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ABSTRACT 
This paper considers the challenges of visualising data that 

describe thermo fluid dynamic processes. The importance of 
being able to construct visualisation artefacts that accurately 
represent the properties of relevant transport vectors is 
discussed and appropriate methods based on vector and scalar 
potentials are described. Attention then turns to heatlines which 
are becoming increasingly popular for visualising heat transfer 
process but suffer from ambiguities that arise from the choice 
of conditions for reference enthalpy. Fortunately, although the 
assumed reference conditions influence the heatline patterns 
within the flow, the overall heat transfer analysis provided by 
the lines may not be adversely affected. The possibility of 
extending the heatline approach to entropy lines is then 
considered for two and three dimensional heat transfer fields. 
The entropy transport vector is not divergence free and a new 
method that involves a combination of scalar and vector 
potentials is proposed to correctly construct the lines of the 
entropy transport vector. 

 
INTRODUCTION 

Computational thermo fluid dynamics (CTFD) is capable 
of predicting complex 3D and 4D steady or unsteady scalar and 
vector data fields that represent the underlying physical 
processes. The challenge for several decades has been to find 
appropriate methods to visualise and interpret those fields.  

As early as the 1960s, the Los Alamos group’s 
visualisations of waves and drops impacting with a liquid 
surface [1,2] demonstrated the efficacy of what is now 
recognised as computational fluid dynamics (CFD) 
visualisation. Fromm [3] produced streamlines and streak lines 
past an obstacle by tracking contours of a stream function using 
linear interpolation. In those days computer "plots" were output 
to magnetic tape and then to a microfilm recorder. Fromm 
made the comment that “the computer time consumed in 
obtaining the output is roughly 10% of the overall time of an 

average calculation.” With increased flow complexity that 
fraction is now considerably greater and visualization becomes 
the dominant part of a thermo fluid dynamic study. 

Ideally a visualisation strategy should have the ability to 
rapidly display the essential characteristics of a thermo fluid 
dynamic process. The artefact created in the visualisations 
should be accurate and not lead to false interpretation. 
Quantitative data produced by the visualisations should 
correctly relate to the underlying physical laws on which the 
modelling relies.  

An added motivation for the generation of simple methods 
for visualising complex CTFD data is the widespread 
development of coupled computer aided design and modelling 
packages. Concerns arising from relatively naïve used of CTFD 
in design leads to consideration of how visualisation and post 
processing might be improved so that CTFD is used correctly 
and the right interpretations are made. 

The perspective taken here is that “whole field” methods 
that can be applied in one step are preferable to local 
exploratory tools that take many iterations to reveal the 
characteristics of a field. For example 2D steady 
incompressible flow can be represented by a single contour 
map of a stream function which also provides quantitative data 
about volume flow rates. Unfortunately, if an additional spatial 
dimension is involved, the flow becomes unsteady or is 
compressible, compact whole field visualisations become 
virtually impossible. 

As will be discussed in the next Section, currently 
available visualisation tools apply to scalar or vector fields and 
have been developed generally in the context of CFD. The 
representation of a process involving thermodynamics or heat 
transfer requires the creation of relevant scalar or vector fields 
that can be processed by CFD visualisation tools. For example, 
the heat function introduced by Kimura and Bejan [4] relates to 
2D steady state convection in a manner similar to the way that a 
stream function does for fluid motion. This concept is expanded 
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here by considering the role of generalised transport vectors, of 
which the heat flux vector that underpins heatlines is an 
example, have in providing new visualisation strategies. The 
simple example of natural convection in a box is used to 
demonstrate that despite the fact that visualisation tools have 
been available for several decades, there is much to learn about 
how accurate and meaningful visualisation artefacts can be 
constructed. 

The discussion is guided by prior experience with creating 
algorithms to construct vector lines, e.g. streamlines and vortex 
lines, that accurately represent the divergence of the vector. 
These aspects are summarised in the following section, and 
lead to the premise that scalar and vector potentials should be 
used as part of the visualisation strategy. 

NOMENCLATURE 
 
ds [m2] Element of area 
dv [m3] Element of volume 
e [W/m2] Specific energy 
e [] Generalised transport vector 
f [m2/s] Dual stream function 
g [m2/s] Dual Stream function 
g [m/s2] Gravitational acceleration vector 
H [W/m] Heat function 
k [W/mK] Thermal conductivity 
q  [W/m2] Heat flux vector 
q′′′  [W/m3] Volumetric heat generation density 
p [N/m2] Pressure 
r [m] Position vector 
Pr [-] Prandtl number 
Ra [-] Rayleigh number 
s [J/kgK] Specific entropy 
s [W/m2K] Entropy transport vector 
t [s] Time 
T [K] Temperature 
u [m/s] Velocity vector ˆ ˆ ˆu v w= + +i j k  
V [m3] Volume 
x [m] Cartesian axis direction  
y [m] Cartesian axis direction  
z [m] Cartesian axis direction  
 
Special characters 
ζ [/s] Vorticity 
ζ [/s] Vorticity scalar or vector component 
ψ [m2/s] Vector potential for velocity 
ψ [m2/s]  Stream function or component of vector potential 
Ψe [kg/ms] Vector potential for energy transport vector 
Φ [/s2] Viscous dissipation function 
ε [-] Non dimensional temperature difference, Eq (52). 
ρ [kg/m3] Density 
θ [-] Non dimensional temperature 
σ [kg/ms2] Deviatoric stress tensor 
μ [Nm/s2] Dynamic viscosity 
 
Subscripts 
ref  Reference 
S  Surface 
T  Temperature or thermal energy 
x  Cartesian Coordinate 
y  Cartesian Coordinate 
z  Cartesian Coordinate 
   
 

 

VISUALISATION BACKGROUND 
 
Basic Visualisation Methods 

With the advent of 3D vector refresh displays in the mid 
1960s, interactive visualisation of 3D computational models 
became a reality and by the early 1970s basic tools for CFD 
visualisation were established. These included: 

• 2D vector maps on plane or curved surfaces 
• 2D contour maps using lines and filled shading  
• 2D and 3D vector tangent lines used to represent 

particle paths, streamlines or vortex lines. 
For example, particle tracks or streamlines were used [5-7] 

to visualise 3D solutions for natural convection in enclosures 
and an animated film was listed in [8] as being available for 
circulation to interested researchers (involving several months 
turn-around using cost effective postal options of the day). 
Initial uptake of these visualisation technologies was slow 
because computational resources were limited and most CFD 
solutions were 2D and presented no real visualisation 
challenges.  

This is, of course, not the situation today. It is possible to 
generate CFD simulations of very complicated flows involving 
data sets having 1010 (and even this is probably an 
underestimate) degrees of freedom and there is a real challenge 
to unravel these data sets to properly understand them and the 
underlying thermo fluid dynamics. The requirement to visualise 
3D steady or unsteady fields is now common place. However 
visualisation strategies have not kept up with the pace of 
development of the numerical solutions. The basic set of 
visualisation techniques has been augmented to include: 

• iso-surface extraction using surface methods or 
volume visualisation 

• flow feature detection. 
Despite the considerable advances in flow detection 

algorithms, the majority of thermodynamics research 
publications use the first 4 of these visualisation methods.  

 
The Relevance of Scalar and Vector Potentials 

Vector potentials or dual scalar stream functions can be 
used to represent 3D vector fields and early CTFD solutions 
([6], [8]) of 3D natural convection cavity flows used vector 
potential – vorticity methods. 

A velocity vector u can be related to a vector potential Ψ 
via: 
 = ∇×Ψu   (1) 

The vector potential is usually chosen so that it is solenoidal, 
i.e.:  
 . 0∇Ψ =   (2) 

There is, unfortunately, no direct relationship between a 
vector potential and the lines or stream surfaces of the velocity 
field that it represents. In practice issues associated with the 
prescription of boundary conditions for the vector potential and 
its lack of utility for visualisation meant that the vector 
potential – vorticity method has been almost completely 
bypassed in favour of primitive variable, (velocity – pressure) 
CTFD methods. 
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Streamlines or particle paths first started to appear in the 
literature in the early 1970s when they were used to display the 
flow in 3D natural convection and forced flows in enclosures, 
[6] and [7]. It was soon realised that the integration method 
used to track the paths had to be at least 4th order Runge Kutta 
and more significantly the velocity component interpolations 
had to satisfy mass conservation exactly, ([8]) so as not to 
introduce false sources that manifest as spiralling lines. 
Unfortunately even today, this is a too common reality. The 
majority of vector line methods used in commercial software 
exhibit such artefacts arising from well documented (e.g. [9]) 
inaccuracies in either path integration or field interpolation.  

Although it is possible to generate volume conserving 
velocity interpolations directly these may require information 
from the CFD solver which is not always possible. However, 
volume conserving interpolation is readily achieved when a 
vector potential is available as part of the solution process. The 
velocity at a given point can be found by taking the curl of an 
interpolated vector potential[8]. Applying this idea in a 
visualisation strategy means finding the vector potential for a 
given velocity field [10]. As will be demonstrated in this paper, 
finding scalar or vector potentials for a given velocity field can 
be an effective part of a visualisation strategy. 
 
Dual Stream Functions for Whole Field Visualisation 

An alternative representation uses two potentials referred 
to as dual scalar stream functions and the velocity vector is 
represented by: 
 f g= ∇ ×∇u  (3) 

Iso-surfaces of the functions f and g are stream surfaces of 
the flow. Intersections between the two families of iso-surfaces 
are streamlines. However, as discussed in [10], at least one of 
the functions has very complicated iso-surfaces and the 
visualisation strategy has not been applied in general. 

For flows where there is no recirculation or spiralling, dual 
stream functions can be applied for both visualisation and the 
solution process. There is a large body of research describing 
the application of dual stream functions to duct flows (e.g. [11], 
[12], [13]).  

Beale [14] derived anisotropic diffusion equations relating 
dual stream functions to the velocity field which he solved 
numerically. His results presented in [14] and [15] show 
promising definition of the structure of flows around an 
obstacle and in a free vortex. However, the stream lines for the 
free vortex do not exhibit spirals that should arise from axial 
flow and this discrepancy, for which an explanation has not yet 
been found, remains a topic for future research. 

If dual stream functions cannot easily be used for whole 
field visualisation, then they might be useful for constructing 
vector lines and surfaces within cells, where the flow can 
assumed to be simple and non vortical. This approach has been 
used to successfully trace stream lines for steady flows for 
structured [16] and unstructured grids [17,18]. 

 
 
 
 

Heatlines 
Kimur and Bejan [4] were the first to use a heat function to 

visualise convection. Their demonstration for 2D natural 
convection in a square cavity showed that iso-lines of the heat 
function, which are the tangent lines of the heat flux vector 
field, behaved in an intuitively satisfying manner. The 
technique relied on the construction of a heat function which 
behaved for the heat flux vector in the same way that a stream 
function does for a 2D velocity field. The interval between a 
pair of heatlines is proportional to the heat flow rate between 
them. Heatlines can be used to understand the total heat flow 
balance for a flow in the same way that iso-lines of a stream 
function relate to volume flow rates. Following the initial 
development of the heat function concepts and application to 
several examples [19] the heatlines are sometimes referred to as 
Bejan's heatlines, (e.g. [20]). 

Subsequent to this initial development the heatlines 
concept has been extended to mass lines and applications have 
included porous and anisotropic media, (e.g. [21-23]). and refer 
to [5] for a good list of heatline references). The use of the heat 
function and heatlines has started to permeate into the heat 
transfer literature with authors illustrating their works with heat 
function maps alongside stream function and temperature maps, 
(.e.g refer to [20,24,25] for comprehensive lists of related 
publications). 

Despite the popularity of heatlines, there is an issue that 
should be reconsidered. The heat flux vector as defined in [4], 
has two terms, one representing heat conduction and the other 
convection. The magnitude of the convection term depends on 
the local specific enthalpy, or, cp(T-Tref). The assumed reference 
condition for enthalpy or temperature determines the magnitude 
of the convection part of the heat flux vector and hence its 
direction. In practice this means that the direction of a heatline 
depends on the assumed reference condition. In [4], 
dimensionless variables were used and these led naturally to the 
use of the coldest temperature in the cavity as the reference 
temperature. This convention has persisted and most users of 
heatlines make this assumption without explicit statement. 

The universal adoption of a common convention has 
masked the fact that the form of the heat function depends on 
an assumed reference condition for enthalpy and hence 
resulting visualizations are dependent on a parameter that does 
not influence any other aspect of the mathematical analysis or 
the computational model. This concern is heightened by recent 
extensions of the heatline approach to transient and 3D heat 
transfer problems [26-28] wherein the visualizations are 
becoming increasingly complicated. For example, in [27] 
stagnation points in the heat flux field have been reported for 
unsteady flows. When the chosen reference temperature is the 
coldest temperature in the domain, it is possible for the heat 
flux to stagnate locally within the domain. However these 
stagnation points may be artefacts arising from the reference 
condition choice.  

One of the motivations of this discussion is to explore the 
effect of the reference condition. As a by-product of the 
investigation, the assumption that the temperature field is not a 
good indicator of the convection process [4], is challenged. 
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The Heat Function as Part of a More General Visualisation 
Strategy  

The initial development of the heatline visualisation 
process (e.g. [4,19,29]) was presented in terms of the heat 
function rather than the related heat flux vector field. The heat 
function can be found only for two dimensional fields that have 
zero divergence which limits its application to steady 
convective flows without heat generation.  

Only recently [10,26-28] has the construction of heatlines 
directly from the heat flux vector field been applied, the 
motivation being to extend the visualisation to 3D or unsteady 
flows. The heatline visualisation method therefore falls into a 
more general category of vector field visualisation with all the 
inherent difficulties of ensuring that the structure of the vector 
field and its properties such as zero divergence, if applicable, 
are correctly displayed by the visualizations [10]. 
 
Transport Vectors 

The heat flux vector that underpins heatline visualisations 
is an example of the more general concept of transport vectors 
[10,26,30] that exist for quantities such as momentum, total 
energy, mechanical energy, thermal energy, mass and entropy. 
The tangent lines of these fields are transport lines of which 
heatlines are an example. 

This paper describes the heatlines and the heat function as 
being embedded in the more general context of the transport 
vectors. All of these are subject to the reference temperature 
issue. 
 
CONCEPTS 

This section will present the concepts that underpin 
transport vectors and visualisation strategies that involve vector 
and scalar potentials.  
 
Thermal Energy Transport 

The starting point for this discussion is the statement of the 
energy transport equation in the form: 

 . . T
T

e
q p

t
ρ

μ
∂′′′∇ = + Φ − ∇ −
∂

e u  (4) 

where eT is called the energy transport vector and is defined by: 
 T Teρ= +e u q  (5) 

Because there is a reference condition for the specific 
energy, (5) can be replaced by: 
 ( )T T refe eρ= − +e u q  (6) 

The form of equation (4) emphasises the fact that the heat 
source, pressure work, viscous dissipation, heat source and 
transient terms all contribute to the divergence of the transport 
vector. Only when the sum of those terms is zero or they can be 
ignored does the energy transport equation reduce to the 
solenoidal condition: 
 . 0T∇ =e  (7) 

 
 
 

General Transport Vector 
We can consider eT to be an example of a general 

transport vector which will be denoted here by e. The general 
transport equation is, 

 
.

d

ee
t

e

ρ∂′′′∇ = −
∂

=

e
 (8) 

where ed represents the time varying divergence of e.  
 
Vector and Scalar Potentials for e 

It is useful to consider how the transport vector may be 
represented by vector and scalar potentials and how these relate 
to the heat function used for 2D convection. 

The Helmoltz decomposition of e leads to: 

    e eϕ= ∇×Ψ +∇e  (9) 

The function ϕe is a scalar potential for e and defines its 
divergence, i.e.: 
 2

e deϕ∇ =  (10) 

The vector function Ψe is a vector potential for e. It can be 
chosen such that: 
 2   and  . 0e∇ Ψ = −∇× ≡ − ∇Ψ =e ζ  (11) 

where eζ  is the "transport vorticity" vector. 
For 2D processes using x and y Cartesian coordinates, the 

vector potential and vorticity each have only one component 
which is aligned in the z direction:  
 ˆ ˆ   and   e e e eψ ζΨ = =k ζ k  (12) 

The function ψe is equivalent to a 2D stream function and 
can be generated by solving: 

 
2 2

2
2 2   or  e e

xy e e ex y
ψ ψψ ζ ζ∂ ∂

∇ = − + = −
∂ ∂

 (13) 

with appropriate boundary conditions. 

The scalar potential can be generated by solving: 
 2  xy e deϕ∇ =  (14) 

The 2D Heat Function  
For the case of the steady state transport of thermal energy 

we can denote the "stream function" by H so that: 

 
2 2

2 2    e
H H
x y

ζ∂ ∂
+ = −

∂ ∂
 (15) 

From (12) 

 

ˆ ˆ ˆ

      

e x y e

e e
x y

e e

e e
y x

ψ

ψ ψ

= + = ∇×

∂ ∂
= = −

∂ ∂

e i j k
 (16) 

This leads to:  

27



    

 
( )

( )

 

v

T ref x

T ref y

Hu e e q
y

He e q
x

ρ

ρ

∂
− + =

∂
∂

− + = −
∂

 (17) 

and after using Fourier's law: 

 
( )

( )v

T ref

T ref

T Hu e e k
x y
T He e k
y x

ρ

ρ

∂ ∂
− − =

∂ ∂
∂ ∂

− − = −
∂ ∂

 (18) 

The "thermal vorticity" is: 

 
( )

( )

ˆ
e

T T
T ref

e ev ue e v u
x y x y

ζ

ρ ρ ρ ρ

= ∇×

⎛ ⎞ ∂ ∂∂ ∂
= − − + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

e k
 (19) 

The heat function equation is: 

 
( )

2 2

2 2 T ref

T T

H H v ue e
x y x y

e ev u
x y

ρ ρ

ρ ρ

⎛ ⎞∂ ∂ ∂ ∂
+ = − − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂ ∂
− +

∂ ∂

 (20) 

Equation (20) can be solved with heat flow boundary 
conditions (17) to produce H and is identical to the equation 
used by others [4,24]. It is important to emphasise that this 
representation can be used only for 2D situations where the 
transport vector has zero divergence. 
 
The Entropy Transport Vector  

Transport vectors for mass, momentum, mechanical energy 
and entropy can be also defined. A more comprehensive list of 
examples can be found in [10] and [30]. The transport vector 
for entropy will be considered here because it always has non-
zero divergence and will be used here as an example of a 
transport process that includes a source. 

The entropy transport equation can be written as [10]: 

 1 .Ds
Dt T T

μρ Φ
= − ∇q  (21) 

This can be rearranged by differentiating the last term by 
parts: 

 1. . .s s
t T T T
ρ μρ∂ Φ⎛ ⎞ ⎛ ⎞+∇ +∇ = +∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

qu q  (22) 

The entropy transport vector is: 

 s
T

ρ= +
qs u  (23) 

and the transport vector form of the entropy equation is: 

 
2

. T sk
T T t
μ ρΦ ∇ ∂⎛ ⎞∇ = + −⎜ ⎟ ∂⎝ ⎠

s  (24) 

Particle Tracing 
In all situations other than when the transport vector is 2D 

and divergence free, its visualisation requires the construction 
of artefacts suitable for the display of vector fields. Vector 
maps (as in Figure 3) and tangent lines are the most common 
artefacts used to visualise vector fields. A tangent line to a time 
varying vector field at the instant tc can be constructed by 
numerical approximation to an equation of the form: 
 ( ) ( )( )0

0
,

S

cs
s t dτ τ= + ∫r r e r  (25) 

It is important that the interpolation procedures used to 
evaluate e away from mesh points accurately represent the 
divergence of e. For solenoidal fields this condition 
corresponds to . 0.∇ =e  As discussed in [30], an appropriate 
strategy is to derive interpolations for the potentials and then 
differentiate those interpolations to derive the expressions for 
the velocity. For example, using the notation in Figure 1, the 
trilinear interpolation for a scalar field ϕ can be represented by:  

 ( ) ( ) ( ){ }( )
( ) ( ) ( ){ }

1 1 2 1 1 2 3
000 100 010 110

1 1 2 1 1 2 3
001 101 011 111

1 (1 1 1

1 (1 1

q q q q q q q

q q q q q q q

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

⎡ ⎤ ⎡ ⎤= − + − + − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + − + − +⎣ ⎦ ⎣ ⎦

 (26) 

For a given mesh cell with its origin at (x0,y0,z0):  
 ( ) ( ) ( )1 2 3

0 0 0      q x x x q y y y q z z z= − Δ = − Δ = − Δ  (27) 

and the derivative of ϕ with respect to x is: 

 [ ]( ) [ ]{ }( )
[ ]( ) [ ]{ }

2 2 3
100 000 110 010

2 2 3
101 001 111 011

(1 11

(1

q q q

x x q q q

ϕ ϕ ϕ ϕϕ

ϕ ϕ ϕ ϕ

⎛ ⎞− − + − −∂ ⎜ ⎟= ⎜ ⎟∂ Δ ⎜ ⎟+ − − + +⎝ ⎠

 (28) 

In Cartesian coordinates the expressions for the 
components of e becomes: 
 ˆ ˆ ˆ ˆˆ ˆ     x y z x y ze e e ψ ψ ψ= + + Ψ = + +e i j k i j k  (29) 

 
1 2

3

   

   

y xz z

y x

e e
x y z y z x

e
z x y

ψ ψψ ψϕ ϕ

ψ ψϕ

∂ ∂∂ ∂∂ ∂
= + − = + −
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂
= + −
∂ ∂ ∂

 (30) 

The derivatives appearing in (30) can then be evaluated using 
approximations of the form (28). 

This process has been described very briefly here. As 
described in [10] it can be readily extended to general 
curvilinear coordinates.  
 

 

f000 

f011 f111 

f110 f010 

f001 f101 

f100 q1 

q2 
q3 

 
Figure 1 Notation for scalar values stored at the corners of a 

hexahedral cell. The coordinates have been scaled so that they 
each have the range [0,1] over the cell. 
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EXAMPLE PROBLEM 
The example of natural convection in a box heated from 

the side is used here as a basis for a discussion of the issues 
involved in using transport vector fields for visualisation and 
for the ways that these concepts might be used for 3D flows.  

The cross section of the cavity is square. The vertical wall 
at x=0 is isothermal and hot and the wall at x=1 is cold. The 
other boundaries are adiabatic.  

A non dimensional form of the energy equation is: 

 2θ θ∇ = ∇u  (31) 

Where 0T T Tθ= + Δ  and the density has been assumed to 
be constant. The non dimensional energy transport vector is:  

 ( )T refθ θ θ= − −∇e u  (32) 

The non dimensional source for the heat vector potential 
function equation is: 

 

( )
( )

T ref

ref

ref

θ θ

θ θ θ

θ θ θ

∇× = ∇× −

= ∇ × + − ∇×

= ∇ × + −

e u

u u

u ζ ζ

 (33) 

The isothermal vertical boundaries are represented by θ = 1 
and θ = 0 at x = 0 and 1 respectively. At y = 0 and y = 1 

0y
θ∂ =∂ . For the 3D version of this problem the z boundaries 

are also adiabatic. 
 

Numerical Procedure 
The problem was solved using a vector potential – vorticity 
method using a collocated grid and central differences for 
convection. The 2D numerical solutions used a 65 by 65 mesh. 
3D problems used a 41 by 41 by 41 mesh. At these resolutions 
the solutions are known to be good representations of the flow 
but are not necessarily of benchmark quality which is not 
essential for the purpose of a discussion of visualization 
strategies. 

The original discussion of the heat function in [4] 
presented example heatlines for natural convection in a box 
heated from the side for Ra = 1.4x105 and Pr = 7. These 
parameters are used here unless specified otherwise. 

 
GENERALISED TREATMENT OF POTENTIALS 

The discussions in the previous Section lead to the 
requirement to generate new representations of heatlines using 
appropriate vector and scalar potentials. These techniques are 
illustrated here for the example problem. 

  
The Energy Transport Vector and its Reference Value 

Before discussing the use of potentials to generate the heat 
flux vector it is worth making the observation from (6) that the 
thermal transport vector can be represented by: 
 T T refe eρ ρ= + −e u q u  (34) 

This means that the thermal transport vector can be 
expressed in the form: 
 ,T T T ref′= −e e e  (35) 

 ,   and   T T T ref refe eρ ρ′ ′= + =e u q e u  (36) 

This is an important observation, because it means that the 
transport vector can be regarded as being composed of a term 
which is independent of the reference energy and another term 
that is the product of the reference energy and the flow mass 
flux vector. In other words if T′e is known, eT for a given 
reference condition can be obtained by simply subtracting a 
field that is the product of the mass flux vector and the 
reference specific energy. It follows that vector and scalar 
potentials can be used to generate T′e  rather than eT. 

In terms of a vector potential the energy transport vector is 
given by:  
    T e eϕ′ = ∇×Ψ +∇e  (37) 

The scalar potential satisfies: 
 2 0eϕ∇ =   (38) 

The vector potential satisfies: 

 2   e∇ Ψ = −ζ  (39) 

where: 

 
( )

( )
e T T

T T

T T m

e

e e
e e

ρ

ρ ρ
ρ

′= ∇× = ∇× +

= ∇ × + ∇× +∇×

= ∇ × + +∇×

ζ e u q

u u q
u ζ q

 (40) 

and ζm is the mass vorticity , ρ∇× u  [10]. 

If the thermal conductivity is constant, then: 

 e T T me eρ= ∇ × +ζ u ζ  (41) 

and if the density is constant, equation (41) becomes 

 e T Te eρ ρ= ∇ × +ζ u ζ  (42) 

where ζ is the vorticity ∇×u . 

For the example problem the scalar and vector potential 
equations are: 
 2 0eϕ∇ =   (43) 

and: 
 2   e θ θ∇ Ψ = −∇ × −u ζ  (44) 

 
Boundary Conditions for the Energy Transport Vector 
Potential Equations 

For 2D situations, the heat function equation (20) 
corresponds to using just the vector potential. Although, this 
can be extended to 3D, [10], the process is complex and 
involves using auxiliary vector potentials [31] that represent the 
heat flux passing through boundaries.   
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An alternative approach is to use the scalar potential to 
specify the heat flux through the boundaries. The boundary 
conditions for the vector potential then become the same as 
those for the fluid motion.  

The boundary conditions for ϕe are derived from: 

 ˆ ˆ. .k Tϕ∇ = − ∇n n  (45) 

or in terms of the nondimensional variables used in the example 
problem: 

 ˆ ˆ.ϕ θ∇ = −∇n n  (46)   

For the example problem, all boundaries are impermeable 
and stationary. The boundary conditions for the vector potential 
are derived from: 
 ˆ. 0      0Ψ = ∇Ψ =n  (47) 

For example for a plane boundary at x = 0: 

 0     0     0x
y zx

ψ
ψ ψ

∂
= = =

∂
 (48) 

 
Entropy Lines 

Following the convention used for the energy transport 
vector, the entropy transport vector can be represented as: 

    :       ref ref refs s
T

ρ ρ′ ′= − = + =
qs s s s u s u  (49) 

For incompressible flow an equation of state can be used,  
e.g. (38) in [32], to define s: 

 
lnref p

ref

Ts s c
T

− =   (50) 

where  

 ln       lnp ref p refs c T s c T= =  (51) 

In terms of the non dimensional variables used in the example 
problem and using refT Tε = Δ : 

 ( ) ( )ln 1    ln 1
1 ref ref
ε θεθ εθ
εθ
∇′ = + − = +
+

s u s  (52) 

and the entropy transport equation can be written in the form: 

 
2

2.
1

θε
εθ

∇⎛ ⎞′∇ = ⎜ ⎟+⎝ ⎠
s  (53) 

The equation governing the scalar potential is: 

 
2

2 2

1s
θϕ ε
εθ

∇⎛ ⎞∇ = ⎜ ⎟+⎝ ⎠
 (54) 

The boundary conditions for ϕs are derived from: 

 

ˆ.ˆ.s T
ϕ∇ =

q nn
 

(55) 

or in terms of non-dimensional variables: 

 ( )
ˆ.

1s
θϕ
εθ

−∇
∇ =

+
n

 
(56) 

The vector potential equation is: 
 2

s ′∇ Ψ = −∇× s  (57) 

The boundary conditions for Ψs are the same as those for 
the velocity vector potential. 

 
SAMPLE 2D HEAT FUNCTION VISUALISATIONS AND 
THE QUESTION OF THE CHOICE OF θref  

 
Observations when θref =0 

It is useful to commence this discussion with examples of 
conventional heat function representations which use θref = 0. 
The flow stream lines and isotherms for the example problem 
are shown in Figure 2. These maps are very similar to the maps 
in [4] and describe the flow and temperature fields which are 
typical of natural convection in a square cross sectioned cavity. 

Heatlines, or iso-lines of the heat function, and heat vectors 
constructed using θref = 0 are shown in Figure 3. The heat 
function map is very similar to that presented in [4]. The heat 
function is the normal method of describing heatlines and the 
underlying vector field has been omitted from most examples in 
the literature, other than implicitly when 3D or unsteady 
heatlines have been constructed [10,26,27]. Ironically, despite 
the 18 years that have elapsed since heatlines were proposed in 
[4], Hooman [25] appears to be the first to actually publish a 
heat vector map.  

The heat function map in Figure 3 is typical of those that 
have been presented for closed cavity flows. The heatlines pass 
from the hot to the cold wall and there is a large region of 
recirculation that is similar, but not identical, to the fluid 
motion. Notably the recirculation is asymmetrical and the 
thermal flow is greater up the hot wall than it is down the cold. 

The last observation is not surprising since the thermal 
convection term ( )refθ θ− u with θref = 0 is zero on the cold 
wall and equal to u on the hot. The asymmetry is also quite 
noticeable in the vector map in Figure 3 and there is a region in 
the bottom right hand corner of the cavity in which the 
convection is very nearly zero. 

 
Figure 2 Stream lines and isotherms in a natural convection 
flow for Ra=140,000 and Pr=7. On the left vertical wall θ=1 

and on the right θ=0. The horizontal boundaries are adiabatic.  
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Overall Heat Transfer as Described by the Heat Function 

For this flow, and mesh used, the total non dimensional 
heat flow through the left wall as estimated using a second 
order one sided approximation for the temperature gradient and 
trapezoidal integration is 5.24. Because approximation to the 
gradient is different from the central difference approximation 
used to set the adiabatic condition there is a net heat flow of 
0.06 through each horizontal boundary. The difference between 
the values of two iso-lines of the heat function is proportional 
to the heat flow though the region they delineate.  In Figure 
4(a) the 5.18 iso-line at the top of the box indicates how the hot 
wall supplies the 0.06 leakage through the top surface. The 0.0 
iso-line leaves the bottom of the hot wall, passes around the 
recirculating core and leaves the cavity a small distance up the 
cold wall. The -0.06 iso-line leaves the bottom surface very 
near the cold right hand wall, circulates clockwise around the 
core and then leaves the cavity near the bottom of the cold wall. 
The 0.06 heat flow which leaves the bottom surface passes 
around the core to the lowest section of the cold wall. The heat 
that is transferred between the two walls follows a path, 
between the 0.0 and 5.18 heatlines, that passes up the hot wall, 
across the top of the cavity and down the cold wall. 
 
The Influence of the Value of θref 

In Figure 4(b) the H=0 iso-lines have been constructed for 

θref = 0, -0.5,-1,-2,-3, -4,-5 and -6 indicate the effect of θref on 
the boundary of the heat flow path. As θref becomes 
increasingly negative its effect on this boundary becomes 
almost asymptotic. 

Negative values of θref  always ensure that θ is positive 
everywhere in the flow. θ maps to real temperatures via the 
definition of ε as ΔT/Tref. For the results in Figure 4, T0 and ∆T 
were 300 K and 50 K respectively. For these values, θref = -6 
corresponds to Tref = 0 K.  

Although it appears that another set of parameters have 
been added to the specification of the visualisation, the results 
in Figure 4(b) suggest that a heatline visualisation may be 
essentially invariant for θref < -3.  

The heatline visualisation for θref = -6 is shown in Figure 
5(a). The heatline pattern is very similar to the flow stream 
function shown in Figure 2. The red lines indicate the 
boundaries of the heat flow paths and these exhibit the effects 
of conduction close to the wall.  

Positive values of θref lead to negative values of θ in the 
heat transfer field. This leads to the problematic concept of heat 
travelling from 'cold to hot'. Using θref = 0.5 as suggested in 
[10] produced the visualisation in Figure 5(b) which has no 
recirculation. This visualisation was suggested because it 
simplified the structure of the heatline map and possessed the 
anti-symmetry of the underlying problem. Note that the 2D 
heatlines have the same entry and exit points for all values of 
θref. Hence although the θref = 0.5 lines indicate that the heat 
flows "backwards" within the cavity the entry and exit points 
still match the correct heat flow conventions.  
 
RE-EXAMINATION OF THE ROLE OF CONDUCTION IN 
THE HEAT TRANSFER PROCESS 

The role of the heat conduction field as an aid for the 
visualization of the thermal process is now considered.  The 
conduction lines can be constructed using temperature as a 
scalar potential for the heat flux, i.e. 

 θ= −∇q  (58) 

Using the principles described by equation (30), this can be 
built into a tnagnet line tracing procedure. The results for the 
example problem are presented in Figure 6. 

 
Figure 3 Heatlines and vector map using θref=0 for 

Ra=140,000 and Pr = 7. 

 

(a)                                              (b) 
Figure 4 (a) Heatlines for θref=0 for Ra=140,000 and Pr=7. The 

total non dimensional heat flow is 5.24. The lines shown 
indicate the limits of the recirculation region.  (b) H=0 lines for 

maps with θref = 0, -0.5,-1,-2,-3,-4,-5 and-6. 

 
Figure 5 Heatlines for θref = -6 and θref = 0.5 for Ra=140,000 

and Pr = 7. 
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These lines cannot be represented by the iso-lines of a 
scalar function and must be traced from q . The lines in Figure 
6 were launched from the boundaries using equal increments of 
0.518 in heat flow. The divergence of q is non-zero, because of 
the effects of convection. The conduction lines appear to 
indicate that all the heat from the cold wall converges along a 
single line to proceed to the cold wall. Similarly the distribution 
of heat leaving the cold wall comes from a single line that starts 
from the hot wall.  

This of course is not really the case. The heat is removed 
from the "conduction field" and is transferred to the "flow 
field". This occurs in the regions of high divergence. The 
conduction heatlines converge along the edges of the regions of 
high divergence.  As the flow recirculates it picks up heat as it 
passes up the hot wall and releases heat as it passes down the 
cold. This is the conventional understanding of this process 
which has been explained here using the temperature and 
conduction flux lines, rather than using heatlines. 

Conduction lines for Ra=104 and 106 in an air filled cavity 
are presented in Figure 8. The conduction lines have the same 
general relationship with the regions of high divergence as they 
do for the flow in Figure 6. 

The conduction and flow lines are compared with θref=0 
heatlines in Figure 9. Note that the conduction lines match with 
the heatlines at the boundaries. 

 

 
Potentials Used in the Construction of Heatlines 

The lines and associated maps described so far have been 
based on the heat function which was obtained by solving 
equation (44) with boundary conditions that represented the 
heat flux conditions applied to the vector potential (or heat 
function). It is illustrative to now consider how the potentials 
described by both equations (43) and (44) can be used. These 
potentials are illustrated in Figure 10 and Figure 11. The scalar 
potential in the left hand side of Figure 10 is represented as a 
shaded contour map. The representation on the right had side 
contains the iso-lines of that map together with vectors that 
indicate the direction of heat flow (which for the scalar 
potential is the direction of ϕ∇ ). The magnitude of the heat 
flux is indicated as a colour shaded map.  

 
Figure 6 Lines of the heat conduction field superimposed on 

maps of temperature and the divergence of the heat flux vector, 
for Ra=140,000 and Pr=7. 

 
Figure 7 Flow lines superimposed on maps of the temperature 
and the divergence of the heat flux vector for Ra=140,000 and 

Pr=7. 

 
Figure 8 Heat conduction lines for an air filled cavity 

(Pr=0.71). Maps as in Figure 6. 

 

 
Figure 9 Conduction and flow lines for Ra=10,000 and Pr=0.71, 
superimposed on maps of the heat function. The colour contours 

range from 0 to 5.18. The white region represents the 
recirculating region of the heatlines. 
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The vector potential has been visualized in Figure 11 by 
drawing iso-lines of its z component. These lines indicate that 
the effect of the thermal transport vorticity is to induce a 
recirculating flow.  

When the reference temperature is changed, it is only the 
vector potential for the energy transport vector that changes. 
The two maps in Figure 11 show the vector potential for 
θref=0.5 and θref=-5. For both cases, and indeed for all values of 
θref, the scalar potential is the same as that illustrated in Figure 
10. It is that potential that matches the heat flux boundary 
conditions. The vector potential, on the other hand, determines 
the effects of the thermal vorticity, which has two contributions 
(40). The first is the cross product of the gradient of specific 
energy and the mass flux. This component is independent of the 
reference conditions for enthalpy. 

The second contribution is the product of the specific 
energy and the mass vorticity. It is this component which is 
dependent on the assumed reference conditions and it 
determines the amount of vorticity that is subtracted from the 
thermal flow to effectively provide a moving frame of reference 
for thermal transport. For the scaling used for the example 
problem, the non-dimensional temperature lies in the interval 
[0,1] and the natural base solution corresponds to θref=0. 
However, the problem could have been scaled so that θ was in 
the interval [-0.5,0.5] which would produce a natural base 
solution that corresponded with θref=0.5. In any event, the 
visualisation can be adjusted by subtracting an appropriate 
"amount" of flow from the "base" visualisation.  

The visualisations in Figure 11 were obtained in this way. 
The vector potential used to produce the maps for θref=0.5 is 
equal to the base thermal vector potential (θref=0.0) with 0.5 
times the flow vector potential added to it. The result is the two 
counter rotating flow contributions illustrated in Figure 11. 
When these are combined with the scalar potentials through 
flow contribution, the result is the heatlines shown in colour. 
These heatlines have no recirculation. 

The visualisation for θref=-5 were obtained by subtracting 
5.5 times the flow vector potential from the one with θref=0.5.  

Note that the heatlines presented in Figure 9 and Figure 11 
are maps of the heat function obtained using the conventional 

method. The lines can also be traced using the scalar and vector 
potentials. Results using this process were identical to the lines 
presented in these Figures. 

 
ENTROPY TRANSPORT 

The transport of entropy in the same cavity is now 
considered. For this study Ra=10,000 and Pr=0.71. The 
temperature difference, ΔT, was set to 200 K and Tref to 300 K. 
These values were chosen to produce large numerical values of 
entropy generation so that its transport could be more easily 
visualized, the purpose being to understand how the entropy 
source contributes to the transport process. 

The rate at which entropy leaves the cavity through the 
cold wall is greater than the rate it enters through the hot wall. 
For this problem the nondimensional entropy flow through the 
hot wall is 0.89, the flow through the cold wall is 1.49 and the 
total volumetric production is 0.6. Following [33] the total 
entropy production leads to an estimated Nusselt number of 
2.235, compared with 2.242 calculated directly from the 
temperature field.  

Because the entropy transport vector defined by (49) is not 
solenoidal, it must be represented by both the scalar and vector 
potentials. The potential is found by solving the Poisson 
equation (43), with the entropy flow rates applied on the 
boundaries using (56). The resulting solution and the associated 
vector field are shown in Figure 12 along with the entropy 
source. As expected the entropy source is strong near the walls 
and it is considerably stronger near the cold wall than it is near 
the hot wall. The scalar potential confirms that the heat transfer 
through the cold wall is greater than it is through the hot wall. 
(Compare the visualisation of the scalar potential in Figure 12 
with that in Figure 10 for which the heat flows through both 
walls are identical.) 

The vector potential for θref=0 is illustrated in Figure 13. It 
closely resembles the vector potential for energy transport. The 
boundary conditions for this potential correspond to those for 
the flow vector potential. The result of combining the two 
potentials to produce the entropy transport vector is illustrated 
in the right hand diagram in Figure 13. These lines must be 
constructed using a tracing procedure. They cannot be 

 
Figure 10 The heat transport scalar potential. The scalar 

potential is represented by its iso-lines (black). The vectors 
represent the gradient of the scalar potential. The colour map in 

the right hand image is the magnitude of the gradient.  

 
Figure 11 Maps of the z component of the vector potential for 

Ra=10,000 and Pr=0.71 for θref=0.5 and θref=-5.  
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constructed as contours of any combination of the scalar 
potential and components of the vector potential. The lines 
correspond with those represented by the map in the 
background of Figure 9. However, the circulating entropy lines 
in the central region of the cavity spiral, whereas the heatlines 
don't. For this version of the entropy line visualisation 
(corresponding to θref=0), the spiralling flow provides a route 
for the entropy generated within the cavity to progress to the 
cold wall. 

This entropy flow illustrated in Figure 13 raises the 
question of how the flow of entropy generated within the cavity 
is affected by changes in θref. For θref=0.5, there is no 
recirculating region. The generated entropy contributes to the 
entropy flow by increasing the strength of the entropy flux, in 
much the same way that the entropy flux predicted by the scalar 
potential increases near the cold wall. When there is circulation 
of the entropy lines, some of the generated entropy is carried by 
a spiralling flow. The lines in the right hand image in Figure 14 
are the lines that delineate the recirculating region for different 
values of θref. As θref decreases, this boundary moves higher up 
the cold wall.  

Bearing in mind that the region above this boundary carries 
all the entropy that enters the hot wall, this observation means 

that the assumed reference condition for the visualisation 
influences the interpretation of how entropy generated within 
the cavity is combined with the entropy that is passing through 
it. The reference condition has appeared to influence the 
mechanism of entropy transport. This does raise a serious 
question about the validity of the transport vector approach as a 
visualization strategy. 

 
3D RESULTS 

For heat transfer problems that are not 2D and steady, the 
heatlines must be constructed by integration of the equations 
defining tangents to the transport vector and has been the 
approach that has been already used to extend the heatline 
approach [10,26-28]. These integrations must be executed 
carefully using interpolation schemes that accurately represent 
the underlying properties, of the transport vectors. As suggested 
in [10] an appropriate strategy is to derive appropriate 
potentials from the energy transport vector and use them to 
construct the interpolation formulae. In [10] a vector potential 
was used to generate mass conservative interpolations.  

Although the fluid motion is closed within the cavity, the 
energy flux vector represents a through flow of energy and the 
boundary conditions for Ψe are that its curl must represent this 
flow through a boundary. In [10] the boundary conditions for 
Ψe were set by using the auxiliary potential proposed in [31].  
This is a fairly complex process and involves solving a 2D 
Poisson equation on every boundary through which there is a 
heat flow. 

Alternatively a scalar potential can be used to 
accommodate the heat flow boundary conditions in the same 
way that has been demonstrated for 2D problems. The vector 
potential then has the same boundary conditions as those for the 
fluid motion, (e.g. for closed flows (47)). This is a much 
simpler process and the boundary conditions for the scalar 
potential can be derived in a straight forward manner using 
(45). This has now been implemented and the 3D visualisations 
use this approach. 

There is no simple whole field approach for the 
visualisation of the energy transport vector. A set of heat flow 

 
Figure 12 Scalar potential for entropy and the entropy source. 
The scalar potential is represented by its iso-lines (black). The 

vectors represent the gradient of the scalar potential. The 
magnitude of the gradient is displayed as a colour map. 

 
Figure 13 Entropy scalar and vector potentials for Ra=10,000 and 
Pr=0.71. The transport lines have been traced using a vector and 

scalar potential tracing procedure. 

 
(a)                          (b) 

Figure 14 (a) Entropy transport lines for θref=0.5.  
(b) Limiting transport lines for several values of θref. The two 

blue lines for θref=0.25 are necessary because some of the 
entropy from the bottom of the hot wall passes below the region 

of circulation. 
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paths for different values of θref are presented in Figure 15. 
These have been released from a line near the mid height of the 
hot wall and in the corner edge near an end wall. Heat from this 
region passes to the central symmetry plane before exiting via 
the cold wall.  Heatlines released on a line along the hot wall in 
Figure 16 show that as θref becomes more negative, the region 
of recirculation grows in the same way that it does in 2D. 

In the 2D maps, the mapping between entry and exit points 
for the heatlines is not affected by the value of θref. From our 
results this seems unlikely for 3D flows. However, despite the 
care with which our line tracing algorithms have been 
constructed this observation is not easily supported nor 
contradicted.  
 
ENTROPY LINES 

Preliminary entropy lines for the example problem with 
Ra=10,000 and Pr=0.71, ΔT=200 K and T0=300 K are 
presented. These are the same conditions as for the 2D 
simulations. For the chosen values of ΔT and T0, 0 K 
corresponds to θ=-1.5.  

Heatlines and entropy lines are compared in Figure 17. The 
lines were traced in reverse so that they indicate where the 
transferred property arriving at the line of release came from. 
This shows the same general trend as the heatlines in Figure 15, 
that heat (and entropy) exiting near the cavity central symmetry 
plane comes from the hot wall close to the adiabatic end walls. 
The essential result from the comparison shown in Figure 17 is 
that there appears to be very little difference between the 
heatlines and the entropy lines. Most of the exploratory line 
tracing that we have conducted has supported this observation. 
The spiralling flows which are part of the fluid motion appear 

to be the primary mechanism for removing entropy generated in 
the cavity. 

The results that do show a measurable difference between 
heatlines and entropy lines are those for θref=0.5. Trajectories  
released on a horizontal line at y=0.25 are shown in Figure 18. 
These indicate that away from the end walls and the central 
symmetry plane, entropy lines ascend more quickly than do the 
heatlines. This occurs in 2D as well. The visualisation that has 
no recirculation has indicated a measurable difference between 
the heatline and entropy lines, resulting from the entropy 
source.   
 
CONCLUSIONS 

It has been shown that vector and scalar potentials have 
roles in creating visualisation artefacts for transport vectors. 
The original motivation was to use these potentials to create 
interpolation procedures that accurately represented vector 
fields having zero divergence. However splitting the transport 
vectors into curl and divergence free contributions has led to an 
understanding of how techniques such as the heatline approach 
might be properly extended to problems involving generation 
processes. 

For the energy transport vector, a combined scalar and 
vector potential method for constructing the energy transport 
lines has been created. By assigning the energy flow boundary 

 
Figure 15 3D results for Ra=10,000 and Pr=0.71 natural 

convection in a cube. The rear wall is hot. 

 
Figure 16 Heatlines from 9 points evenly distributed on the 

line joining (1,0.25,0.05) and (1,0.25,0.45), for two values of θref. 
The hot wall is at the rear of this view. 

 
Figure 17 Heatlines and entropy lines in a cavity with 

Ra=10,000 and Pr=0.71 for θref.=0. The front wall is hot. 
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conditions to the scalar potential, the vector potential is then 
very similar to the flow vector potential. For the closed cavity 
problems considered here, the vector potential represents 
recirculations induced by "thermal vorticity". 

The decomposition used in deriving the combined scalar 
and vector potential approach lead to the realisation that the 
effects of the assumed reference conditions can be represented 
by a term that is equivalent to the product of the flow field and 
that reference condition. Having obtained a transport vector 
field or its scalar and vector potential representations for a 
particular reference condition, other representations can be 
easily generated by adding or subtracting an appropriate 
amount of "flow". 

The last comment leads to the question of what constitutes 
an appropriate "base" solution. The scaling used in this research 
has used the conventional approach of assigning the reference 
condition to the coldest point in the domain. Mathematically a 
"cleaner" base solution is that where the reference condition 
negates all recirculation. From a physical point of view, a 
condition that represents absolute zero temperature, or is 
sufficiently below the temperature range of the phenomenon 
being studied that a transport line visualisation is essentially 
invariant, may be another acceptable reference condition. 

The entropy transport vector for a non trivial situation has 
a non zero divergence. In this case the use of a scalar potential 
is essential to properly handle the entropy flow – internal 
generation balance. In this case the assumed reference 
condition influences the way that entropy generated within a 
cavity combines with the entropy passing through it. There is 
no reason to assume that this is an issue for just entropy 
transport; it is likely to be an issue for the transport of any 
quantity for which there is a volumetric source or sink. This 
observation increases the importance of the need to resolve the 
"reference condition" issue.  

Results for 3D are similar to those for 2D, insofar as 
visualisations using tangent lines are concerned. In 3D it is 
much more difficult to determine how the internally generated 
entropy contributes to the overall process.  

As part of this investigation, the conduction heatlines were 
constructed from the convection temperature field. This vector 

field has non zero divergence that couples it to the heat carrying 
capacity of the moving fluid. The combination of conduction 
field lines, the divergence maps and the flow lines may 
eventually prove to be more useful than visualisations based on 
the transport vectors. 
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