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Summary

The aim of this dissertation is to investigate ergodic properties, in particular
unique ergodicity, in a noncommutative setting, that is in C*-dynamical
systems. Fairly recently Abadie and Dykema introduced a broader notion
of unique ergodicity, namely relative unique ergodicity. Our main focus
shall be to present their result for arbitrary abelian groups containing a
Følner sequence, and thus generalizing the Z-action dealt with by Abadie
and Dykema, and also to present examples of C*-dynamical systems that
exhibit variations of these (uniquely) ergodic notions.

Abadie and Dykema gives some characterizations of relative unique er-
godicity, and among them they state that a C*-dynamical system that is
relatively uniquely ergodic has a conditional expectation onto the fixed point
space under the automorphism in question, which is given by the limit of
some ergodic averages. This is possible due to a result by Tomiyama which
states that any norm one projection of a C*-algebra onto a C*-subalgebra
is a conditional expectation. Hence the first chapter is devoted to the proof
of Tomiyama’s result, after which some examples of C*-dynamical systems
are considered.

In the last chapter we deal with unique and relative unique ergodicity
in C*-dynamical systems, and look at examples that illustrate these no-
tions. Specifically, we present two examples of C*-dynamical systems that
are uniquely ergodic, one with an R2-action and the other with a Z-action,
an example of a C*-dynamical system that is relatively uniquely ergodic but
not uniquely ergodic, and lastly an example of a C*-dynamical system that
is ergodic, but not uniquely ergodic.
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Chapter 1

Introduction

In short one can think of ergodic theory as the study of the long term av-
erage behavior of some dynamical system, be it a physical system or one
more abstract and mathematical in nature, [21]. The necessity for such long
term averages originated with statistical mechanics, which in turn was ne-
cessitated by the study of large physical systems in which the application
of classical mechanics seemed impractical; for example studying the tem-
perature of a gas in a closed, isolated system. To take every single particle
separately into account seems a tall order, but taking averages seems much
more feasible.

An alternative description of ergodic theory encapsulating the essence
thereof is the following:

“In the broadest interpretation ergodic theory is the study of
the qualitative properties of actions of groups on spaces.” - Peter
Walters([27])

The space mentioned typically refers to some set with some mathemati-
cal structure, e.g. a measure space, topological space or a differentiable
manifold. These are not mutually disjoint. In fact, they overlap more often
than not. Taking the structure into account, the “actions of groups” refers
to some dynamics or time evolution on the space, that is, some function
that transforms the space while preserving the structure of the space. For
measurable systems this would be measure preserving transformations, for
topological systems homeomorphisms and for differentiable systems diffeo-
morphisms.

One of the physicists that made some of the most notable contribu-
tions to statistical mechanics, Boltzmann, conjectured that the space mean
and the time mean of a physical system should be equal everywhere, which
turned out to be false in general. Nonetheless, this is exactly one of the
interesting qualitative properties in ergodic theory worth looking for, and
is called an ergodic system. Other interesting properties that have been
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introduced and extensively studied are unique ergodicity, weak and strong
mixing, recurrence and isomorphisms between ergodic systems.[21]

The study of group actions on measure spaces started in the 1930’s with
some strong results by von Neumann and Birkhoff in the Mean Ergodic
Theorem and the Pointwise Ergodic Theorem, respectively. Here the set-
ting would typically be a dynamical system (X,B, µ, T ), consisting of a
measure space X, a σ-algebra B, a probability measure µ and a bijective
transformation T : X → X with the property that µ(T−1E) = µ(E) for
every E ∈ B (with µ said to be T -invariant). The next major breakthrough
was due to Kolmogorov in 1958, when he introduced entropy,[27]. Since
then many advances have been made in ergodic theory, and it is currently a
very active research area. Many applications thereof have also been found
in various areas in mathematics, for example, by Furstenberg in number
theory, see for example [12], [11] and [13]. Another expansion of ergodic
theory (as in many branches in mathematics) has been in the direction of a
non-commutative setting. Typical spaces used in these settings are von Neu-
mann algebras (non-commutative measurable dynamics) and C*-algebras
(non-commutative topological dynamics). Again, these are not mutually
exclusive. The reason for this shift to the non-commutative realm in most
areas in mathematics, is (or was) mostly motivated by the advent of quan-
tum mechanics, which is intrinsically a non-commutative theory. And, as
quantum mechanics is arguably the most successful physical theory, it seems
appropriate to find non-commutative versions for most physically applicable
theories. See for example the Introduction of [3] for some more details and
motivations on the physical relation to non-commutative mathematics.

Although there is the physical connection as mentioned above, this dis-
sertation will deal with non-commutative topological dynamics, that is C*-
dynamical systems, but from a purely mathematical point of view. In par-
ticular, we will consider unique ergodicity in C*-dynamical systems, which
amounts to the existence of a unique state invariant under the automorphism
in question. In 2009 Abadie an Dykema, [1], introduced a more general
notion of unique ergodicity, namely relative unique ergodicity, where they
relate the uniqueness to extensions of invariant states from the fixed point
subalgebra under the specific automorphism. Our first goal is to present
Abadie and Dykema’s characterizations of relative unique ergodicity for any
locally compact abelian group containing a Føner sequence, and thus gen-
eralizing their Z-action. Secondly we aim to present examples that exhibit
these ergodic notions.

We begin in Chapter 2 by developing the necessary mathematical tools
required, including the Bochner integral, C*-algebras, von Neumann Alge-
bras and an important result on the equivalence of norm one projections
and conditional expectations. As a basic familiarity with these concepts are
assumed many results in this chapter will be given without proofs, with the
exception of Section 2.5 on norm one projections in C*-algebras, where we
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have tried to break the exposition, based on [25], down into more detail than
appearing in the standard literature. Thus, the reader familiar with these
concepts can skip Chapter 2 (with the possible exception of Section 2.5) and
start with Chapter 3

In Chapter 3 we give the definition of a C*-dynamical system (A, α),
which just consists of a C*-algebra A and a group of automorphisms α on
A. The rest of the chapter is devoted to the construction of four examples
of C*dynamical systems. These examples are chosen so as to illustrate that
some C*-dynamical systems exhibit variations in the ergodic properties to
be discussed later on. They include two examples of the non-commutative
torus (or quantum torus), one with an action of R and the other of R2,
the C*-algebra generated by the annihilation and creation operators on a
deformed Fock space with an action of Z, and lastly a shift on an infinite
tensor product of C*-algebras, also with an action of Z.

In Chapter 4 we discuss some ergodic properties. Besides a few neces-
sary instances, we shall not give commutative (or classical) ergodic theory
much attention, and will focus on the more general non-commutative set-
ting. Classically, given a topological space X and a homeomorphism, T ,
the dynamical system (X,T ) is said to be uniquely ergodic if there is only
one Borel probability measure, say µ, invariant under the transformation.
In a C*-algebraic setting the ‘equivalent’ of a measure is a state. Hence,
a C*-dynamical system will be called uniquely ergodic if there is a unique
state, invariant under the automorphism in question. Once we have intro-
duced these ergodic properties and given some characterizations of these, we
return to the examples of Chapter 3 to show the existence of C*-dynamical
systems with variations in these ergodic properties, giving credibility (math-
ematically at least) to these definitions and results. Specifically, we show
that the non-commutative torus (with an R2-action) and the C*-algebra gen-
erated by the annihilation and creation operators on a deformed Fock space
(with the usual Z-action) are uniquely ergodic, that the non-commutative
torus (with an R action) is uniquely ergodic relative to the fixed point sub-
algebra but not uniquely ergodic, and lastly that the shift on an infinite
tensor product of C*-algebras is ergodic but not uniquely ergodic.
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Chapter 2

Preliminaries

In this chapter we present and develop the mathematics necessary for our ex-
position of non-commutative dynamical systems, in particular C*-dynamical
systems. We begin with a vector valued integral, namely the Bochner inte-
gral, in the first section. The second section deals with C*-algebras and the
third with locally convex topologies which are needed in the fourth section
on von Neumann algebras. As mentioned earlier, the author assumes some
familiarity with operator algebras (thus including functional analysis and
topology) and measure theory, and will thus present only definitions and
results directly relevant to our exposition, many without proofs (which can
be found in detail in the given references). In the last section we present in
more detail an exposition of the well known result of Tomiyama on norm
one projections. This result will be vital in the main characterization of rel-
ative unique ergodicity in Chapter 4. If the reader is familiar with operator
algebras, they can skip the first four sections and start with Section 2.5 (or
even Chapter 3). Lastly, throughout this dissertation all inner products will
be assumed to be linear in the second argument and conjugate linear in the
first.

2.1 The Bochner Integral

This section is based on [4, Appendix E] where the proofs of the results
stated without such, can be found in detail.

When taking any form of ergodic average over a more general group, it
is necessary to replace the sum (over Z) with an integral (over the general
group being considered). But, working in C*-algebras would then require
an integration theory for vector-valued functions. This section deals with
such an integral, namely the Bochner integral.

Definition 2.1.1. Let (Ω,Σ) be a measurable space, X a Banach space
and B(X) the Borel σ-algebra on X. A function f : Ω→ X is called Borel
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measurable if it is measurable with respect to Σ and B(X). It is called
strongly measurable if it is Borel measurable and has a separable range.

Remark 2.1.2. If f is Borel measurable then the function ω 7→ ‖f(ω)‖ is
Σ-measurable since the norm is continuous and hence Borel measurable, and
the composition of two measurable functions is measurable.

Proposition 2.1.3. [4, Prop E1,p.350] Let (Ω,Σ) be a measure space and
X a Banach space. Then the collection of strongly measurable functions
from Ω to X is closed under the formation of pointwise limits.

Definition 2.1.4. Let (Ω,Σ) be a measure space and X a Banach space.
A function f : Ω → X is called simple if there exists x1, · · · , xn in X
and mutually disjoint S1, · · · , Sn ∈ Σ such that f =

∑n
i=1 xiχSi , where

χSi(ω) = 1 if ω ∈ Si and χSi(ω) = 0 if ω /∈ Si. Hence, x1, · · · , xn are the
values attained by f on S1, · · · , Sn, respectively.

Proposition 2.1.5. [4, Prop E2,p.351] Let (Ω,Σ) be a measure space, X a
Banach space and let f : Ω → X be strongly measurable. Then there exists
a sequence (fn) of strongly measurable simple functions such that

f(ω) = lim
n→∞

fn(ω)

and
‖fn(ω)‖ ≤ ‖f(ω)‖,

for every ω ∈ Ω and n=1,2,. . . .

Remark 2.1.6. From the Propositions above if follows that a function
f : Ω → X is strongly measurable if and only if it is the pointwise limit of
a sequence of strongly measurable simple functions, and that the set of all
such strongly measurable functions forms a vector space.

Definition 2.1.7. Let (Ω,Σ, µ) be a measure space and let X be a Banach
space. A function f : Ω→ X is called Bochner integrable (or just integrable)
if f is strongly measurable and if the function ω → ‖f(ω)‖ is integrable.

Theorem 2.1.8. Let Ω be a compact space, X a Banach space, µ a finite
measure on the Borel σ-algebra of Ω and let f : Ω → X be a continuous
function. Then f is Bochner integrable.

Proof. Because f is continuous it is Borel measurable and f(Ω) is compact.
Then, since f(Ω) is a compact metric space, it must be separable (see for
example [24, Prop 2.5.8, p.54]), and thus f is strongly measurable. Also, by
its continuity f is bounded on compact sets, i.e. ||f || := sup

ω∈Ω
||f(ω)|| < ∞,

which implies that ∫
Ω
||f(ω)||dµ <∞.

Hence f is Bochner integrable.
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Below we describe how the integral of such an integrable function is
defined. The procedure is fairly simple and follows a similar approach as in
usual measure theory. We first state an auxiliary result.

Proposition 2.1.9. [4, Prop 2.3.9,p.67] Let (Ω,Σ, µ) be a measure space
and let f : Ω→ [0,+∞] be Σ-measurable. If t ∈ [0,+∞] and
Vt = {ω ∈ Ω : f(ω) ≥ t} then

µ(Vt) ≤
1

t

∫
Vt

fdµ ≤ 1

t

∫
fdµ.

Now, let (Ω,Σ, µ) be a measure space, X a Banach space and
f : Ω → X integrable and simple. Assume x1, x2, . . . , xn are the non-
zero values of f attained on the sets S1, S2, . . . , Sn, respectively. As stated
in Remark 2.1.2 the function ω → ‖f(ω)‖ is measurable, and using this
function in Proposition 2.1.9 and by the integrability of f we see that

µ(Si) ≤
1

‖xi‖

∫
‖f(ω)‖dµ < +∞, (2.1)

showing that each Si has finite measure. Hence we define the integral of f
by ∫

fdµ =
n∑
i=1

xiµ(Si)

which is meaningful by Inequality 2.1. Also, note that f =
∑n

i=1 xiχSi is
integrable if and only if µ(Si) < +∞ for each i = 1, 2, . . . , n.

Proposition 2.1.10. Let (Ω,Σ, µ) be a measure space, X a Banach space
and f, g : Ω→ X simple integrable functions. Then the following properties
hold:

(i) ‖
∫
fdµ‖ ≤

∫
‖f‖dµ

(ii)
∫

(αf + βg)dµ = α
∫
fdµ+ β

∫
gdµ, with α, β ∈ C

Proof. Let f =
∑n

i=1 xiχSi and g =
∑m

j=1 yjχOj . We may assume that⋃n
i=1 Si =

⋃m
j=1Oj , and that the sets Si, i = 1, 2, . . . , n are disjoint as are

the sets Oj , j = 1, 2, . . . ,m.

(i) Then

‖
∫
fdµ‖ = ‖

n∑
i=1

xiµ(Si)‖

≤
n∑
i=1

‖xi‖µ(Si)

=

∫
‖f‖dµ

6
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(ii) ∫
(αf + βg)dµ =

n∑
i=1

m∑
j=1

(αxi + βyj)µ(Si
⋂
Oj)

= α

n∑
i=1

xiµ(Si) + β

m∑
j=1

yjµ(Oj)

= α

∫
fdµ+ β

∫
gdµ

Assume now that f : Ω→ X is any integrable function. Then by
Proposition 2.1.5 there exists a sequence (fn) of strongly measurable func-
tions such that f(ω) = lim

n→∞
fn(ω), and ‖fn(ω)‖ ≤ ‖f(ω)‖, for every

n = 1, 2, . . . and ω ∈ Ω. Moreover, since f is integrable, each fn will be inte-
grable as well. The dominated convergence theorem for real-valued functions
applied to the sequence of functions given by
f̃n(ω) = ‖f(ω) − fn(ω)‖, which converges to 0, and to g(ω) = 2||f(ω)|| as
the dominating function, implies that

lim
n→∞

∫
||f − fn||dµ = 0,

or in other words that

lim
m,n→∞

∫
||fm − fn||dµ = 0. (2.2)

(Notation: lim
m,n→∞

am,n = 0 means that for every ε > 0 there exists an N ∈ N

such that |am,n| < ε if m,n > N .)
Equation 2.2 and Proposition 2.1.10 imply that the sequence (

∫
fndµ) is

Cauchy in X, since

||
∫
fndµ−

∫
fmdµ|| ≤

∫
||fn − fm||dµ

m,n−−→
∞

0.

The Bochner integral (or just the integral) of f is defined as the limit of the
sequence (

∫
fndµ), i.e. ∫

fdµ = lim
n→∞

∫
fndµ.

That the value of
∫
fdµ is independent of the choice of the sequence of

simple integrable functions (guaranteed by Proposition 2.1.5) is clear.
In the following two propositions we give some properties of the Bochner

integral that will be required later on.
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Theorem 2.1.11. [4, Prop E4, E5, E11, pp.355-356] Let (Ω,Σ, µ) be a
measure space, X a Banach space and f, g : Ω → X integrable functions.
Then the following properties hold:

(i) ‖
∫
fdµ‖ ≤

∫
‖f‖dµ

(ii)
∫

(αf + βg)dµ = α
∫
fdµ+ β

∫
gdµ, with α, β ∈ C

(iii) φ(
∫
fdµ) =

∫
φ ◦ fdµ, for every φ ∈ X∗

(where X∗ denotes the dual space of X, that is the set of all (norm) contin-
uous linear functionals on X).

Remark 2.1.12. If one replaces the Banach space X with C in Theorem
2.1.11, then the integral in question is nothing other than the Lebesgue
integral.

Let B(X) denote the normed space of all bounded linear operators on
X.

Theorem 2.1.13. Let (Ω,Σ, µ) be a measure space, X a Banach space,
T ∈ B(X) and f : Ω → X an integrable function. Then Tf is integrable
and

T (

∫
fdµ) =

∫
Tfdµ.

Proof. Let f : Ω → X be a simple integrable function, which takes on
the values x1, x2, . . . , xn on the disjoint sets S1, . . . , Sn, respectively. Then
Tf =

∑n
i=1 TxiχSi is a simple integrable function, and

T (

∫
fdµ) = T (

n∑
i=1

xiµ(Si))

=
n∑
i=1

Txiµ(Si)

=

∫
Tfdµ

Assume now that f : Ω → X is an arbitrary integrable function. Then
by Proposition 2.1.5 there exists a sequence of integrable simple functions
(fn) such that f(ω) = lim

n→∞
fn(ω), and such that ‖fn(ω)‖ ≤ ‖f(ω)‖, for

every n = 1, 2, . . . and ω ∈ Ω.
By the continuity of T we have that Tfn, n = 1, 2 . . . , and Tf are mea-

surable functions, and have separable ranges. Moreover, by the integrability
of f we have that Tf is integrable, since

||Tf(ω)|| ≤ ||T ||||f(ω)||.

8
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By Prop 2.1.5 we also have

||Tfn(ω)|| ≤ ||T ||||fn(ω)|| ≤ ||T ||||f(ω)||.

Put ˜Tfn(ω) = ||Tfn(ω) − Tf(ω)|| and g(ω) = 2||T ||||f(ω)||. Then
˜Tfn(ω) ≤ g(ω) for every ω ∈ Ω. Also note that, by the continuity of T ,

we have lim
n→∞

Tfn(ω) = Tf(ω), and hence lim
n→∞

˜Tfn(ω) = 0. Now, by the

dominated convergence theorem for real functions, using g as the dominating
function, we have that

lim
n→∞

∫
||Tfn(ω)− Tf(ω)||dµ = lim

n→∞

∫
˜Tfn(ω)dµ = 0.

Finally we obtain

||
∫
Tfn(ω)dµ−

∫
Tf(ω)dµ|| = ||

∫
(Tfn(ω)− Tf(ω))dµ||

≤
∫
||Tfn(ω)− Tf(ω)||dµ

−→ 0 (as n→∞).

Hence∫
Tfdµ = lim

n→∞

∫
Tfndµ = lim

n→∞
T (

∫
fndµ) = T ( lim

n→∞

∫
fndµ) = T (

∫
fdµ),

by the dominated convergence theorem for X-valued functions
(see [4, Prop E6, p.353]).

2.2 C*-algebras

In this section we shall cover the basics of C*-algebras and also introduce
some necessary results concerning representations of C*-algebras.

Given an algebra A over C, we define a mapping, a ∈ A 7→ a∗ ∈ A,
called an involution or an adjoint map such that for all a, b ∈ A;α, β ∈ C,

(i) (a∗)∗ = a

(ii) (ab)∗ = b∗a∗

(iii) (αa+ βb)∗ = ᾱa∗ + β̄b∗ (with ᾱ denoting the complex conjugate.)

We call an algebra with an involution defined on it a *-algebra. If in
addition the algebra is a complete normed space such ||ab|| ≤ ||a||||b|| for
every pair of elements in A, then we call A a Banach *-algebra.

9
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Definition 2.2.1. We call a Banach *-algebra with the property that for
every a ∈ A

||a∗a|| = ||a||2,

a C*-algebra.

We will call a multiplicative identity element a unit, and if an algebra (or
*-algebra, or C*-algebra) contains a unit, then the algebra is called unital
(or said to contain an identity). All C*-algebras will be assumed unital, and
the unit will be denoted by 1A for the C*-algebra A.

Definition 2.2.2. An element in a C*-algebra is said to be positive if it is
self-adjoint, i.e. a∗ = a, and its spectrum lies in the positive reals. We write
a ≥ 0 to indicate that a is positive.

Note that any element a in a C*-algebra can be written as a linear
combination, say a = a1 + ia2, of self-adjoint elements, where a1 = 1

2(a+a∗)
and a2 = 1

2i(a− a
∗).

Proposition 2.2.3. [19, Thm 2.2.5, p.46] An element a of a C*-algebra A
is positive if and only if a = b∗b for some b ∈ A.

Proposition 2.2.4. [19, Thm 2.2.5, p.46] For any two self-adjoint elements
a and b in a C*-algebra A, if a ≤ b then c∗ac ≤ c∗bc for every c ∈ A.

Proposition 2.2.5. [15, Prop 4.2.3, p.246] Let a be a self-adjoint element
of a C*-algebra A. Then a can be expressed in the form a = a+−a−, where
a+ and a− are unique positive elements in A, a+a− = a−a+ = 0 and
||a|| = max{||a+||, ||a−||}.

Note that the proof of Proposition 2.2.5 is usually done using the Gelfand
representation theorem for abelian C*-algebras, which will be stated with
the other representation theorems for C*-algebras later in this section.

The Banach space of all bounded linear functionals on a normed space X
will be called its dual space (or dual for short), and denoted by X∗. Similarly
for the double dual, X∗∗ = (X∗)∗.

Definition 2.2.6. Given a C*-algebra A, then φ ∈ A∗ is called positive if
for every a ∈ A

φ(a∗a) ≥ 0.

If furthermore we have that ||φ|| = 1, then φ is called a state.

The next proposition gives the existence of a state on a C*-algebra with
an added property that will prove useful later.

Proposition 2.2.7. [15, Thm 4.3.4, p.258] Let A be a unital C*-algebra
and let a ∈ A be normal, that is a∗a = aa∗. Then there exists a state, φ, on
A such that |φ(a)| = ||a||.

10
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We will let A∗+ denote the set of all positive bounded linear functionals
on a C*-algebra A, and S(A) the set of all states on A. S(A) is convex.

Theorem 2.2.8. [19, Thm 3.4.3, p.95] Let a be a self-adjoint element of
a C*-algebra A. Then a is positive if and only if φ(a) ≥ 0 for all positive
linear functionals φ on A.

We give the following characterization of positivity that will frequently
be used.

Theorem 2.2.9. [15, Thm 4.3.2, p.256] Let A be a unital C*-algebra and
φ a linear functional on A. Then φ is positive if and only if φ is bounded
and ||φ|| = φ(1A).

Definition 2.2.10. Let φ ∈ A∗, then we define φ∗ ∈ A∗, called the adjoint
of φ, by φ∗(a) = φ(a∗) (where φ(a) denotes the complex conjugate of φ(a)).
We call φ ∈ A∗ self-adjoint if for a ∈ A, φ(a∗) = φ(a). Then
φ∗(a) = φ(a∗) = φ(a), i.e. φ∗ = φ.

Proposition 2.2.11 (Jordan Decomposition). [25, Prop 2.1, p.120] Let A
be a C*-algebra. Every self-adjoint φ ∈ A∗ is represented uniquely in the
form

φ = φ+ − φ− and ||φ|| = ||φ+||+ ||φ−||
by some φ+, φ− ∈ A∗+.

For a proof of the uniqueness of the Jordan decomposition see [20, Thm
3.2.5] or [25, Thm 4.2, p.140].

Remark 2.2.12. Note that any φ ∈ A∗ can be written as a linear combi-
nation of two self-adjoint bounded linear functionals, say φ = φ1 + iφ2, by
taking φ1 = 1

2(φ + φ∗) and φ2 = 1
2i(φ − φ

∗). Combining this fact with the
Jordan decomposition, if follows that any φ ∈ A∗ can be written uniquely
as a linear combination in the form

φ = φ1 − φ2 + i(φ3 − φ4),

where φ1, φ2, φ3, φ4 ∈ A∗+.

Proposition 2.2.13. [3, Prop 2.2.19, p.41] Let I be a closed two-sided ideal
in a C*-algebra A. Then I is self-adjoint and the quotient A/I is a C*-
algebra with the usual operations for a quotient and the norm defined by
||a+ I||=inf

b∈I
||a+ b||, a ∈ A.

Proposition 2.2.14. [3, Prop 2.3.1, p.42] If π is a *-homomorphism from
a Banach *-algebra A into a C*-algebra B, then

||π(a)|| ≤ ||a||, for every a ∈ A.

Moreover, if A is a C*-algebra then the range, π(A), of π is a C*-subalgebra
of B.
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Corollary 2.2.15. [25, Cor 5.4, pp.22] If π is a *-isomorphism from a
C*-algebra A onto a C*-algebra B, then π is an isometry.

Proposition 2.2.16. [25, Cor 8.2, p.32]
If π is a *-homomorphism of a C*-algebra A onto another C*-algebra B,
then π induces a *-isomorphism π0 from the quotient C*-algebra A/ker(π)
onto B such that π = π0 ◦ i0, where i0 : A → A/ker(π) takes a ∈ A to the
equivalence class a+ ker(π) ∈ A/ker(π).

Definition 2.2.17. Let A be a C*-algebra. We will call the pair (H, π) a
representation of A, if π is a *-homomorphism of A into the C*-algebra of all
bounded linear operators B(H), on some Hilbert space H. A representation
is called faithful if ker(π) = {0}.

Definition 2.2.18. Let (H, π) be a representation of the C*-algebra A.
A vector ξ ∈ H will be called a cyclic vector if the linear span of the set
{π(a)ξ : a ∈ A} is dense in H.

We now make a quick and necessary diversion. In many instances we
shall make use of infinite direct sums of Hilbert spaces. Hence, we give
the basic definitions and the author assumes familiarity with the finite case.
A complete and detailed exposition of the finite and infinite cases can be
found in [15, pp.25-28 & pp.121-124]. Let {Hn}, n ∈ I for some index set I,
be a family of Hilbert spaces. The direct sum, denoted by

⊕
n∈I

Hn, consists

elements of the form (ξn)n∈I, where ξn ∈ Hn and
∑

n∈I ||ξn||2 <∞. Addition
and scalar multiplication are given by

(ξn) + (ηn) = (ξn + ηn) and c(ξn) = (cξn),

respectively. The inner product and norm are given by

〈(ξn), (ηn)〉 =
∑
n∈I
〈ξn, ηn〉 and ||(ξn)|| = (

∑
n∈I
||ξn||2)1/2,

respectively. With these operations and inner product,
⊕
n∈I

Hn is complete

as an inner product space, and hence a Hilbert space. If Tn ∈ B(Hn), n ∈ I,
and sup{||Tn|| : n ∈ I} < ∞ , then the equation T (ξn) = (Tnξn) defines an
element in B(

⊕
n∈I

Hn). We call T =
⊕
n∈I

Tn the direct sum of (Tn). Addition,

scalar multiplication, multiplication and an involution can be defined in a
natural way for direct sums

⊕
n∈I

Tn of operators, and a norm is given by

||T || = sup{||Tn|| : n ∈ I}.
Returning to representations of C*-algebras, given any positive linear

functional ω on a C*-algebra A, it is possible to construct a representation
(Hω, πω, ξω) of A, called a cyclic representation induced by ω, where ξω is
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a cyclic vector in Hω. This construction is known as the GNS-construction
and gives the existence of a representation for any C*-algebra. The details
of the construction can be found in [3, pp. 54-55 and Thm 2.3.16, p.56]
and [25, Thm 9.14, pp. 39-40]. Moreover, the GNS construction holds for
*-algebras as well, and this is evident in the construction done in [3, pp.
54-55 and Thm 2.3.16, p.56], but in this case the represented operators are
not necessarily bounded. When we use this fact later on in the proof of
Proposition 3.3.6, we shall do it for a finite dimensional Hilbert space, and
therefore the operators will be bounded. If {Hα, πα}, α ∈ I, is a family of
representations of a C*-algebra A, then one can form a new representation
(H, π) of A, where H =

⊕
α∈I

Hα, and for every ξ =
⊕
α∈I

ξα ∈ H and a ∈ A

π(a)ξ =
⊕
α∈I

πα(a)ξα.

The interested reader can find the details in [3, p. 46] and [25, p.41]. By
considering such a direct sum over all representations induced by positive
linear functionals on a C*-algebra, one can prove the following result which
shows that any C*-algebra admits a faithful representation, so that it can be
seen as a norm closed algebraic ‘copy’ of a C*-subalgebra of B(H), without
explicit reference to the Hilbert space on which it acts.

Theorem 2.2.19. [25, Thm 9.18, p.42] A C*-algebra admits a faithful
representation. Hence it is isometrically *-isomorphic to a uniformly (norm)
closed *-subalgebra of operators on a Hilbert space.

Proposition 2.2.20. [25, Prop 2.1, p.120] Every ω ∈ A∗ is represented in
the form

ω(π;ξ,η)(a) = 〈ξ, π(a)η〉
by some representation (H, π) of A, where ξ, η ∈ H and a ∈ A.

Lastly we give Gelfand’s representation theorem for abelian C*-algebras.
Let Γ(A) be the set of all non-zero homomorphism from A into C. Let
â : Γ(A)→ C be defined by

â(τ) = τ(a).

It can be shown that if A is unital, then Γ(A) is a compact Hausdorff
space, in the weak*-topology (see for example [19, Thm 1.3.5, p.15]), and
that â ∈ C(Γ(A)). We call the map A → C(Γ(A)), a 7→ â the Gelfand
representation of A, and â the Gelfand transform of a.

Let σ(a) = {λ ∈ C : (λ1A− a)−1 does not exist} denote the spectrum of
an element a ∈ A.

Theorem 2.2.21. [19, Thm 1.3.4, p.14] Let A be an abelian Banach-
algebra. Then for every a ∈ A

σ(a) = {τ(a) : τ ∈ Γ(A)}.
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Theorem 2.2.22. [19, Thm 2.1.10, p.41] Let A be a non-zero abelian C*-
algebra, then the Gelfand representation of A is an isometric *-isomorphism.

Hence, from Theorems 2.2.21 and 2.2.22 it follows that every element in
an abelian C*-algebra can be identified with a continuous function having
its spectrum as its range. Specifically, there exists for every λ ∈ σ(a) a
τ ∈ Γ(A) such that τ(a) = λ. This fact will be used on a few occasions.

2.3 Locally Convex Topologies

Below we give a brief overview of locally convex topologies and present
some examples of such topologies that will be applicable later on. This is
necessitated by the fact that we will work with von Neumann algebras, and
these topologies form an integral part of the structure of (and proofs relating
to) von Neumann algebras.

Definition 2.3.1. Suppose that V is a real or complex vector space. We
call a set Y ⊂ V convex if α1y1 + α2y2 ∈ Y , for every y1, y2 ∈ Y and α1, α2

positive real numbers such that α1 + α2 = 1.

Definition 2.3.2. Suppose that V is a real or complex vector space. We
call V a topological vector space if V is also a Hausdorff topological space in
which the algebraic operations, namely addition and scalar multiplication,
are continuous in this topology. Furthermore, we will call V a locally con-
vex topological vector space (or just a convex space) if the topology has a
base consisting of convex sets, and we call such a topology a locally convex
topology.

Definition 2.3.3. We say that a family of semi-norms P on some vector
space V separates the points of V if for every x 6= 0 in V, there is a semi-norm
p ∈ P for which p(x) 6= 0.

Proposition 2.3.4. [15, Thm 1.2.6, p.17] Suppose that V is a real or com-
plex vector space, and that P is a family of semi-norms on V that separates
the points of V. Then there is a locally convex topology on V in which, for
every x0 ∈ V the family of all sets

N(x0 : p1, . . . , pn; ε) = {x ∈ V : pi(x− x0) < ε, i = 1, . . . , n},

with ε > 0, pi ∈ P, is a base of neighborhoods of x0. With this topology,
each of the semi-norms in P is continuous, and this is the coarsest such
topology. Moreover, every locally convex topology on V arises, in this way,
from a suitable family of semi-norms.

Proposition 2.3.5. [15, Prop 1.2.8] Suppose that V is a locally convex space
and P the family of semi-norms giving rise to the topology on V.
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(i) A semi-norm p on V is continuous if and only if there is a positive
real number c and a finite set p1, . . . , pn ∈ P such that

p(x) ≤ c max
1≤i≤n

pi(x), x ∈ V.

(ii) A linear functional f on V is continuous if and only if there is a
positive real number c and a finite set p1, . . . , pn ∈ P such that

|f(x)| ≤ c max
1≤i≤n

pi(x), x ∈ V.

For completeness sake and the fact that we will work in locally convex
topologies that are coarser than the norm topology, we need a concept of
convergence that is independent of the norm (or metric), but still have some
of the “nice” properties that we are accustomed to with convergence of
sequences in metric spaces. Thus, we define for more general index sets the
concept of a net and its convergence.

Definition 2.3.6. Let I be any set. A preorder on the set is any binary
relation, say ≺, such that for any a, b, c ∈ I

(i) a ≺ a and,

(ii) a ≺ b and b ≺ c implies a ≺ c.

We call (I,≺) (or just I if there is no confusion) a preordered set.

Definition 2.3.7. We call a preordered set (I,≺) a directed set if for every
α, β ∈ I there exists a γ ∈ I such that α ≺ γ and β ≺ γ. A net in a set S is
a function from a directed set I into the set S.

Note 2.3.8. We will denote a net by (xα)α∈I, and if no ambiguity can arise
with regard to which index set is used, we shall simply write (xα).

Definition 2.3.9. Let (X, τ) be a topological space. We say that a net (xα)
in X converges to a point x ∈ X, if for every neighborhood Nx of x, there
exists an α′ ∈ I such that xα ∈ Nx for every α ≥ α′. We call x a limit of
(xα), and write lim

α
xα = x or simply xα → x.

Theorem 2.3.10. [24, Prop 3.2.14, p.76] Let (X, τ) be a topological space
and S ⊆ X. Then the closure, S̄, consists of those points in X that are
limits of nets in S.

Corollary 2.3.11. [24, Cor 3.2.15, p.76] Let (X, τ) be a topological space.
A set S ⊆ X is closed if and only if every net in S that converges has its
limit in S.
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Proposition 2.3.12. [24, Prop 3.2.17, p.76] Let (X, τ) be a topological
space. X is Hausdorff if and only if every net that converges in X has a
unique limit.

Theorem 2.3.13. [24, Prop 3.3.17, p.82] Let (X, τ) be a topological space
and (xα) a net in X. Then x ∈ X is an accumulation point of (xα) if and
only if there is a subnet of (xα) converging to x.

Theorem 2.3.14. [24, Prop 3.3.18, p.82] Let (X, τ) be a topological space.
Then X is compact if and only if every net in X has a convergent subnet.

Proposition 2.3.15. [24, Thm 3.2.18, p.77] Let (X, τX) and (Y, τY ) be
topological spaces. A function f : X → Y is continuous at x0 ∈ X if and
only if for every net (xα) in X such that xα → x0, f(xα)→ f(x0).

Theorem 2.3.16. Let P be a family of semi-norms on a vector space V
which generates a locally convex topology τ on V as described in Proposition
2.3.4. Then a net (xα)α∈I in V converges to a point x ∈ V if and only if
lim
α
p(xα − x) = 0 for every p ∈ P.

Proof. Firstly, assume that xα → x, or equivalently, since we are working
in a locally convex topology, that (xα − x) → 0 . Since every semi-norm
p ∈ P is continuous in τ it follows directly from Proposition 2.3.15 that
p(xα − x)→ 0 for every p ∈ P.

Conversely, assume that p(xα − x)→ 0 for every p ∈ P. Then for every
ε > 0 there exists an αp ∈ I such that p(xα − x) < ε if α > αp. Consider
any basic neighborhood of x, say

N(x : p1, . . . , pn; ε) = {x ∈ V : pi(x− x0) < ε, i = 1, . . . , n},

with ε > 0 and pi ∈ P. As stated above, for each i = 1, 2, . . . , n, there
exists an αi ∈ I such that pi(xα − x) < ε if α > αi. Being a directed
set, there exists an α′ ∈ I such that α′ > αi for every i = 1, 2, . . . , n.
Then, for every i = 1, 2, . . . , n, we have pi(xα − x) < ε if α > α′, and thus
xα ∈ N(x : p1, . . . , pn; ε) if α > α′.

We consider a few specific locally convex topologies that will be of im-
portance in Sections 2.4 and 2.5.

Weak topology: Given a Banach space X, we define the weak topology
on X, denoted by σ(X,X∗), as follows: We take as our set of semi-norms
on X the set

P = {pφ : φ ∈ X∗}

where pφ(x) = |φ(x)| for each x ∈ X. This set is separating; for if pφ(x) = 0
for every φ ∈ X∗, then x = 0 (see for example [18, Cor 4.3-4, p.223]). The
locally convex topology given by Proposition 2.3.4 with the semi-norms P
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is called the weak-topology on X. Just to make it explicit, in the
σ(X,X∗)-topology, any x0 ∈ X will thus have a base of neighborhoods
consisting of sets of the form

{x ∈ X : |φi(x)− φi(x0)| < ε, i = 1, . . . , n}

where ε > 0 and φi ∈ X∗, i = 1, . . . , n.

Weak*-topology: Given a Banach space X, we define the weak*-
topology on X∗, denoted by σ(X∗, X), in a similar way as the weak topology:
We take as our set of semi-norms on X∗ the set

P = {px : x ∈ X}

where px(φ) = |φ(x)| for each φ ∈ X∗. This set is separating; for if px(φ) = 0
for every x ∈ X, then φ = 0. Thus, the locally convex topology given
by Proposition 2.3.4 using P is the weak*-topology on X∗. As with the
weak topology, any φ0 ∈ X∗ in the σ(X∗, X)-topology will have a base of
neighborhoods consisting of sets of the form

{φ ∈ X∗ : |φ(xi)− φ0(xi)| < ε, i = 1, . . . , n}

where ε > 0 and xi ∈ X, i = 1, . . . , n.

Theorem 2.3.17. [15, Thm 1.6.5, p.45] Let X be a normed space, and
i : X → X∗∗ the canonical map given by i(x)(ϕ) = ϕ(x) for every ϕ ∈ X∗.
Then the weak* closure in X∗∗ of the unit ball Bi(X) of i(X) is equal to the
unit ball BX∗∗ of X∗∗.

Theorem 2.3.18 (Banach-Alaoglu). [23, Thm 3.15, p.68] If N0 is a neigh-
borhood of 0 in a Banach space X and if

K = {φ ∈ X∗ : |φ(x)| ≤ 1, x ∈ N0},

then K is weak*-compact.

Theorem 2.3.19. Let A be a unital C*-algebra. Then S(A) is weak*-
compact.

Proof. By the Banach-Alaoglu theorem the unit ball BA∗ of A∗ is weak*-
compact. S(A) is a convex weak*-closed subset of BA∗ , and hence is also
weak*-compact.

Now, let H be a Hilbert space and consider B(H), the C*-algebra of
all bounded linear operators acting on this Hilbert space. The following
topologies are examples of locally convex topologies on B(H).

17

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Weak operator topology: Let ξ, η ∈ H. Then

pξ,η(A) = |〈ξ, Aη〉|, A ∈ B(H),

defines a semi-norm on B(H). The set {pξ,η : ξ, η ∈ H} of all such semi-
norms is separating; for if pξ,η(A) = 0 for every pair ξ, η ∈ H, then in
particular choosing ξ = Aη it follows that ||Aη|| = 0 for every ξ ∈ H, and
so A = 0. The locally convex topology generated by the set of semi-norms
{pξ,η : ξ, η ∈ H} is called the weak operator topology on B(H).

σ-weak operator topology: Let (ξn) and (ηn) be two sequences in H
such that

∞∑
n=1

||ξn||2 <∞,
∞∑
n=1

||ηn||2 <∞.

Then

pξn,ηn(A) = |
∞∑
n=1

〈ξn, Aηn〉|, A ∈ B(H),

defines a semi-norm on B(H). An argument similar to the above shows that
the set of all such semi-norms is separating, and thus generates a locally
convex topology, the σ-weak operator topology, on B(H).

Strong operator topology: Let ξ ∈ H, then

pξ(A) = ||Aξ||, A ∈ B(H),

defines a semi-norm on B(H). Again, the set {pξ : ξ ∈ H} of semi-norms
is separating and generates a locally convex topology on B(H), called the
strong operator topology.

σ-strong operator topology: Let (ξn) be a sequence in H such that∑∞
n=1 ||ξn||2 <∞. Then

pξn(A) = (

∞∑
n=1

||Aξn||2)1/2, A ∈ B(H),

defines a semi-norm on B(H) and, the set of all such semi-norms is sepa-
rating and generates a locally convex topology on B(H), called the σ-strong
operator topology.

Remark 2.3.20. We have the following relations between these operator
topologies:

norm ⊃ σ − strong ⊃ σ − weak
∪ ∪

strong ⊃ weak

where “⊃” means finer than. [3, p.70] [25, p.68]
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We prove two of these inclusions. The proofs of the others are similar.

Proposition 2.3.21. The σ-strong operator topology is finer than the strong
operator topology, which in turn is finer than the weak operator topology.

Proof. Throughout this proof, keep in mind that we are working with lo-
cally convex topologies and, among other properties, we thus need only
consider basic neighborhoods of the origin. This and similar properties of
these topologies will not be mentioned explicitly when used.

We begin by showing that the strong operator topology is finer than the
weak operator topology. Given any one of the semi-norms generating the
weak operator topology, say pξ,η, where ξ, η ∈ H, we have

pξ,η(A) = |〈ξ, Aη〉|
≤ ||ξ|| ||Aη||
= ||ξ|| pη(A),

for every A ∈ B(H), where pη(A) is one of the semi-norms generating the
strong operator topology. Hence, by Proposition 2.3.5, each semi-norm in
{pξ,η : ξ, η ∈ H} is continuous in the strong operator topology. Now, consider
any sub-basic neighborhood in the weak operator topology, say
N0,ε = {A ∈ B(H) : pξ,η(A) < ε} for some ξ, η ∈ H. Taking the open interval
(−ε, ε) ⊂ R, we have by the continuity of pξ,η that p−1

ξ,η((−ε, ε)) is open in

both the strong and weak operator topologies. But p−1
ξ,η((−ε, ε)) = N0,ε,

showing that every sub-basic neighborhood of the weak operator topology
is open in the strong operator topology, and thus implying the required
inclusion.

As a matter of interest, one could (equivalently) have argued that since:
(i) each semi-norm generating the weak operator topology is continuous in
the strong operator topology, and (ii) the weak operator topology is the
coarsest topology in which each of these semi-norms is continuous, the re-
quired inclusion follows.

We show that the σ-strong operator topology is finer than the strong
operator topology. For no reason other than some variation, we do this by
showing that every net converging in the σ-strong operator topology also
converges in the strong operator topology. Hence, without loss of generality,
let (Aα) be a net that converges to 0 in the σ-strong operator topology.
From Theorem 2.3.16,

lim
α
pξn(Aα) = 0,

for every sequence (ξn) in H such that
∑∞

n=1 ||ξn||2 < ∞. Given any semi-
norm from the generating set of the strong operator topology, say pξ, with
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ξ ∈ H, by considering the sequence (ξn) = (ξ, 0, 0, . . .), we have

pξ(Aα) = ||Aαξ||

= (

∞∑
n=1

||Aαξn||2)
1
2

= pξn(Aα) −→ 0.

Hence lim
α
pξ(Aα) = 0 for every ξ ∈ H, and by Theorem 2.3.16, (Aα) con-

verges to 0 in the strong operator topology, giving the required inclusion.

If the Hilbert space is infinite dimensional these inclusions become strict,
[3, p.70]. Irrespective of whether H is finite dimensional or not, it is the case
that the closures of convex sets in some of these topologies coincide. Below
we state, without proof, a separation form of the Hahn-Banach theorem,
followed by two examples of this happening.

Proposition 2.3.22 (Hahn-Banach separation theorem). [22, Prop 5, p.29]
Let V be a convex space, and suppose that A and B are disjoint convex sets
in V, with A open. Then there exists a continuous linear functional f on V
such that f(A) and f(B) are disjoint.

Corollary 2.3.23. [22, Cor 1, p.30] If B is a convex subset of the convex
space V, and a /∈ B̄, then there exists a continuous linear functional f on V
such that f(a) /∈ f(B).

As a first example we show that the norm and weak topologies on a
normed space coincide on convex sets. The proof is based on the proof of
[22, Prop 8, p.34], where a more general result valid for any dual pair is
given. The normed space version will suffice for our needs though.

Theorem 2.3.24. Let X be a normed space and X∗ its (continuous) dual
space. Then for any convex set K ⊂ X, the closure of K in the norm and
σ(X,X∗) topologies on X coincide.

Proof. The norm topology is finer than the σ(X,X∗)-topology, so that K̄ ⊆
K̄σ, where K̄σ denotes the closure in the σ(X,X∗)-topology and K̄ the
closure in the norm topology.

Now, let x0 ∈ X\K̄. We show that this implies that x0 /∈ K̄σ. By
Corollary 2.3.23 there exists a continuous linear functional f on X such
that f(x0) /∈ f(K). Thus, there exists an ε > 0 such that |f(x)− f(x0)| ≥ ε
for every x ∈ f(K). Let U = {x ∈ X : |f(x0) − f(x)| < ε}, then U is a
neighborhood of x0 in the σ(X,X∗)-topology, such that U ∩K = ∅. Hence
x0 /∈ K̄σ and so K̄σ ⊆ K̄.
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Next we see that the closures of convex sets in some of the the locally
convex topologies defined on B(H) coincide.

Theorem 2.3.25. [3, Thm 2.4.7, p.71] Let K ⊂ B(H) be any convex subset
and let Br denote the ball of radius r > 0 centered at 0. Then the following
statements are equivalent:

(i) K is closed in the σ-weak operator topology.

(ii) K is closed in the σ-strong operator topology.

(iii) K ∩ Br is closed in the weak (and thus σ-weak) operator topology.

(iv) K ∩ Br is closed in the strong (and thus σ-strong) operator topology.

Theorem 2.3.26. [15, Thm 5.1.2, p.305] Let K ⊂ B(H) be a convex set.
Then the weak and strong operator closures of K coincide.

2.4 von Neumann Algebras

Throughout this section H will denote a Hilbert space.

Definition 2.4.1. Let M be a subset of B(H). The commutant of M,
denoted byM′, is the set of all operators in B(H) that commute multiplica-
tively with every element in M.

It is easily seen that M′ is a subspace of B(H) and

M ⊆ M′′ = M(iv) = . . . ,

M′ = M′′′ = M(v) = . . . ,

where M′′ denotes (M′)′, and so on. As an example we show that M′ =
M′′′. That M′ ⊆ M′′′ is clear. Let T ∈ M′′′, and let S ∈ M. Then
S ∈ M′′, and thus ST = TS. This holds true for every S ∈ M, and hence
T ∈M′.

Definition 2.4.2. Let M be a *-subalgebra of B(H). We call M a von
Neumann algebra if M =M′′.

Note that B(H) is an example of a von Neumann algebra.

Definition 2.4.3. LetM⊆ B(H) and let R ⊆ H. We denote by [MR] the
closure of the linear span of the set {Aξ : A ∈M, ξ ∈ R}. A *-subalgebra
M⊆ B(H) is called nondegenerate (or to act nondegenerately on H) if
[MH] = H.

Note that any unital *-subalgebra of B(H) acts nondegenrately on H.
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Definition 2.4.4. Let H ⊂ H be a closed vector subspace. We call H
invariant for T ∈ B(H) if TH ⊆ H. Similarly, we call H invariant for
the set T ⊂ B(H) if H is invariant for each T ∈ T . We call H reducing for
T ∈ B(H) if both H and H⊥ are invariant for T , where H⊥ is the orthogonal
complement of H.

Remark 2.4.5. Let P : H→ H be the projection onto H, let H be invariant
for T , and let ξ ∈ H and η ∈ H⊥. Then 0 = 〈Tξ, η〉 = 〈ξ, T ∗η〉, so that H⊥
is invariant for T ∗. Also, if H is reducing for T , and we let x = ξ+ η be any
element in H, where ξ ∈ H and η ∈ H⊥, then

PTx = P (Tξ + Tη) = Tξ = T (Pξ + Pη) = TPx.

Conversely, assume PT = TP and let ξ ∈ H. Then

PTξ = TPξ = Tξ,

which implies that Tξ ∈ H. Also, for η ∈ H⊥ we have

PTη = TPη = 0,

so that Tη ∈ H⊥. Hence H is reducing for T if and only if PT = TP .

Below we present the double commutant theorem of von Neumann, which
gives us another characterization of von Neumann algebras in terms of clo-
sures in the locally convex topologies discussed on B(H). Although the
theorem is stated in the more general form from [3], the proof is based on
the one from [15, Thm 5.3.1, p.326].

Theorem 2.4.6. [3, Thm 2.4.11 & Cor 2.4.15, pp.72-74] LetM be a unital
*-subalgebra of B(H) for some Hilbert space H. Then the strong, σ-strong,
weak and σ-weak operator closures of M in B(H) coincide with M′′.

We present a proof only showing that the the weak and strong operator
closures (which by Theorem 2.3.26 coincide) of M equal M′′. Using Theo-
rem 2.3.25 the other cases are shown similarly, and a proof can be found in
[3, Thm 2.4.11, pp.72-74].

Proof. Firstly, note that M′ is closed in the weak operator topology. Let
T be in the weak operator closure of M′, then there is a net (Tα) in M′
such that Tα → T in the weak operator topology. Given any S ∈ M and
ξ, η ∈ H, then

〈ξ, STη〉 = 〈S∗ξ, Tη〉
= lim

α
〈S∗ξ, Tαη〉

= lim
α
〈ξ, Tα(Sη)〉

= 〈ξ, TSη〉
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Applying this result to (M′)′, it follows thatM′′ is weakly operator closed.
Since M ⊆ M′′, it follows that the weak (and thus the strong) operator
closure of M is contained in M′′.

We show thatM is strongly dense inM′′. Let T ∈M′′ and ξ1, . . . , ξn ∈
H be given. Let H̃ =

⊕n
i=1 H, be the direct sum of H with itself n times,

and for S ∈ B(H), let S̃ =
⊕n

i=1 S, i.e. given an η̃ = (η1, . . . , ηn) ∈ H̃, we
have S̃η̃ = (Sη1, . . . , Sηn). Also, let M̃ = {S̃ : S ∈ M}. Then M̃ is a
*-subalgebra of B(H̃); for if η̃ ∈ H̃ and R̃, S̃ ∈ M̃ are given, then

||S̃η̃|| =
(
||Sη1||2 + · · ·+ ||Sηn||2

)1/2
≤ ||S||

(
||η1||2 + · · ·+ ||ηn||2

)1/2
≤ ||S||||η̃||

(λ1R̃+ λ2S̃)η̃ =

n⊕
i=1

(λ1R+ λ2S)ηi , with λ1, λ2 ∈ C

(R̃S̃)η̃ =
n⊕
i=1

(RS)ηi

and

R̃∗ =
n⊕
i=1

R∗

Hence, M̃ is a *-subalgebra ofB(H̃), and moreover [M̃ξ̃], with ξ̃ = (ξ1, . . . , ξn),
is invariant for M̃. If P : H̃→ [M̃ξ̃] is the orthogonal projection onto [M̃ξ̃],
it follows from Remark 2.4.5 that P commutes with M̃, that is P ∈ M̃′.

We claim that T̃ ∈ M̃′′, as we shall see this will imply the result. If
Mn(B(H)) denotes all the n × n matrices with operators from B(H) as
entries, then Mn(B(H)) is *-isomorphic to B(

⊕n
i=1 Hi) (see for example [19,

pp. 94-95] and [15, pp. 147-149]). Every S̃ ∈ M̃ can be represented as
a matrix having S on the diagonal and zero everywhere else. Easy (but
tedious) matrix calculations show that M̃′ consists of those matrices that
have entries in M′, and M̃′′ consists of those matrices having one operator
from M′′ on the diagonal and zeros elsewhere. Thus, T̃ ∈ M̃′′. From the
preceding paragraph it follows that T̃ commutes with P , and thus [M̃ξ̃] is
invariant for T̃ . By assumption M is unital, and thus M̃ is unital which
implies that ξ̃ ∈ [M̃ξ̃]. Hence T̃ ξ̃ ∈ [M̃ξ̃]. Now since M̃ ξ̃ is dense in [M̃ξ̃],
it follows that, for every ε > 0, there is a S̃ ∈ M̃ such that ||(S̃ − T̃ )ξ̃|| < ε,
that is

||(S̃ − T̃ )ξ̃|| =

(
n∑
i=1

||(S − T )ξi||2
)1/2

< ε

So, ||(S − T )ξi|| < ε for each i = 1, . . . , n , showing that T is in the strong
closure of M.
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It follows that a *-subalgebra of B(H) is a von Neumann algebra if and
only if it is weak (strong) operator closed. There are two consequences of the
double commutant theorem worth highlighting. Firstly, if A ⊂ B(H) is any
self-adjoint set, then A′′ is the smallest von Neumann algebra containing A,
and is called the von Neumann algebra generated by A. Secondly, any von
Neumann algebra is also a C*-algebra. The question of when is a C*-algebra
also a von Neumann algebra, gives rise to a more abstract notion of a von
Neumann algebra independent of B(H), called a W*-algebra, but this will
not be needed in this dissertation.

We now give some important results on continuous linear functionals on
von Neumann algebras. The first is based on [3, Prop 2.4.6, p. 70].

Definition 2.4.7. IfM is a von Neumann algebra, we denote byM∗ the set
of all σ-weakly continuous linear functionals on M, and call it the predual
of M.

Proposition 2.4.8. The σ-strong and σ-weak operator topologies on B(H)
admit the same continuous linear functionals, all of the form
ω(T ) =

∑∞
n=1〈ηn, T ξn〉, where T ∈ B(H) and (ξn), (ηn) ∈ H such that∑∞

n=1 ||ξn||2 <∞ and
∑∞

n=1 ||ηn||2 <∞.

Proof. Since the σ-strong operator topology is finer than the σ-weak opera-
tor topology, every σ-weakly continuous linear functional is also σ-strongly
continuous. Thus, suppose that ω is a σ-strongly continuous linear func-
tional on B(H). By Proposition 2.3.5 there are sequences
(ξ1,n), (ξ2,n), . . . , (ξk,n), n ∈ N, in H such that

∑∞
n=1 ||ξm,n||2 <∞, for

m = 1, 2, . . . , k, and

|ω(T )| ≤ c max
1≤m≤k

( ∞∑
n=1

||Tξm,n||2
)1/2

(2.3)

for every T ∈ B(H) and some constant c. Let [k] := {1, 2, . . . , k} and

H̃ =
⊕

(m,n)∈[k]×N

Hm,n,

with Hm,n = H for each (m,n) ∈ [k]× N, and for T ∈ B(H) let
T̃ =

⊕
(m,n)∈[k]×N T (note that ξ̃ =

⊕
(m,n)∈[k]×N ξm,n is an element of H̃).

Also, let K = {T̃ ξ̃ : T ∈ B(H)}. The the map φ : K → C, given by
φ(T̃ ξ̃) = ω(T ), defines a bounded linear functional on K. To see that φ is
well defined, let T̃1ξ̃ = T̃2ξ̃, then

|ω(T1 − T2)| ≤ c max
1≤m≤k

( ∞∑
n=1

||(T1 − T2)ξm,n||2
)1/2

= 0,
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implying ω(T1) = ω(T2). The linearity is clear and the boundedness follows
from inequality (2.3). Notice that K is a subspace of H̃, and by the Hahn-
Banach theorem φ can be extended to the whole of H̃. Now, by the Riesz
representation theorem there exists an η̃ ∈ H̃ such that

ω(T ) = φ(T̃ ξ̃)

= 〈η̃, T̃ ξ̃〉

=

k∑
m=1

∞∑
n=1

〈ηm,n, T ξm,n〉

=
∞∑
n=1

〈ηn, T ξn〉,

where (ξn) = (ξ1,1, . . . , ξk,1, ξ1,2, . . . , ξk,2, . . .) and similarly for η. Again,
from Proposition 2.3.5 it now follows that ω is σ-weakly continuous.

Proposition 2.4.9. The strong and weak operator topologies on B(H) admit
the same continuous linear functionals, all of the form
ω(T ) =

∑k
n=1〈ηn, T ξn〉, where T ∈ B(H) and ξn, ηn ∈ H for n = 1, . . . , k.

Proof. The proof is similar to that of Proposition 2.4.8, with the exception
that we need only use finite direct sums.

Since the strong operator topology is finer than the weak operator topol-
ogy, every weakly continuous linear functional is also strongly continuous.
Thus, suppose that ω is a strongly continuous linear functional on B(H).
By Proposition 2.3.5 there are ξn ∈ H, n = 1, 2, . . . , k, such that

|ω(T )| ≤ c max
1≤n≤k

||Tξn|| (2.4)

for every T ∈ B(H) and some constant c. Let H̃ =
⊕k

n=1 Hn, with Hn = H

for each n = 1, 2, . . . , k, and for T ∈ B(H) let T̃ =
⊕k

n=1 T (note that

ξ̃ =
k⊕

n=1
ξn is an element of H̃). Also, let K = {T̃ ξ̃ : T ∈ B(H)}. We define

a bounded linear functional φ : K → C, by φ(T̃ ξ̃) = ω(T ), which is well
defined; for if T̃1ξ̃ = T̃2ξ̃, then

|ω(T1 − T2)| ≤ c max
1≤n≤k

||(T1 − T2)ξn|| = 0,

implying ω(T1) = ω(T2). The linearity is clear and the boundedness follows
from inequality (2.4). Since K is a subspace of H̃, φ can be extended to
the whole of H̃ (by the Hahn-Banach theorem). By the Riesz representation
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theorem there exists an η̃ ∈ H̃ such that

ω(T ) = φ(T̃ ξ̃)

= 〈η̃, T̃ ξ̃〉

=
k∑

n=1

〈ηn, T ξn〉.

Again, from Proposition 2.3.5 it now follows that ω is weakly continuous.

Remark 2.4.10. Although Proposition 2.4.8 was stated for B(H), it holds
for any von Neumann algebra M ⊆ B(H). This follows from the fact that
any continuous (with respect to any of the topologies mentioned) linear
functional on B(H) is also a continuous linear functional onM by restriction,
and conversely any continuous linear functional onM can be extended to a
continuous linear functional on B(H) by the Hahn-Banach theorem.

Remark 2.4.11. Given a von Neumann algebra M, then by Proposition
2.4.8 every ω ∈ M∗ is of the form ω(T ) =

∑∞
n=1〈ηn, T ξn〉, with ξn, ηn ∈ H,

and
∑∞

n=1 ||ξn||2 <∞,
∑∞

n=1 ||ηn||2 <∞. But then

|ω(T )| = |
∞∑
n=1

〈ηn, T ξn〉| = p(ηn),(ξn)(T )

where p(ηn),(ξn) is one of the semi-norms that generates the σ-weak operator
topology. Hence, by Theorem 2.3.16 a net (Tα) converges to T in M in the
σ-weak operator topology if and only if ω(Tα)→ ω(T ) for every ω ∈M∗.
Proposition 2.4.12. [3, Prop 2.4.18, p.75] The predual M∗ of a von Neu-
mann algebra M is a Banach space in the norm of M∗, and M = (M∗)∗,
via T (ω) = ω(T ) for T ∈M and ω ∈M∗.
Remark 2.4.13. In [3, Prop 2.4.3, p.68] Proposition 2.4.12 is proved for
B(H) and it is shown that the σ(B(H), B∗(H)) and the σ-weak operator
topologies are same. Proposition 2.4.12 thus justifies the terminology “pre-
dual” introduced in Definition 2.4.7.

Proposition 2.4.14. [25, Thm 4.8, p.82] If A is a *-algebra of operators
acting on a Hilbert space H, then the closed unit ball of A is strongly (oper-
ator) dense in the closed unit ball of the weak closure of A.

Remark 2.4.15. Note that by Theorem 2.3.25, the unit ball of A, as above,
is also σ-strongly, σ-weakly and operator weakly dense in the unit ball of
the weak closure of A.

We end this section with a result on the projections in a von Neumann
algebra, which will prove useful later.

Theorem 2.4.16. [19, Thm 4.1.11(1), p.119] If M is a von Neumann
algebra, then it is the closed linear span of its projections.
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2.5 Conditional Expectations

The exposition in this section is based on [25] (although the main result is
due to Tomiyama in [26]), but all the proofs are given in considerably more
detail.

A key feature of this section is the relationship between the universal en-
veloping von Neumann algebra associated with a C*-algebra and the second
dual of this C*-algebra. We will show the existence of a universal representa-
tion of a C*-algebra, and thus a universal enveloping von Neumann algebra,
and also that there is an isometric *-isomorphism between the second dual
of the C*-algebra and the universal enveloping von Neumann algebra, which
is continuous with respect to some of the locally convex topologies on these
spaces. In other words, the second dual of a C*-algebra can be identified
with a von Neumann algebra through its enveloping von Neumann algebra.
We end this section with the main result of this chapter, which is crucial for
our goal of characterizing relative unique ergodicity, and states that norm
one projections on C*-algebras are conditional expectations.

Lemma 2.5.1. [25, Lem 2.2, p.121] Let A be a C*-algebra and (H, π) a
representation of A. Let Mπ denote the von Neumann algebra π(A)′′ gen-
erated by π(A). Then there is a unique linear map π̃ of the second dual
space A∗∗ of A onto Mπ with the following properties:

(i) The diagram

?

A - Mπ

��
��

�
��

�
��

�
��*

A∗∗

π

i
π̃

commutes, where i indicates the canonical embedding of A into A∗∗.

(ii) π̃ is continuous with respect to the σ(A∗∗,A∗)-topology and the σ-weak
operator topology of Mπ.

(iii) π̃ maps the closed unit ball BA∗∗ of A∗∗ onto the closed unit ball BM
of Mπ.

Proof. To try and keep notation simple we shall throughout the proof just
write M instead of Mπ.
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Let M∗ be the predual of M, that is, the Banach space of all σ-weakly
continuous linear functionals on M. Let

πt :M∗ → A∗

be the transpose of π given by πt(ω) = ω ◦ π, ω ∈ M∗. Let π∗ = πt|M∗ be
the restriction of the transpose of π to M∗ .

Since the dual space ofM∗ isM (see Proposition 2.4.12) it follows that
the transpose map of π∗, denoted by π̃, is a mapping

π̃ : A∗∗ → (M∗)∗ =M,

given by
π̃(φ) = φ ◦ π∗, φ ∈ A∗∗.

Taking into consideration the canonical map i : A → A∗∗ given by
i(a)(ϕ) = ϕ(a) for every ϕ ∈ A∗, we obtain for every a ∈ A and ω ∈ M∗
that

π(a)(ω) = ω ◦ π(a) = π∗(ω)(a) = i(a) ◦ π∗(ω) = π̃(i(a))(ω),

(where the first equality follows from Proposition 2.4.12) so that π̃ ◦ i(a) =
π(a) for every a ∈ A, and hence π̃ ◦ i = π proving (i).

We prove (ii). Suppose (φn)n∈I is a net converging to φ, relative to the
σ(A∗∗,A∗)-topology, in A∗∗. Then, given any ε > 0 and ω ∈ M∗, there
exists an N ∈ I such that for every n > N

|ω(π̃(φn − φ))| = |π̃(φn − φ)(ω)| (by Proposition 2.4.12)

= |(φn − φ) ◦ π∗(ω)|
< ε.

From Remark 2.4.11 it follows that π̃(φn) → π̃(φ) in the σ-weak operator
topology, giving the desired result.

We prove (iii). By Proposition 2.2.14, π maps the open unit ball BA,0
of A into the open unit ball BM,0 ofM. By Proposition 2.2.16, π = π0 ◦ i0,
where π0 is the *-isomorphism of A/ker(π) onto π(A) (and thus an isometry
by 2.2.15) and i0 is the canonical mapping of A onto A/ker(π). This implies
that π maps BA,0 onto BM,0

⋂
π(A). Indeed, let B ∈ BM,0

⋂
π(A), then

B = π(a) for some a ∈ A and

1 > ||B||
= ||π(a)||
= ||π0 ◦ i0(a)||
= ||i0(a)||
= inf

b∈ker(π)
||a+ b||

= inf
b∈a+ker(π)

||b||.
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Hence there must be an element b ∈ a + ker(π) such that ||b|| < 1 and
π(b) = π(a) = B, and hence BM,0

⋂
π(A) ⊆ π(BA,0).

By the Banach-Alaoglu theorem the closed unit ball BA∗∗ of A∗∗ is com-
pact in the σ(A∗∗,A∗)-topology, and by the continuity of π̃ proved in (ii),
it follows that π̃(BA∗∗) is σ-weakly compact (and thus closed) in M. Also,
from

||i(a)|| = sup
ϕ∈A∗
||ϕ||=1

|ϕ(a)| = ||a||,

i is isometric, where the second equality is a consequence of the Hahn-
Banach theorem (see [18, Cor 4.3-4, p.223]), and so i(BA) ⊆ BA∗∗ . Then
we have that π(BA) = π̃(i(BA)) ⊆ π̃(BA∗∗). From Theorem 2.4.6 π(A) is
weakly operator dense inM. Also, the σ-weak closure of the open unit ball
is equal to the σ-weak closure of the closed unit ball, and by Proposition
2.4.14 and Remark 2.4.15 the open unit ball, BM,0

⋂
π(A) = π(BA,0), is

σ-weakly dense in BM. Hence, since π̃(BA∗∗) is σ-weakly closed, we have

BM = π(BA,0)
σw ⊆ π(BA)

σw ⊆ π̃(BA∗∗).

To see the reverse inclusion, note that for φ ∈ A∗∗ and ω ∈M∗

|π̃(φ)(ω)| = |φ(π∗(ω))|
= |φ(ω ◦ π)|
≤ ||φ||||ω||||π||
≤ ||φ||||ω|| (by Theorem 2.2.14).

Taking the supremum over all ω ∈M∗ with ||ω|| = 1, we see that
||π̃(φ)|| ≤ ||φ||, implying ||π̃|| ≤ 1 which give the required inclusion. Hence
π̃(BA∗∗) = BM.

To see that π̃ is onto, we need only consider a T ∈ M with ||T || > 1.
Then 1

||T ||T ∈ BM. By (iii) there is a φ ∈ BA∗∗ such that π̃(φ) = 1
||T ||T .

Then π̃(||T ||φ) = T .
Lastly, we show the uniqueness of π̃. It follows from Theorem 2.3.17

that i(A)
w∗

(i.e. the weak* closure) contains the unit ball of A∗∗ and thus
the whole of A∗∗. Hence i(A) is weak* dense in A∗∗. Now, let κ : A∗∗ →M
be a linear mapping satisfying conditions (i) and (ii). Also let φ ∈ A∗
and (i(an))n∈I be a net in i(A) converging to φ in the weak*-topology (see
Theorem 2.3.10). Then

κ(i(an)) = π(an) = π̃(i(an),

and
κ(φ) = lim

n
κ(i(an) = lim

n
π̃(i(an) = π̃(φ),

where the above two limits are taken in the σ-weak topology.
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Definition 2.5.2. [25, Def 2.3, p.122] Let A be a C*-algebra. For every rep-
resentation (H, π) of A, let Mπ denote the von Neumann algebra (π(A))′′.
A representation (H, π) is called universal if for any other representation
(K, ρ) of A, there exists a σ-weakly continuous *-homomorphism ρ̃ of Mπ

onto Mρ such that ρ(a) = ρ̃ ◦ π(a), a ∈ A. If (H, π) is a universal represen-
tation, thenMπ is called the universal enveloping von Neumann algebra of
A.

Remark 2.5.3. [25, p.122] The universal enveloping von Neumann algebra
is uniquely determined up to isomorphism. For if (H1, π1) and (H2, π2) are
two universal representations of a C*-algebra A, then there exist two σ-
weakly continuous *-homomorphisms

ρ1 :Mπ1 →Mπ2 such that π2 = ρ1 ◦ π1, a ∈ A
ρ2 :Mπ2 →Mπ1 such that π1 = ρ2 ◦ π2, a ∈ A

Hence, ρ2◦ρ1 and ρ1◦ρ2 are the identity maps onMπ1 andMπ2 , respectively,
since πi(A) is σ-weakly dense in Mπi , i = 1, 2. Therefore, ρ1 and ρ2 are
both isomorphisms and inverses of each other.

The following results are based on [25, Theorem 2.4, p.122], and firstly
shows that the second dual of a C*-algebra can be identified with a von Neu-
mann algebra, through the enveloping von Neumann algebra, and secondly
the existence of a universal enveloping von Neumann algebra.

Theorem 2.5.4. [25, Thm 2.4, p.122] Let A be a C*-algebra. Then there is
a unique isometry π̃, from the second dual A∗∗ of A ontoMπ, for some rep-
resentation (H, π), such that A∗∗ can be viewed as a C*-algebra isomorphic
to Mπ. Moreover, π̃ is a homeomorphism with respect to the σ(A∗∗,A∗)-
topology and the σ-weak operator topology on Mπ.

Proof. For every ω ∈ A∗+, let (Hω, πω,Ωω) be the cyclic representation of A
induced by ω. Let (H, π) be the representation of A as in Theorem 2.2.19,
that is let H =

⊕
ω∈A∗+

Hω, and for every ξ =
⊕

ω∈A∗+
ξω ∈ H and a ∈ A let

π(a)ξ =
⊕

ω∈A∗+
πω(a)ξω. Then by Lemma 2.5.1 there exists a unique linear

map π̃ of A∗∗ onto Mπ. We will again, for simplicity, just write M instead
of Mπ. We show that for every ω ∈ A∗, there are ξ, η ∈ H such that
ω(a) = 〈η, π(a)ξ〉. So, to this end let ω ∈ A∗, then following Remark 2.2.12
we can write ω = ω1−ω2 + i(ω3−ω4) where ωi ∈ A∗+ and ωi induces a cyclic

30

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



representation (Hωi , πωi ,Ωωi) of A, for i = 1, . . . , 4. Then for every a ∈ A

ω(a)

= ω1(a)− ω2(a) + i(ω3(a)− ω4(a))

= 〈Ωω1 , πω1(a)Ωω1〉 − 〈Ωω2 , πω2(a)Ωω2〉
+ i〈Ωω3 , πω3(a)Ωω3〉 − i〈Ωω4 , πω4(a)Ωω4〉

= 〈Ωω1 ⊕ Ωω2 ⊕ Ωω3 ⊕ Ωω4 ,

[πω1(a)⊕ πω2(a)⊕ πω3(a)⊕ πω4(a)][Ωω1 ⊕ (−Ωω2)⊕ (iΩω3)⊕ (−iΩω4)]〉
= 〈η, π(a)ξ〉,

where η =
⊕

ω∈A∗+
ηω ∈ H if we let ηωi = Ωωi , i = 1, . . . , 4 and otherwise

ηω = 0 for ω 6= ωi, i = 1, . . . , 4, and similarly ξ =
⊕

ω∈A∗+
ξω ∈ H by letting

ξω1 = Ωω1 , ξω2 = −Ωω2 , ξω3 = iΩω3 , ξω4 = −iΩω4 and ξω = 0 for all other
ω ∈ A∗. We show that π∗(M∗) = A∗, where π∗ is transpose map as defined
in Lemma 2.5.1. Indeed, given any ω ∈ A∗, say ω = ω(π;ξ,η), and for every
a ∈ A

ω(ξ,η)(π(a)) = ω(π;ξ,η)(a)

defines a weakly operator continuous linear functional on π(A), which can
be extended by continuity toM. By Proposition 2.4.9 ω(ξ,η) is weakly (and
thus σ-weakly) continuous, and so we have ω(ξ,η) ∈M∗. We show that this
in turn implies that π̃ is injective. If φ ∈ A∗∗ and π̃(φ) = 0, then for every
ω ∈M∗ we have

0 = π̃(φ)(ω) = φ ◦ π∗(ω),

and because π∗(M∗) = A∗ we have that φ = 0.
We can now show that π̃ is an isometry. By multiplying an element by

the reciprocal of its norm, it will suffice to only consider elements of norm
one. By considering Lemma 2.5.1(iii) and the fact that π̃ is a bijection, it
follows that π̃|BA∗∗ : BA∗∗ → BM is a bijection. So, given any φ ∈ A∗∗ with
||φ|| = 1, then ||π̃(φ)|| ≤ 1, so π̃(φ) 6= 0 (because π̃ is bijective and φ 6= 0)
and ||π̃−1( 1

||π̃(φ)|| π̃(φ))|| ≤ 1, which implies ||φ|| ≤ ||π̃(φ)||, so that

1 = ||φ|| ≤ ||π̃(φ)|| ≤ 1.

Hence π̃ is an isometry.
Since we want to show that A∗∗ is *-isomorphic to a von Neumann alge-

bra, we need to make A∗∗ a C*-algebra. Thus, we define the multiplication
operation on A∗∗ as follows: for every φ, ψ ∈ A∗∗,

φψ := π̃−1(π̃(φ)π̃(ψ)).

That this product is well defined is clear, and it is easily checked that the
axioms of an algebra are satisfied. Furthermore, since π̃ an isometry, we

31

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



have

||φψ|| = ||π̃−1(π̃(φ)π̃(ψ))|| = ||π̃(φ)π̃(ψ)|| ≤ ||π̃(φ)||||π̃(ψ)|| = ||φ||||ψ||.

Hence A∗∗ is a Banach algebra. We define an involution on A∗∗ for every
φ ∈ A∗∗ by

φ~ := π̃−1 (π̃(φ)∗) .

Indeed, for every φ, ψ ∈ A∗∗,

(φ~)~ = π̃−1
(
π̃(φ~)∗

)
= π̃−1(π̃(φ)∗∗) = φ,

and

(φψ)~ = π̃−1 (π̃(φψ)∗)

= π̃−1 ((π̃(φ)π̃(ψ))∗)

= π̃−1 (π̃(ψ)∗π̃(φ)∗)

= π̃−1
(
π̃(ψ~)π̃(φ~)

)
= π̃−1

(
π̃(ψ~φ~)

)
= ψ~φ~,

making A∗∗ a Banach *-algebra. Moreover, A∗∗ is a C*-algebra by

||φ~φ|| = ||π̃(φ~φ)|| = ||π̃(φ)∗π̃(φ)|| = ||π̃(φ)||2 = ||φ||2.

We show that π̃ is a *-isomorphism. The linearity of π̃ follows from
its definition in Lemma 2.5.1, and since π̃ is bijective, it follows from the
definition of multiplication and the involution on A∗∗ that for every φ, ψ ∈
A∗∗ we have

π̃(φψ) = π̃(φ)π̃(ψ),

and
π̃(φ~) = π̃(φ)∗.

Hence π̃ is an (isometric) *-isomorphism of the C*-algebra A∗∗ onto the the
von Neumann algebra M.

To be able to identifyA∗∗ withM, we need to show they are topologically
the same, that is, π̃ is a homeomorphism with respect to the σ(A∗∗,A∗)-
and σ-weak operator topologies. We only need to show π̃−1 continuous in
this regard, since the continuity of π̃ was shown in Lemma 2.5.1(ii). Let
(π̃(φn)) be a net converging to π̃(φ) in the σ-weak operator topology onM.
Then, for every ω ∈ M∗ and ε > 0 there exists a N ∈ I such that for all
n > N we have

|ω(π̃(φn))− ω(π̃(φ))| < ε.
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If ϕ ∈ A∗, then ϕ = π∗(ω) (as shown earlier) for some ω ∈ M∗ and by the
definition of π̃ and Proposition 2.4.12

|φn(ϕ)− φ(ϕ)| = |(φn − φ)(π∗(ω))|
= |ω(π̃(φn))− ω(π̃(φ))|
< ε,

for n > N . Thus, φn → φ in the σ(A∗∗,A∗)-topology, that is π̃−1(π̃(φn))→
π̃−1(π̃(φ)), so that π̃−1 is continuous as required.

Remark 2.5.5. Note that in Lemma 2.5.1 there is no algebraic structure
on A∗∗. But, in Theorem 2.5.4 we showed that A∗∗ can be viewed as a von
Neumann algebra, and hence has a *-algebraic structure. With this in mind
we can now show that the π̃ (obtained from an arbitrary representation π)
in Lemma 2.5.1 is a *-homomorphism with this algebraic structure. Also
note that the π̃ in Theorem 2.5.4 is a special case of the π̃ in Lemma 2.5.1,
and was obtained from a specific representation.

Lemma 2.5.6. Let A be a C*-algebra and (H, π) any representation of A.
Then the unique linear map π̃ : A∗∗ → Mπ given by Lemma 2.5.1 is a
*-homomorphism.

Proof. Let ρ̃ : A∗∗ → Mρ be the * -isomorphism given by Theorem 2.5.4,
obtained from the representation (H, ρ). Then ρ̃◦i = ρ, and thus i = ρ̃−1◦ρ,
so that i is a *-homomorphism. By Lemma 2.5.1 π̃ is linear, and we have
π̃ ◦ i = π, where i : A → A∗∗, so that π̃

∣∣
i(A)

is a *-homomorphism, because

both π and i are.
Since the mappings a 7→ ab and b 7→ ab are σ-weakly continuous in

any von Neumann algebra (see for example [3, Prop. 2.4.2, p. 68]), and π̃
is a homeomorphism with respect to the weak* and σ-weak topologies on
A∗∗ and Mπ, respectively, these mappings will also be continuous in the
weak*-topology on A∗∗.

So, let a ∈ A and φ ∈ A∗∗. Since i(A) is weak* dense in A∗∗, there is
a net i(bα) in i(A) converging to φ in the weak* topology. Then from the
facts that π̃

∣∣
i(A)

is a *-homomorphism and that the mappings b 7→ ab and

π̃ are weak* continuous, we have

π̃(i(a)φ) = π̃(lim
α

(i(a)i(bα))

= lim
α
π̃((i(a)i(bα))

= lim
α

[π̃((i(a))π̃(i(bα))]

= π̃((i(a))(lim
α
π̃(i(bα)))

= π̃((i(a))π̃(φ) (2.5)
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Now let φ, ψ ∈ A∗∗, then there is a net i(aα) in i(A) converging to ψ in the
weak* topology, and by the weak* continuity of a 7→ ab and π̃ we have

π̃(ψφ) = π̃(lim
α

(i(aα)φ)

= lim
α
π̃(i(aα)φ)

= lim
α

[π̃(i(aα))π̃(φ)] (by Equation (2.5))

= (lim
α
π̃(i(a)))π̃(φ)

= π̃(ψ)π̃(φ).

Similarly, since π̃
∣∣
i(A)

is a *-homomorphism and the mapping a 7→ a∗ is

σ-weakly continuous in Mπ and thus weak* continuous in A∗∗, we have for
any φ ∈ A∗∗ a net i(aα) in i(A) converging to φ in the weak* topology, so
that

π̃(φ∗) = π̃(lim
α

(i(aα)∗)

= lim
α
π̃(i(aα)∗)

= lim
α
π̃(i(aα))∗

= [lim
α
π̃(i(aα))]∗

= π̃(φ)∗.

Hence π̃ is a *-homomorphism.

We now show the existence of a universal enveloping von Neumann al-
gebra as a corollary to Theorem 2.5.4.

Corollary 2.5.7. [25, Thm 2.4, p.122] A C*-algebra A admits a universal
representation (H, ρ), hence the universal enveloping von Neumann algebra
Mρ.

Proof. Let ρ̃ be the *-isomorphism given by Theorem 2.5.4, and let (Hπ, π)
be any other representation of A, with π̃ the linear map of A∗∗ ontoMπ as
given by Lemma 2.5.1. We define π̃0 :Mρ →Mπ by π̃0 = π̃ ◦ ρ̃−1. Then π̃0

is linear, onto and σ-weakly continuous. Also, for every φ ∈ A∗∗, we have
π̃(φ) = π̃0 ◦ ρ̃(φ), so that π̃0 is a σ-weakly continuous homomorphism ofMρ

onto Mπ.

We present two auxiliary results, followed by the main result of this
chapter.

Lemma 2.5.8. Let b, p ∈ B(H), with H some Hilbert space, such that
0 ≤ b ≤ p and p is a projection. Then pbp = b.
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Proof. We begin by showing that b(pH)⊥ = 0, where (pH)⊥ denotes the
orthogonal compliment of the set {px : x ∈ H} ⊆ H. Let x ∈ (pH)⊥, then
from the assumption that 0 ≤ b ≤ p it follows that 〈x, (p− b)x〉 ≥ 0, which
then implies that 0 = 〈x, px〉 ≥ 〈x, bx〉 ≥ 0. Hence 〈x, bx〉 = 0, for every
x ∈ (pH)⊥, and by the positivity of b, we have that

0 = 〈x, (b1/2)∗b1/2x〉 = 〈b1/2x, b1/2x〉 = ||b1/2x||.

Thus bx = b1/2b1/2x = 0 for every x ∈ (pH)⊥. Now, if y ∈ pH and x ∈ (pH)⊥,
then

〈x, by〉 = 〈b∗x, y〉 = 〈bx, y〉 = 〈0, y〉 = 0,

and so b(pH) ⊆ pH. For an arbitrary x ∈ H, put y = px ∈ pH and
z = (1 − p)x ∈ (pH)⊥, so that x = y + z. Then bx = by + bz = by, and
pbpx = pby = by = bx. Hence pbp = b.

Lemma 2.5.9. Let p, q ∈ B(H) be projections on some Hilbert space H such
that p⊥q, and let a, b ∈ B(H) be arbitrary. Then

||paq + qbp|| = max{||paq||, ||qbp||}.

Proof. Let x ∈ H and m = max{||paq||, ||qbp||}. Then using the inner
product on H, and the fact p⊥q we have that

||(paq + qbp)x||2 = ||(paq)x||2 + ||(qbp)x||2

= ||(paq)qx||2 + ||(qbp)px||2

≤ ||(paq)||2||qx||2 + ||(qbp)||2||px||2

≤ m2(||qx||2 + ||px||2)

= m2||(q + p)x||2

≤ m2||x||2,

implying that ||paq + qbp|| ≤ m. On the other hand, we also have that

||(paq)x||2 ≤ ||(paq)x||2 + ||(qbp)x||2

= ||(paq + qbp)x||2,

and taking the supremum over all ||x|| = 1 we obtain ||paq|| ≤ ||paq+ qbp||.
Similarly, we get ||qbp|| ≤ ||paq + qbp||, so that m ≤ ||paq + qbp||. Hence
||paq + qbp|| = max{||paq||, ||qbp||}.

Definition 2.5.10. Let A be a C*-algebra and B a C*-subalgebra of A. A
projection of A onto B is a linear map E : A → B such that E(b) = b for
every b ∈ B. A projection of A onto B of norm one is projection such that
||E(a)|| ≤ ||a|| for every a ∈ A.
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Notice that if E is a projection of norm one, as in the above definition,
then E is bounded and ||E|| ≤ 1 , by taking the supremum over all a ∈ A
with ||a|| = 1. But, we also have ||E|| = ||E2|| ≤ ||E||2, so that 1 ≤ ||E||,
and thus ||E|| = 1 (hence the terminology).

Definition 2.5.11. A projection E : A → B satisfying the properties

(i) E(x∗x) ≥ 0, for every x ∈ A,

(ii) E(axb) = aE(x)b, for every a, b ∈ B and x ∈ A, and

(iii) E(x)∗E(x) ≤ E(x∗x), for every x ∈ A.

is called a conditional expectation.

We shall see shortly that condition (iii) is in fact a consequence of (ii),
but we include it none the less in the definition.

Theorem 2.5.12. [25, Thm 3.4, p.131] Let A be a unital C*-algebra, B a
C*-subalgebra of A such that 1A = 1B, and let E : A → B be a projection of
norm one. Then E is a conditional expectation.

Proof. We first prove property (i) in Definition 2.5.11. Let A∗+ and B∗+
denote the sets of all positive linear functional on A and B, respectively.
Also, let Et : B∗ → A∗ denote the transpose mapping. Then for every
ω ∈ B∗+ we have

||Et(ω)|| = sup
a∈A
||a||=1

|Et(ω)(a)|

= sup
a∈A
||a||=1

|ω(E(a))|

≤ sup
a∈A
||a||=1

||ω||||E||||a||

= ||ω||,

and we also have by the positivity of ω and Theorem 2.2.9 that

Et(ω)(1A) = ω(E(1A))

= ω(1B)

= ||ω||.

Hence ||ω|| = |Et(ω)(1A)| ≤ ||Et(ω)|| ≤ ||ω||, which implies that
Et(ω)(1A) = ||Et(ω)||, and thus, by Theorem 2.2.9, Et(ω) ∈ A∗+. Now,
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since Et(ω) is a positive linear functional, it must be self-adjoint and then
for every ω ∈ B∗+ and every a ∈ A we have

ω(E(a∗)) = Et(ω)(a∗)

= Et(ω)∗(a)

= Et(ω)(a)

= ω(E(a))

= ω(E(a)∗).

Since, by Remark 2.2.12 every bounded linear functional can be written as
a linear combination of positive linear functionals, it follows that

|ω(E(a∗)− E(a)∗)| = 0,

for every ω ∈ B∗, and thus by the Hahn-Banach theorem E(a∗) = E(a)∗.
Given any a ∈ A+, from the fact that Et(ω) is positive for every ω ∈ B∗+,

we have ω(E(a)) = Et(ω)(a) ≥ 0, so it follows from Theorem 2.2.8 that
E(a) is positive. Hence E maps A+ into B+. And, since E(b) = b for every
b ∈ B+, the map is onto.

We now prove property (ii). As was done earlier in this chapter, if we
consider the double transpose mapping

Ett : A∗∗ → B∗∗

and the universal enveloping von Neumann algebras of A and B, we may as
well assume that A is a von Neumann algebra and B is a weakly closed *-
subalgebra (i.e. von Neumann subalgebra) of A. Then, by Theorem 2.4.16,
it will be sufficient to show for every x ∈ A and for every projection e ∈ B
that

E(ex) = eE(x) and E(xe) = E(x)e.

By Proposition 2.2.4 if a ∈ A and 0 ≤ a ≤ 1A, then 0 ≤ eae ≤ e, and by
property (i) we have 0 ≤ E(eae) ≤ E(e) = e. Then by Lemma 2.5.8 we
have that

E(eae) = eE(eae)e. (2.6)

Moreover, Equation (2.6) holds for every a ∈ A. Indeed, let a ∈ A be self-
adjoint with ||a|| ≤ 1. By Proposition 2.2.5 we can write a = a+ − a−, with
a+ and a− unique positive elements such that a+a− = a−a+ = 0 and
||a|| = max{||a+||, ||a−||}. Hence ||a+||, ||a−|| ≤ 1. Consider the abelian C*-
algebra generated by {a+, 1A}. Using the Gelfand representation (Theorem
2.2.22) we see that 0 ≤ a+ ≤ 1A. Similarly 0 ≤ a− ≤ 1A. Thus Equation
(2.6) holds for both a+ and a−, and also for their difference, since it is linear
in a. Hence Equation (2.6) holds for any self-adjoint a ∈ A, since it holds
for a = 0, and for a 6= 0, 1

||a||a has norm one, to which the above argument
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can be applied, and the required result follows by the linearity of Equation
(2.6) in a. An arbitrary a ∈ A can be written as a linear combination of two
self-adjoint elements, and again 1

||a||a has norm one, so that Equation (2.6)
holds for every a ∈ A.

Put x̃ = E(ex(1A − e)) for x ∈ A with ||x|| ≤ 1. Then for every λ > 0,
we have

||x̃+ λe||2 = ||E(ex(1A − e) + λe)||2

≤ ||ex(1A − e) + λe||2

= ||(ex(1A − e) + λe)(ex(1A − e) + λe)∗||
= ||ex(1A − e)x∗e+ λ2e||
≤ ||e|| ||x|| ||1A − e|| ||x∗|| ||e||+ λ2||e||
≤ ||x||2 + λ2

≤ 1 + λ2 (2.7)

Put h = 1
2(x̃+ x̃∗) and k = 1

2i(x̃− x̃
∗). Suppose that ehe 6= 0. Because ehe

is self-adjoint, we can, by considering −x instead of x if necessary, assume
that the spectrum of ehe contains an α > 0. Then

||x̃+ λe|| = ||ex̃e+ λe+ (x̃− ex̃e)||
= ||e(x̃+ λ1B)e+ x̃− ex̃e||
≥ ||e(e(x̃+ λ1B)e+ x̃− ex̃e)e||
= ||e(x̃+ λ1B)e||
= ||ex̃e+ λe||

≥ ||1
2

((ex̃e+ λe) + (ex̃e+ λe)∗)||

= ||ehe+ λe||
≥ α+ λ. (2.8)

The last inequality can be seen by considering the abelian C*-algebra C
generated by the self-adjoint elements ehe and e as follows: By Theorem
2.2.21 and the Gelfand representation theorem (Theorem 2.2.22) for abelian
C*-algebras, this C*-algebra is isomorphic to the algebra of all continuous
complex valued functions on some compact Hausdorff space, say X, where
their ranges are precisely their spectra. Thus ehe(z) = α for some z ∈ X,
and e(z) = 1, since e is the identity of C. Then

||ehe+ λe|| = sup
y∈X
|ehe(y) + λe(y)|

≥ ehe(z) + λe(z)

= α+ λ.

From inequalities (2.7) and (2.8) we obtain for a λ sufficiently large

||x̃+ λe|| ≥ α+ λ > (1 + λ2)1/2 ≥ ||x̃+ λe||,
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which is a contradiction. Thus ehe = 0. Similarly eke = 0, and thus

ex̃e = 0. (2.9)

Since this holds for every projection in B, if we replace e with the projection
(1B − e), we obtain (1B − e)E((1A − e)xe)(1B − e) = 0. Taking adjoints,
using the fact that E(a∗) = E(a)∗ for a ∈ A and replacing x with x∗ (which
is allowed, since x ∈ A, with ||x|| ≤ 1 was arbitrary) we obtain

(1B − e)x̃(1B − e) = 0. (2.10)

Next we suppose that (1B − e)x̃e 6= 0. Since ex̃e = (1B − e)x̃(1B − e) = 0,
we have, by Lemma 2.5.9, for a λ > 0 large enough

||x̃+ λ(1B − e)x̃e|| = ||x̃− ex̃e− (1B − e)x̃(1B − e) + λ(1B − e)x̃e||
= ||ex̃(1B − e) + (1 + λ)(1B − e)x̃e||
= max{||ex̃(1B − e)||, (1 + λ)||(1B − e)x̃e||}
= (1 + λ)||(1B − e)x̃e||.

But, since (1B − e), x̃, e ∈ B, using Lemma 2.5.9 again, we have for a suffi-
ciently large λ > 0,

||x̃+ λ(1B − e)x̃e|| = ||E(ex(1A − e)) + λ(1B − e)x̃e||
= ||E(ex(1A − e) + λ(1B − e)x̃e)||
≤ ||ex(1A − e) + λ(1B − e)x̃e||
= max{||ex(1A − e)||, λ||(1B − e)x̃e||}
= λ||(1B − e)x̃e||,

which is a contradiction. Hence

(1B − e)x̃e = 0. (2.11)

Then using Equations (2.9), (2.10) and (2.11) we obtain

x̃ = ex̃+ x̃e− ex̃e (from (2.10))

= ex̃− ex̃e+ x̃e− ex̃e (from (2.9))

= ex̃− ex̃e+ (1B − e)x̃e
= ex̃(1B − e). (from (2.11)) (2.12)

Now, since we can write

x = exe+ ex(1A − e) + (1A − e)xe+ (1A − e)x(1A − e), (2.13)

we obtain the equality

eE(x)(1B − e) = eE(exe)(1B − e) + eE(ex(1A − e))(1B − e)
+ eE((1A − e)xe)(1B − e) + eE((1A − e)x(1A − e))(1B − e). (2.14)
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Using Equation (2.6) the first term in Equation (2.14) becomes

eE(exe)(1B − e) = eeE(exe)e(1B − e) = 0.

Also, using Equation (2.11), applied to x∗ instead of x, the third term in
Equation (2.14) becomes

eE((1A − e)xe)(1B − e) = ((1B − e)E(ex∗(1A − e))e)∗ = 0.

Lastly, again using Equation (2.6), but replacing e with (1B− e), the fourth
term in Equation (2.14) is also zero. Hence, using Equation (2.12), we have
from Equation (2.14)

eE(x)(1B − e) = eE(ex(1A − e))(1B − e)
= E(ex(1A − e)). (2.15)

In the same way as above we can again use Equation (2.13) to obtain

eE(x)e = eE(exe)e+eE(ex(1A−e))e+eE((1A−e)xe)e+eE((1A−e)x(1A−e))e,

and eE(exe)e = E(exe) by Equation (2.6), eE(ex(1A − e))e = eE((1A −
e)xe)e = 0 by Equation (2.9) and eE((1A−e)x(1A−e))e = 0 from Equation
(2.6) by replacing e with (1B − e). Hence

eE(x)e = E(exe),

and finally implies (by multiplying out Equation 2.15) that

eE(x) = E(ex). (2.16)

The above equation is for ||x|| ≤ 1. For an arbitrary x 6= 0 we apply it
to x
||x|| , and for x = 0 it is trivial. Hence eE(x) = E(ex) for any x ∈ A.

Taking the involution on both sides of Equation (2.16) and using the fact
that E(x∗) = E(x)∗ and replacing x by x∗, we obtain

E(x)e = E(xe),

which proves (ii).
Lastly we show property (iii). Let x ∈ A, then

0 ≤ E((x− E(x))∗(x− E(x)))

= E(x∗x− E(x)∗x− x∗E(x) + E(x)∗E(x))

= E(x∗x)− E(x)∗E(x)− E(x∗)E(x) + E(x)∗E(x)

= E(x∗x)− E(x∗)E(x),

and hence E(x∗)E(x) ≤ E(x∗x) (since we already know E(x∗) = E(x)∗).
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It is worth mentioning that in the theorem above, the requirements that
the C*-algebras be unital and that they have they same units, are in fact
unnecessary, as shown in [25, Thm 3.4, p.131]. But since we will only be
working with unital C*-algebras, this will suffice.

Proposition 2.5.13. Let E : A → B be a conditional expectation. Then

(i) E(a∗) = E(a)∗ for every a ∈ A, and

(ii) ||E|| = 1, i.e. E is a projection of norm one.

Proof. We show (i). Let a ∈ A, then it can be decomposed into a linear
combination of two self-adjoint elements, and by Proposition 2.2.5 further
decomposed into the form a = a1 − a2 + ia3 − ia4, where ai, i = 1, . . . , 4 are
unique positive elements in A. Hence since E is a conditional expectation
it follows that E(ai) ≥ 0 for each i = 1, . . . , 4. Then

E(a∗) = E((a1 − a2 + ia3 − ia4)∗)

= E(a∗1 − a∗2 − ia∗3 + ia∗4)

= E(a∗1)− E(a∗2)− iE(a∗3) + iE(a∗4)

= E(a1)− E(a2)− iE(a3) + iE(a4)

= E(a1)∗ − E(a2)∗ + (iE(a3))∗ − (iE(a4))∗

= (E(a1)− E(a2) + iE(a3)− iE(a4))∗

= E(a1 − a2 + ia3 − ia4)∗

= E(a)∗.

We show (ii). We have that ||E(a)||2 = ||E(a)∗E(a)|| ≤ ||E(a∗a)||. But,
a∗a ≤ ||a||21A, so E(||a||21A − a∗a) ≥ 0, and thus
E(a∗a) ≤ E(||a||21A) ≤ ||a||21A. Hence ||E(a)|| ≤ ||a||.
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Chapter 3

C*-Dynamical Systems

The aim of this chapter is mainly to construct examples of noncommutative
dynamical systems, some of which involving more general groups actions
than Z, and in some sense generalizes classical (commutative) dynamical
systems. Hence, we begin by giving some definitions and move straight on
to the constructions. Classical dynamical systems will not be dealt with
in any detail, but some definitions are given so as to draw on the analogy
between the classical and noncommutative cases.

The examples of C*-dynamical systems are chosen to illustrate the er-
godic notions discussed in Chapter 4. Our first two examples are on the
noncommutative torus, one with an R2-action and the other with an R-
action. The third is on the C*-algebra generated by the annihilation and
creation operators on a deformed Fock space, and lastly we consider a shift
on an infinite tensor product of C*-algebras.

3.1 Definitions

Definition 3.1.1. Let Ω be a measure space, B the σ-algebra on Ω, µ
a probability measure and T a group homomorphism from some group G
into the group of all bijective mapping on Ω such that for each of these
bijections, say Tg with g ∈ G, we have µ(T−1

g B) = µ(B) for every B ∈ B and
T−1
g (B) ⊆ B. In this case we say µ is T -invariant and we call (X,B, µ, T )

a measure preserving system (m.p.s.).

It is important to to keep in mind that, although we have given the
classical definition of measure preserving systems, we will actually consider
noncommutative topological dynamical systems. Classically, this means that
in our definition above Ω will be a compact Hausdorff space, B the Borel
σ-algebra and T : Ω → Ω a homeomorphism, and no specific measure is
used. We are rather concerned with existence of a unique measure. The
reason for giving the measure theoretic definition is that many of our char-
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acterizations will rely on their commuatative counterpart. We now give the
noncommutative version(s).

Let A be a C*-algebra and let Aut(A) denote the set of all automorphism
on A. It is easily checked that Aut(A) is a group under composition.

Definition 3.1.2. Let A be a unital C*-algebra and α : G → Aut(A), a
group homomorphism from some group G into the group of automorphisms
on A. Then we shall call α an action of G on A and we call (A, α) a
C*-dynamical system.

Definition 3.1.3. Let (A, α) be a C*-dynamical system and let ω be a state
on A such that ω ◦ α(g) = ω for every g ∈ G, then we call (A, α, ω) a state
preserving C*-dynamical system, and we say that ω is α-invariant.

The existence of such an α-invariant state is shown later in Proposition
4.1.5. If no ambiguity can arise we shall refer to both (A, α) and (A, α, ω)
as C*-dynamical systems.

3.2 Non-commutatve torus with an R2-action and
an R-action

We follow the same construction as in [28, p.109] for the noncommutative
torus, and we use the same dynamics on the torus as done in [6].

Let T2 = R2/Z2 = {(a, b) + Z2 : (a, b) ∈ R2} denote the classical (or
commutative) torus. We firstly construct a dynamical system on the classical
torus, from which we generalize to a non-commutative version.

We shall denote the equivalence classes in T2 by square brackets, i.e. for
x, y ∈ R we have [x, y] ∈ T2, where [x, y] = {(x + n, y + m) : m,n ∈ Z}.
With addition defined in the usual way, T2 is a group, and furthermore,
considering the Borel σ-algebra B on T2, there exists a left translation
invariant measure µ (the Haar measure) on T2. But, since T2 is a compact
group, it follows that the Haar measure is both left and right translation
invariant, and finite (see [4, Prop 9.3.3 and Prop 9.3.5, pp. 313-314]). Thus,
normalising the Haar measure we obtain the probability space (T2,B, µ).
We move on to the dynamics on the torus; for each (s, t) ∈ R2 we define
T(s,t) : T2 → T2 by

T(s,t)[x, y] = [x+ s, y + t].

Thus T(s,t) is just a translation on the torus, and is well defined for every
(s, t) ∈ R2, since

[x, y] = [u, v]⇐⇒x− u ∈ Z and y − v ∈ Z
⇐⇒(x+ s)− (u+ s) ∈ Z and (y + t)− (v + t) ∈ Z
⇐⇒[x+ s, y + t] = [u+ s, v + t].
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It is clear that T(s,t) is bijective, with its inverse given by T−1
(s,t) = T(−s,−t).

Being a translation, it follows that both T−1
(s,t) and T(s,t) are measurable with

respect to the Borel σ-algebra (since a translation on a locally compact
group is a homeomorphism, see [4, Prop 9.1.1, p. 298]) and, that µ is T(s,t)-
invariant. Hence, T = {T(s,t) : (s, t) ∈ R2} is a group action from R2 on T2,
giving the measure preserving dynamical system (T2,B, µ, T ).

We now move on to the non-commutative torus. We take as our Hilbert
space L2(µ) (which is short for L2(T2,B, µ)), and define for any θ ∈ R, the
linear operators V,W : L2(µ)→ L2(µ) by

(V f)([x, y]) = eixf([x, y − θ

2
]) (3.1)

(Wf)([x, y]) = eiyf([x+
θ

2
, y]). (3.2)

Their inverses are given by

(V −1f)([x, y]) = e−ixf([x, y +
θ

2
])

(W−1f)([x, y]) = e−iyf([x− θ

2
, y]).

That they are indeed inverses are easily seen by

V −1(V f)([x, y]) = e−ix(V f([x, y +
θ

2
])) = f([x, y])

and

V (V −1f)([x, y]) = eix(V f([x, y − θ

2
])) = f([x, y]),

and similarly forW andW−1. Moreover, the operators V andW are unitary,
for if f, g ∈ L2(µ) then by the translation invariance of µ

〈V f, V g〉2 =

∫
T2

(V f)(V g)dµ

=

∫
T2

(eixf [x, y − θ

2
])(eixg[x, y − θ

2
])dµ[x, y]

=

∫
T2

(f [x, y − θ

2
])(g[x, y − θ

2
])dµ[x, y]

=

∫
T2

(f)(g)dµ

= 〈f, g〉2,
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and similarly for W . From equations (3.1) and (3.2) we obtain

(VW )f([x, y]) = V (Wf([x, y]))

= eix(Wf)([x, y − θ

2
])

= eix+iy−i θ
2 f([x+

θ

2
, y − θ

2
])

= e−iθeix+iy+i θ
2 f([x+

θ

2
, y − θ

2
])

= e−iθeiy(V f)([x+
θ

2
, y])

= e−iθW (V f)([x, y])

= e−iθ(WV )f([x, y]).

Hence we have the commutation relation

VW = e−iθWV. (3.3)

Let Aθ denote the C*-subalgebra of B(L2(µ)) generated by these two uni-
tary operators, which we then call the non-commutative torus. Notice, from
Equation (3.3), that for θ = 0, the these unitary operators commute, and can
be seen as functions in C(T2) (with V ([x, y]) = eix and W ([x, y]) = eiy), and
thus the C*-algebra generated by them is a (commutative) C*-subalgebra
of C(T2). In fact, one can show via the Stone-Weierstrass Theorem that
this C*-subalgebra is precisely C(T2). In this light we see Aθ as a gener-
alization of the continuous functions on the classical torus, and hence the
non-commutative “torus”.

Next we put some dynamics on Aθ to obtain a C*-dynamical system
that generalizes the dynamical system (T2,B, µ, T ). We start by defining
for every (s, t) ∈ R2, a unitary operator U(s,t) : L2(µ) → L2(µ) with the
Koopman construction. That is, for every f ∈ L2(µ), we define

(U(s,t)f)[x, y] := f(T(s,t)[x, y]).

That U(s,t) is an isometry and unitary follows from the translation invariance
of µ as follows:

||U(s,t)f ||22 =

∫
T2

|U(s,t)f |2dµ

=

∫
T2

|f ◦ T(s,t)|2dµ

=

∫
T2

|f |2dµ

= ||f ||2.
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One easily sees that U−1
(s,t) = U(−s,−t), so U(s,t) is unitary. We use this group

of unitaries to define our group action, α : R2 → Aut(Aθ), as follows: for
every (s, t) ∈ R2 we let

α(s,t)(a) := U(s,t)aU
∗
(s,t).

It is clear that with this definition α(s,t) is linear, multiplicative, isometric
and preserves adjoints. We need to show that α(s,t) is well defined in the
sense that α(s,t)(Aθ) ⊆ Aθ, and we do this on the *-algebra generated by V
and W . By all the properties of each α(s,t) mentioned above and Equation
(3.3), it suffices to only consider elements of the form V mWn, with m,n ∈ Z,
and show that α(s,t)(V

mWn) ∈ Aθ. So, for every (s, t) ∈ R2, [x, y] ∈ T2 and
f ∈ L2(µ), we have(
α(s,t)(V

mWn)f
)

[x, y] = U(s,t)(V
mWnU∗(s,t)f)[x, y]

= (V mWnU∗(s,t)f)[x+ s, y + t]

= ei(s+x)m(WnU∗(s,t)f)[x+ s, y + t− θ

2
m]

= ei(s+x)mei(t+y−
θ
2
m)n(U∗(s,t)f)[x+ s+

θ

2
n, y + t− θ

2
m]

= ei(s+x)mei(t+y−
θ
2
m)nf [x+

θ

2
n, y − θ

2
m]

= eismeitnV mWnf [x, y],

showing that α(s,t)(V
mWn) = eismeitnV mWn, which is clearly in the

*-algebra generated by V and W . Hence we have α(s,t)(Aθ) ⊆ Aθ and
α(−s,−t)(Aθ) ⊆ Aθ, so α(s,t)(Aθ) = Aθ. This and the fact that α(s,t) is
clearly a *-automorphism of B(L2(µ)) imply it is a *-automorphism of Aθ.
Hence we have a C*-dynamical system on the non-commutative torus, given
by (Aθ, α).

As a second example we consider an R-action on the noncommutative
torus. The action will be the same as in the R2 case, with the exception
that one of the variables will be kept fixed. So, we take as our R-action β
defined by βs = α(s,0), s ∈ R, giving the C*-dynamical system (Aθ, β).

3.3 The q-commutation relations

The non-commutative torus dealt with in the previous example is an exam-
ple of a deformation governed by a parameter in the specific commutation
relation. The following example is also a deformation satisfying some com-
mutation relation, namely the q-commutation relation given by

a(f)a∗(g)− qa∗(g)a(f) = 〈f, g〉I, for − 1 ≤ q ≤ 1 and f, g ∈ H,
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where H is a Hilbert space, I is the identity operator and a(·) is a linear
operator on H. We will consider the work done by Dykema and Fidaleo in
[8] and look at the shift on the C*-algebra generated by the operators a(·)
on a twisted (or deformed) Fock space. Our focus for now, will be on the
twisted Fock space as a representation space, and as such our starting point
will be the construction of this space as was done by Bożejko and Speicher
in [2], after which we turn to the construction of a C*-dynamical system as
done in [8].

A fair amount of work has been done on q-commutation relations in var-
ious areas, and thus as a matter of interest a little background is in order.
Much of the study of these relations are in non-commutative probability the-
ory and statistics, which was Bożejko and Speicher’s motivation in [2], where
they constructed the twisted Fock space as a way to obtain a generalized (or
non-commutative) Brownian motion. They used an interpolation, via some
parameter, say q, between the Bosonic and the Fermionic commutation rela-
tions corresponding to q = 1 and q = −1, respectively, which generalizes the
Fock space representation of the canonical commutation relations (CCR),
canonical anti-commutation relations (CAR), and Cuntz (corresponding to
q=0) algebras. As the names Bosonic and Fermionic suggest, these commu-
tation relations have their origin in physical theories, although this gener-
alization does not necessarily have this in mind. In physics the symmetric
(Bosonic) Fock space and the anti-symmetric (Fermionic) Fock space were
introduced to allow as many particles as required, together with the creation
and annihilation operators to accommodate the creation and annihilation of
particles in quantum systems. Besides non-commutative probability theory
(and statistics) and physical considerations, Dykema and Nica, and later
Kennedy and Nica considered the C*-algebras generated by these relations
in more detail in [9] and [17], respectively, where in [9] it was shown that
for certain values of the parameter q, these C*-algebras are isomorphic up
to unitary equivalence, and in [17] it was shown that this C*-algebra is ex-
act. These examples of work done in the q-commutation relations are by no
means indicative of the scope of applications thereof, but more an indication
of origin and personal interest. They are also used in areas of algebra, for
example combinatorics (we will shortly see the combinatorial nature of some
of the proofs) and generalizations of orthogonal polynomials, to mention but
two (see for example [10] and [14]).

Our aim now is to present Bożejko and Speicher’s construction of the
deformed Fock space as a representation space. Due to the nature of the
Fock space, the author assumes familiarity with tensor products of Hilbert
spaces. We will not make use of orthonormal bases of the Hilbert space
in question in the construction of the twisted Fock space. Only when we
specify the Hilbert space in the construction of the C*-dynamical system
will this come into play. The reason for this approach is to give the explicit
definitions of the creation and annihilation operators and the inner product

47

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



on the twisted Fock space for arbitrary vectors. From these the definitions
in terms of basis vectors should be clear. Thus, we need to fix some notation
and terminology. Let H be an arbitrary separable Hilbert space, q ∈ [−1, 1],
and let f, gj , hj , j = 1, 2, . . . be elements in the Hilbert space. Now, by the
full Fock space we mean the Hilbert space

F0 = CΩ
⊕( ∞⊕

n=1

H⊗n

)
(= CΩ

⊕
H
⊕

(H⊗ H)
⊕

(H⊗ H⊗ H)
⊕

. . . )

where Ω is any unit vector in H, denoting the vacuum vector. We shall
denote the inner product, with respect to which F0 is complete, by 〈·, ·〉0.
We will also denote the n-particle space by F (n) = H⊗n, which is spanned by
all tensors of length n, with F (0) = CΩ, and all inner products on F (n), n =
0, 1, 2, . . ., by 〈·, ·〉. Now, let F denote the the linear span of

{Ω} ∪ {f1 ⊗ . . . ⊗ fn : fj ∈ H, j = 1, ..., n, n = 1, 2, . . .},

which is dense in the full Fock space F0. We will define (by linear extension)
our operators and new inner product on F , from which we can then take
the completion with respect to the new inner product (to obtain the twisted
Fock space Fq) and extend the operators by continuity to the whole space
(except for q = 1). So, for every f, hj ∈ H we define the creation and
annihilation operators on F , respectively, by

a∗(f)Ω = f,

a∗(f)(h1 ⊗ . . . ⊗ hn) = f ⊗ h1 ⊗ . . . ⊗ hn

and

a(f)Ω = 0

a(f)(h1 ⊗ . . . ⊗ hn) =

n∑
k=1

qk−1〈f, hk〉h1 ⊗ · · · ⊗ ȟk ⊗ · · · ⊗ hn,

(where ȟk means that the term hk must be deleted from the product). We
show that the operator a∗(f) is well defined. Let Hi, i = 1, 2, . . . , n, and
K be Hilbert spaces. From the universal property of tensor products we
know there exists a multilinear (actually a weak Hilbert-Schmidt) mapping
p : H1 × · · · × Hn → H1 ⊗ · · · ⊗ Hn, taking (f1, . . . , fn) 7→ f1 ⊗ · · · ⊗ fn,
such that given any multilinear mapping L : H1 × · · · × Hn → K, then
there exists a unique linear mapping T : H1 ⊗ · · · ⊗ Hn → K, such that
L = Tp (see for example [15, Thm 2.6.4., p. 132]). Now, in our context, let
Lf : H1 × · · · × Hn → H1 ⊗ · · · ⊗ Hn ⊗ Hn+1 be defined by Lf (h1, . . . , hn) =
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f ⊗ h1 ⊗ . . . ⊗ hn, which is clearly well defined and multilinear for every
f, hi ∈ H, i = 1, . . . , n. Hence there exists a unique multilinear map Tf
such that Lf = Tfp, for every f ∈ H, i.e. Tf = a∗(f). Similarly, from the
universal property of tensor products, we have that a(f) is well defined for
every f ∈ H.

Lemma 3.3.1. [2, Lem 1] For every f, g ∈ H, the operators a(f) and a∗(g)
satisfy the relation

a(f)a∗(g)− qa∗(g)a(f) = 〈f, g〉I.

Proof. Consider any hj ∈ H, j = 1, . . . , n. Then

[a(f)a∗(g)](h1 ⊗ . . . ⊗ hn)

= a(f)(g ⊗ h1 ⊗ . . . ⊗ hn)

= 〈f, g〉h1 ⊗ . . . ⊗ hn +
n∑
k=1

qk〈f, hk〉g ⊗ h1 ⊗ . . .⊗ȟk ⊗ . . .⊗ hn

= 〈f, g〉h1 ⊗ . . . ⊗ hn + q
n∑
k=1

qk−1〈f, hk〉g ⊗ h1 ⊗ . . .⊗ȟk ⊗ . . .⊗ hn

= 〈f, g〉h1 ⊗ . . . ⊗ hn + q

[
g ⊗

(
n∑
k=1

qk−1〈f, hk〉h1 ⊗ . . .⊗ȟk ⊗ . . .⊗ hn

)]
= 〈f, g〉h1 ⊗ . . . ⊗ hn + q[g ⊗ a(f)(h1 ⊗ . . . ⊗ hn)]

= 〈f, g〉h1 ⊗ . . . ⊗ hn + [qa∗(g)a(f)](h1 ⊗ . . . ⊗ hn)

= [〈f, g〉I + qa∗(g)a(f)](h1 ⊗ . . . ⊗ hn)

We now move on to define our inner product on F , and then show that
with this inner product the operators a(f) and a∗(f) are adjoints of each
other. Hence, we define the mapping 〈·, ·〉q : F × F → C by

〈g1 ⊗ . . . ⊗ gn, h1 ⊗ . . . ⊗ hm〉q = 0 if m 6= n,

〈Ω, h1 ⊗ . . . ⊗ hm〉q = 0 if m ≥ 1,

〈Ω,Ω〉q = 〈Ω,Ω〉 = 1,

and otherwise recursively by

〈g1 ⊗ . . . ⊗ gn, h1 ⊗ . . . ⊗ hn〉q
= 〈g2 ⊗ . . . ⊗ gn, a(g1)h1 ⊗ . . . ⊗ hn〉q

=
n∑
k=1

qk−1〈g1, hk〉〈g2 ⊗ . . . ⊗ gn, h1 ⊗ . . .⊗ȟk ⊗ . . .⊗ hn〉q.
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We shall denote the corresponding norm by || · ||q, and as we shall see
because of Lemma 3.3.4 we have || · ||q = || · || on CΩ

⊕
H. That the

mapping above is well defined again follows from the universal property
of tensor products, in the same way as was shown in the definition of the
operators a∗(·) and a(·). To show that the mapping above is indeed an inner
product, we would like to express it in terms of the usual inner product on
the full Fock space, in the form 〈ξ, η〉q = 〈ξ, Pqη〉0, for some linear operator
Pq : F → F . Once we establish the positive definiteness (via the strict
positivity of Pq), we can deduce all the axioms of an inner product from
〈ξ, η〉q = 〈ξ, Pqη〉0. To aid us in this we will use a unitary representation on
the symmetric group of a set with n elements, denoted by Sn, that is the
the group of all permutations on a set of n objects.

Definition 3.3.2. A unitary representation of a locally compact group G
is a mapping, say φ, from G into the group of unitary operators on some
Hilbert space, such that φ is a homomorphism and continuous with respect
to the strong operator topology.

Lemma 3.3.3. The mapping φ : Sn → B(F (n)), π 7→ Uπ, where

Uπ(h1 ⊗ . . . ⊗ hn) = hπ(1) ⊗ . . . ⊗ hπ(n),

is a unitary representation.

Proof. From the universal property of the tensor product, we have that Uπ
is well defined for every π ∈ Sn on a dense subspace of Fn containing all
simple tensors. We show that Uπ is bounded on a dense subspace of Fn for
every π ∈ Sn, so that it can be extended by continuity to Fn. Let π ∈ Sn
and let gj , hj ∈ H, j = 1, . . . , n. Then

〈Uπ(g1 ⊗ . . . ⊗ gn), Uπ(h1 ⊗ . . . ⊗ hn)〉
= 〈gπ(1) ⊗ . . . ⊗ gπ(n), hπ(1) ⊗ . . . ⊗ hπ(n)〉
= 〈gπ(1), hπ(1)〉 · · · 〈gπ(n), hπ(n)〉
= 〈g1, h1〉 · · · 〈gn, hn〉
= 〈g1 ⊗ . . . ⊗ gn, h1 ⊗ . . . ⊗ hn〉.

If we now consider any finite linear combination of simple tensors, say
Σm
i=1h1,i ⊗ . . . ⊗ hn,i, then it follows that

||Uπ(Σm
i=1h1,i ⊗ . . . ⊗ hn,i)||2

= 〈Σm
i=1hπ(1,i) ⊗ . . . ⊗ hπ(n,i),Σ

m
i=1hπ(1,i) ⊗ . . . ⊗ hπ(n,i)〉

= Σm
i=1Σm

j=1〈hπ(1,i) ⊗ . . . ⊗ hπ(n,i), hπ(1,j) ⊗ . . . ⊗ hπ(n,j)〉
= Σm

i=1Σm
j=1〈h1,i ⊗ . . . ⊗ hn,i, h1,j ⊗ . . . ⊗ hn,j〉

= 〈Σm
i=1h1,i ⊗ . . . ⊗ hn,i,Σm

i=1h1,i ⊗ . . . ⊗ hn,i〉
= ||Σm

i=1h1,i ⊗ . . . ⊗ hn,i||2,
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where the third equality follows by rearranging the order of the terms
〈hπ(k,i), hπ(k,j)〉. Hence Uπ ∈ B(Fn).

Also, we have for every π, σ ∈ Sn and gj , hj ∈ H, j = 1, . . . , n,

Uπ◦σ(h1 ⊗ . . . ⊗ hn) = hπ◦σ(1) ⊗ . . . ⊗ hπ◦σ(n)

= Uπ(hσ(1) ⊗ . . . ⊗ hσ(n))

= Uπ ◦ Uσ(h1 ⊗ . . . ⊗ hn),

so that φ is a homomorphism. And

〈U∗π(g1 ⊗ . . . ⊗ gn), h1 ⊗ . . . ⊗ hn〉 = 〈g1 ⊗ . . . ⊗ gn, Uπ(h1 ⊗ . . . ⊗ hn)〉
= 〈g1 ⊗ . . . ⊗ gn, hπ(1) ⊗ . . . ⊗ hπ(n)〉
= 〈g1, hπ(1)〉 · · · 〈gn, hπ(n)〉
= 〈gπ−1(1), h1〉 · · · 〈gπ−1(n), hn〉
= 〈Uπ−1(g1 ⊗ . . . ⊗ gn), h1 ⊗ . . . ⊗ hn〉,

showing that U∗π = Uπ−1 = U−1
π . The strong operator continuity is clear

with the discrete topology on Sn.

We will denote the number of inversions of any π ∈ Sn by i(π), that is

i(π) = |{(j, k) ∈ {1, 2, ..., n}2 : j < k, π(j) > π(k)}|

(where |A| denotes the cardinality of the set A).

Now, we let Pq = ⊕∞n=0P
(n)
q , where P

(n)
q : F (n) → F (n) is defined by

P (n)
q =

∑
π∈Sn

qi(π)Uπ.

Note that P
(0)
q = I and P

(1)
q = I (with I the identity operator on their

respective spaces), so that the inner product is unchanged for n = 0, 1, i.e.

〈·, ·〉q = 〈·, ·〉0 if restricted to CΩ
⊕

H. We also note that P
(n)
q is a bounded

operator on H⊗n for every n ∈ N. Indeed, for any fj ∈ H, j = 1, . . . , n, let
m = max

π∈Sn
{|qi(π)|}. Then

||P (n)
q (f1 ⊗ . . . ⊗ fn)|| = ||

∑
π∈Sn

qi(π)Uπ(f1 ⊗ . . . ⊗ fn)||

≤
∑
π∈Sn

|qi(π)|||Uπ(f1 ⊗ . . . ⊗ fn)||

≤ (n!)m||f1 ⊗ . . . ⊗ fn||.
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Lemma 3.3.4. [2, Lem 3] We have for every ξ, η ∈ F ,

〈ξ, η〉q = 〈ξ, Pqη〉0.

Proof. It will be sufficient to prove it for all gj , hj ∈ H, j = 1, · · · , n, and
every n ∈ N that

〈g1 ⊗ . . . ⊗ gn, h1 ⊗ . . . ⊗ hn〉q = 〈g1 ⊗ . . . ⊗ gn, P (n)
q h1 ⊗ . . . ⊗ hn〉0

=
∑
π∈Sn

qi(π)〈g1, hπ(1)〉 . . . 〈gn, hπ(n)〉.

We show this by induction. The case n = 1 is obvious. Now, assume the

hypothesis true for n − 1. Let S
(k)
n−1 denote the set of all bijections from

the set {2, . . . , n} onto the set {1, . . . , k − 1, k + 1, . . . , n}. Let π ∈ Sn and
π(1) = k for some k ∈ {1, 2, . . . , n}. Then we can write π as a composition
of the transposition (1 k) and the element π′ ∈ Sn given by

π′ =

(
1 2 · · · k − 1 k k + 1 · · · n

π(k) π(2) · · · π(k − 1) k π(k + 1) · · · π(n)

)
,

namely π = π′ ◦ (1 k). There is a one-to-one correspondence between ele-

ments π′ ∈ Sn with π′(k) = k and elements σ ∈ S
(k)
n−1, and we also have

i(π′) = i(σ). There are k− 1 inversions in the transposition (1 k), hence we
have that

i(π) = k − 1 + i(π′) = k − 1 + i(σ).

Summing over all π ∈ Sn therefore is the same as summing over all σ ∈ S(k)
n−1,

for each k = 1, 2, . . . , n and adding the n sums, i.e. symbolically∑
π∈Sn

=
n∑
k=1

∑
σ∈S(k)

n−1

.

Thus, assuming the hypothesis holds for n− 1, we have

〈g1 ⊗ . . . ⊗ gn, h1 ⊗ . . . ⊗ hn〉q

=
n∑
k=1

qk−1〈g1, hk〉〈g2 ⊗ . . . ⊗ gn, h1 ⊗ . . .⊗ȟk ⊗ . . .⊗ hn〉q

=
n∑
k=1

qk−1〈g1, hk〉
∑

σ∈S(k)
n−1

qi(σ)〈g2, hσ(2)〉 · · · 〈gn, hσ(n)〉

=

n∑
k=1

∑
σ∈S(k)

n−1

qk−1+i(σ)〈g1, hk〉〈g2, hσ(2)〉 · · · 〈gn, hσ(n)〉

=
∑
π∈Sn

qi(π)〈g1, hπ(1)〉 · · · 〈gn, hπ(n)〉.
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The final task is to show the positive definiteness of the inner product,
by showing that Pq is positive.

Definition 3.3.5. Let G be a finite group. We call a function φ : G → C
positive definite if ∑

s,t∈G
φ(s−1t)ψ(s)ψ(t) ≥ 0

for every ψ : G → C, and strictly positive definite if∑
s,t∈G

φ(s−1t)ψ(s)ψ(t) > 0

for every ψ : G → C.

The definition above can be generalized to arbitrary groups, but this is
unnecessary since we will only need it in Sn.

Proposition 3.3.6. [5] The point-wise product of two positive definite func-
tions is again positive definite.

Proof. Let G be a finite group, and φ : G → C any function. Consider the
set A = {(ag)g∈G : ag ∈ C for every g ∈ G} of all functions from G to C.
Then A is a vector space if we define addition and scalar multiplication by

(ag)g∈G + (bg)g∈G = (ag + bg)g∈G

λ(ag)g∈G = (λag)g∈G ,

respectively. For each a ∈ A, we will use the notation
a = (ag)g∈G =

∑
g∈G

agδg, where δg : G → C is defined by

δg(h) =

{
1 if h = g

0 if h 6= g,

for every g ∈ G. Note that δg ∈ A for every g ∈ G, and moreover, the set
{δg : g ∈ G} forms a basis for A. We go further, and define a multiplication
on A by

ab = (
∑
g∈G

agδg)(
∑
h∈G

bhδh) =
∑
g∈G

∑
h∈G

agbhδgh,

and an involution on A by

a∗ = (
∑
g∈G

agδg)
∗ =

∑
g∈G

agδg−1 .

Then it is easily seen that A is a *-algebra, called the group *-algebra of G.
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Via the δg’s we have that G ⊂ A, and we can thus extend φ linearly to
A by defining φ(a) =

∑
g∈G

agφ(g), which is well defined because {δg : g ∈ G}

is a basis for A. Thus φ is a linear functional on A, and will be positive if
φ(a∗a) ≥ 0 for every a ∈ A. But since

φ(a∗a) =
∑
g,h∈G

agahφ(g−1h),

it follows that φ : G → C is positive definite if and only if the linear functional
it induces on A is positive.

Now, let φ, ψ : G → C be any two positive definite functions, and ex-
tend them to two positive linear functionals on A, as above. From the
GNS construction we obtain the two cyclic representations (Hφ, πφ, ξφ) and
(Hψ, πψ, ξψ) induced by φ and ψ, respectively (see comment on p.13). Then
φ(a) = 〈ξφ, πφ(a)ξφ〉 and ψ(a) = 〈ξψ, πψ(a)ξψ〉 for every a ∈ A. Let
ξ = ξφ ⊗ ξψ and define π : G → B(Hφ ⊗ Hψ) by

π(g) = πφ(g)⊗ πψ(g),

or more precisely by
π(δg) = πφ(δg)⊗ πψ(δg),

since G is embedded in A via the δg’s and B(Hφ)⊗B(Hψ) ⊆ B(Hφ ⊗ Hψ)).
We extend π linearly to A by letting

π(
∑
g∈G

agδg) =
∑
g∈G

agπ(δg).

Then we have for every a, b ∈ A that

π(ab) =
∑
g,h∈G

agbhπ(δgh)

=
∑
g,h∈G

agbh[πφ(δgh)⊗ πψ(δgh)]

=
∑
g,h∈G

agbh[πφ(δg)πφ(δh)]⊗ [πψ(δg)πψ(δh)]

=
∑
g,h∈G

agbh[πφ(δg)⊗ πψ(δg)][πφ(δh)⊗ πψ(δh)]

=

∑
g∈G

ag[πφ(δg)⊗ πψ(δg)]

(∑
h∈G

bh[πφ(δh)⊗ πψ(δh)]

)
= π(a)π(b),
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and since δ∗g = δg−1

π(a∗) =
∑
g∈G

agπ(δg−1)

=
∑
g∈G

ag[πφ(δg−1)⊗ πψ(δg−1)]

=
∑
g∈G

ag[πφ(δ∗g)⊗ πψ(δ∗g)]

=
∑
g∈G

ag[πφ(δg)
∗ ⊗ πψ(δg)

∗]

=
∑
g∈G

agπ(δg)
∗

= π(a)∗.

Hence π is a representation of A, and thus defines a positive linear functional
ω : A → C via ω(a) = 〈ξ, π(a)ξ〉, and as shown above, its restriction to G is
positive definite. But this restriction is given by

ω(g) ≡ ω(δg) = 〈ξ, π(δg)ξ〉
= 〈ξφ ⊗ ξψ, [πφ(δg)⊗ πψ(δg)](ξφ ⊗ ξψ)〉
= 〈ξφ, πφ(δg)ξφ〉〈ξψ, πψ(δg)ξψ〉
= φ(g)ψ(g),

for all g ∈ G. Hence the product, φψ, of two positive definite functions is
again positive definite.

Proposition 3.3.7. The point-wise product of two strictly positive definite
functions is again strictly positive definite.

Proof. This follows from the proof of Proposition 3.3.6 by noting that the
function φ : G → C is strictly positive definite if and only if the induced
linear functional φ : A → C satisfies φ(a∗a) ≥ 0 for every a ∈ A. This
amounts to φ being faithful, i.e. if for every a ∈ A, φ(a∗a) = 0 implies
a = 0.

Let Sn still denote the symmetric group on n elements, and we let
πj , 0 < j < n, denote the transpositions in Sn such that πj interchanges j
and j + 1, and can thus be written as the cycle πj = (j j + 1).
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Lemma 3.3.8. [7] Let π ∈ Sn. If π is not the identity, there is a
j ∈ {1, 2, . . . , n} such that for every i ∈ {1, 2, . . . , j} there are numbers
l(i) ∈ {1, 2, . . . , n} and r(i) ∈ {0, 1, . . . , n− 2} such that
l(1) < l(2) < · · · < l(j) and π can be written as a product of transpositions
of the form

π = (πl(j)πl(j)+1 · · ·πl(j)+r(j))(πl(j−1)πl(j−1)+1 · · ·πl(j−1)+r(j−1)) · · ·
(πl(1) · · ·πl(1)+r(1)).

If π is the identity, we put j = 0. The number of inversions of π is given by

i(π) = (r(1) + 1) + (r(2) + 1) + · · ·+ (r(j) + 1).

Proof. Let l(1) ∈ {1, 2, . . . , n} be the least number such that π(l(1)) 6= l(1),
and let r(1) ≥ 0 be such that π(l(1) + r(1) + 1) = l(1). Note that if r(1) = 0
(or j = 0 in the general form stated in the hypothesis) then π is just the
identity.

Let σ ∈ Sn be such that

π = σπl(1)πl(1)+1 · · ·πl(1)+r(1). (3.4)

If σ is the identity, then we are done. If not, let l(2) ∈ {1, 2, · · · , n} be the
least number such that σ(l(2)) 6= l(2). We claim that l(2) > l(1). From
(3.4) we have that

σ = π(πl(1)πl(1)+1 · · ·πl(1)+r(1))
−1

= π(πl(1)+r(1)πl(1)+r(1)−1 · · ·πl(1))

= π ◦
(

l(1) l(1) + 1 l(1) + 2 · · · l(1) + r(1) + 1
l(1) + r(1) + 1 l(1) l(1) + 1 · · · l(1) + r(1)

)
(3.5)

(where the notation in (3.5) is just the cycle obtained from the product of
the transpositions). Thus, from (3.5) we see that σ(l(1)) = l(1) and for any
k < l(1), we also have that σ(k) = k. Hence l(1) < l(2). Let r(2) ≥ 0 be
such that σ(l(2) + r(2) + 1) = l(2). Then for some % ∈ Sn,

σ = %πl(2)πl(2)+1 · · ·πl(2)+r(2)

and
π = %πl(2)πl(2)+1 · · ·πl(2)+r(2)πl(1)πl(1)+1 · · ·πl(1)+r(1).

If % is the identity, then we are done. Otherwise we proceed inductively
as we did above. The fact that l(j) < l(j + 1) and {1, 2, . . . , n} is finite,
shows that the inductive process is finite, and thus so too the product of
transpositions.
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As for the inversions, notice that l(j)+p < l(j)+k, 0 ≤ p < k ≤ r(j)+1,
and writing any product of transpositions as a cycle, i.e.

πl(j)πl(j)+1 · · ·πl(j)+r(j)

=

(
l(j) l(j) + 1 l(j) + 2 · · · l(j) + r(j) l(j) + r(1) + 1

l(j) + 1 l(j) + 2 l(j) + 3 · · · l(j) + r(j) + 1 l(j)

)
,

we can clearly see that the image of l(j) changes order with each of the other
r(j) + 1 positions’ images, and is the only one to change order. Thus, for
this product of transpositions there are r(j) + 1 inversions, and adding all
such products representing an element gives the required result.

Lemma 3.3.9. The function f : Sn → {−1, 1} defined by π 7→ (−1)i(π) is
positive definite.

Proof. We begin by showing that f is a nonzero homomorphism. It is well
known that any permutation, say π ∈ Sn, can be written as a product of
transpositions, where the decomposition is not necessarily unique, but the
number of transpositions of every such decomposition of π is either even or
odd, and is related to the so called sign of the permutation. But, by Lemma
3.3.8 we can express π as product of transpositions, say π = π1 · · ·πk, such
that the number of inversions of π is given by i(π) = k. Hence if π is decom-
posed into any other product of transpositions, say m transpositions, then
(−1)i(π) = (−1)k = (−1)m, since k and m are either both even or both odd.
Let σ ∈ Sn, and let σ = σ1 · · ·σl be its decomposition into transpositions
given by Lemma 3.3.8. Then the product πσ = π1 · · ·πkσ1 · · ·σl can be
written as a product of k + l transpositions, and thus (−1)i(πσ) = (−1)k+l.
Hence

f(πσ) = (−1)i(πσ) = (−1)k+l = (−1)k(−1)l = f(π)f(σ).

We can now show that f is positive definite. Let ψ : Sn → C be any
function, then∑

π,σ∈Sn

f(π−1σ)ψ(π)ψ(σ) =
∑

π,σ∈Sn

f(π−1)f(σ)ψ(π)ψ(σ)

=
∑

π,σ∈Sn

f(π)f(σ)ψ(π)ψ(σ)

=

[∑
π∈Sn

f(π)ψ(π)

][∑
π∈Sn

f(π)ψ(π)

]

=

[∑
π∈Sn

f(π)ψ(π)

][∑
π∈Sn

f(π)ψ(π)

]
≥ 0.
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Definition 3.3.10. Let H be a Hilbert space. Then we call P ∈ B(H)
strictly positive if 〈x, Px〉 > 0 for all x 6= 0.

Proposition 3.3.11. [2, Prop 1] The operator Pq is strictly positive for all
q ∈ (−1, 1).

Proof. We first show that Pq is positive for all q ∈ (−1, 1). It will be sufficient

to consider P
(n)
q for all n ∈ N. We start by showing that φq : Sn → C;π 7→

qi(π) is a positive definite function on Sn, i.e.∑
π,σ∈Sn

qi(π
−1σ)ψ(π)ψ(σ) ≥ 0. (3.6)

for any ψ : Sn → C.
We define

Φ = {(i, j) : i 6= j, 1 ≤ i, j ≤ n},
Φ+ = {(i, j) ∈ Φ : i < j},

and for π ∈ Sn and A ⊂ Φ,

π(A) = {(π(i), π(j)) : (i, j) ∈ A} ⊂ Φ.

Letting |A| denote the cardinality of the set A, we see, since each π ∈ Sn is a
bijection, that |π(A)| = |A|, for A ⊂ Φ. We claim that i(π) = |π(Φ+)\Φ+|.
To see this, note that

π(Φ+) = {(π(i), π(j)) : i < j and π(i) < π(j)}
⋃
{(π(i), π(j)) : i < j and π(j) < π(i)},

where the first set in the union is contained in Φ+ and the second set (which
is precisely all the inversions) is not. Moreover, we then also have that

i(π) = i(π−1) = |π−1(Φ+)\Φ+| = |π(π−1(Φ+)\Φ+)| = |Φ+\π(Φ+)|.

Let A∆B = (A\B) ∪ (B\A) denote the symmetric difference between the
sets A and B. Then

2i(π) = |π(Φ+)\Φ+|+ |Φ+\π(Φ+)|

=
∣∣∣(π(Φ+)\Φ+

)⋃(
Φ+\π(Φ+)

)∣∣∣
= |π(Φ+)∆Φ+|,

which in turn implies that

2i(π−1σ) = |σ(Φ+)∆π(Φ+)|. (3.7)
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Let χA and χB denote the characteristic functions on the sets A,B ⊂ Φ,
respectively. Then

|χA(x)− χB(x)| =

{
1 if x ∈ A∆B

0 if x ∈ A ∩B
,

and thus

|A∆B| =
∑
x∈Φ

|χA(x)− χB(x)| =
∑
x∈Φ

|χA(x)− χB(x)|2. (3.8)

First consider the case 0 < q < 1, and put q = e−λ, with λ > 0. We use the
notation exp(x) = ex, so as to make notation more manageable and legible.
Now, from Equations (3.7) and (3.8) we have

qi(π
−1σ) = exp(−λi(π−1σ))

= exp

(
−λ

2

∣∣σ(Φ+)∆π(Φ+)
∣∣)

= exp

(
−λ

2

∑
x∈Φ

∣∣χσ(Φ+)(x)− χπ(Φ+)(x)
∣∣2)

=
∏
x∈Φ

exp

(
−λ

2

∣∣χσ(Φ+)(x)− χπ(Φ+)(x)
∣∣2) .

By Proposition 3.3.6 the pointwise product of two positive definite func-
tions is again positive definite, and thus we need only show that for any
x ∈ Φ ∑

π,σ∈Sn

exp

(
−λ

2

∣∣χσ(Φ+)(x)− χπ(Φ+)(x)
∣∣2)ψ(π)ψ(σ) ≥ 0,

for every ψ : Sn → C. To do this, first fix any π, σ ∈ Sn. Putting
y0 = 0, y1 = 1 we obtain the following four possible terms:

ψ(π)ψ(σ) = exp

(
−λ

2
|y0 − y0|2

)
ψ(π)ψ(σ) if x /∈ π(Φ+) and x /∈ σ(Φ+)

ψ(π)ψ(σ) = exp

(
−λ

2
|y1 − y1|2

)
ψ(π)ψ(σ) if x ∈ π(Φ+) and x ∈ σ(Φ+)

e−λ/2ψ(π)ψ(σ) = exp

(
−λ

2
|y0 − y1|2

)
ψ(π)ψ(σ) if x ∈ π(Φ+) and x /∈ σ(Φ+)

e−λ/2ψ(π)ψ(σ) = exp

(
−λ

2
|y1 − y0|2

)
ψ(π)ψ(σ) if x /∈ π(Φ+) and x ∈ σ(Φ+).
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For a fixed ψ : Sn → C, we define the function f : {y0, y1} → C by

f(y0) =
∑
π∈Sn

x/∈π(Φ+)

ψ(π)

f(y1) =
∑
π∈Sn

x∈π(Φ+)

ψ(π).

Now, summing over all π, σ ∈ Sn and grouping the four types of terms (as
above) together, we obtain∑

π,σ∈Sn

exp

(
−λ

2

∣∣χσ(Φ+)(x)− χπ(Φ+)(x)
∣∣2)ψ(π)ψ(σ)

=

1∑
j,k=0

exp

(
−λ

2
|yj − yk|2

)
f(yk)f(yj). (3.9)

We show that the expression on the right-hand side of Equation (3.9) is
positive. Note this is equivalent to showing that z̄TMz ≥ 0, where

z =

(
f(y0)
f(y1)

)
and

M =

(
e−

λ
2
|y0−y0|2 e−

λ
2
|y1−y0|2

e−
λ
2
|y0−y1|2 e−

λ
2
|y1−y1|2

)
=

(
1 e−

λ
2

e−
λ
2 1

)
That is, we need to show that M positive semi-definite. Note that the

eigenvalues of M are given by 1 ± e−
λ
2 ≥ 0, since 0 < e−

λ
2 ≤ 1. Hence,

since M is a real symmetric matrix, and thus hermitian (or self-adjoint), and
σ(M) ⊂ R+, it follows thatM is positive semi-definite. Hence, φq : π 7→ qi(π)

is positive definite for q ∈ (0, 1).
We now turn to the case were −1 < q < 0. Then 0 < −q < 1. For this

case we again use Proposition 3.3.6, i.e. the fact that the pointwise product
of positive definite functions is a positive definite function. By Lemma 3.3.9
π 7→ (−1)i(π) is positive definite and so, since

φ−q(π) = (−1)i(π)qi(π) = (−1)i(π)φq(π) =⇒ φq(π) = (−1)i(π)φ−q(π),

φq is also positive definite. For q = 0, we have φ0(1Sn) = 1 and
φ0(π) = 0, π 6= 1Sn , where 1Sn is the identity element in Sn. It follows
from this that φ0 is positive definite. Hence φq is positive definite for all
q ∈ (−1, 1).
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We show that P
(n)
q is positive, that is 〈η, P (n)

q η〉0 ≥ 0 for all η ∈ F (n).
First, notice that∑

π,σ∈Sn

qi(π
−1σ)〈η, Uπ−1ση〉0 =

∑
σ∈Sn

∑
π∈Sn

qi(ρ)〈η, Uρη〉0

= n!
∑
π∈Sn

qi(π)〈η, Uπη〉0.

where ρ = π−1σ ranges over Sn as π ranges over Sn. Hence∑
π∈Sn

qi(π)〈η, Uπη〉0 =
1

n!

∑
π,σ∈Sn

qi(π
−1σ)〈η, Uπ−1ση〉0. (3.10)

Now, let {ξj : j ∈ N} be a complete orthonormal system in F (n), that is an
orthonormal set with the property that, given y ∈ F (n), if 〈y, ξj〉 = 0,
j = 1, 2, . . ., then y = 0. Then

〈η, P (n)
q η〉0 =

∑
π∈Sn

qi(π)〈η, Uπη〉0

=
1

n!

∑
π,σ∈Sn

qi(π
−1σ)〈η, Uπ−1ση〉0

=
1

n!

∑
π,σ∈Sn

qi(π
−1σ)〈η, Uπ−1Uση〉0

=
1

n!

∑
π,σ∈Sn

qi(π
−1σ)〈Uπη, Uση〉0

=
1

n!

∑
π,σ∈Sn

∞∑
j=1

qi(π
−1σ)〈Uπη, ξj〉0〈ξj , Uση〉0

=
1

n!

∞∑
j=1

 ∑
π,σ∈Sn

qi(π
−1σ)〈ξj , Uπη〉0〈ξj , Uση〉0


≥ 0, (3.11)

since φq is positive definite.

We show that P
(n)
q is strictly positive for all q ∈ (−1, 1). By considering

Inequality (3.11), it will suffice to show that φq is strictly positive definite
for all q ∈ (−1, 1). Note that Inequality (3.6) can be re-written as z̄TAz ≥ 0,
with the positive semi-definite matrix A = (qi(π

−1σ))σ,π∈Sn and the vector
z = (ψ(π))π∈Sn . Hence we need to show z̄TAz > 0, i.e that A is (strictly)
positive definite. We only show this for q ∈ (0, 1), as the case q ∈ (−1, 0) is
analogous.

Assume that φq0 , for some q0 ∈ (0, 1), is not strictly positive definite,
that is, that z̄TAz = 0 for some z 6= 0 (since we know that z̄TAz ≥ 0 by
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the positive definiteness of φq). By Proposition 3.3.7 it follows that φ√q0 is
also not strictly positive definite. By taking 2k-th roots we get an infinite
number of values for q for which φq is not strictly positive definite, namely
(q0)1/2k, k = 1, 2, 3, . . .. Because, by assumption, A is positive semi-definite
but not (strictly) positive definite, it must have 0 as an eigenvalue. Thus,
since det (A) is equal to the product of its eigenvalues (by diagonalizing
A), we have that det (A) = 0. Now since i(π) > 0 if π 6= identity, it
follows that det (A) is a non-constant polynomial in q, and thus has a finite
number of zeros, i.e. only a finite number of values for q such that det (A) =
0, a contradiction, because from the above argument there should be an
infinite number of values for q, namely q = (q0)1/2k, k = 1, 2, 3, . . ., such
that det (A) = 0. Hence φq is strictly positive definite for q ∈ (0, 1), and
similarly for q ∈ (−1, 0).

The case where q = 0 is trivial, because then Inequality (3.6) becomes∑
π∈Sn

qi(π
−1π)ψ(π)ψ(π) =

∑
π∈Sn

|ψ(π)|2 > 0,

for ψ 6= 0. Hence P
(n)
q is strictly positive for all q ∈ (−1, 1).

By Lemma 3.3.4 and Proposition 3.3.11 we see that 〈·, ·〉q is an inner
product on F , since, by the strict positivity of Pq, 〈ξ, ξ〉q = 0 implies that
ξ = 0. We denote the completion of F with respect to this inner product
by Fq, and call it the twisted (or deformed) Fock space.

Remark 3.3.12. Note that the proof that P
(n)
q is positive (in Proposition

3.3.11) actually holds for q ∈ [−1, 1], but in the cases where q = ±1 the
kernel of Pq is not trivial. To see this if q = 1, we consider
f1 ⊗ f2 − f2 ⊗ f1 ∈ F , fj ∈ H for j = 1, 2, then

P1(f1 ⊗ f2 − f2 ⊗ f1) = = P
(2)
1 (f1 ⊗ f2 − f2 ⊗ f1)

=
∑
π∈S2

qi(π)Uπ(f1 ⊗ f2 − f2 ⊗ f1)

= f1 ⊗ f2 − f2 ⊗ f1 + f2 ⊗ f1 − f1 ⊗ f2

= 0.

Similarly considering f1⊗ f2 + f2⊗ f1 in the case where q = −1 we see that
ker (Pq) 6= {0}. Therefore we have to take the completion of F/ ker (Pq) in
the case q = ±1. The cases where q = ±1 will however not be required for
the dynamical system that we will consider.

It remains to show that the creation and annihilation operators are ad-
joints of each other, and that they are bounded on Fq.

Proposition 3.3.13. [2, Lem 2] For every f ∈ H and for every ξ, η ∈ F ,
we have

〈a∗(f)ξ, η〉q = 〈ξ, a(f)η〉q.
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Proof. It will suffice to prove the above equation for simple tensors in F (n),
n ∈ N. Given any gj , hj ∈ H, it then follows from the definition of 〈·, ·〉q
that

〈a∗(f)(g1 ⊗ . . . ⊗ gn), h1 ⊗ . . . ⊗ hn+1〉q
= 〈f ⊗ g1 ⊗ . . . ⊗ gn, h1 ⊗ . . . ⊗ hn+1〉q
= 〈g1 ⊗ . . . ⊗ gn, a(f)h1 ⊗ . . . ⊗ hn+1〉q.

Remark 3.3.14. Consider any π ∈ Sn+1 such that π(k) = 1 for some
1 < k ≤ n+1. Then from the construction in Lemma 3.3.8 we have l(1) = 1
and, then π(l(1) + r(1) + 1) = l(1) = π(k) implies that r(1) = k− 2, so that
we can write

π = σπ1 . . . πk−1,

where σ is uniquely determined by the choice of π and k, σ(1) = 1 and
i(π) = i(σ) + k − 1. Thus, we can view σ as an element in Sn. Also, every
σ ∈ Sn defines a (necessarily unique) π in in the set {π ∈ Sn+1 : π(k) = 1},
for each k = 2, . . . , n, by

σπ1 . . . πk−1 = π.

The same argument applies to the case where k = 1, with the exception that
l(1) 6= 1, but then π can be viewed as an element in Sn itself, i.e. π = σ.
Now, let F : Sn+1 → V , with V any vector space, then this enables us to
write ∑

π∈Sn+1

F (π) =

n+1∑
k=1

∑
σ∈Sn+1

σ(1)=1

F (σπ1 · · ·πk−1),

where it is understood that π0 is the identity.

Lemma 3.3.15. Let −1 < q < 1, then

P (n+1)
q ≤ 1

1− |q|
(I ⊗ P (n)

q ).

Proof. It will be sufficient to show the inequality for η ∈ F (n), n ∈ N0,
since such elements span F , which in turn is dense in Fq. Let hi ∈ H, i =
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1, . . . , n+ 1, then by Lemma 3.3.8 and Remark 3.3.14 it follows that

P (n+1)
q (h1 ⊗ . . . ⊗ hn+1)

=
∑

π∈Sn+1

qi(π)(hπ(1) ⊗ . . . ⊗ hπ(n+1))

=
∑

π∈Sn+1

qi(π)(hπ−1(1) ⊗ . . . ⊗ hπ−1(n+1))

=
n+1∑
k=1

qk−1

 ∑
σ∈Sn+1

σ(1)=1

qi(σ)(h(σπ1···πk−1)−1(1) ⊗ . . . ⊗ h(σπ1···πk−1)−1(n+1))



=
n+1∑
k=1

qk−1

 ∑
σ∈Sn+1

σ(1)=1

qi(σ)(hπk−1···π1σ−1(1) ⊗ . . . ⊗ hπk−1···π1σ−1(n+1))



=
n+1∑
k=1

qk−1

 ∑
σ∈Sn+1

σ(1)=1

qi(σ)(hπk−1···π1(1) ⊗ hπk−1···π1σ−1(2) ⊗ . . . ⊗ hπk−1···π1σ−1(n+1))



=
n+1∑
k=1

qk−1

 ∑
σ∈Sn+1

σ(1)=1

qi(σ)Uπk−1···π1(h1 ⊗ hσ−1(2) ⊗ . . . ⊗ hσ−1(n+1))


=

[
n+1∑
k=1

qk−1Uπk−1···π1

][
I ⊗

∑
σ∈Sn

qi(σ)Uσ

]
(h1 ⊗ h2 ⊗ . . . ⊗ hn+1)

= (1 + qUπ1 + q2Uπ2π1 + · · ·+ qnUπn···π1)(I ⊗ P (n)
q )(h1 ⊗ . . . ⊗ hn+1),

giving the equation

P (n+1)
q = (1 + qUπ1 + q2Uπ2π1 + · · ·+ qnUπn···π1)(I ⊗ P (n)

q ).

Hence, by the positivity of P
(n+1)
q it is self-adjoint, and we have for every

η ∈ F (n+1)

0 ≤ 〈P (n+1)
q P (n+1)

q η, η〉

= ||P (n+1)
q η||2

= ||(1 + qUπ1 + q2Uπ2π1 + · · ·+ qnUπn···π1)(I ⊗ P (n)
q )η||2

≤ (||1 + qUπ1 + q2Uπ2π1 + · · ·+ qnUπn···π1 || ||(I ⊗ P (n)
q )η||)2

≤ (1 + |q|+ |q|2 + · · ·+ |q|n)2 ||(I ⊗ P (n)
q )η||2

= 〈(1 + |q|+ |q|2 + · · ·+ |q|n)(I ⊗ P (n)
q )η, (1 + |q|+ |q|2 + · · ·+ |q|n)(I ⊗ P (n)

q )η〉

= 〈(I ⊗ P (n)
q )(1 + |q|+ |q|2 + · · ·+ |q|n)(1 + |q|+ |q|2 + · · ·+ |q|n)(I ⊗ P (n)

q )η, η〉,
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which implies that

0 ≤ P (n+1)
q P (n+1)

q

≤ (I ⊗ P (n)
q )(1 + |q|+ |q|2 + · · ·+ |q|n)(1 + |q|+ |q|2 + · · ·+ |q|n)(I ⊗ P (n)

q ).

This in turn implies that

P (n+1)
q ≤ (1 + |q|+ |q|2 + · · ·+ |q|n)(I ⊗ P (n)

q )

≤ 1

1− |q|
(I ⊗ P (n)

q )

(see [15, Prop 4.2.8(ii), p.250]).

Proposition 3.3.16. [2, Lem 4] The operator a(f), f ∈ H, on Fq is bounded
for q ∈ [−1, 1), with the norm given by

||a(f)||q =
1√

1− q
||f || for 0 ≤ q < 1

||a(f)||q = ||f || for − 1 ≤ q ≤ 0.

Proof. Let −1 ≤ q ≤ 0 and η ∈ F . Then, from the q-commutation relation
a(f)a∗(f)− qa∗(f)a(f) = 〈f, f〉I, we have

〈a∗(f)η, a∗(f)η〉q − q〈a(f)η, a(f)η〉q = 〈(a(f)a∗(f)− qa∗(f)a(f)) η, η〉q
= 〈(〈f, f〉)η, η〉q

which implies that

||a∗(f)η||2q = ||f ||2||η||2q + q||a(f)η||2q
≤ ||f ||2||η||2q ,

so that ||a∗(f)|| ≤ ||f ||, and moreover, replacing η with Ω, we have

||f || = ||a∗(f)Ω||q ≤ ||f ||||Ω||q ≤ ||f ||,

giving equality. Hence ||a∗(f)||q = ||f || on F , and can thus be extended to
Fq. Also, from Propositioin 3.3.13 we now know that a∗(f) is the adjoint of
a(f), so that a(f) is also bounded on F , and can thus be extended to Fq,
with ||a∗(f)||q = ||a(f)||q = ||f ||.
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Next consider the case where 0 ≤ q < 1. By Lemma 3.3.15 we have for
every η ∈ F (n) and f ∈ H

||a∗(f)η||2q = ||f ⊗ η||2q
= 〈f ⊗ η, f ⊗ η〉q
= 〈f ⊗ η, P (n+1)

q f ⊗ η〉0

≤ 1

1− q
〈f ⊗ η, (I ⊗ P (n)

q )f ⊗ η〉0

=
1

1− q
〈f, f〉〈η, P (n)

q η〉0

=
1

1− q
||f ||2 ||η||2q .

To obtain the reverse inequality, we consider f⊗n,

||a∗(f)f⊗n||2q = 〈f⊗(n+1), f⊗(n+1)〉q

=
n+1∑
k=1

qk−1〈f, f〉〈f⊗n, f⊗n〉q

= (1 + q + q2 + · · ·+ qn)||f ||2||f⊗n||2q .

Hence

||a∗(f)||2q ≥

(
sup
n∈N

n∑
k=0

qk

)
||f ||2

=
1

1− q
||f ||2.

As for the case −1 ≤ q ≤ 0, it follows that a∗(f) is the adjoin of a(f), so
that both are bounded with the same norms, and can thus be extended to
Fq.

The results from Lemma 3.3.1 and Proposition 3.3.13 can also be ex-
tended by continuity to the whole of Fq, and in particular, we have that
a∗(f) and a(f) are adjoints on Fq.

We can now construct a C*-dynamical system using the C*-algebra gen-
erated by the creation and annihilation operators defined on the twisted Fock
space. We shall use as our Hilbert space H = l2(Z), and the orthonormal
basis {ei : i ∈ Z}, where ei is the vector with 1 in the i-th coordinate and
zero elsewhere. Thus, our deformed Fock space, Fq, is densely spanned by
the set {Ω}∪ {eσ1 ⊗ · · · ⊗ eσk : σi ∈ Z, i = 1, 2, ..., k and k = 1, 2, . . .}, which
are orthonormal vectors by the definition of the the inner product 〈·, ·〉q and
where Ω = 1 ∈ C. We shall only consider deformations with −1 < q < 1.
In terms of this basis our C*-algebra is defined to be the C*-subalgebra of
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B(Fq) generated by the set {a(ei) : i ∈ Z}, which we denote by Aq. To see
that Aq is unital, let f = g = ei in the commutation relation, then

a(ei)a
∗(ei)− qa∗(ei)a(ei) = I.

The creation and annihilation operators are given, respectively, by

a∗(ei)Ω = ei

a∗(ei)ξ = ei ⊗ ξ, ξ ∈ Fq

and

a(ei)Ω = 0

a(ei)(h1 ⊗ . . . ⊗ hn) =
n∑
k=1

qk−1〈ei, hk〉〈h1 ⊗ . . .⊗ȟk ⊗ . . .⊗ hn〉, hi ∈ l2(Z).

The norms are given by

||a(ei)||q =
1√

1− q
for 0 ≤ q < 1

||a(ei)||q = 1 for − 1 < q ≤ 0,

and the q-commutation relations become

a(ei)a
∗(ej)− qa∗(ej)a(ei) = δi,j1Aq ,

where

δi,j =

{
1 if i = j

0 if i 6= j

We aim to define the automorphism on Aq as the right shift, given by

α(a(ei)) = a(ei+1), i ∈ Z.

But, to show that α is indeed an automorphism, we take another approach
and first define a unitary operator on Fq, playing the same role as the
automorphism but on the Hilbert space, which we can then use to express
the action of the automorphism group (similarly to what was done in the
non-commutative torus). Thus, we define a (linear) operator U on F by:

UΩ = Ω

and
U(eσ1 ⊗ · · · ⊗ eσk) = eσ1+1 ⊗ · · · ⊗ eσk+1.

It is clear that U preserves the norm on these basis vectors of H⊗k, k =
1, 2, . . .. We show that this is also the case on the linear span of these
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vectors, so that U is an isometry on F which can be extended by continuity
to Fq. Thus, we consider finite linear combinations of such orthonormal
basis vectors, say x =

∑p
i=1 βibi, where the βi’s are scalars and

bi ∈ {Ω} ∪ {eσ1 ⊗ · · · ⊗ eσk : σj ∈ Z, j = 1, 2, ..., k and k = 1, 2, . . .}, for each
i = 1, ..., p. Then

||Ux||2 = ||U(

p∑
i=1

βibi)||2

= ||
p∑
i=1

U(βibi)||2

=

p∑
i=1

||U(βibi)||2

=

p∑
i=1

|βi|2||U(bi)||2

=

p∑
i=1

|βi|2||bi||2

= ||
p∑
i=1

βibi||2

= ||x||2.

Hence U is an isometry on Fq, and thus also unitary, since we can define its
inverse by

U−1(eσ1+1 ⊗ · · · ⊗ eσk+1) = eσ1 ⊗ · · · ⊗ eσk ,

which will also be isometric by the same argument as above. We now define
α : B(Fq)→ B(Fq) by

α(a) = UaU∗,

so that α is a *-automorphism of B(Fq), and show that we can restrict it
to Aq, that is, to show that α maps elements of Aq to elements of Aq. We
begin by showing this on the generating set {a∗(ei) : i ∈ Z} of basis elements
of Fq. Then

α(a∗(ei))(eσ1 ⊗ · · · ⊗ eσk) = Ua∗(ei)U
∗(eσ1 ⊗ · · · ⊗ eσk)

= Ua∗(ei)(eσ1−1 ⊗ · · · ⊗ eσk−1)

= U(ei ⊗ eσ1−1 ⊗ · · · ⊗ eσk−1)

= ei+1 ⊗ eσ1 ⊗ · · · ⊗ eσk
= a∗(ei+1)(eσ1 ⊗ · · · ⊗ eσk),

so that α(a∗(ei)) = a∗(ei+1), and thus α(a(ei)) = a(ei+1), so α(Aoq) ⊆ Aq,
where Aoq is the *-algebra generated by the set {a∗(ei) : i ∈ Z}. Aslo, since
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α is bounded on B(Fq), we have that α(Aq) ⊆ Aq. In the same way we have
α−1(Aq) ⊆ Aq, implying that α(Aq) = Aq. Hence α is a *-automorphism of
Aq and we have the C*-dynamical system (Aq, α).

3.4 Shift on an infinite tensor product of C*-algebras

The next example will use an infinite tensor products of C*-algebras. The
aim is not to give a detailed exposition of infinite tensor products, but
merely to use it as an example of a C*-dynamical system that will illustrate
that there are noncommutative dynamical systems that are ergodic but not
uniquely ergodic, and in a sense show that these notions are meaningful.
Thus, familiarity with infinite tensor products of C*-algebras is assumed,
and the interested reader is referred to [16, Chap 11] for a detailed con-
struction thereof. We will, however, state the following result that will be
directly applicable.

Proposition 3.4.1. [16, Prop 11.4.5, p. 868] Let {Bi : i ∈ Z} and {Ci : i ∈
Z} be families of C*-algebras. Let B(i) denote the canonical image of Bi in⊗

i∈Z Bi and let C(i) denote the canonical image of Ci in
⊗

i∈Z Ci.

(i) If Bi is *-isomorphic to Ci for each i ∈ Z, then
⊗

i∈Z Bi is *-isomorphic
to
⊗

i∈Z Ci.

(ii) If θi is a *-isomorphism from B(i) onto C(i) for each i ∈ Z, then there
is a *-isomorphism θ = ⊗i∈Zθi from

⊗
i∈Z Bi onto

⊗
i∈Z Ci such that

θ|B(i) = θi.

Let A be a C*-algebra and consider the C*-algebra A⊗ :=
⊗

i∈ZAi,
where Ai = A for every i ∈ Z.

We define αi : Ai → Ai+1 by αi(a) = a for every a ∈ Ai and for
every i ∈ Z. Since each αi is in effect just the identity map on A, it is
clear that each αi is an automorphism. By Proposition 3.4.1 we have the
automorphism α⊗ := ⊗i∈Zαi on A⊗. So, if one considers the embeddings of
the Ai’s (and finite tensor products of the Ai’s) into A⊗, which form a dense
*-subalgebra in A⊗, the action of α⊗ on any simple tensor in this dense *-
subalgebra shifts the i-th component algebra to the (i + 1)-th component
algebra. That is

α⊗(· · · ⊗ 1Ak−1
⊗ ak ⊗ 1Ak+1

· · · )
= · · · ⊗ 1Ak ⊗ ak+1 ⊗ 1Ak+2

· · · ,

with ak = ak+1 ∈ A (or more generally a can be replaced by an element
from a finite tensor product in A).

Hence, we have the C*-dynamical system (A⊗, α⊗).
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Chapter 4

Unique and Relative Unique
Ergodicity

In this chapter we consider unique ergodicity for C*-dynamical systems and
follow the lead of Abadie and Dykema in [1] to the more general notion of
relative unique ergodicity. Where Abadie and Dykema considered relative
unique ergodicity for dynamical systems with Z as the acting group, we
consider more general groups, specifically, any locally compact abelian group
that contains a Følner sequence. In the second section we illustrate these
notions using the examples from Chapter 3.

4.1 Unique and Relative Unique Ergodicity

In this section we define unique and relative unique ergodicity and give some
characterizations thereof. The main result is based on [1], and deals with
characterizations of the broader notion of relative unique ergodicity intro-
duced there. Particularly interesting here is that relative unique ergodicity
is equivalent to the norm convergence of ergodic averages taken over the
C*-algebra, with the limit being a norm one projection onto the fixed point
space under the automorphism in question, i.e. a conditional expectation
by Theorem 2.5.12.

Before we begin some housekeeping is in order. Given any locally com-
pact group, say G, there exists a right Haar measure on G, which we will
denote by µ. Familiarity with the Haar measure is assumed, and the reader
is referred to [4, Chap 9, pp.297 - 324] for a detailed exposition on the ex-
istence, uniqueness and properties of the Haar measure. Throughout this
chapter let A∆B denote the symmetric difference of two sets A and B. That
is, A∆B = (A\B) ∪ (B\A).

Taking ergodic averages over more general groups, which in our case will
be a locally compact groups, will then require a suitable substitute for the
sequence of subsets {1, 2, . . . , n} of the integers. This will come in the form
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of Følner sequences.

Definition 4.1.1. Let G be a locally compact group. A Følner sequence
in G is a sequence, (Gn), of compact subsets in G such that 0 < µ(Gn) for
every n, and for every g ∈ G

lim
n→∞

µ(Gn∆(Gng))

µ(Gn)
= 0

It is important to mention that there is a deep underlying theory per-
taining to the existence of Følner sequences in groups, and is related to
the amenablility of the group. We do not need to explore this relationship,
since we can show that Følner sequences do exist in the groups used in our
examples.

Example 4.1.2. As our first example we show that the group of integers, Z,
with addition as the group operation, has a Følner sequence. So, consider
G = Z with the discrete topology, and let µ be the right Haar measure,
which is just the counting measure. Consider the sequence (Gn), where
Gn = {−n, . . . , n}, for each n ∈ N. Each Gn is compact with µ(Gn) =
2n + 1 > 0. Taking an arbitrary g ∈ G, we may without loss of generality
assume that |g| ≤ 2n, since we take the limit as n → ∞. Then we have
µ(Gn∆(Gn + g)) = 2g, and so

lim
n→∞

µ(Gn∆(Gn + g))

µ(Gn)
= lim

n→∞

2g

2n+ 1
= 0.

Hence (Gn) is a Følner sequence in Z.

In the same way as in the preceding example, Gn = {1, 2, . . . , n} and
Gn = {0, 2, . . . , n− 1} are also examples of Følner sequences in Z (and N).

Example 4.1.3. For the second example let G = R2, again with addition
as the group operation, with the standard topology, and with the Lebesgue
measure restricted to the Borel σ-algebra (which is, up to a constant multi-
ple, the same as the Haar measure due to its uniqueness). As our sequence
of compact subsets of G we let Gn = [−n, n] × [−n, n], where the com-
pactness is clear from the Heine-Borel theorem. Then µ(Gn) = 4n2. Let
g = (g1, g2) ∈ R2. Then, we can again assume with out loss of generality that
|g1|, |g2| < 2n, and so we have that µ(Gn∆(Gn + g)) = 4n(g1 + g2)− 2g1g2.
Thus

lim
n→∞

µ(Gn∆(Gn) + g)

µ(Gn)
= lim

n→∞
(
g1 + g2

n
− g1g2

2n2
) = 0

Hence (Gn) is a Følner sequence in R2.

One can show in exactly the same way as above that if G = R and we
let Gn = [−n, n], then Gn is a Følner sequence in R.
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Remark 4.1.4. For the remainder, in our definition of a C*-dynamical
system, let G be a locally compact group, where the group operation will be
written multiplicatively, and such that G contains a Følner sequence, denoted
by (Gn). Also let A be a C*-algebra and α : G → Aut(A), taking g 7→ αg, be
a group homomorphism into the group of automorphisms with g 7→ αg(a)
Bochner integrable, for every a ∈ A. The same assumptions are made
for state preserving C*-dynamical systems. Note that with αg(a) Bochner
integrable, the integral 1

µ(Gn)

∫
Gn
αg(a)dµ(g) is well defined because the Haar

measure is finite on compact sets, specifically in our case µ(Gn) < +∞. Also,
since the Bochner integral will be C*-algebra-valued, we need to clarify the
*-operation on such an element. An easy way to see this, without reverting
back to simple functions, is to consider any φ ∈ A∗ and its adjoint φ∗ ∈ A∗.
Let f : G → A be Bochner integrable, G ⊂ G compact and µ the right Haar
measure, then

φ∗
(∫

G
f(g)dµ(g)

)
= φ

((∫
G
f(g)dµ(g)

)∗)
(4.1)

and, by Theorem 2.1.11,

φ∗
(∫

G
f(g)dµ(g)

)
=

∫
G
φ∗(f(g))dµ(g)

=

∫
G
φ(f(g)∗)dµ(g)

=

∫
G
φ(f(g)∗)dµ(g)

= φ

(∫
G
f(g)∗dµ(g)

)
. (4.2)

Now, since φ ∈ A∗ was arbitrary, it follows from Equations 4.1 and 4.2 that(∫
G
f(g)dµ(g)

)∗
=

∫
G
f(g)∗dµ(g).

Lastly, the following property will be used on many occasions: Let f : G → A
be Bochner integrable, G ⊂ G compact, h ∈ G arbitrary and µ the right Haar
measure, then ∫

G
f(gh)dµ(g) =

∫
Gh
fdµ.

Much of the work that follows requires a state that is invariant under
the automorphism group in question. The following result guarantees the
existence of such a state.

Theorem 4.1.5. Let (A, α) be C*-dynamical system. Then there exists an
α-invariant state on A.
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Proof. Let φ be any state on A. We define a mapping Iφ,n : A → C by

Iφ,n(a) =
1

µ(Gn)

∫
Gn

φ ◦ αg(a)dµ(g).

We show that Iφ,n is a state for every n ∈ N. Linearity follows from
the linearity of φ, α and the Bochner (or more precisely Lebesgue) integral.
Futhermore,

|Iφ,n(a)| = | 1

µ(Gn)

∫
Gn

φ ◦ αg(a)dµ(g)|

≤ 1

µ(Gn)

∫
Gn

|φ ◦ αg(a)|dµ(g)

≤ ||φ||||α(a)||
= ||a||.

Hence Iφ,n is a bounded linear functional, i.e. Iφ,n ∈ A∗. Moreover, taking
the supremum over all a ∈ A with norm 1 on both sides of ||Iφ,n(a)|| ≤ ||a||,
we see that ||Iφ,n|| ≤ 1. On the other hand,

1 = ||Iφ,n(1A)|| ≤ sup
||a||=1

||Iφ,n(a)|| = ||Iφ,n||,

so that ||Iφ,n|| = 1. Also, we have that Iφ,n(1A) = 1 = ||Iφ,n||, so by
Theorem 2.2.9, Iφ,n is a positive bounded linear functional, and hence a
state. By Theorem 2.3.19 we have that S(A) is weak* compact. Thus, the
sequence (Iφ,n)n∈N must have a weak*-convergent subsequence in S(A), say
Iφ,nk → Iφ, with Iφ ∈ S(A) (see Theorem 2.3.14).

Let k ∈ G, we show that Iφ is α-invariant. First, we note the following:

0 ≤ |Iφ,n(αk(a))− Iφ,n(a)|

=
∣∣∣ 1

µ(Gn)

∫
Gn

φ ◦ αgk(a)dµ(g)− 1

µ(Gn)

∫
Gn

φ ◦ αg(a)dµ(g)
∣∣∣

=
∣∣∣ 1

µ(Gn)

∫
Gnk

φ ◦ αg(a)dµ(g)− 1

µ(Gn)

∫
Gn

φ ◦ αg(a)dµ(g)
∣∣∣

=
∣∣∣ 1

µ(Gn)

∫
Gnk\Gn

φ ◦ αg(a)dµ(g)− 1

µ(Gn)

∫
Gn\Gnk

φ ◦ αg(a)dµ(g)
∣∣∣

≤ 1

µ(Gn)

∫
Gnk\Gn

|φ ◦ αg(a)|dµ(g) +
1

µ(Gn)

∫
Gn\Gnk

|φ ◦ αg(a)|dµ(g)

=
1

µ(Gn)

∫
Gn∆Gnk

|φ ◦ αg(a)|dµ(g)

≤ ||a||µ(Gn∆Gnk)

µ(Gn)

−→ 0 (as n→∞).
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Now, again considering the sequence Iφ,nk (of Iφ,n) converging to Iφ in the
weak*-topology, we have for any ε > 0, g ∈ G and every a ∈ A that

0 ≤ |Iφ(αg(a))− Iφ(a)|
≤ |Iφ(αg(a))− Iφ,nk(αg(a))|+ |Iφ,nk(αg(a))− Iφ,nk(a)|

+|Iφ,nk(a)− Iφ(a)|

≤ ε

3
+
ε

3
+
ε

3
= ε for n large enough.

This holds true for every ε > 0, giving the desired result.

Having established the existence of invariant states, we now give the
definitions and characterizations of some ergodic notions in terms of such
states.

Definition 4.1.6. A state preserving C*-dynamical system (A, α, φ) is called
ergodic if

lim
n→∞

1

µ(Gn)

∫
Gn

φ(aαg(b))dµ(g) = φ(a)φ(b)

for every a, b ∈ A.

Definition 4.1.7. A C*-dynamical system (A, α) is called uniquely ergodic
if there is only one α-invariant state on A.

We now show that unique ergodicity is equivalent to the norm conver-
gence of

1

µ(Gn)

∫
Gn

αg(a)dµ(g), for every a ∈ A,

with the limit being a constant multiple of the unit of A, and the constant
is given by the α-invariant state evaluated at a.

Theorem 4.1.8. (A, α) is uniquely ergodic if and only if

lim
n→∞

|| 1

µ(Gn)

∫
Gn

αg(a)dµ(g)− λa1A|| = 0

for some λa ∈ C and for every a ∈ A. Then, furthermore, λa = φ(a), with
φ the unique α-invariant state of (A, α).

Proof. First assume that

lim
n→∞

|| 1

µ(Gn)

∫
Gn

αg(a)dµ(g)− λa1A|| = 0

74

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



for some λa ∈ C and for every a ∈ A, and let φ be any α-invariant state on
A. Then ∣∣∣φ( 1

µ(Gn)

∫
Gn

αg(a)dµ(g)− λa1A
) ∣∣∣

=
∣∣∣ 1

µ(Gn)

∫
Gn

φ ◦ αg(a)dµ(g)− φ(λa1A)
∣∣∣

=
∣∣∣ 1

µ(Gn)

∫
Gn

φ(a)dµ(g)− λa
∣∣∣

= |φ(a)− λa|.

Hence

|φ(a)− λa| ≤ ||
1

µ(Gn)

∫
Gn

αg(a)dµ(g)− λa1A|| → 0, as n→∞

for every a ∈ A and φ an arbitrary α-invariant state. Thus proving the
uniqueness of φ and that λa = φ(a).

Conversely, assume (A, α) is uniquely ergodic, but that the uniform con-
vergence fails for self-adjoint elements a ∈ A. That is, there is an ε̃ > 0,
such that for every n0 ∈ N there is an m0 > n0 such that

|| 1

µ(Gm0)

∫
Gm0

αg(a)dµ(g)− φ(a)1A|| ≥ ε̃.

Similarly, there is an m1 > m0 such that

|| 1

µ(Gm1)

∫
Gm1

αg(a)dµ(g)− φ(a)1A|| ≥ ε̃.

Hence we can obtain a sequence (mj) with m0 < m1 < . . ., such that

|| 1

µ(Gmj )

∫
Gmj

αg(a)dµ(g)− φ(a)1A|| ≥ ε̃,

for j = 1, 2, . . ..
But if a ∈ A is self-adjoint, it follows from Remark 4.1.4 that

1
µ(Gn)

∫
Gn
αg(a)dµ(g) is also self-adjoint, and hence, by the above inequality

and Proposition 2.2.7, for every mj ∈ N, there exists a state ψj on A such
that

ε̃ ≤ || 1

µ(Gmj )

∫
Gmj

αg(a)dµ(g)− φ(a)1A||

=
∣∣∣ψj ( 1

µ(Gmj )

∫
Gmj

αg(a)dµ(g)− φ(a)1A

)∣∣∣
= |Iψj ,mj (a)− φ(a)|, (4.3)
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for j = 1, 2, . . ..
As was shown in the proof of Proposition 4.1.5, (Iψj ,mj )j∈N is a sequence

of states in a weak* compact subspace, S(A), and as such must have a
convergent subnet, with its limit being an α-invariant state, which must be
φ by its uniqueness. But, by Theorem 2.3.13 φ is a weak* accumulation
point of (Iψj ,mj )j∈N, which contradicts Inequality 4.3. Hence, the uniform
convergence holds for self-adjoint elements in A. Now, consider any a ∈ A,
then we can write a = a1 + ia2, where a1, a2 ∈ A are self-adjoint. Then for
every ε > 0

|| 1

µ(Gn)

∫
Gn

αg(a)dµ(g)− φ(a)1A||

= || 1

µ(Gn)

∫
Gn

αg(a1)dµ(g)− φ(a1)1A

+i

(
1

µ(Gn)

∫
Gn

αg(a2)dµ(g)− φ(a2)1A

)
||

≤ || 1

µ(Gn)

∫
Gn

αg(a1)dµ(g)− φ(a1)1A||

+|| 1

µ(Gn)

∫
Gn

αg(a2)dµ(g)− φ(a2)1A||

≤ ε

2
+
ε

2
= ε (for n large enough).

Remark 4.1.9. An interesting observation is that the proof above nowhere
depended on the specific Følner sequence used. This fact will in the proof of
Theorem 4.1.16, again be illuminated by the uniqueness of the conditional
expectation obtained.

Theorem 4.1.10. If the C*-dynamical system (A, α) is uniquely ergodic,
then it is ergodic.

Proof. Let φ denote the unique α-invariant state on A. Then by Theorem
4.1.8

lim
n→∞

|| 1

µ(Gn)

∫
Gn

αg(a)dµ(g)− φ(a)1A|| = 0,
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for every a ∈ A. Hence given any ε > 0,

0 ≤
∣∣∣ 1

µ(Gn)

∫
Gn

φ(aαg(b))dµ(g)− φ(a)φ(b)
∣∣∣

=
∣∣∣φ( 1

µ(Gn)

∫
Gn

aαg(b)dµ(g)− aφ(b)
)∣∣∣

≤ ||φ|| ||a
( 1

µ(Gn)

∫
Gn

αg(b)dµ(g)− φ(b)1A

)
|| (by Theorem 2.1.13)

≤ ||a|| || 1

µ(Gn)

∫
Gn

αg(b)dµ(g)− φ(b)1A||

≤ ε,

for n large enough.

Definition 4.1.11. Let (A, α) be a C*-dynamical system. We call the set

Aα = {a ∈ A : αg(a) = a, g ∈ G}

the fixed point subalgebra of A.

Proposition 4.1.12. Let (A, α) be a C*-dynamical system. Then Aα is a
C*-subalgebra of A containing A’s identity.

Proof. That Aα is a unital *-algebra, with the same unit as A, follows from
the fact that every αg, g ∈ G, is a *-automorphism, and is clear. Let (an)n∈N
be a sequence in Aα that converges to a ∈ A in norm. Then, for every g ∈ G,
we have by the continuity of αg that

||αg(a)− a|| ≤ ||αg(a)− αg(an)||+ ||αg(an)− a||
= ||αg(a− an)||+ ||an − a||

≤ ε

2
+
ε

2
,

so that αg(a) = a and a ∈ Aα. Hence Aα is a closed subspace of the
C*-algebra A, and thus a C*-subalgebra.

Proposition 4.1.13. Let the C*-dynamical system (A, α) be uniquely er-
godic. Then Aα consists of constant multiples of the identity, i.e. it is one
dimensional.

Proof. Let a ∈ Aα and φ the unique α-invariant state. Then for every n ∈ N

a =
1

µ(Gn)

∫
Gn

adµ(g) =
1

µ(Gn)

∫
Gn

αg(a)dµ(g),

and taking the limit as n→∞, we obtain from Theorem 4.1.8 that
a = φ(a)1A.
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Next we define relative unique ergodicity as was done by Abadie and
Dykema, and prove their result for locally compact abelian groups containing
a Følner sequence. Notice that we now require the action group to be
abelian, for this will allow the existence of a unique conditional expectation
E onto the fixed point subalgebra such that α ◦ E = E ◦ α = E.

Definition 4.1.14. We call a C*-dynamical system (A, α) uniquely ergodic
relative to its fixed point subalgebra if every state on the fixed point subal-
gebra has a unique α-invariant state extension to A.

Lemma 4.1.15. Let A be a C*-algebra, α any automorphism on A and
φ ∈ A∗ self-adjoint and α-invariant. Then φ+ and φ−, obtained from the
Jordan decomposition of φ, are both α-invariant.

Proof. From the Jordan decomposition we have that φ = φ+ − φ−. But,
we also have that φ = φ ◦ α = φ+ ◦ α − φ− ◦ α, and ||φ|| = ||φ ◦ α|| =
||φ+ ◦ α|| + ||φ− ◦ α||. Since the decomposition is unique it follows that
φ+ ◦ α = φ+ and
φ− ◦ α = φ−.

Theorem 4.1.16. [1, Thm 3.2] Let (A, α) be a C*-dynamical system, where
the action group G is a locally compact abelian group containing a Følner
sequence (Gn), and Aα the fixed point subalgebra of A. Then the following
five statements are equivalent:

(i) (A, α) is uniquely ergodic relative to its fixed point subalgebra.

(ii) Every bounded linear functional on Aα has a unique bounded, α-invariant
linear extension to A.

(iii) The subspace Aα + {a− αg(a) : a ∈ A, g ∈ G} is dense in A.

(iv) The sequence of ergodic averages

1

µ(Gn)

∫
Gn

αg(a)dµ(g)

convergence uniformly as n→∞ for every a ∈ A.

(v) We have the following

Aα + {a− αg(a) : a ∈ A, g ∈ G} = A,

where the closure is with respect to the norm topology.

Moreover, conditions (i) to (v) imply
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(vi) There exists a unique α-invariant conditional expectation E from A
onto Aα, and it is given by

E(a) = lim
n→∞

1

µ(Gn)

∫
Gn

αg(a)dµ(g).

Proof. That (ii) ⇒ (i) is clear, as is (v) ⇒ (iii).
We show (i) ⇒ (iii): Assume (i) to be true, but that x ∈ A and

x /∈ Aα + {a− αg(a) : a ∈ A, g ∈ G}.

Then the Hahn-Banach Theorem provides us with a bounded linear
functional φ on A such that φ(x) 6= 0 and

φ
(
Aα + {a− αg(a) : a ∈ A, g ∈ G}

)
= 0 (see for example [15, Cor 1.6.3,

p.44]). This implies that φ(Aα) = 0, and moreover that φ ◦ α = φ. Indeed,
given any a ∈ A and g ∈ G, then

a− αg(a) ∈ Aα + {a− αg(a) : a ∈ A, g ∈ G},

and thus φ(a−αg(a)) = 0, giving φ(αg(a)) = φ(a). From Remark 2.2.12 we
may assume that φ is self-adjoint, and moreover, by the Jordan decompo-
sition and Lemma 4.1.15 we have φ = φ+ − φ− (uniquely), where φ+ and
φ− are positive linear functionals on A and are α-invariant. Notice that for
every a ∈ Aα, we have φ+(a) = φ−(a), and since 1A ∈ Aα, we have that
||φ+|| = φ+(1A) = φ−(1A) = ||φ−||. In particular, φ+ 6= 0 ⇔ φ− 6= 0. So,
let us consider the following two cases separately:
(1) φ+ = 0 and φ− = 0 on Aα. Then, by the positivity of φ+ and φ−,
0 = φ±(1A) = ||φ±|| which implies that φ = 0, a contradiction since
φ(x) 6= 0.
(2) φ+ 6= 0 and φ− 6= 0 on Aα. Let λ = ||φ±|| > 0, then 1

λφ± are positive
linear functionals with norm 1, that is they are (equal) α-invariant states
on Aα. Hence by (ii) they must be equal on A. Then φ = φ+ − φ− = 0,
another contradiction. Hence (ii) ⇒ (iii).

(iii) ⇒ (iv): Let a ∈ A and ε > 0. By (iii) there must be a c ∈ Aα and
a b ∈ A such that

||a− (c+ b− αk(b)|| < ε, for some k ∈ G.
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Then

|| 1

µ(Gn)

∫
Gn

αg(a)dµ(g)− 1

µ(Gm)

∫
Gm

αg(a)dµ(g)||

= || 1

µ(Gn)

∫
Gn

αg(a− (c+ b− αk(b)) + (c+ b− αk(b)))dµ(g)

− 1

µ(Gm)

∫
Gm

αg(a− (c+ b− αk(b)) + (c+ b− αk(b)))dµ(g)||

≤ || 1

µ(Gn)

∫
Gn

αg(a− (c+ b− αk(b)))dµ(g)||

+ || 1

µ(Gm)

∫
Gm

αg(a− (c+ b− αk(b)))dµ(g)||

+ || 1

µ(Gn)

∫
Gn

αg(c+ b− αk(b))dµ(g)

− 1

µ(Gm)

∫
Gm

αg(c+ b− αk(b))dµ(g)||

≤ 2ε+ || 1

µ(Gn)

∫
Gn

αg(c)dµ(g)− 1

µ(Gm)

∫
Gm

αg(c)dµ(g)

+

(
1

µ(Gn)

∫
Gn

αg(b)dµ(g)− 1

µ(Gn)

∫
Gn

αgk(b)dµ(g)

)
−
(

1

µ(Gm)

∫
Gm

αg(b)dµ(g)− 1

µ(Gm)

∫
Gm

αgk(b)dµ(g)

)
||

≤ 2ε+ ||
(

1

µ(Gn)

∫
Gn

αg(b)dµ(g)− 1

µ(Gn)

∫
Gnk

αg(b)dµ(g)

)
||

+ ||
(

1

µ(Gm)

∫
Gm

αg(b)dµ(g)− 1

µ(Gm)

∫
Gmk

αg(b)dµ(g)

)
|| (*)

= 2ε+ ||

(
1

µ(Gn)

∫
Gn\Gnk

αg(b)dµ(g)− 1

µ(Gn)

∫
Gnk\Gn

αg(b)dµ(g)

)
||

+ ||

(
1

µ(Gm)

∫
Gm\Gmk

αg(b)dµ(g)− 1

µ(Gm)

∫
Gmk\Gm

αg(b)dµ(g)

)
||

≤ 2ε+
1

µ(Gn)

∫
Gn∆Gnk

||αg(b)||dµ(g) +
1

µ(Gm)

∫
Gm∆Gmk

||αg(b)||dµ(g)

= 2ε+ 2||b||
(
µ(Gn∆Gnk)

µ(Gn)
+
µ(Gm∆Gmk)

µ(Gm)

)
,

which can be made arbitrarily small by taking m,n large enough, and for
clarity, the inequality (*) follows from the fact that αg(c) = c. Hence the
sequence of ergodic averages in consideration is Cauchy in A, and must thus
converge.
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(iv) ⇒ (vi): Let E be defined by

E(a) = lim
n→∞

1

µ(Gn)

∫
Gn

αg(a)dµ(g).

We show that E is a unique α-invariant conditional expectation from A
onto Aα. It is clear that E maps A into A, and is linear. Furthermore, for
a ∈ Aα

E(a) = lim
n→∞

1

µ(Gn)

∫
Gn

adµ(g) = a.

Also, for k ∈ G and every a ∈ A we have from Theorem 2.1.13 that

||E(a)− αk(E(a))||

= lim
n→∞

|| 1

µ(Gn)

∫
Gn

αg(a)dµ(g)− 1

µ(Gn)

∫
Gn

αkg(a)dµ(g)||

= lim
n→∞

|| 1

µ(Gn)

∫
Gn\kGn

αg(a)dµ(g)− 1

µ(Gn)

∫
kGn\Gn

αg(a)dµ(g)||

≤ lim
n→∞

(
1

µ(Gn)

∫
Gn\kGn

||αg(a)||dµ(g) +
1

µ(Gn)

∫
kGn\Gn

||αg(a)||dµ(g)

)

= lim
n→∞

1

µ(Gn)

∫
Gn∆kGn

||αg(a)||dµ(g)

= ||a|| lim
n→∞

µ(Gn∆kGn)

µ(Gn)

= 0

Hence αk(E(a)) = E(a) which shows that E is indeed a projection onto Aα.
Using exactly the same technique as above, one can show that
E(αk(a)) = E(a), for every k ∈ G and a ∈ A, giving the α-invariance of E.
We show that E has norm one. Firstly we have

||E(a)|| ≤ lim
n→∞

1

µ(Gn)

∫
Gn

||αg(a)||dµ(g) = ||a||,

and taking the supremum over all a ∈ A, with ||a|| = 1, on both sides gives
the inequality ||E|| ≤ 1. Secondly, we have 1 = ||E(1A)|| ≤ ||E||. Hence
||E|| = 1. One easily shows that Aα is a C*-subalgebra of A, and so by
Theorem 2.5.12 E is a conditional expectation onto Aα.

For the uniqueness, let E′ be any other such an α-invariant conditional
expectation onto Aα. Then for any a ∈ A

E′(a) =
1

µ(Gn)

∫
Gn

E′(a)dµ(g)

=
1

µ(Gn)

∫
Gn

E′(αg(a))dµ(g)

= E′(
1

µ(Gn)

∫
Gn

αg(a)dµ(g)).
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Taking the limit as n→∞ both sides yield

E′(a) = E′(E(a)) = E(a).

(iv)+(vi) ⇒ (ii): Assume statements (iv) and (vi) and let ω : Aα → C
be a bounded linear functional. Then ω ◦E is an α-invariant extension of ω
to A. For the uniqueness, let φ be any α-invariant bounded linear extension
of ω. Then

φ(a) =
1

µ(Gn)

∫
Gn

φ(a)dµ(g) =
1

µ(Gn)

∫
Gn

φ(αg(a))dµ(g)

= φ

(
1

µ(Gn)

∫
Gn

αg(a)dµ(g)

)
.

Taking the limit as n→∞ on both sides yields

φ(a) = φ(E(a)) = ω(E(a)),

so that φ = ω ◦ E.
(ii)+(vi)⇒ (v): Given any a ∈ A, we then put ac = a−E(a), and hence

we can express a = ac + E(a), where ac ∈ ker(E). Hence we have that

A = ker(E) + E(A) = ker(E) +Aα.

Thus, it suffices to show that

ker(E) ⊆ {a− αg(a) : a ∈ A, g ∈ G},

with the reverse inclusion then clear. Assume, on the contrary, that x ∈
ker(E), but x /∈ {a− αg(a) : a ∈ A, g ∈ G}. By the same argument as in
the first implication proved, there exists by the Hahn-Banach Theorem a
bounded linear functional φ : A → C such that φ(x) 6= 0 and φ ◦ α = φ.
From (vi) we have that φ◦E is an α-invariant extension of φ|Aα to A, which
by (i) should be unique. Thus, φ = φ ◦ E, and so φ(x) = φ(E(x)) = 0, a
contradiction.

The following corollary gives another characterization of unique ergod-
icity in terms of the necessarily one dimensional fixed point space.

Corollary 4.1.17. Let (A, α) be a C*-dynamical system. The sequence of
ergodic averages

1

µ(Gn)

∫
Gn

αg(a)dµ(g)

convergence uniformly as n → ∞ for every a ∈ A and Aα = C1A if and
only if (A, α) is uniquely ergodic.
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Proof. If (A, α) is uniquely ergodic, then the required implication follows
directly from Theorem 4.1.8 and Proposition 4.1.13.

Assume the sequence of ergodic averages 1
µ(Gn)

∫
Gn
αg(a)dµ(g) conver-

gence uniformly as n → ∞ for every a ∈ A and Aα = C1A. Then by
Theorem 4.1.16 (A, α) is uniquely ergodic relative to Aα, and so every state
on Aα has a unique α-invariant state extension to A. But since Aα = C1A,
all states on Aα are equal, and will thus have the same unique α-invariant
state extension to A, showing that there is only one α-invariant state on
A.

4.2 Examples of unique ergodicity

We show that the noncommutative torus with an R2-action as well as the
q-commutation relation C*-algebra with the Z-action are both uniquely er-
godic. We begin with the torus.

Non-commutatve torus with an R2 action: Recall that, for θ ∈ R,
the non-commutative torus (denoted by Aθ) was defined as the C*-algebra
generated by the unitary operators V and W , as defined by Equations (3.1)
and (3.2), which satisfies to the commutation relation

VW = e−iθWV.

On Aθ we constructed the C*-dynamical system (Aθ, α), where α is the
group of automorphisms defined by α(s,t)(a) = U(s,t)aU

∗
(s,t), for (s, t) ∈ R2,

and U(s,t) was defined via the Koopman construction from the classical torus.
We begin by showing that the automorphisms α(s,t) are Bochner inte-

grable. By Theorem 2.1.8 it will be sufficient to show that (s, t) 7→ α(s,t)(a)
is continuous for every a ∈ Aθ, since we are only interested in integrating
over the Følner sequence when taking any form of ergodic average.

Proposition 4.2.1. The function R2 → Aθ, (s, t) 7→ α(s,t)(a) is continuous
in the in the norm of Aθ for every a ∈ Aθ.

Proof. Since α : R2 → Aθ is a group homomorphism, and each α(s,t) a
*-automorphism, we have that

||α(s,t)(a)− α(s0,t0)(a)|| = ||(α(s−s0,t−t0) − α(0,0))(α(s0,t0)(a))||
≤ ||α(s−s0,t−t0) − α(0,0)|| ||a||,

and thus we only need to show continuity at the origin. On the generators,
V and W we have that α(s,t)(V

mWn) = ei(sm+tn)V mWn which is clearly
continuous. Moreover, so will any finite linear combination of elements of
the form V mWn, with m,n ∈ Z, also be continuous, showing continuity on
the dense *-algebra generated by V and W . Now, let a ∈ A be arbitrary.
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Then given any ε > 0 there exists a b in the dense *-algebra generated by V
and W such that ||b− a|| < ε. Then we have

||α(s,t)(a)− a|| = ||α(s,t)(a)− α(s,t)(b) + α(s,t)(b)− b+ b− a||
≤ ||α(s,t)(a)− α(s,t)(b)||+ ||α(s,t)(b)− b||+ ||b− a||
= ||α(s,t)(a− b)||+ ||α(s,t)(b)− b||+ ||b− a||
= ||a− b||+ ||α(s,t)(b)− b||+ ||b− a||
< ε+ ε+ ε,

for (s, t) close enough to (0, 0). Hence, the function is continuous on R2.

We show that this C*-dynamical system is uniquely ergodic, that is,
there is only one α-invariant state on Aθ.

Theorem 4.2.2. The C*-dynamical system (Aθ, α) is uniquely ergodic with
an R2-action.

Proof. Consider the mapping ω : Aθ → C defined by

ω(a) = 〈1, a1〉2,

where 1 ∈ L2(µ) is the constant function valued 1. Linearity follows from
the inner product’s linearity, and moreover, ω(a∗a) = ||a1||22 ≥ 0 so that ω is
positive (and hence bounded by Theorem 2.2.9), which in turn implies that
||ω|| = ω(1Aθ) = 1. Hence ω is a state on Aθ. We show ω is α-invariant: let
(s, t) ∈ R2, a ∈ Aθ, then

ω(α(s,t)(a)) = 〈U∗(s,t)1, aU
∗
(s,t)1〉2

= 〈1, a1〉2
= ω(a).

It remains to show that ω is the only α-invariant state on Aθ. To this
end we notice that, for any non-zero m,n ∈ Z and (s, t) ∈ R2, we have that

ω(V mWn) = ω(α(s,t)(V
mWn)) = eismeitnω(V mWn),

implying ω(V mWn) = 0. Now, assume φ is another α-invariant state on
Aθ. Then ω and φ agree on the identity of Aθ (and any constant multiple
thereof) and the same argument as above implies that φ(V mWn) = 0 for
every non-zero m,n ∈ Z. Hence φ = ω on the *-algebra generated by V
and W . But, since both φ and ω are continuous, we have for an arbitrary
a ∈ Aθ that φ(a) = ω(a), showing that ω is a unique α-invariant state, and
hence the dynamical system (Aθ, α, ω) is uniquely ergodic.
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It is interesting to note that, since the noncommutative torus serves as a
generalization of the classical torus, and our dynamics was derived using the
dynamics of the classical torus via the Koopman construction, one would also
expect the classical dynamical system (T2,B, µ, T ) to be uniquely ergodic
(in the classical sense). And this is indeed the case; intuitively, this follows
from the fact that the Haar measure is a unique translation invariant Borel
measure, with uniqueness up to a constant multiple, and by normalizing it,
the uniqueness “up to a constant multiple” implies just uniqueness. So ω in
Theorem 4.2.2 is a type of noncommutative Haar measure.

The q-commutation relations: We now turn to the q-commutation
C*-algebra. This example is based on [8], and deals with the unique ergod-
icity of the C*-dynamical system (Aq, α) constructed in Section 3.3. We
begin by defining an α-invariant state. Let ω : Aq → C be defined by

ω(a) = 〈Ω, aΩ〉q, a ∈ Aq.

By definition it is well defined, linear, continuous and complex-valued. Posi-
tivity follows from ω(a∗a) = ||aΩ||2q ≥ 0, and by implication ||ω|| = ω(1Aq) =
1, showing it is a state. We show ω is α-invariant.

Proposition 4.2.3. The state defined by

ω(a) = 〈Ω, aΩ〉q, a ∈ Aq

is α-invariant.

Proof. We first consider ω on the dense *-algebra spanned by finite products
in {a(ei), a

∗(ej) : i, j ∈ Z}. By the linearity we need only consider a single
such product, and due to the q-commutation relation we can rewrite any
finite product from this dense *-algebra as a linear combination of the form

b = λ01Aq +
n∑
i=1

λibi,

where each bi is of the form

a∗(eσ1) · · · a∗(eσn)a(eρ1) · · · a(eρm),

that is, a product starting with an annihilation operator. Note that ω will
be zero on any such product starting with annihilation operators, since

ω(a∗(eσ1) · · · a∗(eσn)a(eρ1) · · · a(eρm))

= 〈a(eσn) · · · a(eσ1)Ω, a(eρ1) · · · a(eρm)Ω〉q
= 0 ( if m > 0 or n > 0).
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Hence, we have that

ω(α(1Aq + a∗(eσ1) · · · a∗(eσn)a(eρ1) · · · a(eρm)))

= ω(1Aq) + ω(a∗(eσ1+1) · · · a∗(eσn+1)a(eρ1+1) · · · a(eρm+1))

= 1

= ω(1Aq + a(eρm) · · · a(eρ1)a∗(eσ1) · · · a∗(eσn)).

Hence, by linearity ω is α-invariant on a dense *-algebra, and by its conti-
nuity the same will true on Aq.

Let Aαq denote the fixed point subalgebra under α. We define E : Aq →
Aαq by

E(a) = ω(a)1Aq .

Then E is well-defined, linear, α-invariant, and, by definition maps elements
of Aq into Aαq , i.e. α(E(a)) = E(a), a ∈ Aq. Moreover, E has norm one;

||E|| = sup
a∈Aq
||a||=1

||E(a)||

= sup
a∈Aq
||a||=1

||ω(a)1Aq ||

= sup
a∈Aq
||a||=1

|ω(a)|

= ||ω||
= 1.

We will now show that the ergodic averages 1
n

∑n
k=1 α

k(a) converges
uniformly to E(a) for every a ∈ Aq. For this we need the following two
results.

Lemma 4.2.4. [8, Lem 3.1] Let {ηj}, j = 1, . . . , n, be elements in H⊗k, and
let {ξj}, j = 1, . . . , n, be an orthonormal set in H, then

||
n∑
j=1

a∗(ξj)ηj ||q ≤
√

n

1− |q|
max

1≤j≤n
||ηj ||.
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Proof. Taking Lemma 3.3.15 into consideration, we see that〈
n∑
j=1

a∗(ξj)ηj ,
n∑
j=1

a∗(ξj)ηj

〉
q

=

〈
n∑
j=1

ξj ⊗ ηj , P (k+1)
q

n∑
j=1

ξj ⊗ ηj

〉
0

≤ 1

1− |q|

〈
n∑
j=1

ξj ⊗ ηj , (I ⊗ P (k)
q )

n∑
j=1

ξj ⊗ ηj

〉
0

=
1

1− |q|

〈
n∑
j=1

ξj ⊗ ηj ,
n∑
j=1

ξj ⊗ P (k)
q ηj

〉
0

=
1

1− |q|

n∑
i,j=1

〈ξi, ξj〉〈ηi, P (k)
q ηj〉0

=
1

1− |q|

n∑
i,j=1

〈ξi, ξj〉〈ηi, ηj〉q

=
1

1− |q|

n∑
j=1

〈ηj , ηj〉q

≤ n

1− |q|
max

1≤j≤n
||ηj ||2q .

Proposition 4.2.5. [8, Prop. 3.2] Let 0 ≤ k1 ≤ k2 ≤ · · · be any increasing
sequence of positive integers, and let eσ1 , . . . , eσi , eρ1 , . . . , eρj be elements of
the basis {ei : i ∈ Z} of H. Then

||
n∑
l=1

αkl(a∗(eσ1) · · · a∗(eσi)a(eρ1) · · · a(eρj ))|| ≤
√

n

(1− |q|)i+j

if at least either i 6= 0 or j 6= 0.

Proof. Firstly assume that i > 0. We may also take a unit vector η ∈ H⊗m,
for m = j, j+1, . . . (because for m < j, a∗(eσ1) · · · a∗(eσi)a(eρ1) · · · a(eρj )η =
0). Put,

ηl := a∗(eσ2+kl) · · · a
∗(eσi+kl)a(eρ1+kl) · · · a(eρj+kl)η,

then, since 1 ≤ 1√
1−|q|

, we have from Proposition 3.3.16 that
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||ηl||q ≤ 1√
(1−|q|)i+j−1

. Using Lemma 4.2.4, we have

||
n∑
l=1

αkl(a∗(eσ1) · · · a∗(eσi)a(eρ1) · · · a(eρj ))η||2q

= ||
n∑
l=1

a∗(eσ1+kl)a
∗(eσ2+kl) · · · a

∗(eσi+kl)a(eρ1+kl) · · · a(eρj+kl)η||
2
q

= ||
n∑
l=1

a∗(eσ1+kl)ηl||
2
q

≤ n

1− |q|
||ηl||2q

≤ n

(1− |q|)i+j
.

Assuming i = 0 and j > 0, the same argument as above can be applied to

n∑
l=1

αkl(a(eρ1) · · · a(eρj )) =
n∑
l=1

a(eρ1+kl) · · · a(eρj+kl)

=

(
n∑
l=1

a∗(eρj+kl) · · · a
∗(eρ1+kl)

)∗

Theorem 4.2.6. C*-dynamical system (Aq, α) is uniquely ergodic.

Proof. Let p denote a polynomial, each term (excluding the 1Aq term) con-
sisting of a finite product in {1Aq , a(ei), a

∗(ej) : i, j ∈ Z} starting with an
annihilation operator. Then p either has a term that is a constant mul-
tiple of the identity, say λ1Aq , or not. If it does not, i.e if λ = 0, then
E(p) = ω(p)1Aq = 0 (as in the proof of Proposition 4.2.3), and if it does,
i.e if λ 6= 0, then E(p) = λ1Aq . Furthermore, by Proposition 4.2.5, we also
have

|| 1
n

n−1∑
k=0

αk(p)− E(p)|| = || 1
n

n−1∑
k=0

αk(p)− λ1Aq ||

= || 1
n

n−1∑
k=0

αk(p− λ1Aq)||

→ 0 ( as n→∞).

Hence the ergodic averages converge in norm on the dense *-algebra spanning
Aq. Now, let a ∈ Aq, then there exists polynomials, say pm (of the same
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form as the p considered above), in the dense *-algebra such that pm → a
as m→∞. Then

|| 1
n

n−1∑
k=0

αk(a)− E(a)||

= || 1
n

n−1∑
k=0

αk(a)− 1

n

n−1∑
k=0

αk(pm) +
1

n

n−1∑
k=0

αk(pm)− E(pm) + E(pm)− E(a)||

≤ 1

n

n−1∑
k=0

||αk(a− pm)||+ || 1
n

n−1∑
k=0

αk(pm)− E(pm)||+ ||E(pm)− E(a)||

≤ ||a− pm||+ ||
1

n

n−1∑
k=0

αk(pm)− E(pm)||+ ||pm − a||

<
ε

3
+
ε

3
+
ε

3
(for n,m large enough).

Hence, since the ergodic averages 1
n

∑n−1
k=0 α

k(a) converge in norm to
E(a) for every a ∈ Aq and E(a) = ω(a)1Aq , it follows from Corollary 4.1.17
that (Aq, α, ω) is uniquely ergodic.

4.3 Example of relative unique ergodicity

Non-commutatve torus with an R action: Consider the action from R
on Aθ as defined in Section 3.2. We show that in this context the dynamical
system (Aθ, β) is uniquely ergodic relative to the fixed point subalgebra,
but not uniquely ergodic. As with the action from R2, we have for the R-
action an β-invariant state in ω(a) = 〈a1,1〉, with 1 ∈ L2(T2) the constant
function valued 1, but as we shall shortly see, it can not be unique.

Theorem 4.3.1. The C*-dynamical system (Aθ, β) is uniquely ergodic rel-
ative to its fixed point subalgebra, but not uniquely ergodic.

Proof. Firstly, notice that in this case the fixed point sub-algebra, Aβθ , is no
longer one dimensional, because for every s ∈ R, we have

α(s,0)(1Aθ) = 1Aθ and α(s,0)(W
m) = Wm.

Hence, Aβθ contains at least the *-algebra spanned by the set
{1Aθ ,Wm : m ∈ Z}, which then by Corollary 4.1.17 excludes the possibility
of unique ergodicity.

Let τ be any state on Aβθ , and assume that φ and ψ are two β-invariant
state extensions of τ to Aθ. It will suffice to consider products of the form
V mWn,m, n ∈ Z. Then

φ(V mWn) = φ(β(V mWn)) = eismφ(V mWn),
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for every s ∈ R, implying φ(V mWn) = 0 if m 6= 0. And, similarly we
obtain that ψ(V mWn) = 0 if m 6= 0. If m = 0, then β(Wn) = Wn, so that

Wn ∈ Aβθ , and thus φ(Wn) = ψ(Wn), showing that φ = ψ on the *-algebra
generated by the set {V mWn : m,n ∈ Z}. To see that this holds true on
the whole of Aθ, let a ∈ Aθ, then there is a sequence (an) in the *-algebra
generated by {V mWn : m,n ∈ Z}, such that an → a as n → ∞. Then, by
the continuity of φ and ψ, we have

φ(a) = lim
n→∞

φ(an)

= lim
n→∞

ψ(an)

= ψ(a).

Hence, every state on the fixed point sub-algebra has a unique β-invariant
state extension to the whole of Aθ, and so (Aθ, β) is uniquely ergodic relative
to its fixed point subalgebra.

4.4 Ergodicity does not imply unique ergodicity

Shift on an infinite tensor product of C*-algebras: Lastly, we return
to the C*-dynamical system (A⊗, α⊗) obtained by taking an infinite tensor
product of a single C*-algebra A, and shifting the position according to a Z-
action. This example will illustrate that the concept of unique ergodicity is
sensible, in as much as that it is different from ergodicity. It is an example of
a C*-dynamical systems that exhibits ergodicity but not unique ergodicity.

The states that we will consider are obtained from states on A and made
explicit in the following proposition.

Proposition 4.4.1. [16, Prop 11.4.6, p. 869] Suppose that {Ai : i ∈ Z} is
a family of C*-algebras and that φi is a state on Ai for each i ∈ Z. Then
there is a unique state, denoted by ⊗i∈Zφi, on

⊗
i∈ZAi and referred to as a

product state, such that

⊗i∈Zφi(aj ⊗ aj+1 ⊗ · · · ⊗ aj+n) = φj(aj) · · ·φj+n(aj+n),

for every j ∈ Z and n ∈ N, where aj ∈ Aj.

So, given a state, φi = φ, on Ai = A, we have by Proposition 4.4.1
the product state φ⊗ := ⊗i∈Zφi on A⊗ = ⊗i∈ZAi. We show that any such
product state is α⊗-invariant.

Proposition 4.4.2. Let φ⊗ be the product state on A⊗, obtained from any
state φ on A, as described above. Then φ⊗ is α⊗-invariant.

Proof. By the continuity of both φ⊗ and α⊗, it will suffice to show the
invariance on a dense *-subalgebra of A⊗. And, to this end, since the
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embeddings of finite tensor products of elements from {Ai : i ∈ Z} span a
dense subset in A⊗, it will suffice to only consider products of the form

· · · ⊗ 1Ai−1 ⊗ ai ⊗ · · · ⊗ aj ⊗ 1Aj+1 · · ·

with i < j. Note that we include the subscripts for 1A purely to indicate
their “positions” in A⊗.

Recall that by definition αi(a) = a for every a ∈ Ai = Ai+i, and that
φi = φj for every i, j ∈ Z. Then

φ⊗(α⊗(· · · ⊗ 1Ai−1 ⊗ ai ⊗ · · · ⊗ aj ⊗ 1Aj+1 ⊗ 1Aj+2 ⊗ · · · ))
= φ⊗(· · · ⊗ 1Ai−1 ⊗ 1Ai ⊗ ai ⊗ · · · ⊗ aj ⊗ 1Aj+2 · · · )
= φi+1(ai)φi+2(ai+1) · · ·φj+1(aj)

= φi(ai)φi+1(ai+1) · · ·φj(aj)
= φ⊗(· · · ⊗ 1Ai−1 ⊗ ai ⊗ · · · ⊗ aj ⊗ 1Aj+1 · · · ).

Corollary 4.4.3. If dimA > 1, then the C*-dynamical system (A⊗, α⊗) is
not uniquely ergodic.

Proof. If dim(A) > 1 we have as a consequence of the Hahn-Banach theo-
rem (see for example [18, Thm 4.3-3, p. 223]) that dim(A∗) > 1. But, from
Remark 2.2.12 it follows that A∗ is spanned by states, since every bounded
linear functional in A∗ can be written as a linear combination of positive
linear functionals, each of which is just a constant multiple of a state (by
dividing with its norm). Hence A∗ has more than one state, and the product
states on A⊗ obtained from different states will differ, ensuring that there
is more than one product state on A⊗. Now, by Proposition 4.4.2 every
product state on A⊗, which was obtained from a single state on A, is in-
variant under this automorphism, and thus there is no unique such state,
eliminating the possibility of a uniquely ergodic C*-dynamical system.

We show that, for each of the above mentioned product states, this C*-
dynamical system is ergodic, though. We approach this from another angle,
namely strong mixing. Below we give the definition of a strongly mixing
C*-dynamical system and show that it implies ergodicity. Since we are
working with a Z-action, the definitions and implication will also be done
for a Z-action (also because it is much simpler!).

Definition 4.4.4. A C*-dynamical system (B, β, φ) is called

(i) ergodic if for every a, b ∈ B

1

n

n∑
k=1

φ(aβk(b)) −→ φ(a)φ(b)

as n→∞.
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(ii) strongly mixing if for every a, b ∈ B

φ(aβk(b)) −→ φ(a)φ(b)

as k →∞.

We show that strong mixing implies ergodicity.

Proposition 4.4.5. If a C*-dynamical system (B, β, φ) is strongly mixing,
then it is ergodic.

Proof. Consider any a, b ∈ B. Given an ε > 0, there exists a N ∈ N such
that

|φ(aβk(b))− φ(a)φ(b)| < ε

2

for every k > N . Then for n large enough we have

| 1
n

n∑
k=1

φ(aβk(b))− φ(a)φ(b)|

≤ 1

n

n∑
k=1

|φ(aβk(b))− φ(a)φ(b)|

=
1

n

N∑
k=1

|φ(aβk(b))− φ(a)φ(b)|+ 1

n

n∑
k=N+1

|φ(aβk(b))− φ(a)φ(b)|

≤ 1

n

N∑
k=1

|φ(aβk(b))− φ(a)φ(b)|+ (n−N)ε

2n

≤ ε

2
+
ε

2
.

Lastly we show that (A⊗, α⊗, φ⊗) is strongly mixing and hence ergodic
for every state φ on A.

Theorem 4.4.6. The C*-dynamical system (A⊗, α⊗, φ⊗) is strongly mixing
for every state φ on A.

Proof. We show the strong mixing property for “simple” tensors of the form

· · · ⊗ 1Ai−2 ⊗ 1Ai−1 ⊗ ai ⊗ · · · ⊗ aj ⊗ 1Aj+1 ⊗ 1Aj+2 ⊗ · · · ,

with i, j ∈ Z and i < j. So, let i, j,m, n ∈ Z with i < j and m < n. Then
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for a sufficiently large k (at least such that k > j −m )

φ⊗((· · · ⊗ 1Ai−1 ⊗ ai ⊗ · · · ⊗ aj ⊗ 1Aj+1 ⊗ · · · )
(α⊗)k(· · · ⊗ 1Am−1 ⊗ bm ⊗ · · · ⊗ bn ⊗ 1An+1 ⊗ · · · ))

= φ⊗((· · · ⊗ 1Ai−1 ⊗ ai ⊗ · · · ⊗ aj ⊗ 1Aj+1 ⊗ · · · )
(· · · ⊗ 1Am−1+k

⊗ bm ⊗ · · · ⊗ bn ⊗ 1An+1+k
⊗ · · · ))

= φ⊗(· · · ⊗ 1Ai−1 ⊗ ai ⊗ · · · ⊗ aj ⊗ 1Aj+1 ⊗ · · ·
· · · ⊗ 1Am−1+k

⊗ bm ⊗ · · · ⊗ bn ⊗ 1An+1+k
⊗ · · · )

= φi(ai) · · ·φj(aj)φm+k(bm) · · ·φn+k(bn)

= φi(ai) · · ·φj(aj)φm(bm) · · ·φn(bn)

= φ⊗(· · · ⊗ 1Ai−1 ⊗ ai ⊗ · · · ⊗ aj ⊗ 1Aj+1 ⊗ 1Aj+2 ⊗ · · · )
φ⊗(· · · ⊗ 1Am−1 ⊗ bm ⊗ · · · ⊗ bn ⊗ 1An+1 ⊗ · · · ).

By the linearity of both the product state and the product automorphism,
it is easily (but tediously) seen that this property holds for finite linear
combinations of such tensors, and hence, on the dense *-algebra spanned by
these tensors. We can now extend this to the whole C*-algebra A⊗. Let
a, b ∈ A⊗ be arbitrary. Then there are sequences (an) and (bn) in the *-
algebra spanned by linear combinations of “simple” tensors (such as above),
such that an → a and bn → b as n→∞. Then

|φ⊗(a(α⊗)k(b))− φ⊗(a)φ⊗(b)|
= |φ⊗(a(α⊗)k(b))− φ⊗(an(α⊗)k(bn)) + φ⊗(an(α⊗)k(bn))− φ⊗(an)φ⊗(bn)

+ φ⊗(an)φ⊗(bn)− φ⊗(a)φ⊗(b)|
≤ ||a(α⊗)k(b)− an(α⊗)k(bn)||+ |φ⊗(an(α⊗)k(bn))− φ⊗(an)φ⊗(bn)|

+ |φ⊗(an)φ⊗(bn)− φ⊗(a)φ⊗(b)|

≤ ε

3
+
ε

3
+
ε

3
,

= ε

for n and k large enough. Hence the C*-dynamical system (A⊗, α⊗, φ⊗) is
strongly mixing.

Corollary 4.4.7. The C*-dynamical system (A⊗, α⊗, φ⊗) is ergodic for ev-
ery state φ on A.

Proof. Follows directly from Proposition 4.4.5.
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