINE  Plantht2  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  70.53  71.83  -1.304 
 Roodeplaat  1  2  4  62.57  70.64  -8.069 
 Roodeplaat  1  3  2  74.75  67.73  7.022 
 Roodeplaat  1  4  1  84.08  81.73  2.351 
 Roodeplaat  2  1  1  68.60  79.20  -10.602 
 Roodeplaat  2  2  2  61.69  65.20  -3.510 
 Roodeplaat  2  4  4  84.13  68.11  16.018 
 Roodeplaat  2  5  3  67.40  69.31  -1.906 
 Roodeplaat  3  2  1  64.85  73.12  -8.270 
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 Roodeplaat  3  3  4  64.58  62.03  2.551 
 Roodeplaat  3  4  3  61.73  63.22  -1.494 
 Roodeplaat  3  5  2  66.33  59.12  7.212 
 Roodeplaat  4  1  4  57.07  68.64  -11.572 
 Roodeplaat  4  3  3  69.00  69.84  -0.836 
 Roodeplaat  4  4  2  71.20  65.73  5.470 
 Roodeplaat  4  5  1  86.67  79.73  6.938 
 Roodeplaat  5  1  2  54.29  70.48  -16.195 
 Roodeplaat  5  2  3  80.13  74.59  5.539 
 Roodeplaat  5  3  1  94.07  84.49  9.583 
 Roodeplaat  5  5  4  74.47  73.40  1.073 
 LC  1  1  2  105.20  94.76  10.436 
 LC  1  2  4  102.93  94.17  8.763 
 LC  1  4  3  73.93  85.42  -11.485 
 LC  1  5  1  86.08  93.79  -7.714 
 LC  2  1  3  82.00  76.20  5.800 
 LC  2  3  1  84.14  84.58  -0.438 
 LC  2  4  4  80.07  84.95  -4.883 
 LC  2  5  2  85.07  85.55  -0.479 
 LC  3  1  4  90.14  86.88  3.263 
 LC  3  2  1  100.13  86.50  13.626 
 LC  3  3  2  83.92  87.47  -3.553 
 LC  3  5  3  64.79  78.13  -13.335 
 LC  4  2  2  100.20  93.55  6.654 
 LC  4  3  3  95.60  84.20  11.402 
 LC  4  4  1  82.40  92.58  -10.176 
 LC  4  5  4  85.07  92.95  -7.880 
 LC  5  1  1  96.79  92.09  4.702 
 LC  5  2  3  91.33  83.71  7.619 
 LC  5  3  4  93.20  92.46  0.738 
 LC  5  4  2  80.00  93.06  -13.059 
 
 

Analysis of variance 
 
Variate: Freshmass 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  0.30  0.30  0.02  0.880 
Residual 8  99.44  12.43  0.82  
 
Loc.REP.*Units* stratum 
LINE 3  5.76  1.92  0.13  0.943 
LOC.LINE 3  3.55  1.18  0.08  0.971 
Residual 24  361.91  15.08   
 
Total 39  470.95    
 
 

Tables of means 
 
Variate: Freshmass 
 
Grand mean  14.46  
 
 LOC  Roodeplaat  LC 
   14.54  14.37 
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 LINE  1  2  3  4  5 
   14.90  14.33  13.90  14.69  
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   15.48  14.13  13.84  14.72  
 LC   14.31  14.53  13.96  14.67  
 
 

Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
e.s.e.  0.788  1.228  1.698  
d.f.  8  24  31.80  
Except when comparing means with the same level(s) of 
LOC    1.737  
d.f.    24  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
l.s.d.  2.571  3.584  4.893  
d.f.  8  24  31.80  
Except when comparing means with the same level(s) of 
LOC    5.069  
d.f.    24  
 
 
 

Stratum standard errors and coefficients of variation 
 
Variate: Freshmass 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  1.763  12.2 
Loc.REP.*Units*  24  3.883  26.9 
 
 

Fisher's protected least significant difference test 
 
 

LINE 
 
Warning 7, code UF 2, statement 159 in procedure AMCOMPARISON 
 
Fisher's protected LSD is not calculated as variance ratio for LINE is not significant.  
 
 

Fisher's protected least significant difference test 
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LOC.LINE 
 
Warning 8, code UF 2, statement 159 in procedure AMCOMPARISON 
 
Fisher's protected LSD is not calculated as variance ratio for LOC.LINE is not significant.  
 
 
  
 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 15.48 5.95 14.31 16.58 
 2 14.13 25.03 14.53 7.56 
 3 13.84 4.55 13.96 36.78 
 4 14.72 4.06 14.67 14.84 
 5 * * * * 
 Margin 14.54 8.75 14.37 16.02 
 
 
 LOC Margin  
  Mean Variance 
 LINE  
 1 14.90 10.39 
 2 14.33 14.53 
 3 13.90 18.37 
 4 14.70 8.40 
 5 * * 
 Margin 14.46 12.08 
 
 
 
 LOC  REP  COL  LINE  Freshmass  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  11.80  14.22  -2.422 
 Roodeplaat  1  2  4  13.90  15.10  -1.203 
 Roodeplaat  1  3  2  17.50  14.51  2.987 
 Roodeplaat  1  4  1  16.50  15.86  0.637 
 Roodeplaat  2  1  1  13.40  16.80  -3.400 
 Roodeplaat  2  2  2  15.60  15.45  0.150 
 Roodeplaat  2  4  4  17.30  16.04  1.260 
 Roodeplaat  2  5  3  17.15  15.16  1.990 
 Roodeplaat  3  2  1  12.75  15.22  -2.475 
 Roodeplaat  3  3  4  16.00  14.46  1.535 
 Roodeplaat  3  4  3  14.30  13.59  0.715 
 Roodeplaat  3  5  2  14.10  13.88  0.225 
 Roodeplaat  4  1  4  12.05  15.79  -3.740 
 Roodeplaat  4  3  3  13.80  14.91  -1.110 
 Roodeplaat  4  4  2  17.85  15.20  2.650 
 Roodeplaat  4  5  1  18.75  16.55  2.200 
 Roodeplaat  5  1  2  5.60  11.61  -6.013 
 Roodeplaat  5  2  3  12.15  11.32  0.828 
 Roodeplaat  5  3  1  16.00  12.96  3.038 
 Roodeplaat  5  5  4  14.35  12.20  2.147 
 LC  1  1  2  16.95  13.34  3.613 
 LC  1  2  4  16.00  13.48  2.523 
 LC  1  4  3  10.00  12.77  -2.767 
 LC  1  5  1  9.75  13.12  -3.369 
 LC  2  1  3  15.75  12.67  3.083 
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 LC  2  3  1  13.45  13.02  0.431 
 LC  2  4  4  11.15  13.38  -2.227 
 LC  2  5  2  11.95  13.24  -1.287 
 LC  3  1  4  18.65  13.90  4.748 
 LC  3  2  1  16.75  13.54  3.206 
 LC  3  3  2  13.20  13.76  -0.562 
 LC  3  5  3  5.80  13.19  -7.392 
 LC  4  2  2  18.00  14.36  3.638 
 LC  4  3  3  17.09  13.79  3.298 
 LC  4  4  1  11.66  14.14  -2.484 
 LC  4  5  4  10.05  14.50  -4.452 
 LC  5  1  1  19.95  17.73  2.216 
 LC  5  2  3  21.16  17.38  3.778 
 LC  5  3  4  17.50  18.09  -0.592 
 LC  5  4  2  12.55  17.95  -5.402 
 

 
Analysis of variance 
 
Variate: Drylfmass 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  0.34225  0.34225  12.49  0.008 
Residual 8  0.21914  0.02739  0.32  
 
Loc.REP.*Units* stratum 
LINE 3  0.07195  0.02398  0.28  0.836 
LOC.LINE 3  0.19211  0.06404  0.76  0.528 
Residual 24  2.02594  0.08441   
 
Total 39  2.85139    
 
 

Tables of means 
 
Variate: Drylfmass 
 
Grand mean  0.966  
 
 LOC  Roodeplaat  LC 
   1.058  0.873 
 
 LINE  1  2  3  4  5 
   0.971  0.899  1.017  0.975  
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   1.034  0.960  1.228  1.010  
 LC   0.908  0.838  0.806  0.940  
 
 

Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
e.s.e.  0.0370  0.0919  0.1185  
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d.f.  8  24  28.47  
Except when comparing means with the same level(s) of 
LOC    0.1299  
d.f.    24  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
l.s.d.  0.1207  0.2682  0.3429  
d.f.  8  24  28.47  
Except when comparing means with the same level(s) of 
LOC    0.3793  
d.f.    24  
 
 
 

Stratum standard errors and coefficients of variation 
 
Variate: Drylfmass 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  0.0828  8.6 
Loc.REP.*Units*  24  0.2905  30.1 
 
 

Fisher's protected least significant difference test 
 
 

LINE 
 
Warning 9, code UF 2, statement 159 in procedure AMCOMPARISON 
 
Fisher's protected LSD is not calculated as variance ratio for LINE is not significant.  
 
 

Fisher's protected least significant difference test 
 
 

LOC.LINE 
 
Warning 10, code UF 2, statement 159 in procedure AMCOMPARISON 
 
Fisher's protected LSD is not calculated as variance ratio for LOC.LINE is not significant.  
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 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 1.0340 0.08618 0.9080 0.01817 
 2 0.9600 0.08290 0.8380 0.08877 
 3 1.2280 0.14582 0.8060 0.06053 
 4 1.0100 0.01055 0.9400 0.06835 
 5 * * * * 
 Margin 1.0580 0.07941 0.8730 0.05265 
 
 
 LOC Margin  
  Mean Variance 
 LINE  
 1 0.9710 0.05079 
 2 0.8990 0.08043 
 3 1.0170 0.14118 
 4 0.9750 0.03643 
 5 * * 
 Margin 0.9655 0.07311 
 
 
 
 LOC  REP  COL  LINE  Drylfmass  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  1.8900  1.3525  0.5375 
 Roodeplaat  1  2  4  0.9300  1.1345  -0.2045 
 Roodeplaat  1  3  2  1.0500  1.0845  -0.0345 
 Roodeplaat  1  4  1  0.8600  1.1585  -0.2985 
 Roodeplaat  2  1  1  0.6600  0.9385  -0.2785 
 Roodeplaat  2  2  2  0.9200  0.8645  0.0555 
 Roodeplaat  2  4  4  1.1400  0.9145  0.2255 
 Roodeplaat  2  5  3  1.1300  1.1325  -0.0025 
 Roodeplaat  3  2  1  1.0000  1.0360  -0.0360 
 Roodeplaat  3  3  4  1.0900  1.0120  0.0780 
 Roodeplaat  3  4  3  0.9000  1.2300  -0.3300 
 Roodeplaat  3  5  2  1.2500  0.9620  0.2880 
 Roodeplaat  4  1  4  0.9900  1.0920  -0.1020 
 Roodeplaat  4  3  3  1.1100  1.3100  -0.2000 
 Roodeplaat  4  4  2  1.0900  1.0420  0.0480 
 Roodeplaat  4  5  1  1.3700  1.1160  0.2540 
 Roodeplaat  5  1  2  0.4900  0.8470  -0.3570 
 Roodeplaat  5  2  3  1.1100  1.1150  -0.0050 
 Roodeplaat  5  3  1  1.2800  0.9210  0.3590 
 Roodeplaat  5  5  4  0.9000  0.8970  0.0030 
 LC  1  1  2  1.2100  0.8775  0.3325 
 LC  1  2  4  1.1500  0.9795  0.1705 
 LC  1  4  3  0.5900  0.8455  -0.2555 
 LC  1  5  1  0.7000  0.9475  -0.2475 
 LC  2  1  3  0.9800  0.7655  0.2145 
 LC  2  3  1  0.8900  0.8675  0.0225 
 LC  2  4  4  0.6800  0.8995  -0.2195 
 LC  2  5  2  0.7800  0.7975  -0.0175 
 LC  3  1  4  1.2800  0.8870  0.3930 
 LC  3  2  1  0.9600  0.8550  0.1050 
 LC  3  3  2  0.5500  0.7850  -0.2350 
 LC  3  5  3  0.4900  0.7530  -0.2630 
 LC  4  2  2  1.0800  0.9050  0.1750 
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 LC  4  3  3  1.0100  0.8730  0.1370 
 LC  4  4  1  0.9200  0.9750  -0.0550 
 LC  4  5  4  0.7500  1.0070  -0.2570 
 LC  5  1  1  1.0700  0.8950  0.1750 
 LC  5  2  3  0.9600  0.7930  0.1670 
 LC  5  3  4  0.8400  0.9270  -0.0870 
 LC  5  4  2  0.5700  0.8250  -0.2550 
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Analysis of variance 
 
Variate: Artemisinin 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
 
Loc.REP stratum 
LOC 1  0.196000  0.196000  87.79 <.001 
Residual 8  0.017860  0.002232  0.62  
 
Loc.REP.*Units* stratum 
LINE 3  0.064290  0.021430  5.91  0.004 
LOC.LINE 3  0.107780  0.035927  9.91 <.001 
Residual 24  0.086980  0.003624   
 
Total 39  0.472910    
 
 

Tables of means 
 
Variate: Artemisinin 
 
Grand mean  0.3865  
 
 LOC  Roodeplaat  LC 
   0.3165  0.4565 
 
 LINE  1  2  3  4  5 
   0.3610  0.4340  0.3350  0.4160  
 
 LOC LINE  1  2  3  4  5 
 Roodeplaat   0.3780  0.3140  0.2500  0.3240  
 LC   0.3440  0.5540  0.4200  0.5080  
 
 

Standard errors of means 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
e.s.e.  0.01057  0.01904  0.02560  
d.f.  8  24  30.95  
Except when comparing means with the same level(s) of 
LOC    0.02692  
d.f.    24  
 
 
 

Least significant differences of means (5% level) 
 
Table LOC LINE LOC  
   LINE  
rep.  20  10  5  
l.s.d.  0.03446  0.05557  0.07384  
d.f.  8  24  30.95  
Except when comparing means with the same level(s) of 
LOC    0.07858  
d.f.    24  
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Stratum standard errors and coefficients of variation 
 
Variate: Artemisinin 
 
Stratum d.f. s.e. cv% 
Loc.REP  8  0.02362  6.1 
Loc.REP.*Units*  24  0.06020  15.6 
 
 

Fisher's protected least significant difference test 
 
 

LINE 
 
 
  Mean  
 2  0.4340  a 
 4  0.4160  ab 
 1  0.3610  bc 
 3  0.3350  c 
 
 

Fisher's protected least significant difference test 
 
 

LOC.LINE 
 
 
  Mean  
 LC 2  0.5540  a 
 LC 4  0.5080  a 
 LC 3  0.4200  b 
 Roodeplaat 1  0.3780  bc 
 LC 1  0.3440  bc 
 Roodeplaat 4  0.3240  cd 
 Roodeplaat 2  0.3140  cd 
 Roodeplaat 3  0.2500  d 
 
 
  
 ======= Summary of data =======                    
 
 
 LOC Roodeplaat  LC  
  Mean Variance Mean Variance 
 LINE  
 1 0.3780 0.008220 0.3440 0.003530 
 2 0.3140 0.000880 0.5540 0.001330 
 3 0.2500 0.000550 0.4200 0.004950 
 4 0.3240 0.001130 0.5080 0.005620 
 5 * * * * 
 Margin 0.3165 0.004445 0.4565 0.010129 
 
 
 LOC Margin  
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  Mean Variance 
 LINE  
 1 0.3610 0.005543 
 2 0.4340 0.016982 
 3 0.3350 0.010472 
 4 0.4160 0.012404 
 5 * * 
 Margin 0.3865 0.012126 
 
 
 
 LOC  REP  COL  LINE  Artemisinin  FITTED  RESIDUAL 
 Roodeplaat  1  1  3  0.2500  0.2385  0.01150 
 Roodeplaat  1  2  4  0.3700  0.3125  0.05750 
 Roodeplaat  1  3  2  0.3200  0.3025  0.01750 
 Roodeplaat  1  4  1  0.2800  0.3665  -0.08650 
 Roodeplaat  2  1  1  0.5200  0.3990  0.12100 
 Roodeplaat  2  2  2  0.2700  0.3350  -0.06500 
 Roodeplaat  2  4  4  0.3200  0.3450  -0.02500 
 Roodeplaat  2  5  3  0.2400  0.2710  -0.03100 
 Roodeplaat  3  2  1  0.4000  0.3865  0.01350 
 Roodeplaat  3  3  4  0.3100  0.3325  -0.02250 
 Roodeplaat  3  4  3  0.2900  0.2585  0.03150 
 Roodeplaat  3  5  2  0.3000  0.3225  -0.02250 
 Roodeplaat  4  1  4  0.2800  0.3100  -0.03000 
 Roodeplaat  4  3  3  0.2300  0.2360  -0.00600 
 Roodeplaat  4  4  2  0.3400  0.3000  0.04000 
 Roodeplaat  4  5  1  0.3600  0.3640  -0.00400 
 Roodeplaat  5  1  2  0.3400  0.3100  0.03000 
 Roodeplaat  5  2  3  0.2400  0.2460  -0.00600 
 Roodeplaat  5  3  1  0.3300  0.3740  -0.04400 
 Roodeplaat  5  5  4  0.3400  0.3200  0.02000 
 LC  1  1  2  0.5000  0.5900  -0.09000 
 LC  1  2  4  0.6100  0.5440  0.06600 
 LC  1  4  3  0.4800  0.4560  0.02400 
 LC  1  5  1  0.3800  0.3800  0.00000 
 LC  2  1  3  0.3100  0.4160  -0.10600 
 LC  2  3  1  0.3700  0.3400  0.03000 
 LC  2  4  4  0.5300  0.5040  0.02600 
 LC  2  5  2  0.6000  0.5500  0.05000 
 LC  3  1  4  0.4500  0.4665  -0.01650 
 LC  3  2  1  0.2400  0.3025  -0.06250 
 LC  3  3  2  0.5700  0.5125  0.05750 
 LC  3  5  3  0.4000  0.3785  0.02150 
 LC  4  2  2  0.5500  0.5750  -0.02500 
 LC  4  3  3  0.4800  0.4410  0.03900 
 LC  4  4  1  0.3500  0.3650  -0.01500 
 LC  4  5  4  0.5300  0.5290  0.00100 
 LC  5  1  1  0.3800  0.3325  0.04750 
 LC  5  2  3  0.4300  0.4085  0.02150 
 LC  5  3  4  0.4200  0.4965  -0.07650 
 LC  5  4  2  0.5500  0.5425  0.00750 
 
 
End of Riana Kleynhans (Francois Kruger) - VOPI Project 060202. Current data space: 1 block, peak 
usage 74% at line 84. 
 
GenStat 64-bit Release 15.1 ( PC/Windows 7) 21 November 2012 07:57:23 
Copyright 2012, VSN International Ltd.   
Registered to: ARC 
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Appendix B: Weather table showing average temperatures and rainfall for UP 

 

Date Maximum 
Air 

Temperature 
(°C)

Maximum 
RH (%)

Minimum 
RH (%)

Average 
Wind 
Speed 
(m/s)

Total Solar 
Radiation 
(MJ/m2)

Daily 
ETo 

(mm)

Total 
Rainfall 
(mm)

Average 
VPD (kPa)

01‐Feb‐12 31.2408905 78.3486481 16.76435661 1.1752313 20.51113701 5.0065 0 1.6546119

02‐Feb‐12 32.13222504 78.6218414 19.03389549 1.0909852 17.73975372 4.6193 0 1.8329278

03‐Feb‐12 31.75829315 71.0730057 16.81930351 1.375295 18.66166687 5.1023 0 1.7876078

04‐Feb‐12 32.14443207 68.4982147 15.20758057 1.4286375 17.60778427 5.0896 0 1.9283013

05‐Feb‐12 25.57849121 88.0922394 40.6685257 1.3710736 5.545752525 2.2529 50.29985 0.7101634

06‐Feb‐12 28.26927948 79.8138428 37.23903275 1.0152535 3.485346556 1.171 0 1.2697022

07‐Feb‐12 28.91030121 84.3223953 28.86296082 0.6141272 0.969273806 0.4841 0 0.9779007

08‐Feb‐12 32.35657501 84.8169098 21.95972252 0.8478585 15.3936367 3.9778 0 1.3816053

09‐Feb‐12 27.21463013 82.7747726 40.62578964 0.9699462 7.896492958 2.5867 0 0.9745892

10‐Feb‐12 24.08428192 87.4313736 59.85352325 0.8014079 1.778124094 0.5555 8.099995 0.626444

11‐Feb‐12 27.64045715 91.1920624 35.26406479 1.1549463 10.85431767 3.1331 0.9 0.7357115

12‐Feb‐12 29.39717865 57.577877 10.72039795 1.556901 20.63027954 5.3675 0 1.9453034

13‐Feb‐12 31.36756897 77.844986 14.06136322 1.1079302 16.78574371 4.4517 0 1.5744317

14‐Feb‐12 31.50798798 84.14077 16.93835258 0.9462224 16.51263809 4.2252 0 1.3535802

15‐Feb‐12 31.3965683 64.4765396 20.55099106 0.8670331 3.928511381 1.4277 0 1.9593811

16‐Feb‐12 32.8709259 78.9896698 19.46124649 0.9860695 17.59841919 4.4963 0 1.5851548

17‐Feb‐12 32.53362274 76.9750214 19.65202713 1.3943805 13.88768578 4.4448 0.5 1.5928957

18‐Feb‐12 32.08490753 84.8657455 15.86844635 1.7915312 15.82945251 5.0682 4.399998 1.5897915

19‐Feb‐12 30.89137268 89.1010971 25.49757385 1.0175879 15.09124756 3.9139 10.1 1.0950431

20‐Feb‐12 29.61695099 74.3010254 29.60624695 1.278712 3.531024218 1.351 0 1.6176866

21‐Feb‐12 31.05010986 85.9631195 27.09403419 1.2746367 13.13092041 3.9016 3.499999 1.0259008

22‐Feb‐12 32.18411255 85.3678818 20.2991581 1.831062 17.86970329 5.2509 4.399999 1.4252948

23‐Feb‐12 33.66763306 82.6694641 7.600737095 1.5762087 19.36643219 5.5675 0 2.188591

24‐Feb‐12 29.38191223 83.0082932 27.53817558 1.4679303 12.43375683 3.8669 0 1.0756761

25‐Feb‐12 30.55712128 86.5919418 24.88554764 1.3772486 15.98576164 4.3322 2.7 1.1006895

26‐Feb‐12 31.06078339 83.8080521 17.40843582 1.4421206 16.70269394 4.6573 0 1.6723813

27‐Feb‐12 30.41213226 76.4881439 17.54427147 1.3523045 15.84720325 4.4547 0 1.6132317

28‐Feb‐12 30.29918671 83.7851563 9.38950634 0.9096825 19.12024117 4.3377 0 1.7616128

29‐Feb‐12 30.73722839 71.0852127 17.5351162 0.9806298 15.40449524 4.0146 0 1.7017846

01‐Mar‐12 29.70089722 78.2677536 18.28297997 1.5189923 13.57107067 4.2574 0 1.5440929

02‐Mar‐12 30.00614929 77.3672714 8.315023422 3.0810335 18.86157608 6.5791 0 1.8007264

03‐Mar‐12 30.65328217 83.5119629 3.467645645 2.3419354 19.61448288 6.1329 0 1.9966103

04‐Mar‐12 34.22776031 69.4231186 4.030833244 2.6452267 19.12040329 7.103 0 2.5717208

05‐Mar‐12 34.32239532 61.9231148 7.278697968 2.5066097 18.5411377 6.8216 0 2.3768973

06‐Mar‐12 28.24028015 78.9362488 27.30618286 1.3583027 9.381868362 3.3174 0 1.1245768

07‐Mar‐12 29.04308319 82.2314301 24.41393471 1.3735286 12.58608437 3.7797 4.099998 1.1772132

08‐Mar‐12 29.68258667 84.4399185 21.37364006 1.3975656 10.86362934 3.6912 0.5 1.2129538

09‐Mar‐12 31.63313293 86.1951141 16.58120728 1.4813939 11.63825989 4.1153 0.7 1.4858317

10‐Mar‐12 33.46311188 77.0009689 6.048538208 2.1834958 17.16936684 6.0155 0.2 2.1174433

11‐Mar‐12 31.379776 70.8730621 14.21398926 2.9559906 16.03761864 6.2473 0 1.5069251

12‐Mar‐12 29.61543274 86.0119553 14.81838512 1.331355 18.01529884 4.4696 0.3 1.3367771

13‐Mar‐12 31.38283539 86.735405 7.61447382 1.4959222 17.04229736 4.823 0 1.8231508

14‐Mar‐12 32.22226715 63.3287926 8.108979225 1.655805 10.62098408 3.4722 0 2.6210058

15‐Mar‐12

16‐Mar‐12 22.04979324 89.5803375 52.95791245 0.9785888 4.205476284 1.4452 6.099997 0.4030342

17‐Mar‐12 28.9347229 90.2167892 11.9780302 1.4402316 14.00337029 4.0892 0 1.2600853

18‐Mar‐12 29.8428421 73.3471222 6.520150661 1.3054727 17.96384811 4.5597 0 1.8983444

19‐Mar‐12 27.17494965 84.069046 25.07785416 1.2641572 13.66559887 3.576 0 1.0297345

20‐Mar‐12 29.95272827 85.9524384 13.55006886 0.8621337 14.68997574 3.5695 0 1.5871063

21‐Mar‐12 29.4246521 85.6731262 13.23413563 1.4207512 15.49153233 4.244 0.6 1.3163699

22‐Mar‐12 31.31872559 48.0677948 10.86539173 0.492134 2.537311554 0.9637 0 2.1661956

23‐Mar‐12 30.17098236 64.1026077 12.85409832 1.092348 15.87994766 4.0697 0 1.8230245

24‐Mar‐12 30.40755463 73.8690948 14.9755888 1.4387654 15.55533886 4.3763 0 1.6775763

25‐Mar‐12 29.23234558 77.1413803 8.493595123 1.5930601 16.72515869 4.6228 0 1.6802175

26‐Mar‐12 30.82574463 76.4255676 11.90934753 1.0164213 15.16563416 3.8729 0 1.7618829

27‐Mar‐12 31.12947083 65.4838638 12.16728497 1.0413376 14.69744492 3.9086 0 2.0230832

28‐Mar‐12 27.67861176 50.7845268 16.77504158 1.7671697 9.467163086 4.0932 0 1.9819711

29‐Mar‐12 25.25798035 89.4170303 41.58885193 1.2863458 9.4706707 2.6686 19.00004 0.6729673

30‐Mar‐12 23.12274933 89.7299118 54.87182617 1.1601866 6.872755051 2.0143 8.999998 0.4312845

31‐Mar‐12 24.14992523 87.9960861 17.34433365 1.8796945 14.42959213 3.8764 7.099996 1.0565656

01‐Apr‐12 24.99393463 79.2033463 16.61631012 2.9253747 15.04734802 4.8755 0 0.9741322

02‐Apr‐12 24.59864044 64.8779373 17.41148949 1.5354507 10.38552284 2.8282 0 1.4623251

03‐Apr‐12 26.31719971 77.6969376 10.72650242 1.2673711 15.18030548 3.7325 0 1.226069

04‐Apr‐12 26.32330322 77.9609756 16.33395386 0.8964691 15.0663662 3.2461 0 1.2399763

05‐Apr‐12 27.71066284 77.2497482 11.57204723 1.7997154 14.99973679 4.381 0 1.4560907

06‐Apr‐12 24.22317505 71.8834381 15.72955799 1.5324016 15.4630537 3.7794 0 1.1673077

07‐Apr‐12 24.74210358 74.7756882 15.31136513 1.4387869 15.6762619 3.7291 0 1.1966517

08‐Apr‐12

09‐Apr‐12

10‐Apr‐12

11‐Apr‐12

12‐Apr‐12

13‐Apr‐12

14‐Apr‐12

15‐Apr‐12

16‐Apr‐12 26.88038635 50.3083344 9.536025047 1.4792464 11.61828518 3.2301 0 1.9479827

17‐Apr‐12 26.30498505 79.2277679 14.46124268 1.6401174 12.95076752 3.744 0 1.3491588

18‐Apr‐12 26.97348785 60.9569969 11.15232754 2.4432712 3.138320208 1.9683 0 1.8247312

19‐Apr‐12 25.15724945 84.259819 17.71216011 1.237323 12.12397003 3.1005 0 1.001058

20‐Apr‐12 26.78118134 85.6868744 16.52015686 0.7203056 13.26844788 2.7476 0 1.1188021

21‐Apr‐12 26.27751923 82.4008408 14.98779964 1.1537091 12.90010452 3.182 0.8 1.2890172

22‐Apr‐12 24.37123108 87.3169098 19.55282021 1.6827893 13.17637539 3.4255 3.099999 0.9188514

23‐Apr‐12 24.53759003 80.3861923 21.22101402 1.7097381 8.119882584 3.107 4.399999 0.8212976

24‐Apr‐12 20.87916183 81.230217 48.90571213 1.6096307 3.654345512 1.7425 0 0.4973542

25‐Apr‐12 17.68013382 87.9319839 53.88892365 0.9016687 3.756027699 1.1901 0 0.4053491

26‐Apr‐12

27‐Apr‐12

28‐Apr‐12

29‐Apr‐12

30‐Apr‐12

01‐May‐12

02‐May‐12

03‐May‐12

04‐May‐12

05‐May‐12

06‐May‐12 27.81903076 64.1071777 15.65629864 0.7877654 2.823629618 1.1003 0 1.6983917

07‐May‐12 28.84925079 67.8632889 16.19659233 1.2199823 11.42402649 2.9538 0 1.6848146

08‐May‐12 24.5177536 86.109642 24.20636559 0.9752494 9.498438835 2.393 0 0.9633215

09‐May‐12 26.5949707 81.7369308 11.63920116 1.1740659 9.076558113 2.8707 0 1.3331594

10‐May‐12 27.21463013 70.5220261 11.9276638 1.0091509 10.06101418 2.8038 0 1.5060241

11‐May‐12 26.88191223 57.9640198 5.686816692 1.8892382 10.41521835 4.0176 0 1.7692831

12‐May‐12 24.15755463 77.3001099 13.21582031 1.004794 9.925123215 2.5496 0 1.1515384

13‐May‐12 24.0949707 70.2518768 11.64683247 1.1353781 10.43102455 2.7509 0 1.1582825

14‐May‐12

15‐May‐12

16‐May‐12

17‐May‐12

18‐May‐12 24.33306885 29.6581364 3.199025393 1.6238214 2.154069662 1.4675 0 1.8109554

19‐May‐12 25.1679306 43.3470993 4.772592068 1.2089067 11.20838642 3.0777 0 1.5332454

20‐May‐12 23.32268906 51.779644 4.223140717 1.6706411 11.16173553 3.4617 0 1.4436883

21‐May‐12 21.87885666 75.4731903 6.637671947 2.0929608 11.31540585 3.5641 0 1.1347136

22‐May‐12 20.63190842 86.457634 20.49452019 1.5049695 10.91097832 2.6052 0 0.7129247

23‐May‐12 21.402668 88.8111038 17.91667747 1.1069957 10.79832649 2.3501 0 0.7786152

24‐May‐12 27.3260498 80.1694641 5.808917046 1.2132448 10.62469673 3.0701 0 1.499699

25‐May‐12 25.13435364 30.9386635 5.660870552 1.2121515 1.745488524 1.1559 0 1.7417969

26‐May‐12 25.25035095 69.5360641 10.02442646 1.1607791 10.65762329 2.7995 0 1.2368895

27‐May‐12 22.9396019 62.5961914 15.90202522 1.1483241 10.18523788 2.5651 0 1.0453143

28‐May‐12 20.7494278 78.1792297 20.80129623 1.1566064 9.121623993 2.2616 0 0.8725685

29‐May‐12 21.00125885 80.8730698 15.49298859 0.8744605 10.20494652 2.101 0 0.9157958

30‐May‐12 24.44143677 32.9014244 5.233520031 2.1164935 8.302819252 3.0255 0 1.9355615

31‐May‐12 21.72317505 58.8706131 15.13126659 1.156935 9.363365173 2.4693 0 1.1282818

01‐Jun‐12 22.53667068 67.4115219 12.22680855 1.3924677 8.246314049 2.2614 0 1.3488408

02‐Jun‐12 24.00340271 57.7243958 4.74206686 1.2680595 10.22451782 2.899 0 1.4542925

03‐Jun‐12 23.78361893 51.9734764 8.435598373 1.8971888 10.07133484 3.5734 0 1.3343853

04‐Jun‐12 21.46524048 81.9063416 13.40965462 0.9348063 10.08330154 2.1686 0 0.957549

05‐Jun‐12 20.38465118 48.1074791 7.73046875 0.9963269 1.369220853 0.7877 0 1.1632893

averages 27.58206125 74.7189511 17.67598972 1.3910101 12.0574169 3.4854 1.366989 1.4022596

totals 140.7999
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Apppendix C: WWeather taable showin

 

ng averagee temperatuures and raainfall for A
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