
 

 

 



2 J.K. Djoko and P.A. Razafimandimby

where u0 : � → R
3 is a given function, that will be made precise later, and � is the

closure of �. Next in order to describe the motion of the fluid at the boundary having in
mind the decomposition of ∂�, we first assume the homogeneous Dirichlet condition on �,
that is

u = 0 on � × (0, T ). (1.4)

The more relevant physical condition u|� = ũ with ũ ∈ H1/2(S) (at least) may also be
adopted instead of (1.4). Indeed with the help of the lifting operator L : H 1/2(�) → H1(�)

such that u · n|S = Lũ · n|S , which is continuous from Hs+1/2(S) into Hs+1(�) for all
s ≥ 0 (the existence of such operator is established in [1], Chapter 4, Lemma 2.3) it is
always possible to revert to the homogeneous boundary condition by considering the new
variable û = u − Lũ. One sees that û|� = 0.

On S, we first assume the impermeability condition

uN = u · n = 0 on S × (0, T ), (1.5)

where n is the outward unit normal on the boundary ∂�. We recall that the normal component
of the velocity if (u · n)n, while its tangential part is uτ = u−uN n. In addition to (1.5), we
also impose on S, a threshold slip condition,[2–7] which is the main ingredient of this work.
The non-linear slip condition of “friction type” can be formulated with the knowledge of
a positive function g : S −→ (0,∞) which is called the barrier or threshold function and
the use of sub-differential to link quantities of interest. It is written as

−(σn)τ ∈ g∂|uτ | on S × (0, T ), (1.6)

where (σn)τ is the tangential component of the traction σn with σ = −p I + 2νD(u)
being the Cauchy stress tensor and D(u) = 1

2 [∇u + (∇u)T ] the symmetry part of the
velocity gradient. Of course ∂| · | is the sub-differential of the real valued function | · |, with
|w|2 = w · w. We recall that if X is a Hilbert space with x0 ∈ X , then

y ∈ ∂�(x0) if and only if �(x)−�(x0) ≥ y · (x − x0) ∀x ∈ X. (1.7)

Without using the sub-differential, the threshold condition (1.6) can be written as [8] (page
138–139)

|(σn)τ | ≤ g,

|(σn)τ | < g ⇒ uτ = 0,

|(σn)τ | = g ⇒ uτ 	= 0 , − (σn)τ = g
uτ
|uτ |

⎫⎪⎪⎬
⎪⎪⎭ on S × (0, T ). (1.8)

In [9], a generalization of the boundary condition (1.6) is formulated and analysed for
the steady Stokes flow, while the case of Navier–Stokes equations has been examined in
[10]. We do not propose the Brinkman–Forchheimer equations with the non-linear slip
boundary conditions as a model of any real flow problem, but it should made clear that
such boundary conditions are present in concrete situations such as oil flow over or beneath
sand layers,[11,12] while Hervet and Leger in [13] have established the necessity to take
into account frictional effects at the interfaces of a solid and a fluid. Hence, it appears that
different boundary conditions describe different physical phenomena. In [14], the equations
of Brinkman corresponding to (1.1) with b = 0 have been derived using mixtures theory,
in fact a class of approximate models for flows of incompressible fluids passing porous
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Applicable Analysis 3

solids have been described. Forchheimer [15] studied flow experiments in sandpacks and
came to the conclusion that for small Reynolds numbers (Re ≈ 0.2), the diffusion law
of Darcy is not significant. Furthermore, he found the relationship between the pressure
gradient and the velocity obtained using the law of Darcy to be nonlinear. In fact for a
wide range of physical experiments, he found that the nonlinear term should be quadratic.
Inertial effects in the porous medium at relatively small Reynolds numbers are the cause of
the nonlinear excess pressure drop observed by Forchheimer and others. The slip boundary
conditions of friction type (1.6) can be justified by the fact that frictional effects of the
fluid at the pores of the solid can be very important. In fact on the role of the boundary
conditions for such problems, Brinkman [16] mentioned that “The flow through this porous
media is described by a modification of Darcy’s equation. Such modification was necessary
to obtain consistent boundary conditions”. While there continues to be some debate over
the functionality of the Brinkman–Forchheimer model,[17] nonlinearity has been verified
experimentally in [18], and some theoretical results have been obtained in [19–23]. The
Brinkman–Forchheimer equation continues to be used for predicting the velocity of the flow
in the porous region, while the energy equation for the porous region accounts for the effect
of thermal dispersion.[24] Since, we are well aware that for such flow, there are important
features at the boundary, it is therefore important to model Brinkman–Forchheimer flow by
taking into account the non-trivial effect present at the boundary.

Even though flows under boundary conditions of friction type have been considered
in various publications ([2–7,9,10] among others), and Brinkman–Forchheimer Equations
(1.1), (1.2) with non-slip boundary conditions has been examined in [19–23], the combi-
nation of (1.1), (1.2) and (1.6) has not been presented in the literature, and it is the object
of this work. The novelty of the problem, from the mathematical point of view, derives
from the following features; the highly coupled and nonlinear nature of the problem,
the incompressibility constraint and related pressure, and the non-linear slip boundary
conditions of “friction type” (1.5) and (1.6).

Not surprisingly, flow problems involving boundary conditions of “friction type” offer
significant theoretical and computational challenges. With regard to theoretical studies, the
work by Hiroshi Fujita and co-authors [2–7], represent some early, contributions. These
authors established existence, and uniqueness of solutions, for the equations corresponding
to Stokes equations by means of semi-group approach, regularity of solutions are also
examined. An interesting and related work is that by Christiaan Leroux and co-author
[9,10] on Stokes and Navier Stokes equations under more general “friction type boundary
conditions”. As far as computational studies for flows driven by “friction type boundary
conditions” are concerned, it should be mentioned that even though the literature is very rich
in problems formulated in terms of variational inequalities, [25–28] not much have been
done for the specific case involving mixed variational inequalities problems,[27,29–32] and
we would like to explore that research direction in the future.

Problem (1.1)–(1.6) is a coupled nonlinear system of equations with a non-differentiable
expression (at zero) on S due to the sub-differential term ∂|uτ |. We propose to solve the
resulting system of partial differential equations using the regularization approach,[8,33]
which consists of replacing the original problem by a sequence of “better behaved” ap-
proximate problems indexed by a small positive parameter ε. We then solve the regularized
problems by the Faedo–Galerkin method, and finally, the solution of the original problem is
obtained by passage to the limit as ε goes to zero. The difficulty in the algorithm described is
to obtain the pressure. Indeed, as the problem in its weak form is formulated as a variational
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4 J.K. Djoko and P.A. Razafimandimby

inequality with only one unknown, the pressure will not be obtained in the usual way (for
the classical Navier–Stokes equations see e.g [34], [Theorem 2.5-1, page 54]). But, instead
we first construct a regularized pressure by using the classical approach and then pass to
the limit as ε goes to zero, after showing that the regularized pressures are bounded in
some appropriate function space. After constructing weak solutions of the problem, we
analyse some qualitative properties of the solution, namely; the continuous dependence of
the solution with respect to the Brinkman and Forchheimer coefficients, and the stability
of the stationary solution. The results presented, extend in some sense those obtained in
[20,23] to a family of variational inequalities with non-differentiable functionals.

The remaining part of this work is organized as follows. In Section 2, we document the
variational formulation associated to the problem and prove its well-posedness. Section 3
is devoted to the stability of the solutions with respect to some data of the problem. The
stability of the stationary solutions is analysed in Section 4.

2. Analysis of the problem: Solvability

We introduce some preliminaries and notation for the mathematical setting of the problem.
We write down a variational formulation of problem (1.1)–(1.6). Next, we derive some
a priori estimates of its solution and obtain the existence of solutions by means of
Faedo–Galerkin.

2.1. Preliminaries/Notation

In what follows, for 1 ≤ p ≤ ∞, L p(�), and L p(∂�) are the usual Lebesgue spaces, with
norms denoted by ‖ · ‖L p and ‖ · ‖L p(∂�), respectively, (of course when p = 2, we will
denoted the norm in L2(�) by ‖ · ‖). We shall use the following notation; for the sake of
simplicity, one defines them in three dimensions. Let k = (k1, k2, k3) denote a triple of
non-negative intergers, set |k| = k1 + k2 + k3 and define the partial derivative ∂k by

∂kv = ∂ |k|v
∂xk1∂yk2∂zk3

.

Then, for non-negative integer m, we recall the classical Sobolev space

Hm(�) = {v ∈ L2(�) ; ∂kv ∈ L2(�) ∀ |k| ≤ m}
equipped with the seminorm

|v|Hm (�) =
⎡
⎣ ∑

|k|=m

∫
�

|∂kv|2dx

⎤
⎦1/2

and norm

||v||Hm (�) =
⎡
⎣ ∑

0≤k≤m

∫
�

|∂kv|2dx

⎤
⎦1/2

.

For p = 1, 2, 3, . . ., the inner products in the spaces L2(�)p, L2(∂�)p and H1(�)p are
denoted by (·, ·), (·, ·)∂� and (·, ·)1, respectively. The product spaces are denoted by bold
letters: H1(�) = H1(�)3, L2(�) = L2(�)3, Lα+2(�) = Lα+2(�)3, etc.
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Applicable Analysis 5

Here, and in what follows, the boundary values are to be understood in the sense of traces.
We omit the trace operators where the meaning is direct; otherwise we denote the traces by
v|� , v|S , etc. Also, all the derivatives should be understood in the sense of distribution. We
also recall from [1] (Chap. I, Theorem 1.1) for instance the following Poincaré–Friedrichs
inequality:

for all v ∈ H1(�) ∩ {vn|S = 0 , v|� = 0}, ‖v‖ ≤ C‖∇v‖, (2.1)

which yields the equivalence of the norms ‖ · ‖1 and | · |1 on H1(�)∩{vn|S = 0 , v|� = 0}.
For any separable Banach space E equipped with the norm ‖·‖E , we denote by C0(0, T ; E)
the space of continuous functions from [0, T ] with values in E and by D′(0, T ; E) the space
of distributions with values in E . L p(0, T ; E) is a Banach space consisting of (classes of)
functions t �−→ f (t) measurable from [0, T ] �−→ E (for the measure dt) such that

‖ f ‖L p(0,T ;E) =
[∫ T

0
‖ f (t)‖p

E dt

]1/p

< ∞ for p 	= ∞
‖ f ‖L∞(0,T ;E) = ess0<t<T sup ‖ f (t)‖E < ∞.

In what follows, φ(t) stands for the function x ∈ � �→ φ(x, t).
We assume that the data ( f , g) belong to L2(0, T ; L2(�)) × L∞(S)2, and that the

datum u0 belongs to H1(�) ∩ Lα+2(�), and satisfies the incompressibility condition

div u0 = 0 in �. (2.2)

This last condition is not necessary for all the results that follow but, since it is not restrictive,
we shall assume it from now on.

2.2. Variational formulation

In order to write a variational form associated with (1.1)–(1.6), we retain (1.3) and we
weaken the Equations (1.1), (1.2) and constraints (1.4), (1.5) using the Green’s formula,
while (1.6) is re-interpreted with the help of (1.7). It follows from the nonlinear term in (1.1)
that u(t) and the test function v should belong to Lα+2(�). Then u′(t) and |u(t)|αu(t)must
belong to the conjugate of Lα+2(�), which is L

α+2
α+1 (�). We then introduce the following

spaces

N = H1(�) ∩ {v|� = 0 vn|S = 0},
M = L2

0(�) = {q ∈ L2(�), (q, 1) = 0}.
One quickly observes that since 1 ≤ α ≤ 2, H 1(�) is embedded into Lα+2(�). Next, we
introduce the following definition of weak solutions of (1.1)–(1.6).

Definition 2.1 Given ( f , g) in L2(0, T ; L2(�)) × L∞(S)2, and u0 ∈ H1(�), satisfying
(2.2). We say that (u, p) is a weak solution of (1.1)–(1.6) if and only if; u ∈ L∞ (0, T ;N ),
p ∈ L2(0, T ; M), and u′ ∈ L2

(
0, T ; N ′), and for almost all t and all q ∈ L2(�), v ∈ N(

u′(t), v − u(t)
) + γ (∇u(t),∇(v − u(t)))+ a (u(t), v − u(t))

+ b (|u(t)|αu(t), v − u(t))− (div(v − u(t)), p(t))

+ J (v)− J (u(t)) ≥ ( f (t), v − u(t)) , (2.3)
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6 J.K. Djoko and P.A. Razafimandimby

(div u(t), q) = 0, (2.4)

u(0) = u0, (2.5)

where, J (v) = (g(x), |vτ (x)|)L2(S).

Following [8], it can be shown that any solution of (1.1)–(1.6) is a solution of (2.3)–(2.5) in
the sense of distributions. The converse property holds for any solution of the problem (1.1)–
(1.6) that enjoys the regularity mentioned in Definition 2.1, in a sense to be made precise later
on. The kernel of the bilinear and continuous form L2(�)×N � (q, v) �−→ (q, div v) ∈ R

is

V = {v ∈ N , div v = 0 in �}.

With the space V in mind, it is then easy to see that the function u(t) given in (2.3)–(2.5) is
a solution of the simpler variational problem: Find u ∈ L∞(0, T ; V) , u′ ∈ L2(0, T ; V

′)
satisfying (2.5) such that for almost all t and all v ∈ V

(u′(t), v − u(t))+ γ (∇u(t),∇(v − u(t)) )+ a (u(t), v − u(t)) (2.6)

+ b (|u(t)|αu(t), v − u(t))+ J (v)− J (u(t)) ≥ ( f (t), v − u(t)).

Next, we establish the solvability of the variational problem (2.6) by means of regularization
combined with Galerkin’s method. We then construct a pressure p in L2(0, T ; L2

0(�))

such that the couple (u, p) enjoys the regularity announced in Definition 2.1, and satisfies
(2.3)–(2.5).

2.3. Existence of a solution

In this paragraph, we discuss the solvability of (2.6) by regularization, and passage to the
limit. Thus, it is obtained in several steps, that we describe below.

Step 1 Regularized problem.
We first recall that one of the difficulties of solving (2.6) is the fact that the functional
v ∈ V �−→ J (v) = (g(x), |vτ (x)|)S is not differentiable at zero. So, to bypass that hurdle
we introduce the regularized functional Jε defined by

v ∈ V �→ Jε(v) =
(

g(x),
√

|vτ (x)|2 + ε2

)
S
, 0 < ε � 1.

Clearly, Jε is convex and Gateaux differentiable with Gateaux derivative Kε defined on V

and given by

〈Kε(u), v〉 =
∫

S
g

uτ · vτ√|uτ |2 + ε2
ds,

moreover Kε is monotone, that is

〈Kε(u)− Kε(v), u − v〉 ≥ 0. (2.7)
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Applicable Analysis 7

The regularized form of (2.6) can be written as follows: Find uε ∈ L∞(0, T ; V) satisfying
(2.5) with u′

ε ∈ L2(0, T ; V
′) such that for almost all t and all v ∈ V

(u′
ε(t), v − uε(t))+ ν(∇uε(t),∇(v − uε(t)) )

+ a (uε(t), v − uε(t))+ b (|uε(t)|αuε(t), v − uε(t)) (2.8)

+ Jε(v)− Jε(uε(t)) ≥ ( f (t), v − uε(t)).

Since Jε is differentiable, adopting the classical arguments in [8] (see page 157–158),
one can state that (2.8) is equivalent to: Find uε ∈ L∞(0, T ; V) satisfying (2.5) with
u′
ε ∈ L2(0, T ; V

′) such that for almost all t

(u′
ε(t), v)+ ν(∇uε(t),∇v)+ a (uε(t), v)+ b (|uε(t)|αuε(t), v)

+ 〈Kε(uε(t)), v〉 = ( f (t), v) for all v ∈ V. (2.9)

Before proving the existence of a solution uε(t) of (2.9), we first show how the pressure is
constructed knowing the velocity. For that purpose, we begin by integrating (2.9) on [0, t],
apply (2.5), and for v ∈ N ; we introduce the functional

H(v)(t) =
∫ t

0

[
( f (s), v)− ν(∇uε(s),∇v)− a (uε(s), v)− b (|uε(s)|αuε(s), v)

]
ds

−
∫ t

0
〈Kε(uε(s)), v〉ds − (uε(t), v)+ (u0, v), for all 0 ≤ t ≤ T .

One sees that H is linear and continuous on N , and according to (2.9) and (2.5), it vanishes
on V. Now following [34], [Theorem 2.5-1, page 54], for each t ∈ [0, T ], there exists a
unique function p̃ε(t) ∈ L2

0(�) and a positive constant C such that: for all v ∈ N ,

H(v)(t) = (div v, p̃ε(t)), (2.10)

C‖ p̃ε(t)‖ ≤ sup
v∈N

(div v, p̃ε(t))

‖v‖1
. (2.11)

Finally, we take the time derivative on both sides of (2.10); and we let

pε(t) = d

dt
p̃ε(t), (2.12)

in the resulting equation. Thus, we have obtained the following variational problem: Find
uε ∈ L2(0, T ;N ), pε ∈ L2(0, T ; L2

0(�)) with u′
ε ∈ L2(0, T ;N ′) such that for almost all

t and all q ∈ L2(�) , v ∈ N
(u′
ε(t), v)+ ν(∇uε(t),∇v)+ a (uε(t), v)+ b (|uε(t)|αuε(t), v)

− (div v, pε(t))+ 〈Kε(uε(t)), v〉 = ( f (t), v), (2.13)

(div uε(t), q) = 0,

uε(0) = u0.

It is clear that the variational problems (2.9) and (2.13) are equivalent, with the regularized
pressure described by (2.10), (2.11) and (2.12).

Step 2 Faedo–Galerkin approximation.
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8 J.K. Djoko and P.A. Razafimandimby

We let

H = {v ∈ L2(�), div v = 0, vn|∂� = 0} ∩ Lα+2(�).

One readily observes that V is compactly embedded in H. For the slip boundary condition,
we introduce the Stokes operator defined on a subspace of V constructed in [35] as follows;
for every f ∈ H, there exists a unique v ∈ V such that

(∇v,∇φ) = ( f , φ), ∀φ ∈ V. (2.14)

Moreover, for every v ∈ V, there exists a unique f ∈ H such that (2.14) holds. Then (2.14)
defines a one-to-one mapping between f ∈ H and v ∈ D(A), where D(A) is a subspace
of V. Hence, Av = f defines the Stokes operator A : D(A) → H. Its inverse A−1 is
compact and self-adjoint as a mapping from H to H and possesses an orthogonal sequence
of eigenfunctions ψk which are complete in H and V;

Aψk = λkψk . (2.15)

Let Vm be the subspace of V spanned by ψ1, . . . , ψm , that is

Vm = {ψ1, ψ2, ψ3, . . . , ψm}.
We consider the following ordinary differential equation: Find uε,m(t) ∈ Vm such that for
all v ∈ Vm ;

(u′
ε,m(t), v)+ ν(∇uε,m(t), ∇v)+ a (uε,m(t), v)

+ b (|uε,m(t)|αuε,m(t), v)+ 〈Kε(uε,m(t)), v〉 = ( f (t), v),

uε,m(0) → uε(0) = u0 ∈ Vm .

(2.16)

As far as the existence of uε,m(t) defined by (2.16) is concerned, we note that the mapping

K : w �−→ ( f , v)− ν(∇w, ∇v)− a (w, v)− b (|w|αw, v)− 〈Kε(w), v〉,
is locally Lipschitz thanks to the nature of the operators involved. It then follows from the
theory of ordinary differential equations that (2.16) has a solution uε,m defined on [0, tε,m],
tε,m > 0. Hereafter, C denotes a constant independent of m, and depending only on the
data such as�, and whose value may be different in each inequality. Next, we derive some
a priori estimates and deduce that tε,m does not depend on ε or m. Concerning the later
property, it should be mentioned as in [8,33], that it suffices to derive a priori estimates of
the solution with the right hand side independent of m and ε.

Step 3 Some a priori estimates.
First, we let v = uε,m(t) in (2.16). After using Young’s inequality, one obtains

d

dt
‖uε,m(t)‖2 + 2ν‖∇uε,m(t)‖2 + a‖uε,m(t)‖2 + 2b

∥∥uε,m(t)
∥∥α+2

Lα+2

+ 2〈Kε(uε,m(t)) , uε,m(t)〉 ≤ || f (t)||2
a

, (2.17)
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Applicable Analysis 9

which by integrating over [0, T �] for T � ≤ tε,m , and using (2.7), yields

sup
0≤t≤T �

||uε,m(t)||2 + 2ν
∫ T �

0
||∇uε,m(t)||2dt + a

∫ T �

0
||uε,m(t)||2dt

+ 2b
∫ T �

0

∥∥uε,m(t)
∥∥α+2

Lα+2 dt ≤ 1

a

∫ T �

0
|| f (t)||2dt + ||u0||2 < ∞, (2.18)

since by assumption f ∈ L2(Q). Now let v = u′
ε,m(t) in (2.16). For 0 ≤ t ≤ T �, Young’s

inequality yields

||u′
ε,m(t)||2 + d

dt

[
ν||∇uε,m(t)||2 + a||uε,m(t)||2 + 2b

α + 2

∥∥uε,m(t)
∥∥α+2

Lα+2

]

+ d

dt

[
2Kε(uε,m(t))

] ≤ || f (t)||2,

which leads to∫ T �

0
||u′

ε,m(t)||2dt + ν||∇uε,m(t)||2 + a||uε,m(t)||2 + 2b

α + 2

∥∥uε,m(t)
∥∥α+2

Lα+2

+ 2Kε(uε,m(t)) ≤ || f ||2
L2(0, T �; L2)

+�(0), (2.19)

where

�(0) = ν||∇u0||2 + a||u0||2 + 2b

α + 2
‖u0‖α+2

Lα+2 + 2
∫

S
g
√

|u0|2 + 1ds.

It is manifest that the right hand sides of the a priori estimates obtained in (2.18) and (2.19)
are independent of m and ε. We then conclude that tε,m is independent of ε and m following
the arguments discussed in length by [8,33].

Step 4 Passage to the limit.
We need to pass to the limit when m approaches infinity and ε approaches zero. We start by
fixing ε and study the mapping m �−→ uε,m .

Based on (2.18) and (2.19), it is clear that when m → ∞,

uε,m remains bounded in L∞(0, T ; H),

|uε,m |αuε,m remains bounded in L
α+2
α+1 (0, T ; L

α+2
α+1 (�)), (2.20)

u′
ε,m remains bounded in L2(0, T ; L2(�)).

From a consequence of the result of Dunford-Pettis [36], it is possible to extract from
(uε,m)m a subsequence, denoted again by (uε,m)m such that

uε,m −→ uε weak star in L∞(0, T ; H) (2.21)

uε,m −→ uε weak star in L∞(0, T ; Vm) (2.22)

|uε,m |αuε,m −→ χε weak star in L
α+2
α+1

(
0, T ; L

α+2
α+1 (�)

)
(2.23)

u′
ε,m −→ u′

ε weak in L2(0, T ; H). (2.24)
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10 J.K. Djoko and P.A. Razafimandimby

Now (2.21) and (2.24) imply in particular that

uε,m remains in a bounded set of H1(Q). (2.25)

But from Rellich-Kondrachoff, the embedding H 1(Q) �−→ L2(Q) is compact. So one can
extract from (uε,m) a subsequence, denoted again by (uε,m) such that

uε,m −→ uε strong in L2(0, T ; H) and a.e. in Q. (2.26)

Next, it follows from (2.23) and (2.26) and Lemma 1.3 in [33] (page 12) that χε = |uε|αuε.
It remains to prove that

Kε(uε,m) −→ Kε(uε) weak star in L∞(0, T,V′
m). (2.27)

Firstly from (2.22)

Kε(uε,m) −→ βε weak star in L∞(0, T,V′
m). (2.28)

Passing to the limit in (2.16), one obtains

(u′
ε(t), v)+ ν(∇uε(t), ∇v)+ a (uε(t), v)+ b (|uε(t)|αuε(t), v)+ 〈βε, v〉
= ( f (t), v), ∀v ∈ Vm . (2.29)

Next, for any w ∈ L1(0, T ; Vm), and using the fact that Kε(·) is monotone (see 2.7), one
gets

〈Kε(uε,m(t)), uε,m(t)〉 ≥ 〈Kε(uε,m(t)), w〉 + 〈Kε(w), uε,m(t)− w〉.
But from (2.16)

〈Kε(uε,m(t)), uε,m(t)〉 = ( f (t), uε,m(t))− (u′
ε,m(t), uε,m(t))

− ν(∇uε,m(t), ∇uε,m(t))− a (uε,m(t), uε,m(t))

− b (|uε,m(t)|αuε,m(t), uε,m(t)).

Putting together the former and latter equations yields

( f (t), uε,m(t))− 1

2

d

dt
‖uε,m(t)‖2 − ν‖∇uε,m(t)‖2 − a‖uε,m(t)‖2 − b

∥∥uε,m(t)
∥∥α+2

Lα+2

≥ 〈Kε(uε,m(t)), w〉 + 〈Kε(w), uε,m(t)− w〉,
which by integration with respect to t on [0, T ], gives∫ T

0
( f (t), uε,m(t))dt − 1

2
‖uε,m(T )‖2 + 1

2
‖uε,m(0)‖2

−
∫ T

0

[
ν‖∇uε,m(t)‖2 + a‖uε,m(t)‖2 + b

∥∥uε,m(t)
∥∥α+2

Lα+2

]
dt (2.30)

≥
∫ T

0

[〈Kε(uε,m(t)), w(t)〉 + 〈Kε(w(t)), uε,m(t)− w(t)〉] dt.

Next, we take v = uε,m(t) in (2.29), and combine the resulting equation with (2.30), one
obtains (after taking the limit as m approaches to infinity)∫ T

0
〈βε − Kε(w(t)), uε(t)− w(t)〉dt ≥ 0 . (2.31)
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Applicable Analysis 11

At this juncture, we let uε(t)− w(t) = ±q with q ∈ L2(0, T ; Vm). Thus (2.31) leads to∫ T

0
〈βε − Kε(w(t)), q〉dt = 0,

from which we deduce (2.27). We have established that as m goes to infinity, the sequence
(uε,m(t))m converges to uε(t) in some sense with uε(t), the solution of

(u′
ε(t), v)+ ν(∇uε(t), ∇v)+ a (uε(t), v)+ b (|uε(t)|αuε(t), v)

+ 〈Kε(uε(t)), v〉 = ( f (t), v), for all v ∈ Vm .
(2.32)

Since ∪mVm is dense in V, we can conclude that (2.32) holds true for v in V. Therefore,
we have established that there exists a function uε uniformly bounded with respect to ε
in L∞(0, T,H ∩ V ∩ Lα+2(�)) such that u′

ε is uniformly bounded with respect to ε in
L2(0, T,H) and uε satisfies (2.32).

Our final task in this paragraph is to consider the limit as ε goes to zero.
First, we take the limit on both sides of (2.18) and (2.19), one has

sup
0≤t≤T

||uε(t)||2 + 2ν
∫ T

0
||∇uε(t)||2dt + a

∫ T

0
||uε(t)||2dt

+ 2b
∫ T

0
‖uε(t)‖α+2

Lα+2 dt ≤ 1

a

∫ T

0
|| f (t)||2dt + ||u0||2, (2.33)

and ∫ T

0
||u′

ε(t)||2dt + ν||∇uε(t)||2 + a||uε(t)||2 + 2b

α + 2
‖uε(t)‖α+2

Lα+2

≤
∫ T

0
|| f (t)||2dt +�(0). (2.34)

Thus, we can extract from uε a subsequence still denoted by uε such that

uε −→ u weak star in L∞(0, T,H) (2.35)

uε −→ u weak star in L∞(0, T,V) (2.36)

|uε|αuε −→ χ weak in L
α+2
α+1

(
0, T,L

α+2
α+1 (�)

)
(2.37)

u′
ε −→ u′ weak in L2(0, T,H). (2.38)

Arguing as before we can prove that

uε −→ u strong in L(0, T ; H) and a.e. in Q, (2.39)

|uε|αuε −→ |u|αu weak in L
α+2
α+1

(
0, T ; L

α+2
α+1 (�)

)
. (2.40)

Let v ∈ L2(0, T,V), from (2.32), it follows that

(u′
ε(t), v − uε(t))+ ν(∇uε(t),∇(v − uε(t)))+ a (uε(t), v − uε(t))

+ b (|uε(t)|αuε(t), v − uε(t))+ Jε(v)− Jε(uε(t)) (2.41)

= ( f (t), v − uε(t))+ Jε(v)− Jε(uε(t))− 〈Kε(uε(t)), v − uε(t)〉.
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12 J.K. Djoko and P.A. Razafimandimby

Integrating (2.41) with respect to t along [0, T ] and taking into account the fact that
Jε(v)− Jε(uε(t))− 〈Kε(uε(t)), v − uε(t)〉 ≥ 0, one obtains∫ T

0

(
(u′
ε(t), v)+ ν(∇uε(t),∇v)+ a(uε(t), v)+ b(|uε(t)|αuε(t), v)

)
dt

+
∫ T

0
(Jε(v)− ( f (t), v − uε(t))) dt

≥ 1

2
||uε(T )||2 − 1

2
||uε0||2 +

∫ T

0

(
a||uε(t)||2 + b

∫
�

|uε(t)|α+2dx

)
dt (2.42)

+
∫ t

0
Jε(uε(t))dt.

Since uε −→ u weak star in L∞(0, T,V), and Jε is a convex and continuous functional
on V, one has

lim inf
ε→0

∫ T

0
Jε(uε(t))dt ≥

∫ T

0
J (u(t))dt. (2.43)

Using (2.43), we infer from (2.42) that∫ T

0

(
(u′(t), v)+ ν(∇u(t),∇v)+ a(u(t), v)+ b(|u(t)|αu(t), v)+ J (v)

− ( f (t), v − u(t))
)
dt

≥ 1

2
||u(T )||2 − 1

2
||u0||2 +

∫ T

0

(
a||u(t)||2 + b

∫
�

|u(t)|α+2dx

)
dt +

∫ T

0
J (u(t))dt

=
∫ T

0

[
(u′(t), u(t))+ a (u(t), u(t))+ b (|u(t)|αu(t), u(t))+ J (u(t))

]
dt

which by arguing as in [8] (pages 56–57), yields

(u′(t), v − u(t))+ ν(∇u(t),∇(v − u(t)))+ a(u(t), v − u(t))

+ b(|u(t)|αu(t), v − u(t))+ J (v)− J (u(t)) ≥ ( f (t), v − u(t)) for all v ∈ V.

We then conclude that

Theorem 2.1 The variational problem (2.9) admits at least one weak solution, which
moreover satisfies;

sup
0≤t≤T

‖∇u(t)‖ ≤ C,
∫ T

0
‖u′(t)‖2dt ≤ C, (2.44)

where C is a positive constant depending on the data.

Having obtained the velocity, we shall indicate how the pressure is constructed. First, we
recall that from (2.13)1,

(div v, pε(t)) = (u′
ε(t), v)+ ν(∇uε(t),∇v)+ a (uε(t), v)

+ b (|uε(t)|αuε(t), v)+ 〈Kε(uε(t)), v〉 − ( f (t), v),
(2.45)
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Applicable Analysis 13

but since pε(t) ∈ L2
0(�), following [1], one can find a positive constant C such that

C‖pε(t)‖ ≤ sup
v∈N

(div v, pε(t))

‖v‖1
. (2.46)

Now, putting together (2.45), (2.46) and using the continuity of operators involved, one
obtains

C‖pε(t)‖ ≤ ‖u′
ε(t)‖ + ν‖∇uε(t)‖ + a‖uε(t)‖ + b ‖uε(t)‖α+1

L2α+2

+ ‖Kε(uε(t))‖V ′ + ‖ f (t)‖
≤ ‖u′

ε(t)‖ + ν‖∇uε(t)‖ + a‖uε(t)‖ + C(b,�, α) ‖uε(t)‖α+1
L6

+ C(�)‖g‖L∞(S)‖uε(t)‖1 + ‖ f (t)‖
≤ ‖u′

ε(t)‖ + ν‖∇uε(t)‖ + a‖uε(t)‖ + C(b,�, α)‖∇uε(t)‖α+1

+ C(�)‖g‖L∞(S)‖uε(t)‖1 + ‖ f (t)‖
which by Young’s inequality and integrating the resulting inequality over [0, T ], yields
(after utilization of (2.33) and (2.34))∫ T

0
‖pε(t)‖2dt ≤ C

∫ T

0
‖u′

ε(t)‖2 + C
∫ T

0
‖∇uε(t)‖2dt + C

∫ T

0
‖uε(t)‖2

+ C
∫ T

0
‖∇uε(t)‖2α+2dt + C‖g‖2

L∞(S)

∫ T

0
‖uε(t)‖2

1

+ C
∫ T

0
‖ f (t)‖2dt < ∞, (2.47)

C being a positive constant depending on the parameters and the domain of the problem.
Then we can select from pε(t) a sequence, again denoted by pε(t), such that

pε −→ p weakly in L2(0, T ; L2
0(�)). (2.48)

Next, one observes that (2.13) can be re-written as

(u′
ε(t), v − uε(t))+ ν(∇uε(t),∇(v − uε(t)))+ a (uε(t), v − uε(t))

+ b (|uε(t)|αuε(t), v − uε(t))− (div(v − uε(t)), pε(t))

+ Jε(v)− Jε(uε(t))− ( f (t), v − uε(t)) ≥ 0, for all v ∈ N ,

(div uε(t), q) = 0 for all q ∈ L2(�),

which by integration over the time interval [0, T ] and passage to the limit (as ε → 0) yields,
(after utilization of the identity (div uε(t), q) = 0 for all q ∈ L2(�))∫ T

0

[
(u′(t), v − u(t))+ ν(∇u(t),∇(v − u(t)))+ a (u(t), v − u(t))

]
dt

+
∫ T

0

[ − (div(v − u(t)), p(t))+ J (v)− J (u(t))− ( f (t), v − u(t))
]
dt

+
∫ T

0
b (|u(t)|αu(t), v − u(t))dt ≥ 0,
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14 J.K. Djoko and P.A. Razafimandimby

for all v ∈ N . Also, (div u(t), q) = 0 for all q ∈ L2(�).
Finally, arguing as in [8] (see page 56–57), one obtains

(u′(t), v − u(t))+ ν(∇u(t),∇(v − u(t)))+ a (u(t), v − u(t))

+ b (|u(t)|αu(t), v − u(t))− (div(v − u(t)), p(t))+ J (v)− J (u(t))

≥ ( f (t), v − u(t))

(2.49)

for all v ∈ N . Moreover, (div u(t), q) = 0 for all q ∈ L2(�).

3. Continuous dependence on the data

In this Section, our focus is to establish some qualitative properties of the weak solutions
in Theorem 2.1. In particular, we show that the solutions depend continuously on initial
velocity, external force as well as the Forchheimer’s and Brinkman’s coefficients. We recall
that such results in the literature are sometimes referred to as structural stability.

We first claim that

Theorem 3.1 Let ui be the solution of (2.5) with respect to ui0, f i , i = 1, 2. Then there
exists a positive constant C, depending on a, ν and � such that

||u1(t)− u2(t)||2 ≤ e−C t ||u1(0)− u2(0)||2 +
∫ t

0
eC(−t+s)|| f 2(s)− f 1(s)||2ds. (3.1)

This theorem implies in particular the following uniqueness result.

Corollary 3.1 The problem (2.5) has one and only one solution.

Proof of Theorem 3.1 The functions u1 and u2 satisfy respectively:

(∂t u1, v − u1)+ ν(∇u1,∇(v − u1))+ a (u1, v − u1)+ b (|u1|αu1, v − u1)

+ J (v)− J (u1) ≥ ( f 1, v − u1) for all v ∈ V.
(3.2)

and

(∂t u2, v − u2)+ ν(∇u2,∇(v − u2))+ a (u2, v − u2)+ b (|u2|αu2, v − u2)

+ J (v)− J (u2) ≥ ( f 2, v − u2) for all v ∈ V.
(3.3)

Setting v = u2 in (3.2) and v = u1 in (3.3) and adding the resulting inequalities, it follows
that

1

2

d

dt
||w(t)||2 + ν||∇w||2 + a||w(t)||2

+ b(|u2|αu2 − |u1|αu1,w(t)) ≤ ( f 2 − f 1,w(t)),

where w(t) = u2(t)− u1(t) and w0 = u20 − u10. Since T (ζ ) = |ζ |αζ is monotone then

(|u2|αu2 − |u1|αu1,w(t)) ≥ 0.

Therefore
d

dt
||w(t)||2 + C(ν, a,�)||w(t)||2 ≤ C(a,�)|| f 2 − f 1||2, (3.4)
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Applicable Analysis 15

where Poincaré’s inequality has been used. We readily deduce the desired result from (3.4)
using Gronwall’s lemma. �

In line of Theorem 3.1, one can state the following result.

Theorem 3.2 The weak solutions of problem (2.5) constructed in Theorem 2.1 depends
continuously with respect to the L2 norm on:

(a) the Forchheimer coefficient b, and
(b) the Brinkman coefficient ν.
(c) the barrier function g.

The proof follows mutatis mutandis the proof of Theorem 3.1.

4. Stability of stationary solutions

Hereafter, we study the stability of stationary solutions to (2.5).
We assume that the force f is independent of time, and we consider the following

stationary problem ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν�u + au + b|u|αu − ∇ p = f , in �,

div u = 0, in �,

u = 0 on �,

u · n = 0, and − στ ∈ g∂|uτ | on S.

(4.1)

Here, we always assume that α ∈ [1, 2], γ, a, b > 0. It is clear that the velocity satisfies
the simpler variational problem⎧⎪⎨

⎪⎩
Find u ∈ V such that for all v ∈ V,

ν(∇u,∇(v − u))+ a (u, v − u)

+b(|u|αu, v − u)+ J (v)− J (u) ≥ ( f , v − u).

(4.2)

It is clear that (4.2) is a particular case of nonlinear monotone variational problem. Hence
with classical arguments (see [33], page 371, Theorem 5.2), there exists a unique ũ ∈ V

such that (4.2) holds true, and one has the following

Theorem 4.1 The weak solution u of (2.5) constructed in Theorem 2.1 converges to the
unique solution ũ to (4.2) exponentially as t goes to infinity. More precisely, we have the
following estimate

||u(t)− ũ||2 ≤ ||u0 − ũ||2e−2(a+ν)t , for all t ≥ 0. (4.3)

Proof We let v = u(t) in (4.2), thus

ν(∇ ũ,∇(u(t)− ũ))+ a (̃u, u(t)− ũ)+ b(|̃u|α ũ, u(t)− ũ)

+J (u(t))− J (̃u) ≥ ( f , u(t)− ũ).
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16 J.K. Djoko and P.A. Razafimandimby

Next, for v = ũ in (2.5), one has

(u′(t), ũ − u(t))+ ν(∇u(t),∇ (̃u − u(t)) )+ a (u(t), ũ − u(t))

+ b (|u(t)|αu(t), ũ − u(t))+ J (̃u)− J (u(t)) ≥ ( f , ũ − u(t)).

Now, putting together the two previous inequalities yields;

−(w′(t),w(t))− ν||w(t)||2 − a||w(t)||2 − b(|u|αu − |̃u|α ũ, u − ũ) ≥ 0, (4.4)

where w(t) = u(t)− ũ. From the monotonicity of T (ζ ) = |ζ |αζ , (4.4) imply that

d

dt
||w(t)||2 + 2(ν + a)||w(t)||2 ≤ 0,

from which the announced estimate is readily obtained via Gronwall’s lemma. �
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