NUMERICAL STUDIES OF COMBINED MULTIPLE SHELL-PASS SHELL-AND-TUBE HEAT EXCHANGERS WITH HELICAL BAFFLES

Guidong Chen, Min Zeng, Qiuwang Wang*

State Key Laboratory of Multiphase Flow in Power Engineering,
Xi’an Jiaotong University, Shaanxi, Xi’an 710049, China
*Corresponding author wangqw@mail.xjtu.edu.cn

ABSTRACT

In order to simplify the manufacture and improve the heat transfer performance, we have invented a combined multiple shell-pass shell-and-tube heat exchanger. The novel combined multiple shell-pass shell-and-tube heat exchanger (CM-STHXs) with continuous helical baffles in the outer shell-pass and other different baffles in the inner shell-pass was compared with conventional STHX with segmental baffles by Computational Fluid Dynamics method. The numerical results show that, under the same mass flow rate M and the same overall heat transfer rate Q_m in the shell side, the CM-STHX with discontinuous helical baffles in the inner shell-pass has the lowest overall pressure drop DP, which was 13% lower than that of the segmental baffled STHX; The heat transfer rate Q_m of the CM-STHX with discontinuous helical baffles in the inner shell-pass is about 2% and 12% higher than those of the CM-STHX with segmental baffles and disk-and-doughnut baffles in the inner shell-pass. The CM-STHX with discontinuous helical baffles in the inner shell-pass has a much better heat transfer performance and can be used to replace the conventional STHX with segmental baffles in industrial applications to save energy, reduce cost and prolong the service life.

Keywords: continuous helical baffle, disk-and-doughnut baffle, discontinuous helical baffle, combined multiple shell-pass heat exchanger

NOMENCLATURE

- A [m2] heat transfer area, $N_t\pi D_t L$
- c_t [-] coefficients in the k-ε turbulence model
- C_p [J/kg K] specific heat
- D_t [mm] hydraulic diameter
- D_{in}, D_{out} [mm] diameters of inlet tube and outlet tube
- D_{in}, D_{out} [mm] diameters of inner and outer shell
- DP [Pa] overall pressure drop
- DP_c, DP_s [Pa] overall pressure drop of the segmental baffled and the combined multiple shell-pass SHTX
- h [W/m2K] average heat transfer coefficient, $q_m/\Delta T$
- H_b [mm] pitch of baffles
- k [m2/s2] turbulent fluctuation kinetic energy
- L [mm] tube length
- M [kg/s] mass flow rate
- N_t [-] tube number
- P_{out} [Pa] outlet pressure
- Q_m [W] overall heat transfer rate, $C_pM(\Delta T_{\text{in}}-\Delta T_{\text{out}})$
- x, y, z [mm] coordinates
- Re [-] Reynolds number, $\rho u_m D_t / \mu$
- ΔT [°C] log mean temperature difference, $\Delta T = (\Delta T_{\text{in}}-\Delta T_{\text{out}}) / \ln(\Delta T_{\text{in}}/\Delta T_{\text{out}})$
- T_{in} [K] average temperature of fluid, $T_f=(T_{\text{in}}+T_{\text{out}})/2$
- T_{out} [K] inlet temperature
- T_{wall} [K] tube wall temperature
- u, v, w [m/s] velocities in different directions
- x^+, y^+ [-] non-dimensional distance from the wall

Greek symbols

- α [°] helix angle, $\beta=\tan(2H_b/\pi D_{\text{os}})$
- ρ [kg/m3] density of material
- λ [W/m K] thermal conductivity of material
- Γ [-] generalized diffusion coefficient
- ε [m2/s3] turbulent kinetic energy dissipation rate
- μ [kg/m s] dynamic viscosity of fluid
- ϕ [-] variables in generalized equations

INTRODUCTION

Heat exchangers play an important role in the fields of oil refining, chemical engineering, environmental protection, and electric power generation, et.al. Among different types of heat exchangers, shell-and-tube heat exchangers (STHXs) (as shown in Fig.1) have been commonly used in industries [1]. Master et
Under the same pressure drop, the heat transfer coefficient of the block plate increase the heat transfer coefficient by 15%.

baffles. The results showed that under the same mass flow rate, transfer and pressure drop in the SHTXs with overlap helical geometries. The effectiveness of heat exchangers with helical baffles is proven on test units and in industry applications. Wang et al. [9, 10] have experimentally studied the influences of block plates and the helical angle on the performance of heat transfer and pressure drop in the SHTXs with overlap helical baffles. The results showed that under the same flow rate, the block plate increases the heat transfer coefficient by 15%. Under the same pressure drop, the heat transfer coefficient of heat exchanger without block plate is better than that with block plate. Zhang and Wang [11] have numerically studied the flow performance in shell side of STHX with discontinuous helical baffles.

Most of these helical baffles mentioned above are formed by lapped over fans or oval shaped plates, which are easy to be manufactured. These helical baffles are normally arranged by a central pole and the volume of the central pole is relatively small. However, serious leakage is induced by the triangle zones and it reduces the heat transfer coefficient of the STHX [12]. To overcome the above defects, Wang et al. [5, 13, 17] have introduced a manufacture technique for continuous helical baffles and found that the heat exchangers with continuous helical baffles have a better performance than STHXs with segmental baffles and discontinuous helical baffles. Peng et al. [14] carried out an experimental investigation on heat exchanger with continuous helical baffles. The results indicated that heat transfer coefficient of the heat exchanger with continuous helical baffles was nearly 10% higher than that of the heat exchanger with segmental baffles under the same shell side flow rate. Xie et al. [15, 16] applied the genetic algorithm method to optimize STHX with helical baffles. But difficulties in manufacturing continuous helical baffles stop its popularization.

Fig.1 Various types of shell-and-tube heat exchanger

The above literature about STHX with discontinuous or continuous helical baffles is single shell-pass. To make full use of the advantages of continuous baffles, save more space, increase compactness of the heat exchangers and prolong the service time of STHX, Wang et al. [18-21] have invented a kind of combined multiple shell-pass heat exchanger with continuous helical baffles (CM-STHX) (as shown in Fig.2). This CM-STHX separates the shell side into several individual shell-pass. As to each individual shell-pass, the flow area is reduced, the velocity of the fluid is increased and the heat transfer performance can have a great improvement. In addition, the continuous helical baffles can reduce the pressure drop and mitigate fouling in the shell side. Moreover, the CM-STHXs can avoid the difficulties in manufacturing continuous helical baffles with a small scale inner helix.
In this study, the combined multiple shell-pass STHX with continuous helical baffles in the outer shell-pass, discontinuous helical baffles, segmental baffles and disk-and-doughnut baffles in the inner shell-pass were studied. At the same time a conventional STHX with segmental baffles was used for comparison. The Computational Fluid Dynamics (CFD) commercial software Fluent was used to study the flow and heat transfer characteristics in the shell side. All computations were performed on a personal computer with 8GB RAM and Intel® Core™ 2.40GHz CPU.

PHYSICAL MODEL

The physical model of the CM-STHX to be studied is presented in Fig.3. They have two shell passes in the shell side, the inner shell-pass and the outer shell-pass, which are separated by a sleeve tube. The inner shell-pass is set with segmental baffles, discontinuous helical baffles or disk-and-disk-and-doughnut baffles, the outer shell-pass is constructed by complete continuous helical baffles. The inner shell-pass and the outer shell-pass are joined together at one end of the shell side.

The material of the sleeve tube is steel with $\sigma=2$mm thickness, which has a density $\rho=8030$kg/m3, thermal conductivity $\lambda=16.27$W/ (m K), specific heat $C_p=502.48$ J/ (kg K). The material of the heat exchange tubes and baffles is aluminum, which has a density $\rho=2719$kg/m3, thermal conductivity $\lambda=202.4$ W/ (m K), specific heat $C_p=871$J/ (kg K). The working fluid is water, whose thermal properties depend on the temperature. Detailed geometrical parameters of the computation models can be observed in Fig.3.

GOVERNING EQUATIONS

In order to simulate the flow and heat transfer in the shell side of STHXs, 3-dimensional Realizable $k-\varepsilon$ turbulence model is applied. The generalized equation for different variables is as follows [22]:

$$\text{div}(\rho \bar{\phi}) = \text{div}(\Gamma_{\phi} \text{grad} \phi) + S_{\phi}$$

where ϕ stands for different variables, Γ stands for the corresponding generalized diffusion coefficient and S stands for the corresponding source term. Standard wall function is adopted near the wall and the range of the dimensionless length x^+ or y^+ is $10< x^+(y^+)<100$.

BOUNDARY CONDITIONS

The boundary conditions are described as follows:

1. The shell inlet: $u=v=0$, $\nu=\text{const}$ (uniform inlet velocity), $T_{in}=298K$ (20 °C) (uniform inlet temperature)

The inlet turbulent kinetic energy k was calculated using:

$$k = \frac{3}{2} I I$$

where I is the inlet turbulence intensity, $I=10\%$.

The inlet dissipation ε was calculated using:

$$\varepsilon = \frac{C_{\varepsilon} \rho I^2}{\mu_t}$$
where c_η is the turbulence coefficients, μ_t is the eddy viscosity.

(2) The shell outlet:
\[
\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = \frac{\partial w}{\partial n} = 0 \\
\frac{\partial T}{\partial n} = 0 \\
\frac{\partial k}{\partial n} = \frac{\partial \varepsilon}{\partial n} = 0
\]
where n is normal vector of outlet plane.

(3) The heat exchange tube wall surfaces:
\[
u = v = w = 0
\]
\[
T_w = 373K \text{ (100 oC)} \text{ (hot tube walls)}
\]

(4) The outer shell-pass walls:
\[
u = v = w = 0 \\
\frac{\partial T}{\partial n} = 0 \text{ (thermal insulation walls)}
\]

(5) The sleeve tube surface:
\[
u = v = w = 0
\]

(6) The baffle walls:
\[
u = v = w = 0
\]

Due to the conjugated heat transfer characteristics between the baffle walls surface, sleeve tube wall surface, shell wall surface and the fluid, the boundary conditions for thermal fields do not need to be specified on the interior of baffle walls surface, the sleeve tube walls surface and the shell wall surface.

NUMERICAL METHODS

The SIMPLE algorithm and the second order upwind scheme are used for the numerical simulation. As the convergence criterion, the sum of the normalized absolute residuals in each control volume for the flow variables are controlled to be less than 10^{-5} and 10^{-7} for energy variables. The CUP time of a typical case is about 30 hours.

The Reynolds number is defined as
\[
Re = \frac{\rho u_m D_e}{\mu}
\]
where u_m, m/s, is the average velocity of fluid in shell side, which can be obtained from computation results. The hydraulic diameter $D_e = D_t = 19\text{mm}$. ρ is the density of water, kg/m3. μ is the dynamic viscosity of water, kg/(m s). ρ and μ are both determined by the average temperature of the working fluid $T_f = (T_{in} + T_{out})/2$.

The overall heat transfer rate Q_m can be calculated from:
\[
Q_m = C_p M (T_{out} - T_{in})
\]
where T_{in} and T_{out} are the bulk inlet and outlet water temperatures, respectively. M is the mass flow rate of working fluid.

The average heat transfer coefficient h is defined as
\[
h = \frac{Q_m}{A \Delta T}
\]
where ΔT is log mean temperature difference and defined as
\[
\Delta T = \frac{(T_{out} - T_{in})}{\ln \left(\frac{(T_w - T_{in})}{(T_w - T_{out})}\right)}
\]

GRID INDEPENDENCE

Due to the complex structure of the CM-STHXs, the computational domain is meshed with unstructured Tet/Hybrid grids (see Fig.4), which are generated by the commercial code GAMBIT. In order to ensure the accuracy of numerical results, a careful check for the grid independence of the numerical solutions was conducted. Four different grid systems are generated for the CM-STHX ($Re=49129$, $M=10.92$).

The results are shown in Fig.5. It is found that the relative deviation of the average heat transfer coefficient under unit overall pressure drop h/DP between G3 and G4 is less than 2%. The relative deviation of the overall pressure drop DP between G3 and G4 is less than 3%. Therefore, the final grid system for the studied cases is G4.

![Fig. 4 Schematic diagrams of grid](image1)

![Fig.5 Results of different grid systems (Re=49129)](image2)
VALIDATION OF MODEL

The Kern method [22] is used to calculate the overall heat transfer rate Q_m in the shell side of the STHX with segmental baffles. The Esso method [22] is used to calculate the overall pressure drop DP in the shell side of the STHX with segmental baffles.

Comparisons of the present results with the prediction of correlations are shown in Fig.6. It is found that the average deviation of the overall heat transfer rate Q_m between present results and Kern design results is about 8.4%. It is acceptable in numerical simulation, so it can be concluded that the present model can give a close prediction in heat transfer performance. The average deviation and maximum deviation of the overall pressure drop DP between present results and Esso design results are 3.6% and 6.4%, respectively. The discrepancies between the simulation results and the experimental data can be explained as fellows. Kern and Esso methods are developed by certain experiments and they have taken account of the true situations of segmental baffled heat exchangers, but the simulation models neglect lots of factors such as bypass streams, leakage and the structure of the inlet and outlet. However, such an agreement should be regarded reasonable in engineering computation. The present models can give a close prediction in pressure drop characteristics.

It can be seen from Figs.8 (a, b, c, d), as to the inner shell pass, the disadvantages of segmental baffles, discontinuous helical baffles and disk-and-doughnut baffles can not be erased completely in these CM-STHXs. There are “stagnation regions” (marked by “S”) in the inner shell-pass of the CM-STHX with segmental baffles in the inner shell-pass. Stagnation regions have a low heat transfer coefficient, because it can not exchange heat with the “main streams” (marked by “M”) freely. Due to the same reason mentioned above, temperatures of these stagnation regions are higher than those of the activity regions nearby; There are seriously leakage streams existed in the inner shell-pass of the CM-STHX with discontinuous helical baffles in the inner shell-pass, so that lots of working fluid flowing through the shell-pass without rush across the heat exchange tubes; “Stagnation zones” also effect heat transfer between heat exchange tubes and working fluid in the CM-STHX with disk-and-doughnut baffles in the inner shell pass.

Take the advantages of continuous helical baffles into consideration, it is valuable to separate the shell side into two different shell passes. The existence of inner shell-pass increases the scale of the inner helix and simplifies the manufacturing of continuous helical baffles. It also makes use of the space in the central pole, which is used to form the inner helix in the single shell pass STHX with continuous helical baffles. Segmental baffles, discontinuous helical baffles and disk-and-doughnut baffles are still better choice for the inner shell pass, because they can be manufactured and installed easily in a relatively small space. As can be seen from Fig.7 (d) and Fig.8 (d), in the STHX with segmental baffles, the fluid flows cross the heat exchange tubes and rushes toward the shell and baffles in a tortuous, zigzag manner. Back flow regions formed at the place where the baffles are attached to the shell wall.

Heat transfer and pressure drop characteristics

Variation of the overall heat transfer rate Q_m vs. mass flow rate M in the shell side is shown in Fig. 9. It can be found that the overall heat transfer rates Q_m of all STHXs are linear with the mass flow rate M. The maximum deviation of the overall heat transfer rate Q_m between these STHXs is less than 0.8%. From this point, it can be assumed that these SHTXs have the same overall heat transfer rate Q_m under the same mass flow rate M in the computations.
Variation of the overall pressure drop DP vs. mass flow rate M in the shell side is shown in Fig. 10. It is found that the overall pressure drop DP has a great increase with the increase of the mass flow rate M in these STHXs. The overall pressure drop DP in the STHX with segmental baffles is 11.5% and 13.0% higher than those of the CM-STHXs with segmental and discontinuous helical baffles in the inner shell-pass under the same mass flow rate and the same overall heat transfer rate Q_m, respectively. However, the pressure drop of the CM-STHX with disk-and-doughnut baffles in the inner shell-pass is 6.0% higher than that of segmental baffled SHTX under the same mass flow rate and the same overall heat transfer rate Q_m. The same overall heat transfer rate Q_m is concluded from the analyses of Fig. 9. From this point, it can be expected that the CM-STHX with segmental and discontinuous helical baffles in the inner shell-pass have a better heat transfer performance than that of the STHX with segmental baffles under the same mass flow rate M and the same overall pressure drop DP.

The variation of the overall heat transfer rate of the heat exchangers Q_m with the overall pressure drop DP is shown in Fig. 11. The results indicate that in the lower overall pressure drop region, the heat transfer rate Q_m has a fast increasing with the increase of overall pressure drop, while in the high pressure drop region, this increase becomes smaller. For the same overall pressure drop, the difference of the overall heat transfer rate for
the STHXs is very small in the lower pressure drop region. However, in the higher pressure drop region, the overall heat transfer rate Q_m in the CM-STHXs with discontinuous helical baffles in the inner shell-pass is obviously higher than that in segmental baffled STHX at the same overall pressure drop DP. The heat transfer rate Q_m in it is about 8.0% higher than that in the STHX with segmental baffles.

(2) The form of baffles in the inner shell pass has great influence on heat transfer. Under the same mass flow rate M and overall heat transfer rate Q_m, the overall pressure drop DP of the CM-STHX with discontinuous helical baffles or segmental baffles in the inner shell-pass is lower than that of segmental baffled STHX by 13% or 12% on average in the calculations.

(3) Under the same overall pressure drop DP in the shell side, the overall heat transfer rate Q_m of the CM-STHX with discontinuous helical baffles in the inner shell-pass is about 6% higher than that of conventional segmental baffled STHX.

ACKNOWLEDGMENTS

This work is supported by National Science and Foundation of China (Grant No. 50776068) and Program for New Century Excellent Talents in University of China (Grant No. NCET-04-0938).

REFERENCES

19. Wang Q.W., Investigation on novel combined multi-shell-pass shell-and-tube heat exchangers with helical baffles[C], Workshop on advances in compact and micro heat exchangers for sustainable development, IIT Delhi, India, January 7-8, 2008. (Keynote)

