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We perform a spectral analysis of the dispersive and dissipative properties of two time-splitting procedures, namely, locally one-
dimensional (LOD) Lax-Wendroff and LOD (1, 5) [9] for the numerical solution of the 2D advection-diffusion equation. We solve
a 2D numerical experiment described by an advection-diffusion partial differential equation with specified initial and boundary
conditions for which the exact solution is known. Some errors are computed, namely, the error rate with respect to the 𝐿

1
norm,

dispersion and dissipation errors. Lastly, an optimization technique is implemented to find the optimal value of temporal step size
that minimizes the dispersion error for both schemes when the spatial step is chosen as 0.025, and this is validated by numerical
experiments.

1. Introduction

The advection-diffusion equation is a parabolic partial dif-
ferential equation combining the diffusion and advection
(convection) equations, which describes physical phenomena
where particles, energy, or other physical quantities are trans-
ferred inside a physical system due to two processes: diffusion
and advection [1]. The numerical solution of advection-
diffusion equation plays an important role in many fields
of science and engineering. These include the transport of
air and groundwater pollutants, oil reservoir flow [2], heat
transfer in draining film, flow through porousmedia, the dis-
persion of pollutants in rivers and streams, long range
transport of pollutants in the atmosphere, thermal pollution
in river systems, and dispersion of dissolved salts in ground-
water [3].

The 3D advection-diffusion equation is given by
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where𝛽
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𝑦
, and𝛽

𝑧
are the velocity components of advection

in the directions of 𝑥, 𝑦, and 𝑧, respectively, and 𝛼
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,

and 𝛼
𝑧
are the coefficients of diffusivity in the 𝑥-, 𝑦-, and 𝑧-

directions, respectively.
This study deals with the 2D advection-diffusion equa-

tion,
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where 0 < 𝑡 ≤ 𝑇, in the domain 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, with
specified initial and boundary conditions.

Dehghan [3] proposed two time-splitting procedures for
the solution of the two-dimensional transport equation. The
time-splitting procedure used is the locally-one dimensional
(LOD) in proceeding from one time step to the next step.
LOD replaces the complicated multidimensional partial dif-
ferential equations by a sequence of solutions of simpler one-
dimensional partial differential equations. The originality
in this work is that we perform a spectral analysis of the
dispersion and dissipation properties of the two schemes
at some values of the temporal and spatial step sizes. 3D
plots of the relative phase error per unit time step (RPE)
and the modulus of the amplification factor (AFM) versus
phase angles in 𝑥- and 𝑦-directions are obtained. We then
use optimization strategies to compute the optimal values of
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the temporal step size for the two schemes when the spatial
step size is 0.025.We then validate this result by performing a
2Dnumerical experiment with specified initial and boundary
conditions. Lastly, we have the conclusion and references.

2. Numerical Dispersion and Dissipation

Dissipation reduces the amplitude of sinusoids in a Fourier
series. This is caused by the presence of derivatives like 𝑢

𝑥𝑥

and −𝑢
𝑥𝑥𝑥𝑥

in the modified equation [4]. On the other hand,
the amplitude of sinusoids in a Fourier series is increased
by antidissipation. Derivatives like −𝑢

𝑥𝑥
and 𝑢

𝑥𝑥𝑥𝑥
in the

modified equation are generally antidissipative. Dispersion
affects the speed of sinusoids in a Fourier series causing phase
lag or phase lead and is caused due to the presence of odd-
order derivatives in the modified equation [4].

The modulus of the amplification factor (AFM) is a
measure of the stability of a scheme and it is also used
to measure the dissipative characteristics of the scheme. If
the modulus of the amplification factor is equal to one, a
disturbance neither grows nor damps [5]. If the modulus of
the amplification factor is greater than one, then the scheme
is unstable [6]; if it is less than one, damping occurs [7].
The partial differential equation given by (2) is dissipative in
nature due to the terms 𝑢

𝑥𝑥
and 𝑢

𝑦𝑦
.

The relative phase error (RPE) is a measure of the
dispersive characteristics of a scheme. The relative phase
error of a scheme approximating the 1D advection-diffusion
equation is given by

RPE = − 1
𝑐𝜔

arctan(I (𝜉)
R (𝜉)

) , (3)

where 𝑐 is the Courant number, 𝜔 is phase angle, 𝜉 is the
amplification factor of the numerical scheme approximating
the 1D advection-diffusion equation, and R(𝜉) and I(𝜉) are
the real and imaginary parts of 𝜉, respectively [8].

We extend the work on the relative phase error in [8] for
the case of the 2D advection-diffusion equation. The relative
phase error for a numerical scheme approximating (2) is
obtained on substituting 𝑢 by exp(𝐼(𝜔
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On substituting (4) into (2), we obtain
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The exact phase velocity is R(𝜔
1
)/wavenumber and we
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. (6)

The amplification factor can be written as 𝜉 = 𝜉
1
+

𝐼𝜉
2
, where 𝜉

1
and 𝜉

2
are the real and imaginary parts of 𝜉,

respectively. Also, we can express 𝜉 as 𝜉 = exp(−𝑏𝑘), where
𝑘 is time step and 𝑏 is exponential growth rate [9]. Thus, we
obtain

𝑏 =
1

𝑘
log(𝜉1 − 𝐼𝜉2

𝜉
2

1
+ 𝜉
2

2

) . (7)

The numerical phase velocity is calculated as
I(𝑏)/wavenumber and we get

numerical phase velocity =
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2
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. (8)

The relative phase error is the ratio of the numerical phase
velocity to the exact phase velocity [10]. It is calculated as
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The phase angles in the directions of 𝑥 and 𝑦 are given by
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where 𝑐
𝑥
= 𝛽
𝑥
𝑘/Δ𝑥 and 𝑐

𝑦
= 𝛽
𝑦
𝑘/Δ𝑦 are the Courant

numbers in the directions of 𝑥 and 𝑦, respectively.

3. Time-splitting Procedures and
Numerical Experiments

The domain we consider is 𝑥, 𝑦 ∈ [0, 1]. We divide the spatial
interval [0, 1] along 𝑥- and 𝑦-directions into𝑁 and𝑀 nodes,
respectively, such that (𝑁−1)Δ𝑥 = 1 and (𝑀−1)Δ𝑦 = 1 and
also divide the time interval [0, 𝑇] into𝑃 grid points such that
(𝑃 − 1)Δ𝑡 = 𝑇. Then the grid points (𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑛
) are defined by

𝑥
𝑖
= 𝑖Δ𝑥, 𝑖 = 1, 2, . . . , 𝑁,
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= 𝑗Δ𝑦, 𝑗 = 1, 2, . . . ,𝑀,

𝑡
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= 𝑛Δ𝑡, 𝑛 = 1, 2, . . . , 𝑃.

(11)

For simplification we take Δ𝑥 = Δ𝑦 = ℎ. Let Δ𝑡 = 𝑘; then the
parameters ℎ and 𝑘 represent the spatial and temporal grid
spacing, respectively. We denote the approximated value of 𝑢
at the grid point (𝑖, 𝑗, 𝑛) by 𝑢𝑛

𝑖,𝑗
.
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3.1. Time-Splitting Procedures. Since one-dimensional
schemes are easier to use than two-dimensional schemes, (2)
is split into the following two one-dimensional equations:
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Each of (12) and (13) can be solved over half of a time step
to be used for the complete 2D advection-diffusion equa-
tion, using the procedures developed for the 1D advection-
diffusion equation.

Some work on time-splitting procedures can be found in
[3, 11]. In this paper, we refer to [3] on how a 2D advection-
diffusion equation is converted into two 1D advection-
diffusion equations using the locally one-dimensional (LOD)
time-splitting procedure. Solving (12) and (13) in each half
time step is equivalent to solving the following equations over
a full-time step:
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Then we can use the schemes used for solving the 1D advec-
tion-diffusion equation to solve (14) and (15).

3.2. Numerical Experiments. In [12], different explicit and
implicit finite differences schemes are used to solve the 1D
advection-diffusion equation
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Three values of the cell Reynolds number, namely, 𝑅
Δ
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and 8, are used for the numerical experiments. In [3], the
time-splitting procedure is used to solve the two-dimensional
transport equation in the region 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, with

𝛼
𝑥
= 𝛼
𝑦
= 𝛼 = 0.01, 𝛽

𝑥
= 𝛽
𝑦
= 𝛽 = 0.8 (17)

and with the following boundary and initial conditions:

𝑔
0
(𝑥, 𝑡) =

1

4𝑡 + 1
exp[−(𝑥 − 0.8𝑡 − 0.5)

2

0.01 (4𝑡 + 1)
−
(0.8𝑡 + 0.5)

2

0.01 (4𝑡 + 1)
] ,

(18)

𝑔
1
(𝑥, 𝑡) =

1

4𝑡 + 1
exp[−(𝑥 − 0.8𝑡 − 0.5)

2

0.01 (4𝑡 + 1)
−
(0.5 − 0.8𝑡)

2

0.01 (4𝑡 + 1)
] ,

(19)

ℎ
0
(𝑦, 𝑡) =

1

4𝑡 + 1
exp[−(0.8𝑡 + 0.5)

2

0.01 (4𝑡 + 1)
−
(𝑦 − 0.8𝑡 − 0.5)

2

0.01 (4𝑡 + 1)
] ,

(20)

ℎ
1
(𝑦, 𝑡) =

1

4𝑡 + 1
exp[−(0.5 − 0.8𝑡)

2

0.01 (4𝑡 + 1)
−
(𝑦 − 0.8𝑡 − 0.5)

2

0.01 (4𝑡 + 1)
] ,

(21)

𝑓 (𝑥, 𝑦) = exp[−(𝑥 − 0.5)
2

0.01
−
(𝑦 − 0.5)

2

0.01
] , (22)

for which the exact solution is

𝑢 (𝑥, 𝑦, 𝑡) =
1

4𝑡 + 1
exp[−(𝑥 − 0.8𝑡 − 0.5)

2

0.01 (4𝑡 + 1)

−
(𝑦 − 0.8𝑡 − 0.5)

2

0.01 (4𝑡 + 1)
] .

(23)

We consider two time-splitting procedures LOD Lax-
Wendroff and LOD (1, 5) to solve (2) with 𝛼

𝑥
= 𝛼
𝑦
= 𝛼 = 0.01

and 𝛽
𝑥
= 𝛽
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(18)–(22) at time 𝑇 = 0.3.
We consider two values of 𝑅

Δ
; 𝑅
Δ
= 2 and 𝑅

Δ
= 4. Since

𝑐 = 0.8𝑘/ℎ and 𝑠 = 0.01𝑘/ℎ2, we have 𝑅
Δ
= 80ℎ. Thus for

𝑅
Δ
= 2 and 4, we have ℎ = 0.025 and ℎ = 0.05, respectively.

When ℎ = 0.025, we have 𝑐 = 32𝑘 and 𝑠 = 16𝑘 and for ℎ =
0.05 we have 𝑐 = 16𝑘 and 𝑠 = 4𝑘.

3.3. Quantification of Errors from Numerical Results. In this
subsection, we describe how errors from numerical results
can be quantified into dispersion and dissipation by a tech-
nique devised by Takacs [13].

The total mean square error in the 1D case [13] is
calculated as
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where 𝜎2(𝑢) and 𝜎2(V) denote the variance of 𝑢 and V,
respectively, and 𝑢 and V denote the mean values of 𝑢 and V,
respectively. Then we have
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where Cov(𝑢, V) = (1/𝑁)(∑𝑁
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The total mean square error can be expressed as
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where 𝜌 = Cov(𝑢, V)/(𝜎(𝑢)𝜎(V)) is the coefficient of correla-
tion.

The term 2(1 − 𝜌)𝜎(𝑢)𝜎(V)measures the dispersion error
and the term (𝜎(𝑢)−𝜎(V))2+(𝑢−V)2measures the dissipation
error.

We extend the work on quantification of errors in [14, 15]
for the 2D case. The total mean square error for the 2D case
is calculated as
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2

𝑖,𝑗
− 2V
𝑖,𝑗
V + V
2
) ,

(32)

we have

𝐸TMS =
1

𝑁𝑀

[

[

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

(𝑢
𝑖,𝑗
− 𝑢)
2

+

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

(V
𝑖,𝑗
− V)
2

+ 2

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

𝑢
𝑖,𝑗
𝑢 + 2

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

V
𝑖,𝑗
V

−2

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

𝑢
𝑖,𝑗
V
𝑖,𝑗
−

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

𝑢
2
−

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

V
2]

]

= 𝜎
2
(𝑢) + 𝜎

2
(V) + 2𝑢

2
+ 2V
2

−
2

𝑁𝑀

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

𝑢
𝑖,𝑗
V
𝑖,𝑗
− 𝑢
2
− V
2

= 𝜎
2
(𝑢) + 𝜎

2
(V) + (𝑢

2
− 2𝑢 V + V

2
)

+ 2𝑢 V −
2

𝑁𝑀

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

𝑢
𝑖,𝑗
V
𝑖,𝑗

= 𝜎
2
(𝑢) + 𝜎

2
(V) + (𝑢 − V)

2

− 2[

[

1

𝑁𝑀

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

𝑢
𝑖,𝑗
V
𝑖,𝑗
− 𝑢 V]

]

= 𝜎
2
(𝑢) + 𝜎

2
(V) + (𝑢 − V)

2
− 2Cov (𝑢, V) .

(33)

Hence,

𝐸TMS = (𝜎(𝑢) − 𝜎(V))
2
+ (𝑢 − V)

2
+ 2 (1 − 𝜌) 𝜎 (𝑢) 𝜎 (V) ,

(34)

where 𝜌 = Cov(𝑢, V)/𝜎(𝑢)𝜎(V). The dissipation error is
(𝜎(𝑢) − 𝜎(V))2 + (𝑢 − V)2 and the dispersion error is 2(1 −
𝜌)𝜎(𝑢)𝜎(V).

The error rate with respect to 𝐿
1
norm for 𝑥, 𝑦 ∈ [0, 1] is

calculated as

𝐸num =
1

(𝑁 − 1) (𝑀 − 1)

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1


𝑢
𝑖,𝑗
− V
𝑖,𝑗


. (35)

4. Construction of the LOD
Lax-Wendroff Procedure

We use the following approximations in the first time step of
the LOD procedure [3]:

𝜕𝑢

𝜕𝑡



𝑛

𝑖,𝑗

≃

𝑢
𝑛+(1/2)

𝑖,𝑗
− 𝑢
𝑛

𝑖,𝑗

Δ𝑡
,
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𝜕𝑢

𝜕𝑥



𝑛

𝑖,𝑗

≃

(1 − 𝛾
𝑥
) (𝑢
𝑛

𝑖,𝑗
− 𝑢
𝑛

𝑖−1,𝑗
) + 𝛾
𝑥
(𝑢
𝑛

𝑖+1,𝑗
− 𝑢
𝑛

𝑖,𝑗
)

Δ𝑥
,

𝜕
2
𝑢

𝜕𝑥2



𝑛

𝑖,𝑗

≃

𝑢
𝑛

𝑖+1,𝑗
− 2𝑢
𝑛

𝑖,𝑗
− 𝑢
𝑛

𝑖−1,𝑗

(Δ𝑥)
2

,

(36)

where 𝛾
𝑥
is the spatial weighting factor in the direction of 𝑥.

The following approximations are used for the second step of
the LOD procedure:

𝜕𝑢

𝜕𝑡



𝑛+(1/2)

𝑖,𝑗

≃

𝑢
𝑛+1

𝑖,𝑗
− 𝑢
𝑛+(1/2)

𝑖,𝑗

Δ𝑡
,

𝜕𝑢

𝜕𝑦



𝑛+(1/2)

𝑖,𝑗

≃

(1 − 𝛾
𝑦
) (𝑢
𝑛+(1/2)

𝑖,𝑗
− 𝑢
𝑛+(1/2)

𝑖,𝑗−1
) + 𝛾
𝑦
(𝑢
𝑛+(1/2)

𝑖,𝑗+1
− 𝑢
𝑛+(1/2)

𝑖,𝑗
)

Δ𝑦
,

𝜕
2
𝑢

𝜕𝑦2



𝑛+(1/2)

𝑖,𝑗

≃

𝑢
𝑛+(1/2)

𝑖,𝑗+1
− 2𝑢
𝑛+(1/2)

𝑖,𝑗
− 𝑢
𝑛+(1/2)

𝑖,𝑗−1

(Δ𝑦)
2

,

(37)

where 𝛾
𝑦
is the spatial weighting factor in the direction of 𝑦.

By using the following relationships

𝑐
𝑥
=
𝛽
𝑥
𝑘

ℎ
, 𝑠

𝑥
=
𝛼
𝑥
𝑘

ℎ2
, 𝛾

𝑥
=
1 − 𝑐
𝑥

2
,

𝑐
𝑦
=

𝛽
𝑦
𝑘

ℎ
, 𝑠

𝑦
=

𝛼
𝑦
𝑘

ℎ2
, 𝛾

𝑦
=

1 − 𝑐
𝑦

2
,

(38)

the finite difference formula for the first half time step of the
LOD Lax-Wendroff procedure is given by

𝑢
𝑛+(1/2)

𝑖,𝑗
=
1

2
(2𝑠
𝑥
+ 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖−1,𝑗
+ (1 − 2𝑠

𝑥
− 𝑐
2

𝑥
) 𝑢
𝑛

𝑖,𝑗

+
1

2
(2𝑠
𝑥
− 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖+1,𝑗
.

(39)

At the second half time step the finite difference is given by

𝑢
𝑛+1

𝑖,𝑗
=
1

2
(2𝑠
𝑦
+ 𝑐
𝑦
+ 𝑐
2

𝑦
) 𝑢
𝑛+(1/2)

𝑖,𝑗−1
+ (1 − 2𝑠

𝑦
− 𝑐
2

𝑦
) 𝑢
𝑛+(1/2)

𝑖,𝑗

+
1

2
(2𝑠
𝑦
− 𝑐
𝑦
+ 𝑐
2

𝑦
) 𝑢
𝑛+(1/2)

𝑖,𝑗+1
,

(40)

where

𝑢
𝑛+(1/2)

𝑖,𝑗−1
=
1

2
(2𝑠
𝑥
+ 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖−1,𝑗−1
+ (1 − 2𝑠

𝑥
− 𝑐
2

𝑥
) 𝑢
𝑛

𝑖,𝑗−1

+
1

2
(2𝑠
𝑥
− 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖+1,𝑗−1
,

𝑢
𝑛+(1/2)

𝑖,𝑗+1
=
1

2
(2𝑠
𝑥
+ 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖−1,𝑗+1
+ (1 − 2𝑠

𝑥
− 𝑐
2

𝑥
) 𝑢
𝑛

𝑖,𝑗+1

+
1

2
(2𝑠
𝑥
− 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖+1,𝑗+1
.

(41)

We obtain a single expression for 𝑢𝑛+1
𝑖,𝑗

in a complete time step
as follows:

𝑢
𝑛+1

𝑖,𝑗
=
1

4
(2𝑠
𝑦
+ 𝑐
𝑦
+ 𝑐
2

𝑦
) (2𝑠
𝑥
+ 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖−1,𝑗−1

+
1

2
(2𝑠
𝑦
+ 𝑐
𝑦
+ 𝑐
2

𝑦
) (1 − 2𝑠

𝑥
− 𝑐
2

𝑥
) 𝑢
𝑛

𝑖,𝑗−1

+
1

4
(2𝑠
𝑦
+ 𝑐
𝑦
+ 𝑐
2

𝑦
) (2𝑠
𝑥
− 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖+1,𝑗−1

+
1

2
(1 − 2𝑠

𝑦
− 𝑐
2

𝑦
) (2𝑠
𝑥
+ 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖−1,𝑗

+ (1 − 2𝑠
𝑦
− 𝑐
2

𝑦
) (1 − 2𝑠

𝑥
− 𝑐
2

𝑥
) 𝑢
𝑛

𝑖,𝑗

+
1

2
(1 − 2𝑠

𝑦
− 𝑐
2

𝑦
) (2𝑠
𝑥
− 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖+1,𝑗

+
1

4
(2𝑠
𝑦
− 𝑐
𝑦
+ 𝑐
2

𝑦
) (2𝑠
𝑥
+ 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖−1,𝑗+1

+
1

2
(2𝑠
𝑦
− 𝑐
𝑦
+ 𝑐
2

𝑦
) (1 − 2𝑠

𝑥
− 𝑐
2

𝑥
) 𝑢
𝑛

𝑖,𝑗+1

+
1

4
(2𝑠
𝑦
− 𝑐
𝑦
+ 𝑐
2

𝑦
) (2𝑠
𝑥
− 𝑐
𝑥
+ 𝑐
2

𝑥
) 𝑢
𝑛

𝑖+1,𝑗+1
.

(42)

To find the modified equation of the scheme, we first find
Taylor’s expansion of each term in (42) about 𝑢𝑛

𝑖,𝑗
. The Taylor

series expansion of 𝑢𝑛+1
𝑖,𝑗

is given by

𝑢
𝑛+1

𝑖,𝑗
= 𝑢 + 𝑘 𝑢

𝑡
+
𝑘
2

2
𝑢
𝑡𝑡
+
𝑘
3

6
𝑢
𝑡𝑡𝑡
+
𝑘
4

4!
𝑢
𝑡𝑡𝑡𝑡
+ ⋅ ⋅ ⋅ . (43)

The Taylor series expansions for some grid points about
𝑢
𝑛

𝑖,𝑗
are given as follows:

𝑢
𝑛

𝑖−1,𝑗−1
= 𝑢 − ℎ𝑢

𝑥
− ℎ𝑢
𝑦
+
ℎ
2

2
[𝑢
𝑥𝑥
+ 2𝑢
𝑥𝑦
+ 𝑢
𝑦𝑦
]

−
ℎ
3

6
[𝑢
𝑥𝑥𝑥
+ 3𝑢
𝑥𝑥𝑦
+ 3𝑢
𝑥𝑦𝑦
+ 𝑢
𝑦𝑦𝑦
]

+
ℎ
4

4!
[𝑢
𝑥𝑥𝑥𝑥
+ 4𝑢
𝑥𝑥𝑥𝑦
+ 6𝑢
𝑥𝑥𝑦𝑦

+4𝑢
𝑥𝑦𝑦𝑦
+ 𝑢
𝑦𝑦𝑦𝑦
] + ⋅ ⋅ ⋅ ,
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𝑢
𝑛

𝑖−1,𝑗
= 𝑢 − ℎ𝑢

𝑥
+
ℎ
2

2
𝑢
𝑥𝑥
−
ℎ
3

6
𝑢
𝑥𝑥𝑥
+
ℎ
4

4!
𝑢
𝑥𝑥𝑥𝑥
+ ⋅ ⋅ ⋅ ,

𝑢
𝑛

𝑖,𝑗−1
= 𝑢 − ℎ𝑢

𝑦
+
ℎ
2

2
𝑢
𝑦𝑦
−
ℎ
3

6
𝑢
𝑦𝑦𝑦
+
ℎ
4

4!
𝑢
𝑦𝑦𝑦𝑦
+ ⋅ ⋅ ⋅ ,

𝑢
𝑛

𝑖−1,𝑗+1
= 𝑢 − ℎ𝑢

𝑥
+ ℎ𝑢
𝑦
+
ℎ
2

2
[𝑢
𝑥𝑥
− 2𝑢
𝑥𝑦
+ 𝑢
𝑦𝑦
]

−
ℎ
3

6
[𝑢
𝑥𝑥𝑥
− 3𝑢
𝑥𝑥𝑦
+ 3𝑢
𝑥𝑦𝑦
− 𝑢
𝑦𝑦𝑦
]

+
ℎ
4

4!
[𝑢
𝑥𝑥𝑥𝑥
− 4𝑢
𝑥𝑥𝑥𝑦
+ 6𝑢
𝑥𝑥𝑦𝑦

−4𝑢
𝑥𝑦𝑦𝑦
+ 𝑢
𝑦𝑦𝑦𝑦
] + ⋅ ⋅ ⋅ ,

𝑢
𝑛

𝑖+1,𝑗−1
= 𝑢 + ℎ𝑢

𝑥
− ℎ𝑢
𝑦
+
ℎ
2

2
[𝑢
𝑥𝑥
− 2𝑢
𝑥𝑦
+ 𝑢
𝑦𝑦
]

−
ℎ
3

6
[−𝑢
𝑥𝑥𝑥
+ 3𝑢
𝑥𝑥𝑦
− 3𝑢
𝑥𝑦𝑦
+ 𝑢
𝑦𝑦𝑦
]

+
ℎ
4

4!
[𝑢
𝑥𝑥𝑥𝑥
− 4𝑢
𝑥𝑥𝑥𝑦

+6𝑢
𝑥𝑥𝑦𝑦
− 4𝑢
𝑥𝑦𝑦𝑦
+ 𝑢
𝑦𝑦𝑦𝑦
] + ⋅ ⋅ ⋅ ,

𝑢
𝑛

𝑖+1,𝑗
= 𝑢 + ℎ𝑢

𝑥
+
ℎ
2

2
𝑢
𝑥𝑥
+
ℎ
3

6
𝑢
𝑥𝑥𝑥
+
ℎ
4

4!
𝑢
𝑥𝑥𝑥𝑥
+ ⋅ ⋅ ⋅ ,

𝑢
𝑛

𝑖,𝑗+1
= 𝑢 + ℎ𝑢

𝑦
+
ℎ
2

2
𝑢
𝑦𝑦
+
ℎ
3

6
𝑢
𝑦𝑦𝑦
+
ℎ
4

4!
𝑢
𝑦𝑦𝑦𝑦
+ ⋅ ⋅ ⋅ ,

𝑢
𝑛

𝑖+1,𝑗+1
= 𝑢 + ℎ𝑢

𝑥
+ ℎ𝑢
𝑦
+
ℎ
2

2
[𝑢
𝑥𝑥
+ 2𝑢
𝑥𝑦
+ 𝑢
𝑦𝑦
]

+
ℎ
3

6
[𝑢
𝑥𝑥𝑥
+ 3𝑢
𝑥𝑥𝑦
+ 3𝑢
𝑥𝑦𝑦
+ 𝑢
𝑦𝑦𝑦
]

+
ℎ
4

4!
[𝑢
𝑥𝑥𝑥𝑥
+ 4𝑢
𝑥𝑥𝑥𝑦
+ 6𝑢
𝑥𝑥𝑦𝑦

+4𝑢
𝑥𝑦𝑦𝑦
+ 𝑢
𝑦𝑦𝑦𝑦
] + ⋅ ⋅ ⋅ .

(44)

Using (2), we convert the temporal derivatives 𝑢
𝑡𝑡
, 𝑢
𝑡𝑡𝑡
, and

𝑢
𝑡𝑡𝑡𝑡

into spatial derivatives. We thus have

𝑢
𝑡𝑡
= 𝛼
2

𝑥
𝑢
𝑥𝑥𝑥𝑥
+ 𝛼
2

𝑦
𝑢
𝑦𝑦𝑦𝑦
+ 𝛼
𝑥
𝛼
𝑦
[𝑢
𝑥𝑥𝑦𝑦
+ 𝑢
𝑦𝑦𝑥𝑥
]

− 2𝛼
𝑥
𝛽
𝑥
𝑢
𝑥𝑥𝑥
− 2𝛼
𝑦
𝛽
𝑦
𝑢
𝑦𝑦𝑦
− 𝛼
𝑥
𝛽
𝑦
[𝑢
𝑥𝑥𝑦
+ 𝑢
𝑦𝑥𝑥
]

− 𝛼
𝑦
𝛽
𝑥
[𝑢
𝑥𝑦𝑦
+ 𝑢
𝑦𝑦𝑥
] + 𝛽
2

𝑥
𝑢
𝑥𝑥
+ 𝛽
2

𝑦
𝑢
𝑦𝑦

+ 𝛽
𝑥
𝛽
𝑦
[𝑢
𝑥𝑦
+ 𝑢
𝑦𝑥
] + ⋅ ⋅ ⋅ ,

𝑢
𝑡𝑡𝑡
= 3𝛼
𝑥
𝛽
2

𝑥
𝑢
𝑥𝑥𝑥𝑥
+ 3𝛼
𝑦
𝛽
2

𝑦
𝑢
𝑦𝑦𝑦𝑦

+ 𝛼
𝑥
𝛽
2

𝑦
[𝑢
𝑦𝑦𝑥𝑥
+ 𝑢
𝑦𝑥𝑥𝑦
+ 𝑢
𝑥𝑥𝑦𝑦
]

+ 𝛼
𝑦
𝛽
2

𝑥
[𝑢
𝑥𝑥𝑦𝑦
+ 𝑢
𝑦𝑦𝑥𝑥
+ 𝑢
𝑥𝑦𝑦𝑥
]

+ 𝛼
𝑦
𝛽
𝑥
𝛽
𝑦
[2𝑢
𝑦𝑦𝑦𝑥
+ 𝑢
𝑦𝑦𝑥𝑦
+ 2𝑢
𝑥𝑦𝑦𝑦
+ 2𝑢
𝑦𝑥𝑦𝑦
]

+ 𝛼
𝑥
𝛽
𝑥
𝛽
𝑦
[2𝑢
𝑦𝑥𝑥𝑥
+ 2𝑢
𝑥𝑥𝑥𝑦
+ 𝑢
𝑥𝑥𝑦𝑥
+ 2𝑢
𝑥𝑦𝑥𝑥
]

− 𝛽
3

𝑥
𝑢
𝑥𝑥𝑥
− 𝛽
𝑥
𝛽
2

𝑦
[𝑢
𝑦𝑦𝑥
+ 𝑢
𝑦𝑥𝑦
+ 𝑢
𝑥𝑦𝑦
]

− 𝛽
3

𝑦
𝑢
𝑦𝑦𝑦
− 𝛽
2

𝑥
𝛽
𝑦
[𝑢
𝑥𝑥𝑦
+ 𝑢
𝑥𝑦𝑥
+ 𝑢
𝑦𝑥𝑥
] + ⋅ ⋅ ⋅ ,

𝑢
𝑡𝑡𝑡𝑡
= 𝛽
𝑥
[𝛽
3

𝑥
𝑢
𝑥𝑥𝑥𝑥
+ 𝛽
2

𝑥
𝛽
𝑦
[𝑢
𝑥𝑥𝑦𝑥
+ 𝑢
𝑥𝑦𝑥𝑥
+ 𝑢
𝑦𝑥𝑥𝑥
]

+ 𝛽
𝑥
𝛽
2

𝑦
[𝑢
𝑦𝑦𝑥𝑥
+ 𝑢
𝑦𝑥𝑦𝑥
+
𝑥𝑦𝑦𝑥
] + 𝛽
3

𝑦
𝑢
𝑦𝑦𝑦𝑥
]

+ 𝛽
𝑦
[𝛽
3

𝑦
𝑢
𝑦𝑦𝑦𝑦
+ 𝛽
2

𝑦
𝛽
𝑥
[𝑢
𝑦𝑦𝑥𝑦
+ 𝑢
𝑦𝑥𝑦𝑦
+ 𝑢
𝑥𝑦𝑦𝑦
]

+ 𝛽
𝑦
𝛽
2

𝑥
[𝑢
𝑥𝑥𝑦𝑦
+ 𝑢
𝑥𝑦𝑥𝑦
+ 𝑢
𝑦𝑥𝑥𝑦
] + 𝛽
3

𝑥
𝑢
𝑥𝑥𝑥𝑦
] + ⋅ ⋅ ⋅ .

(45)

Then on substituting the Taylor series expansions of each
term of the difference scheme we get the following modified
equation for the LOD Lax-Wendroff

𝑢
𝑡
+ 𝛽
𝑥
𝑢
𝑥
+ 𝛽
𝑦
𝑢
𝑦

= 𝛼
𝑥
𝑢
𝑥𝑥
+ 𝛼
𝑦
𝑢
𝑦𝑦
−
1

6
𝛽
𝑥
ℎ
2
(1 − 𝑐

2

𝑥
− 6𝑠
𝑥
) 𝑢
𝑥𝑥𝑥

−
1

6
𝛽
𝑦
ℎ
2
(1 − 𝑐

2

𝑦
− 6𝑠
𝑦
) 𝑢
𝑦𝑦𝑦

−
ℎ
3

24
[−2𝑠
𝑥
− 𝑐
2

𝑥
+ 12𝑠
𝑥
𝑐
2

𝑥
+ 12𝑠
2

𝑥
+ 𝑐
4

𝑥
] 𝑢
𝑥𝑥𝑥𝑥

−
ℎ
3

24
[−2𝑠
𝑦
− 𝑐
2

𝑦
+ 12𝑠
𝑦
𝑐
2

𝑦
+ 12𝑠
2

𝑦
+ 𝑐
4

𝑦
] 𝑢
𝑦𝑦𝑦𝑦
+ ⋅ ⋅ ⋅ .

(46)

The scheme is second order accurate in space and the leading
error terms are dispersive in nature (presence of odd-order
derivatives 𝑢

𝑥𝑥𝑥
and 𝑢
𝑦𝑦𝑦

). As the time and spatial increments
go to zero, the modified equation (46) reduces to its original
equation, that is, (2). Hence LOD Lax-Wendroff is consistent.

We now study the spectral analysis of the dispersive and
dissipative properties of the scheme for the case 𝑐

𝑥
= 𝑐
𝑦
= 𝑐

and 𝑠
𝑥
= 𝑠
𝑦
= 𝑠. To obtain the amplification factor we use

the Von Neumann stability analysis by substituting 𝑢𝑛
𝑖,𝑗

by
𝜉
𝑛 exp(𝐼(𝑖𝜔

𝑥
+ 𝑗𝜔
𝑦
)) in (42), where 𝐼 = √−1. We thus have

𝜉 =
1

4
(2𝑠
𝑦
+ 𝑐
𝑦
+ 𝑐
2

𝑦
) (2𝑠
𝑥
+ 𝑐
𝑥
+ 𝑐
2

𝑥
) exp (−𝐼 (𝜔

𝑥
+ 𝜔
𝑦
))

+
1

2
(2𝑠
𝑦
+ 𝑐
𝑦
+ 𝑐
2

𝑦
) (1 − 2𝑠

𝑥
− 𝑐
2

𝑥
) exp (−𝐼𝜔

𝑦
)

+
1

4
(2𝑠
𝑦
+ 𝑐
𝑦
+ 𝑐
2

𝑦
) (2𝑠
𝑥
− 𝑐
𝑥
+ 𝑐
2

𝑥
) exp (𝐼 (𝜔

𝑥
− 𝜔
𝑦
))

+
1

2
(1 − 2𝑠

𝑦
− 𝑐
2

𝑦
) (2𝑠
𝑥
+ 𝑐
𝑥
+ 𝑐
2

𝑥
) exp (−𝐼𝜔

𝑥
)

+ (1 − 2𝑠
𝑦
− 𝑐
2

𝑦
) (1 − 2𝑠

𝑥
− 𝑐
2

𝑥
)
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+
1

2
(1 − 2𝑠

𝑦
− 𝑐
2

𝑦
) (2𝑠
𝑥
− 𝑐
𝑥
+ 𝑐
2

𝑥
) exp (𝐼𝜔

𝑥
)

+
1

4
(2𝑠
𝑦
− 𝑐
𝑦
+ 𝑐
2

𝑦
) (2𝑠
𝑥
+ 𝑐
𝑥
+ 𝑐
2

𝑥
) exp (−𝐼 (𝜔

𝑥
− 𝜔
𝑦
))

+
1

2
(2𝑠
𝑦
− 𝑐
𝑦
+ 𝑐
2

𝑦
) (1 − 2𝑠

𝑥
− 𝑐
2

𝑥
) exp (𝐼𝜔

𝑦
)

+
1

4
(2𝑠
𝑦
− 𝑐
𝑦
+ 𝑐
2

𝑦
) (2𝑠
𝑥
− 𝑐
𝑥
+ 𝑐
2

𝑥
) exp (𝐼 (𝜔

𝑥
+ 𝜔
𝑦
)) .

(47)

The real and imaginary parts of the amplification factor are
given by

Real (𝜉) = 1 + 4𝑠𝑐2 cos (𝜔
𝑥
) cos (𝜔

𝑦
) + 𝑐
4 cos (𝜔

𝑥
) cos (𝜔

𝑦
)

+ 4𝑠
2 cos (𝜔

𝑥
) cos (𝜔

𝑦
) − 4𝑠𝑐

2 cos (𝜔
𝑦
)

− 𝑐
2 sin (𝜔

𝑥
) sin (𝜔

𝑦
) + 4𝑠

2
+ 4𝑠𝑐
2
− 4𝑠𝑐
2 cos (𝜔

𝑥
)

+ 𝑐
2 cos (𝜔

𝑥
) − 𝑐
4 cos (𝜔

𝑥
) + 4𝑠 cos (𝜔

𝑥
)

+ 2𝑠 cos (𝜔
𝑦
) + 2𝑠 cos (𝜔

𝑥
) − 4𝑠

2 cos (𝜔
𝑦
)

− 4𝑠
2 cos (𝜔

𝑥
) − 2𝑐

2
+ 𝑐
2 cos (𝜔

𝑦
)

− 𝑐
4 cos (𝜔

𝑦
) + 𝑐
4
− 4𝑠,

Imag (𝜉) = −𝑐3 cos (𝜔
𝑥
) sin (𝜔

𝑦
) + 2𝑠𝑐 sin (𝜔

𝑥
)

+ 2𝑠𝑐 sin (𝜔
𝑦
) − 2𝑠𝑐 cos (𝜔

𝑥
) sin (𝜔

𝑦
)

− 2𝑠𝑐 sin (𝜔
𝑥
) cos (𝜔

𝑦
) − 𝑐 sin (𝜔

𝑥
) + 𝑐
3 sin (𝜔

𝑥
)

− 𝑐 sin (𝜔
𝑦
) + 𝑐
3 sin (𝜔

𝑦
) − 𝑐
3 sin (𝜔

𝑥
) cos (𝜔

𝑦
) ,

(48)

respectively. The modulus of the amplification factor, AFM,
is obtained as

AFM = √(R(𝜉))2 + (I(𝜉))2. (49)

We find the region of stability using the approach of Hind-
marsh et al. [16] and Sousa [17]. We consider the case when
𝜔
𝑥
= 𝜔
𝑦
= 𝜋 and 𝜔

𝑥
→ 0 and 𝜔

𝑦
→ 0. When 𝜔

𝑥
= 𝜔
𝑦
= 𝜋,

(49) gives

𝜉
 =
√1 + 16𝑠𝑐2 − 4𝑐2 + 4𝑐4 + 16𝑠2 − 8𝑠. (50)

From the Von Neumann stability analysis, the scheme is
stable if and only if |𝜉| ≤ 1. Thus, we get

1 + 16𝑠𝑐
2
− 4𝑐
2
+ 4𝑐
4
+ 16𝑠
2
− 8𝑠 ≤ 1. (51)

On simplification, we get



𝑠 +
2𝑐
2
− 1

4



≤
1

4
, (52)

which reduces to

𝑠 ≤
1 − 𝑐
2

2
. (53)

When 𝜔
𝑥
→ 0 and 𝜔

𝑦
→ 0, we use the following

approximations:

cos (𝜔
𝑥
) ≃ 1 −

𝜔
2

𝑥

2
, cos (𝜔

𝑦
) ≃ 1 −

𝜔
2

𝑦

2
,

sin (𝜔
𝑥
) ≃ 𝜔
𝑥
, sin (𝜔

𝑦
) ≃ 𝜔
𝑦
.

(54)

We consider (49) anduse the approximations in (54) to obtain

𝜉


2

≃ 1 − 2𝑠 (𝜔
2

𝑥
+ 𝜔
2

𝑦
) . (55)

Thus LOD Lax-Wendroff is stable if −2𝑠 ≤ 0. Therefore,
we have

𝑠 ≥ 0. (56)

On combining (53) and (56), we obtain the region of
stability for the LOD Lax-Wendroff procedure as

0 ≤ 𝑠 ≤
1 − 𝑐
2

2
. (57)

We choose 𝛼 = 0.01 and 𝛽 = 0.8 [3]. For ℎ = 0.025 from (57),
we have

0 ≤
0.01𝑘

(0.025)
2
≤
1 − (0.8𝑘/0.025)

2

2
. (58)

On solving for 𝑘, we get

0 ≤ 𝑘 ≤ 0.0193. (59)

Therefore, for ℎ = 0.025, the stability region for the LOD
Lax-Wendroff procedure is 0 ≤ 𝑘 ≤ 0.0193. We choose 𝑘
such that 0.3/𝑘 is an integer as for our numerical experiments,
𝑇 = 0.3. Then 0.3/𝑘 gives the number of time intervals. We
choose 𝑘 = 0.005, 0.01, 3/160, and 1/60.

For ℎ = 0.05, we have 𝑐 = 16𝑘 and 𝑠 = 4𝑘. When 𝜔
𝑥
= 𝜋

and 𝜔
𝑦
= 𝜋, using (51) we get

0 ≤ 1 − 32𝑘 + 1638𝑘
3
− 768𝑘

2
+ 262144𝑘

4
≤ 1, (60)

which gives

0 ≤ 𝑘 ≤ 0.0487985. (61)

Therefore, for ℎ = 0.05, LODLax-Wendroff is stable if 0 ≤ 𝑘 ≤
0.0487985. We then choose some values of 𝑘 ∈ (0, 0.048) for
the numerical experiments. for our numerical experiments.

3D plots of the modulus of the amplification factor versus
phase angles in 𝑥- and 𝑦-directions for some different values
of ℎ and 𝑘 are depicted in Figures 1 and 2. 2D plots of
the modulus of the amplification factor versus 𝜔

𝑥
, when

𝜔
𝑦
= 0, are shown in Figure 3. The scheme is in general less

dissipative at ℎ = 0.05 as compared to ℎ = 0.025. Out of
the eight combinations of values of ℎ and 𝑘, the scheme is
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Figure 1: Plots of modulus of amplification factor versus phase angle in 𝑥-direction, 𝜔
𝑥
, versus phase angle in 𝑦-direction, 𝜔

𝑦
, at ℎ = 0.025

with some different values of 𝑘 for the LOD Lax-Wendroff scheme.

least dissipative when ℎ = 0.05 and 𝑘 = 0.005 and it is most
dissipative when ℎ = 0.025 and 𝑘 = 0.01.

Figures 4 and 5 show the 3D plots of the relative phase
error versus 𝜔

𝑥
versus 𝜔

𝑦
for some different values of ℎ and

𝑘. Figure 6 shows the 2D plots of the relative phase error
versus 𝜔

𝑥
, for the case 𝜔

𝑦
= 0 at ℎ = 0.025 and ℎ = 0.05.

For ℎ = 0.025, we observe phase lag behaviour at 𝑘 = 0.01
and 𝑘 = 0.005 and phase lead behaviour at 𝑘 = 1/60 and
𝑘 = 3/160. For ℎ = 0.05, we have phase lag behaviour at
𝑘 = 0.005, 0.01, 0.02, and 0.03. The scheme is least dispersive
when ℎ = 0.05; 𝑘 = 0.03 and ℎ = 0.025; 𝑘 = 0.01. In the
following section, we consider the LOD (1, 5) scheme.

5. LOD (1, 5) Explicit Procedure

In this procedure the following approximations are used in
the first half time step [3]:

𝜕𝑢

𝜕𝑡



𝑛

𝑖,𝑗

≃

𝑢
𝑛+(1/2)

𝑖,𝑗
− 𝑢
𝑛

𝑖,𝑗

Δ𝑡
,

𝜕𝑢

𝜕𝑥



𝑛

𝑖,𝑗

≃ (
12𝑠
𝑥
+ 2𝑐
2

𝑥
− 3𝑐
𝑥
− 2

12
)(

𝑢
𝑛

𝑖+2,𝑗
− 𝑢
𝑛

𝑖,𝑗

2Δ𝑥
)

+ (
12𝑠
𝑥
+ 2𝑐
2

𝑥
+ 3𝑐
𝑥
− 2

12
)(

𝑢
𝑛

𝑖,𝑗
− 𝑢
𝑛

𝑖−2,𝑗

2Δ𝑥
)

− (
𝑐
2

𝑥
+ 6𝑠
𝑥
− 4

12
)(

𝑢
𝑛

𝑖+1,𝑗
− 𝑢
𝑛

𝑖−1,𝑗

2Δ𝑥
) ,

𝜕
2
𝑢

𝜕𝑥2



𝑛

𝑖,𝑗

≃ (
−𝑐
4

𝑥
+ 4𝑐
2

𝑥
− 12𝑠
2

𝑥
− 12𝑠
𝑥
𝑐
2

𝑥
+ 8𝑠
𝑥

6𝑠
𝑥

)

× (

𝑢
𝑛

𝑖+1,𝑗
− 2𝑢
𝑛

𝑖,𝑗
+ 𝑢
𝑛

𝑖−1,𝑗

(Δ𝑥)
2

)

+ (
𝑐
4

𝑥
− 4𝑐
2

𝑥
+ 12𝑠
2

𝑥
+ 12𝑠
𝑥
𝑐
2

𝑥
− 2𝑠
𝑥

6𝑠
𝑥

)

× (

𝑢
𝑛

𝑖+2,𝑗
− 2𝑢
𝑛

𝑖,𝑗
+ 𝑢
𝑛

𝑖−2,𝑗

4(Δ𝑥)
2

) .

(62)
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Figure 2: Plots of modulus of amplification factor versus phase angle in 𝑥-direction, 𝜔
𝑥
, versus phase angle in 𝑦-direction, 𝜔

𝑦
, at ℎ = 0.05

with some different values of 𝑘 for the LOD Lax-Wendroff scheme.
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Figure 4: Plots of relative phase error versus phase angle in 𝑥-direction (𝜔
𝑥
) versus phase angle in 𝑦-direction (𝜔 − 𝑦), at ℎ = 0.025 with

some different values of 𝑘 for the LOD Lax-Wendroff scheme.

On substituting (62) into (14), we get the following finite
difference equation for the first half time step:

𝑢
𝑛+1/2

𝑖,𝑗
= 𝐴
𝑥
𝑢
𝑛

𝑖−2,𝑗
+ 𝐵
𝑥
𝑢
𝑛

𝑖−1,𝑗
+ 𝐶
𝑥
𝑢
𝑛

𝑖,𝑗

+ 𝐷
𝑥
𝑢
𝑛

𝑖+1,𝑗
+ 𝐸
𝑥
𝑢
𝑛

𝑖+2,𝑗
,

(63)

where

𝐴
𝑥
=
1

24
(12𝑠
𝑥
(𝑠
𝑥
+ 𝑐
2

𝑥
) + 2𝑠

𝑥
(6𝑐
𝑥
− 1)

+𝑐
𝑥
(𝑐
𝑥
− 1) (𝑐

𝑥
+ 1) (𝑐

𝑥
+ 2) ) ,

𝐵
𝑥
= −
1

6
(12𝑠
𝑥
(𝑠
𝑥
+ 𝑐
2

𝑥
) + 2𝑠

𝑥
(3𝑐
𝑥
− 4)

+𝑐
𝑥
(𝑐
𝑥
− 2) (𝑐

𝑥
+ 1) (𝑐

𝑥
+ 2) ) ,

𝐶
𝑥
=
1

4
(12𝑠
𝑥
(𝑠
𝑥
+ 𝑐
2

𝑥
) − 10𝑠

𝑥

+ (𝑐
𝑥
− 1) (𝑐

𝑥
− 2) (𝑐

𝑥
+ 1) (𝑐

𝑥
+ 2) ) ,

𝐷
𝑥
= −
1

6
(12𝑠
𝑥
(𝑠
𝑥
+ 𝑐
2

𝑥
) − 2𝑠

𝑥
(3𝑐
𝑥
+ 4)

+𝑐
𝑥
(𝑐
𝑥
− 2) (𝑐

𝑥
− 1) (𝑐

𝑥
+ 2) ) ,

𝐸
𝑥
=
1

24
(12𝑠
𝑥
(𝑠
𝑥
+ 𝑐
2

𝑥
) − 2𝑠

𝑥
(6𝑐
𝑥
+ 1)

+𝑐
𝑥
(𝑐
𝑥
− 1) (𝑐

𝑥
+ 1) (𝑐

𝑥
− 2) ) .

(64)

The following approximations are used in the second half
time step:

𝜕𝑢

𝜕𝑡



𝑛+(1/2)

𝑖,𝑗

≃

𝑢
𝑛+1

𝑖,𝑗
− 𝑢
𝑛+(1/2)

𝑖,𝑗

Δ𝑡
,

𝜕𝑢

𝜕𝑥



𝑛+(1/2)

𝑖,𝑗

≃ (

12𝑠
𝑦
+ 2𝑐
2

𝑦
− 3𝑐
𝑦
− 2

12
)(

𝑢
𝑛+(1/2)

𝑖,𝑗+2
− 𝑢
𝑛+(1/2)

𝑖,𝑗

2Δ𝑦
)
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Figure 5: Plots of relative phase error versus 𝜔
𝑥
versus 𝜔

𝑦
, at ℎ = 0.05 with some different values of 𝑘 for the LOD Lax-Wendroff scheme.
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+ (

12𝑠
𝑦
+ 2𝑐
2

𝑦
+ 3𝑐
𝑦
− 2

12
)(

𝑢
𝑛+(1/2)

𝑖,𝑗
− 𝑢
𝑛+(1/2)

𝑖,𝑗−2

2Δ𝑦
)

− (

𝑐
2

𝑦
+ 6𝑠
𝑦
− 4

12
)(

𝑢
𝑛+(1/2)

𝑖,𝑗+1
− 𝑢
𝑛+(1/2)

𝑖,𝑗−1

2Δ𝑦
) ,

𝜕
2
𝑢

𝜕𝑦2



𝑛+(1/2)

𝑖,𝑗

≃ (

−𝑐
4

𝑦
+ 4𝑐
2

𝑦
− 12𝑠
2

𝑦
− 12𝑠
𝑦
𝑐
2

𝑦
+ 8𝑠
𝑦

6𝑠
𝑦

)

× (

𝑢
𝑛+(1/2)

𝑖,𝑗+1
− 2𝑢
𝑛+(1/2)

𝑖,𝑗
+ 𝑢
𝑛+(1/2)

𝑖,𝑗−1

(Δ𝑦)
2

)

+ (

𝑐
4

𝑦
− 4𝑐
2

𝑦
+ 12𝑠
2

𝑦
+ 12𝑠
𝑦
𝑐
2

𝑦
− 2𝑠
𝑦

6𝑠
𝑦

)

× (

𝑢
𝑛+(1/2)

𝑖,𝑗+2
− 2𝑢
𝑛+(1/2)

𝑖,𝑗
+ 𝑢
𝑛+(1/2)

𝑖,𝑗−2

4(Δ𝑦)
2

) .

(65)

Then on substituting (65) into (15), we get the following
difference equation for the second half time step:

𝑢
𝑛+1

𝑖,𝑗
= 𝐴
𝑦
𝑢
𝑛+(1/2)

𝑖,𝑗−2
+ 𝐵
𝑦
𝑢
𝑛+(1/2)

𝑖,𝑗−1
+ 𝐶
𝑦
𝑢
𝑛+(1/2)

𝑖,𝑗

+ 𝐷
𝑦
𝑢
𝑛+(1/2)

𝑖,𝑗+1
+ 𝐸
𝑦
𝑢
𝑛+(1/2)

𝑖,𝑗+2
,

(66)

where

𝐴
𝑦
=
1

24
(12𝑠
𝑦
(𝑠
𝑦
+ 𝑐
2

𝑦
) + 2𝑠

𝑦
(6𝑐
𝑦
− 1)

+𝑐
𝑦
(𝑐
𝑦
− 1) (𝑐

𝑦
+ 1) (𝑐

𝑦
+ 2)) ,

𝐵
𝑦
= −
1

6
(12𝑠
𝑦
(𝑠
𝑦
+ 𝑐
2

𝑦
) + 2𝑠

𝑦
(3𝑐
𝑦
− 4)

+𝑐
𝑦
(𝑐
𝑦
− 2) (𝑐

𝑦
+ 1) (𝑐

𝑦
+ 2)) ,

𝐶
𝑦
=
1

4
(12𝑠
𝑦
(𝑠
𝑦
+ 𝑐
2

𝑦
) − 10𝑠

𝑦

+ (𝑐
𝑦
− 1) (𝑐

𝑦
− 2) (𝑐

𝑦
+ 1) (𝑐

𝑦
+ 2)) ,

𝐷
𝑦
= −
1

6
(12𝑠
𝑦
(𝑠
𝑦
+ 𝑐
2

𝑦
) − 2𝑠

𝑦
(3𝑐
𝑦
+ 4)

+𝑐
𝑦
(𝑐
𝑦
− 2) (𝑐

𝑦
− 1) (𝑐

𝑦
+ 2)) ,

𝐸
𝑦
=
1

24
(12𝑠
𝑦
(𝑠
𝑦
+ 𝑐
2

𝑦
) − 2𝑠

𝑦
(6𝑐
𝑦
+ 1)

+𝑐
𝑦
(𝑐
𝑦
− 1) (𝑐

𝑦
+ 1) (𝑐

𝑦
− 2)) .

(67)

The complete LOD (1, 5) scheme is given by

𝑢
𝑛+1

𝑖,𝑗
= 𝐴
𝑦
𝐴
𝑥
𝑢
𝑛

𝑖−2,𝑗−2
+ 𝐴
𝑦
𝐵
𝑥
𝑢
𝑛

𝑖−1,𝑗−2
+ 𝐴
𝑦
𝐶
𝑥
𝑢
𝑛

𝑖,𝑗−2

+ 𝐴
𝑦
𝐷
𝑥
𝑢
𝑛

𝑖+1,𝑗−2
+ 𝐴𝑦𝐸𝑥𝑢

𝑛

𝑖+2,𝑗−2

+ 𝐵
𝑦
𝐴
𝑥
𝑢
𝑛

𝑖−2,𝑗−1
+ 𝐵
𝑦
𝐵
𝑥
𝑢
𝑛

𝑖−1,𝑗−1
+ 𝐵
𝑦
𝐶
𝑥
𝑢
𝑛

𝑖,𝑗−1

+ 𝐵
𝑦
𝐷
𝑥
𝑢
𝑛

𝑖+1,𝑗−1
+ 𝐵
𝑦
𝐸
𝑥
𝑢
𝑛

𝑖+2,𝑗−1

+ 𝐶
𝑦
𝐴
𝑥
𝑢
𝑛

𝑖−2,𝑗
+ 𝐶
𝑦
𝐵
𝑥
𝑢
𝑛

𝑖−1,𝑗
+ 𝐶
𝑦
𝐶
𝑥
𝑢
𝑛

𝑖,𝑗

+ 𝐶
𝑦
𝐷
𝑥
𝑢
𝑛

𝑖+1,𝑗
+ 𝐶
𝑦
𝐸
𝑥
𝑢
𝑛

𝑖+2,𝑗

+ 𝐷
𝑦
𝐴
𝑥
𝑢
𝑛

𝑖−2,𝑗+1
+ 𝐷
𝑦
𝐵
𝑥
𝑢
𝑛

𝑖−1,𝑗+1
+ 𝐷
𝑦
𝐶
𝑥
𝑢
𝑛

𝑖,𝑗+1

+ 𝐷
𝑦
𝐷
𝑥
𝑢
𝑛

𝑖+1,𝑗+1
+ 𝐷
𝑦
𝐸
𝑥
𝑢
𝑛

𝑖+2,𝑗+1

+ 𝐸
𝑦
𝐴
𝑥
𝑢
𝑛

𝑖−2,𝑗+2
+ 𝐸
𝑦
𝐵
𝑥
𝑢
𝑛

𝑖−1,𝑗+2
+ 𝐸
𝑦
𝐶
𝑥
𝑢
𝑛

𝑖,𝑗+2

+ 𝐸
𝑦
𝐷
𝑥
𝑢
𝑛

𝑖+1,𝑗+2
+ 𝐸
𝑦
𝐸
𝑥
𝑢
𝑛

𝑖+2,𝑗+2
.

(68)

The Taylor series expansion of the terms on the right hand
side of (68) about 𝑢𝑛

𝑖,𝑗
is given as follows:

𝑢
𝑛

𝑖+𝑎,𝑗+𝑏
= 𝑢 + 𝑎ℎ 𝑢

𝑥
+ 𝑏ℎ 𝑢

𝑦
+
ℎ
2

2
(𝑎
2
𝑢
𝑥𝑥
+ 2𝑎𝑏 𝑢

𝑥𝑦
+ 𝑏
2
𝑢
𝑦𝑦
)

+
ℎ
3

6
(𝑎
3
𝑢
𝑥𝑥𝑥
+ 3𝑎
2
𝑏 𝑢
𝑥𝑥𝑦
+ 3𝑎𝑏

2
𝑢
𝑥𝑦𝑦
+ 𝑏
3
𝑢
𝑦𝑦𝑦
)

+
ℎ
4

24
(𝑎
4
𝑢
𝑥𝑥𝑥𝑥
+ 4𝑎
3
𝑏 𝑢
𝑥𝑥𝑥𝑦
+ 6𝑎
2
𝑏
2
𝑢
𝑥𝑥𝑦𝑦

+4𝑎𝑏
3
𝑢
𝑥𝑦𝑦𝑦
+ 𝑏
4
𝑢
𝑦𝑦𝑦𝑦
)

+
ℎ
5

120
(𝑎
5
𝑢
𝑥𝑥𝑥𝑥𝑥

+ 5𝑎
4
𝑏 𝑢
𝑥𝑥𝑥𝑥𝑦

+ 10𝑎
3
𝑏
2
𝑢
𝑥𝑥𝑥𝑦𝑦

+ 10𝑎
2
𝑏
3
𝑢
𝑥𝑥𝑦𝑦𝑦

+5𝑎𝑏
4
𝑢
𝑥𝑦𝑦𝑦𝑦

+ 𝑏
5
𝑢
𝑦𝑦𝑦𝑦𝑦
) + ⋅ ⋅ ⋅ ,

(69)

for 𝑎 = −2, −1, 0, 1, 2 and 𝑏 = −2, −1, 0, 1, 2.
We obtain the following modified equation:

𝑢
𝑡
+ 𝛽
𝑥
𝑢
𝑥
+ 𝛽
𝑦
𝑢
𝑦
= 𝛼
𝑥
𝑢
𝑥𝑥
+ 𝛼
𝑦
𝑢
𝑦𝑦

+
𝛽
𝑥
ℎ
4

120
(60𝑠
2

𝑥
+ 20𝑠
𝑥
𝑐
2

𝑥
+ 𝑐
4

𝑥

−5𝑐
2

𝑥
+ 4 − 30𝑠

𝑥
) 𝑢
𝑥𝑥𝑥𝑥𝑥

+

𝛽
𝑦
ℎ
4

120
(60𝑠
2

𝑦
+ 20𝑠
𝑦
𝑐
2

𝑦
+ 𝑐
4

𝑦

−5𝑐
2

𝑦
+ 4 − 30𝑠

𝑦
) 𝑢
𝑦𝑦𝑦𝑦𝑦

+ ⋅ ⋅ ⋅ .

(70)
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The scheme is essentially dispersive as the leading error terms
are dispersive in nature due to the presence of the odd-
order derivative terms 𝑢

𝑥𝑥𝑥𝑥𝑥
and 𝑢

𝑦𝑦𝑦𝑦𝑦
. Also, the scheme

is consistent and it is fourth order accurate in space.
The amplification factor of the LOD (1, 5) scheme is given

by

𝜉 = 𝐴
𝑦
[𝐴
𝑥
exp (𝐼 (−2𝜔

𝑥
− 2𝜔
𝑦
)) + 𝐵

𝑥
exp (𝐼 (−𝜔

𝑥
− 2𝜔
𝑦
))

+ 𝐶
𝑥
exp (−2𝐼𝜔

𝑦
)

+𝐷
𝑥
exp (𝐼 (𝜔

𝑥
− 2𝜔
𝑦
)) + 𝐸

𝑥
exp (𝐼 (2𝜔

𝑥
− 2𝜔
𝑦
))]

+ 𝐵
𝑦
[𝐴
𝑥
exp (𝐼 (−2𝜔

𝑥
− 𝜔
𝑦
)) + 𝐵

𝑥
exp (𝐼 (−𝜔

𝑥
− 𝜔
𝑦
))

+ 𝐶
𝑥
exp (−𝐼𝜔

𝑦
) + 𝐷
𝑥
exp (𝐼 (𝜔

𝑥
− 𝜔
𝑦
))

+𝐸
𝑥
exp (𝐼 (2𝜔

𝑥
− 𝜔
𝑦
))]

+ 𝐶
𝑦
[𝐴
𝑥
exp (−2𝐼𝜔

𝑥
) + 𝐵
𝑥
exp (−𝐼𝜔

𝑥
)

+𝐶
𝑥
+ 𝐷
𝑥
exp (𝐼𝜔

𝑥
) + 𝐸
𝑥
exp (2𝐼𝜔

𝑥
)]

+ 𝐷
𝑦
[𝐴
𝑥
exp (𝐼 (−2𝜔

𝑥
+ 𝜔
𝑦
)) + 𝐵

𝑥
exp (−𝐼 (𝜔

𝑥
+ 𝜔
𝑦
))

+ 𝐶
𝑥
exp (𝐼𝜔

𝑦
) + 𝐷
𝑥
exp (𝐼 (𝜔

𝑥
+ 𝜔
𝑦
))

+𝐸
𝑥
exp (𝐼 (2𝜔

𝑥
+ 𝜔
𝑦
))]

+ 𝐸
𝑦
[𝐴
𝑥
exp (𝐼 (−2𝜔

𝑥
+ 2𝜔
𝑦
))

+ 𝐵
𝑥
exp (𝐼 (−𝜔

𝑥
+ 2𝜔
𝑦
)) + 𝐶

𝑥
exp (2𝐼𝜔

𝑦
)

+ 𝐷
𝑥
exp (𝐼 (𝜔

𝑥
+ 2𝜔
𝑦
))

+𝐸
𝑥
exp (𝐼 (2𝜔

𝑥
+ 2𝜔
𝑦
))] .

(71)

We consider 𝑐
𝑥
= 𝑐
𝑦
= 𝑐 and 𝑠

𝑥
= 𝑠
𝑦
= 𝑠. We use the Von

Neumann stability analysis and the approach of Hindmarsh
et al. [16] to obtain the stability region. When 𝜔

𝑥
= 𝜔
𝑦
= 𝜋,

on simplification of (71), we get

𝜉
 =
1

9
(3 − 8𝑐

2
+ 2𝑐
4
− 16𝑠 + 24𝑠𝑐

2
+ 24𝑠
2
)
2

. (72)

For stability, we must have
1

9
(3 − 8𝑐

2
+ 2𝑐
4
− 16𝑠 + 24𝑠𝑐

2
+ 24𝑠
2
)
2

≤ 1. (73)

We consider (71) and for 𝜔
𝑥
→ 0 and 𝜔

𝑦
→ 0 we use the

following approximations:

cos (𝜔
𝑥
) ≃ 1 −

𝜔
2

𝑥

2
, cos (𝜔

𝑦
) ≃ 1 −

𝜔
2

𝑦

2
,

cos (2𝜔
𝑥
) ≃ 1 − 2𝜔

2

𝑥
, cos (2𝜔

𝑦
) ≃ 1 − 2𝜔

2

𝑦
,

sin (𝜔
𝑥
) ≃ 𝜔
𝑥
, sin (𝜔

𝑦
) ≃ 𝜔
𝑦
,

sin (2𝜔
𝑥
) ≃ 2𝜔

𝑥
, sin (2𝜔

𝑦
) ≃ 2𝜔

𝑦
.

(74)

We thus have
𝜉


2

≃ 1 − 2𝑠 (𝜔
2

𝑥
+ 𝜔
2

𝑦
) + 4𝑠

2
𝜔
2

𝑥
𝜔
2

𝑦

+ (−2𝑠
3
𝜔
2

𝑦
+ 𝑠𝑐
2
+
1

4
𝑐
4
− 2𝑐
2
𝑠
2
𝜔
2

𝑦
−
1

2
𝑠𝑐
4
𝜔
2

𝑦
+ 𝑠
2
)𝜔
4

𝑥

+ (𝑠
4
+
1

16
𝑐
8
+
3

2
𝑠
2
𝑐
4
+
1

2
𝑠𝑐
6
+ 2𝑠
3
𝑐
2
)𝜔
4

𝑥
𝜔
4

𝑦

+ (−
1

2
𝑐
4
𝑠𝜔
2

𝑥
− 2𝑐
2
𝑠
2
𝜔
2

𝑥
+
1

4
𝑐
4
+ 𝑠
2
− 2𝑠
3
𝜔
2

𝑥
+ 𝑐
2
𝑠) 𝜔
4

𝑦
.

(75)

On neglecting higher order terms, we have

𝜉


2

≃ 1 − 2𝑠 (𝜔
2

𝑥
+ 𝜔
2

𝑦
) . (76)

Thus, the numerical method is stable if −2𝑠 ≤ 0. Therefore,
we have

𝑠 ≥ 0. (77)

When ℎ = 0.025, we have 𝑐 = 32𝑘 and 𝑠 = 16𝑘. Using (73)
and (77), we get

1

9
(2097152𝑘

4
+ 393216𝑘

3
− 2048𝑘

2
− 256𝑘 + 3)

2

≤ 1, (78)

𝑘 ≥ 0, (79)

respectively. On combining (78) and (79), we get the stability
region when ℎ = 0.025 for the LOD (1, 5) procedure as

0 ≤ 𝑘 ≤ 0.026288. (80)

When ℎ = 0.05, we have 𝑐 = 16𝑘 and 𝑠 = 4𝑘 and the modulus
of the amplification factor is given by

𝜉
 =
1

9
(131072𝑘

4
+ 24576𝑘

3
− 1664𝑘

2
− 64𝑘 + 3)

2

. (81)

From (77) and (81), we obtain the stability region for the LOD
(1, 5) procedure when ℎ = 0.05 as

0 ≤ 𝑘 ≤ 0.073865. (82)

We analyse the spectral analysis; for ℎ = 0.025, we choose
𝑘 = 0.005, 0.01, 0.02, 0.025 and for ℎ = 0.05, we choose 𝑘 =
0.01, 0.02, 0.03 and 0.05.

3D plots of the modulus of the amplification factor versus
phase angle in 𝑥-direction versus phase angle in 𝑦-direction
at two values of ℎ, namely, 0.025 and 0.05, at some different
values of 𝑘 are shown in Figures 7 and 8. 2D plots of the
modulus of the amplification factor versus 𝜔

𝑥
when 𝜔

𝑦
=

0 are illustrated in Figure 9. The scheme is in general less
dissipative at ℎ = 0.05 as compared to ℎ = 0.025. Out of
the eight combinations of ℎ and 𝑘 values, the scheme is least
dissipative when ℎ = 0.05 and 𝑘 = 0.01.

Figures 10 and 11 show the 3D plots of the relative phase
error versus𝜔

𝑥
versus𝜔

𝑦
for some different values of ℎ and 𝑘.

Figure 12 shows the 2D plots of the relative phase error versus
𝜔
𝑥
, for the case𝜔

𝑦
= 0 at ℎ = 0.025 and ℎ = 0.05, respectively.
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Figure 7: Plots of modulus of amplification factor versus phase angle in 𝑥-direction (𝜔
𝑥
) versus phase angle in 𝑦-direction (𝜔

𝑦
), at ℎ = 0.025

for some different values of 𝑘 for the LOD (1, 5) procedure.

We observe that the scheme is least dispersive when ℎ = 0.05
and 𝑘 = 0.05 and most dispersive when ℎ = 0.025 and
𝑘 = 0.025. We have phase lead when ℎ = 0.05 and 𝑘 = 0.05
and there is phase lag for the other seven combinations of ℎ
and 𝑘. In the following section, we present the results of the
numerical experiment described in Section 3.2.

6. Numerical Results

6.1. LOD Lax-Wendroff Procedure. The results of the numer-
ical experiment at some values of 𝑘 using the LOD Lax-
Wendroff procedure at 𝑇 = 0.3 at ℎ = 0.025 and ℎ = 0.05
are shown in Tables 1 and 2, respectively. We observe that the
dispersion error is significantly greater than the dissipation
error. Out of the five combinations of values of 𝑘 and ℎ, we
observe that the dispersion error and total mean square error
are both least when ℎ = 0.05 and 𝑘 = 0.03 and are both
greatest when ℎ = 0.05 and 𝑘 = 0.0025.

6.2. LOD (1, 5) Procedure. The results of the numerical
experiment using the LOD (1, 5) procedure at 𝑇 = 0.3 for ℎ =
0.025 and ℎ = 0.05 are shown in Tables 3 and 4, respectively.
Out of the 12 combinations of values of 𝑘 and ℎ, we observe
that the dissipation, dispersion error, and error rate are all

least when ℎ = 0.05 and 𝑘 = 0.05. Also, the dissipation and
dispersion errors and error rate are greatest when ℎ = 0.05
and 𝑘 = 0.0625. We observe that at ℎ = 0.025 the total mean
square error, dispersion error, and dissipation error are not
much affected by the values of 𝑘. Also, the dispersion error is
greater than the at all values of ℎ and 𝑘 considered.

7. Optimization

In this section, we obtain the optimal value of 𝑘 at ℎ = 0.025
that minimizes the dispersion error for the two time-splitting
procedures.

Since the partial differential equation we consider is
slightly dissipative and also we observe from the numerical
experiments carried out that the dissipative errors are much
less than the dispersive errors, we choose to minimize the
square of the dispersion error of the two splitting schemes.

7.1. Proposed Techniques of Optimization. Tam and Webb
[18], Bogey and Bailly [19], and Hixon [20] among others
have implemented techniques which enable coefficients to be
determined in numerical schemes specifically designed for
computational aeroacoustics. We now describe briefly how
Tam and Webb [18] and Bogey and Bailly [19] define their
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Figure 8: Plots of modulus of amplification factor versus phase angle in 𝑥-direction (𝜔
𝑥
) versus phase angle in 𝑦-direction (𝜔

𝑦
) at ℎ = 0.05

for some different values of 𝑘 for the LOD (1, 5) procedure.
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Figure 10: 3D plots of relative phase error versus 𝜔
𝑥
versus 𝜔

𝑦
at ℎ = 0.025 at some different values of 𝑘 for the LOD (1, 5) procedure.

Table 1: Errors obtained from LOD Lax-Wendroff at ℎ = 0.025.

𝑘 CFL 𝐸num Total mean square error DISP. ERROR DISS. ERROR
0.0025 0.08 1.2043 × 10

−3
1.0930 × 10

−5
1.0602 × 10

−5
2.5787 × 10

−7

0.005 0.16 9.4236 × 10
−4

7.4519 × 10
−6

7.2355 × 10
−6

2.4370 × 10
−7

0.01 0.32 4.1557 × 10
−4

4.1970 × 10
−6

4.0222 × 10
−6

1.6465 × 10
−7

3/160 0.6 1.7126 × 10
−3

2.0913 × 10
−5

2.0819 × 10
−5

5.5626 × 10
−8

1/60 8/15 1.3626 × 10
−3

1.3761 × 10
−5

1.3675 × 10
−5

8.3438 × 10
−8

Table 2: Errors obtained from LOD Lax-Wendroff at ℎ = 0.05.

𝑘 CFL 𝐸num Total mean square error DISP. ERROR DISS. ERROR
0.0025 0.04 1.3398 × 10

−3
4.1073 × 10

−5
4.1056 × 10

−5
2.1203 × 10

−8

0.005 0.08 1.2483 × 10
−3

3.5560 × 10
−5

3.5562 × 10
−5

3.5412 × 10
−9

0.01 0.16 1.0547 × 10
−3

2.5261 × 10
−5

2.5255 × 10
−5

8.1665 × 10
−9

1/60 4/15 7.7546 × 10
−4

1.3488 × 10
−5

1.3433 × 10
−5

5.4469 × 10
−8

3/160 0.3 6.8350 × 10
−4

1.0388 × 10
−5

1.0323 × 10
−5

6.9368 × 10
−8

0.02 0.32 6.2698 × 10
−4

8.6851 × 10
−6

8.6112 × 10
−6

7.7093 × 10
−8

0.025 0.4 3.9085 × 10
−4

3.2351 × 10
−6

3.1467 × 10
−6

9.3072 × 10
−8

1/34 8/17 4.5965 × 10
−4

5.2537 × 10
−6

5.2510 × 10
−6

3.708 × 10
−9

0.03 0.48 1.4596 × 10
−4

4.6945 × 10
−7

3.9599 × 10
−7

7.7350 × 10
−8

0.04 0.64 1.1718 × 10
−3

2.4062 × 10
−5

2.3462 × 10
−5

6.0153 × 10
−7
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Figure 11: 3D plots of relative phase error versus 𝜔
𝑥
versus 𝜔

𝑦
at ℎ = 0.05 at some different values of 𝑘 for the LOD (1, 5) procedure.
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Figure 13: Plots of integrated errors versus 𝑘 at ℎ = 0.025 for the two time-splitting schemes.

Table 3: Errors obtained from the LOD (1, 5) procedure at ℎ = 0.025.

𝑘 CFL 𝐸num Total mean square error DISP. ERROR DISS. ERROR
0.005 0.16 4.0539 × 10

−4
4.1593 × 10

−6
4.0009 × 10

−6
1.6455 × 10

−7

0.01 0.32 4.0072 × 10
−4

4.1573 × 10
−6

3.9874 × 10
−6

1.6540 × 10
−7

1/60 8/15 4.0565 × 10
−4

4.1577 × 10
−6

3.9797 × 10
−6

1.6390 × 10
−7

3/160 0.60 3.9839 × 10
−4

4.1494 × 10
−6

3.9782 × 10
−6

1.6268 × 10
−7

0.02 0.64 3.9878 × 10
−4

4.1481 × 10
−6

3.9768 × 10
−6

1.6174 × 10
−7

0.025 0.80 4.0890 × 10
−4

4.1640 × 10
−6

4.0430 × 10
−6

1.5618 × 10
−7

measures and consequently their technique of optimization
in computational aeroacoustics.

The dispersion-relation-preserving (DRP) scheme was
designed so that the dispersion relation of the finite difference
scheme is formally the same as that of the original partial
differential equations. The integrated error is defined as

𝐸 = ∫

𝜂

−𝜂

𝜃
∗
ℎ − 𝜃ℎ



2

𝑑 (𝜃ℎ) , (83)

where the quantities 𝜃∗ℎ and 𝜃ℎ represent the numerical
and exact wavenumbers, respectively. The dispersion error
and dissipation error are calculated as |R(𝜃∗ℎ) − 𝜃ℎ| and
|𝐼𝑚(𝜃

∗
ℎ)|, respectively.

Tam and Shen [21] set 𝜂 as 1.1 and optimize the coefficients
in the numerical scheme such that the integrated error is
minimized.

Bogey andBaillyminimize the relative difference between
the exact wavenumber 𝜃ℎ and the effective/numerical
wavenumber 𝜃∗ℎ and define their integrated errors as

𝐸 = ∫

(𝜃ℎ)ℎ

(𝜃ℎ)𝑙

𝜃
∗
ℎ − 𝜃ℎ



𝜃ℎ
𝑑 (𝜃ℎ) (84)

or

𝐸 = ∫

ln(𝜃ℎ)ℎ

ln(𝜃ℎ)𝑙

𝜃
∗
ℎ − 𝜃ℎ

 𝑑 (ln (𝜃ℎ)) . (85)

In computational fluid dynamics for a particular method
under consideration, the dispersion error is calculated as

|1 − RPE| . (86)

We have modified the measures used by Tam and Webb
and Bogey and Bailly in a computational aeroacoustics
framework to suit them in a computational fluid dynamics
framework [22] such that the optimal parameter can be
obtained. We have defined the following integrated errors
integrated error from Tam and Webb (IETAM) integrated
error from Bogey and Bailly (IEBOGEY) [22] as follows:

IETAM = ∫
𝑤1

0

|1 − RPE|2 𝑑𝑤,

IEBOGEY = ∫
𝑤1

0

|1 − RPE| 𝑑𝑤.
(87)
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Table 4: Errors obtained from the LOD (1, 5) procedure at ℎ = 0.05.

𝑘 CFL 𝐸num Total mean square error DISP. ERROR DISS. ERROR
0.01 0.16 2.0000 × 10

−4
7.8149 × 10

−7
7.7377 × 10

−7
1.1297 × 10

−8

0.02 0.32 1.3905 × 10
−4

3.9277 × 10
−7

3.8065 × 10
−7

1.4712 × 10
−8

1/34 8/17 4.1603 × 10
−4

4.0763 × 10
−6

4.0663 × 10
−6

1.1482 × 10
−8

0.03 0.48 9.5979 × 10
−5

2.1598 × 10
−7

2.0584 × 10
−7

1.4193 × 10
−8

0.05 0.8 7.9301 × 10
−5

1.7934 × 10
−7

1.7059 × 10
−7

1.0449 × 10
−8

0.0625 1 8.5551 × 10
−4

1.4674 × 10
−5

1.4310 × 10
−5

3.6790 × 10
−7

In [8], the integrated error for a scheme discretising the
1D advection-diffusion equation

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
= 0.01

𝜕
2
𝑢

𝜕𝑥2
(88)

is obtained as

∫

1.1

0

(RPE − 1)2 𝑑𝜔. (89)

The value of ℎ was fixed as 0.02 and the range of values
of 𝑘, was determined. Then the integrated error, which is a
function of 𝑘, was minimized and the optimal value of 𝑘 is
determined using NLPSolve function in maple.

We extend the work on optimization of parameters in
[8] which is for the 1D advection-diffusion equation for the
case of the 2D advection-diffusion equation. We define the
integrated error as

∫

1.1

0

∫

1.1

0

(RPE − 1)2 𝑑𝜔
𝑥
𝑑𝜔
𝑦
. (90)

We first obtain an expression for the RPE of the LOD Lax-
Wendroff when discretizing the equation

𝜕𝑢

𝜕𝑡
+ 0.8

𝜕𝑢

𝜕𝑥
+ 0.8

𝜕𝑢

𝜕𝑦
= 0.01

𝜕
2
𝑢

𝜕𝑥2
+ 0.01

𝜕
2
𝑢

𝜕𝑦2
. (91)

Since 𝑐 = 0.8𝑘/ℎ and 𝑠 = 0.8𝑘/ℎ2 and we choose ℎ =
0.025, we have 𝑐 = 32𝑘 and 𝑠 = 16𝑘. Hence, the RPE is a
function of 𝑘, 𝜔

𝑥
, and 𝜔

𝑦
. Since we can have phase wrapping,

wemake use of Taylor’s expansion to obtain an approximation
for the RPE up to the terms

(𝜔
𝑥
)
3

(𝜔
𝑦
)
2

, (𝜔
𝑥
)
5

, (𝜔
𝑥
)
2

(𝜔
𝑦
)
3

, (𝜔
𝑦
)
5

, 𝜔
𝑥
(𝜔
𝑦
)
4

, (𝜔
𝑥
)
4

𝜔
𝑦
.

(92)

The integrated error ∫1.1
0
∫
1.1

0
(RPE − 1)2 𝑑𝜔

𝑥
𝑑𝜔
𝑦

is
obtained by using Simpson’s method and it is a function of
𝑘 only. A plot of the integrated error versus 𝑘 is shown in
Figure 13(a) for 𝑘 ∈ [0, 0.0193]. Using the NLPSolve function
in maple, this optimal value of 𝑘 is found to be 0.009593 and
theminimum value of the integrated error is 1.883960×10−7.

To validate our results, we perform the same numerical
experiment described in Section 3.2 at ℎ = 0.025 and use the

optimal value of 𝑘 or a value of 𝑘 close to this optimal value,
in that case, 𝑘 = 3/310 ≈ 0.0096, and compute the errors.
The error rate, total mean square error, and dispersion error
are 3.9967 × 10−4, 4.1603 × 10−6, 3.9878 × 10−6. These three
errors are all least as compared to when other values of 𝑘 are
used as shown in Table 1.

We adopt the same procedure to compute the optimal
value of 𝑘 for the LOD (1, 5) scheme when ℎ = 0.025.
We obtain an approximate expression for the RPE of the
LOD (1, 5) when 𝑐 = 32𝑘 and 𝑠 = 16𝑘. We use Simpson’s
rule to approximate the integral given by (90) which is a
function of 𝑘. A plot of the integrated error versus 𝑘 for 𝑘 ∈
[0, 0.026288] is shown in Figure 13(b) and using NLPSolve
function in maple the optimal value of 𝑘 is 0.013782 and also
the minimum value of the integral is 1.139313 × 10−6.

We perform the numerical experiment described in
Section 3.2 with 𝑘 = 3/220which is close to the optimal value
of 𝑘 we have obtained with ℎ = 0.025. The error rate, total
mean square error, dispersion error, and dissipation error are
3.9948×10

−4, 4.1504×10−6, 3.9459×10−6, and 1.6501×10−7,
respectively.The totalmean square error and dispersion error
are both least when 𝑘 = 3/220 ≈ 0.01378.

8. Conclusion

In this paper, two time-splitting procedures are used to solve
a 2D advection-diffusion equation with constant coefficients
when the advection velocity in both 𝑥- and 𝑦-directions is
0.8 and also when the coefficient of diffusivity in both 𝑥-
and 𝑦-directions is 0.01. We perform a stability analysis and
spectral analysis of the dispersion and dissipation properties
of the two schemes at some values of ℎ and 𝑘. Numerical
experiments are carried out and various errors are computed.
These errors are dependent on the values of ℎ and 𝑘. It is
observed that in general the dispersion error is more affected
by the values of 𝑘 and ℎ for the LOD Lax-Wendroff scheme
as compared to that of the LOD (1, 5) scheme at a given
value of ℎ. We then use an optimization technique based on
minimisation of the square of the dispersion error to find
the optimal value of 𝑘 when ℎ is chosen as 0.025 and this is
validated by numerical experiments.

Future extension of this work to consider other types
of advection-diffusion equations when dissipation dominates
and to find out which optimization techniques are suitable in
these cases. Also, the work can be extended to 2D nonlinear
convection-diffusion problems.
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Nomenclature

𝐼: √(−1)

ℎ: Spatial step
𝑘: Time step
𝑅
Δ
: Reynolds number

RPE: Relative phase error per unit time step
AFM: Modulus of amplification factor
𝛽
𝑥
: Advection velocity in 𝑥-direction

𝛽
𝑦
: Advection velocity in 𝑦-direction

𝛽
𝑧
: Advection velocity in 𝑧-direction
𝛼
𝑥
: Coefficient of diffusivity in 𝑥-direction

𝛼
𝑦
: Coefficient of diffusivity in 𝑦-direction

𝛼
𝑧
: Coefficient of diffusivity in 𝑧-direction
𝜃
1
: Wavenumber in 𝑥-direction
𝜃
2
: Wavenumber in 𝑦-direction
𝜔
𝑥
: Phase angle in 𝑥-direction

𝜔
𝑦
: Phase angle in 𝑦-direction

𝜔
𝑥
: Δ𝑥𝜃

1

𝜔
𝑦
: Δ𝑦𝜃

2

𝑐
𝑥
: 𝛽

𝑥
𝑘/ℎ

𝑐
𝑦
: 𝛽

𝑦
𝑘/ℎ

𝑠
𝑥
: 𝛼

𝑥
𝑘/ℎ
2

𝑠
𝑦
: 𝛼

𝑦
𝑘/ℎ
2

DISP. ERROR: Dispersion error
DISS. ERROR: Dissipation error.
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