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Abstract 

 

We develop models for examining possible predictors of growth of China’s foreign exchange reserves 

that embrace Chinese and global trade, financial and risk (uncertainty) factors. Specifically, by comparing 

with other alternative models, we show that the dynamic model averaging (DMA) and dynamic model 

selection (DMS) models outperform not only linear models (such as random walk, recursive OLS-AR(1) 

models, recursive OLS with all predictive variables models) but also the Bayesian model averaging 

(BMA) model for examining possible predictors of growth of those reserves. The DMS is the best overall 

across all forecast horizons. While some predictors matter more than others over the forecast horizons, 

there are few that stand the test of time. The US-China interest rate differential has a superior predictive 

power among the 13 predictors considered, followed by the nominal effective exchange rate and the 

interest rate spread for most of the forecast horizons. The relative predictive prowess of the oil and copper 

prices alternates, depending on the commodity cycles. Policy implications are also provided. 
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1. Introduction 

The world’s economic system has been characterized by significant external imbalances in 

the last two decades or so. This global phenomenon has manifested itself clearly by the 

accumulation of international exchange reserves and external assets particularly in developing 

countries. The international reserves have mounted to more than 30% of developing countries' 

GDP and 8 months’ worth of their imports (Rodrik, 2006). These reserves are used as insurance 

against financial crisis and default risk. It’s well known that countries with large scale foreign 

reserves like Singapore and Taiwan were the least affected by speculation during the 1997 Asian 

crisis (Lane, 2004). Foreign reserves can also serve as an additional source of national income in 

the form of interest-yielding time deposits or interest-earning bonds and bills denominated in 

foreign currencies. This is the case of oil-exporting countries. Other countries such as emerging 

market economies use the accumulation of large scale foreign reserves as a tool of foreign 

exchange intervention to resist currency appreciation in the face of accommodative monetary 

policy (Mahanty and Turber, 2006). Countries that follow an export-oriented growth strategy 

may end up with competitive hoarding similar to competitive devaluation, depicting a return to 

.mercantilist strategies. Foreign reserves may also mitigate the real exchange rate effects of 

terms of trade shocks and export promotion. Moreover, countries with less flexible exchange rate 

regimes should require higher levels of international reserves to sustain exchange rate stability.  

There is also the question of the adequacy of foreign reserves in terms of some criterion 

expressing the need for reserves. There is an opportunity cost of holding international reserves 

which can be represented as an income loss for those countries that do not hold the optimal 

reserves holdings. The difference between the return on liquid international reserve assets and 
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the cost of foreign borrowing, or the return on domestic assets and investment, makes up the 

opportunity cost of holding international reserves. 

Most of the BRICS countries -Brazil, Russia, India, China and South Africa- are developing 

countries known for holding large international reserves. These countries have experienced 

strong economic growth fueled by strong exports, which has led to accumulation of large 

reserves. China’s foreign reserves are mainly composed of US dollars in the forms of US 

government bonds and institutional bonds. Growing from $600 billion ten years ago, those 

reserves stood at $3.5 trillion  in June 2013, making them the highest foreign exchange reserves 

in the world with the US dollar and yen holdings taking up 60% and 10% of the total, 

respectively.  

The literature has shown that reserve holdings by similar countries seem to be a predictable 

outcome of a few key factors including the size of international transactions, their volatility, the 

exchange-rate arrangement, financial risks and political considerations (Aizenman and Marion, 

2003). The objective of this study is to examine possible predictors of the growth of China’s 

international reserves and to generally shed new light on the ‘puzzling’ pattern of international 

reserves, using fairly recent prediction models. It will be interesting to discern the prowess of 

real economic and financial variables in predicting changes in China’s international reserves. In 

particular, we are keen to understand the predictability power of industrial production, trade 

openness, interest rate spreads, financial stress and economic policy uncertainty, among other 

variables of China’s accumulation of international reserves. While interest rate spreads are 

associated with opportunity cost of holding reserves (e.g., Edison, 2003; Aizenman and Marion, 

2004; Aizenman and Lee, 2007), the stress and uncertainty variables represent volatility of 

external disturbances which influences the need for international reserves. 
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The prediction results of China’s international reserves are of interest to both capital markets 

and policy-makers due to their huge size and their relation with the management of China’s 

exchange rate and the intention to putting them to innovative uses in the future. They would also 

help send signals to the Chinese policy-makers regarding the adequacy and optimality of these 

reserves. They can signal to the Chinese central bank of how the amount of foreign currencies it 

holds relates to the three months of imports rule. They also have implications for exchange rate 

policy arrangements and currency controls in China and levels of interest rates in major foreign 

countries like the United States. Currently, the Chinese State Council is calling for innovative 

uses of those reserves instead of placing the majority in low yielding US securities. The IMF also 

urges China to make systematic economic adjustments as it views China’s pace of economic 

expansion as not sustainable and raising vulnerabilities in the future. In such circumstances, 

forecasting China’s reserves matters a great deal as the margins of safety are diminishing.  

Methodologically against this backdrop, this paper applies the dynamic model averaging 

(DMA) strategy developed by Raftery et al. (2010), which can also be used for the dynamic 

model selection (DMS) methodology (where a single but potentially different model can be 

employed as a forecasting model at each point of time) to forecast China’s foreign exchange 

reserves based on a wide array of predictors, ranging from macroeconomic variables to economic 

policy uncertainty and financial stress measures. The DMA or DMS seems ideally suited for 

forecasting a variable as volatile as the foreign exchange reserves that have gone through periods 

of major events and crises, since these methodologies not only allow the forecasting model to 

change over time, but also the coefficients in each model to evolve over time simultaneously. 

These two methods involve only standard econometric methods used for state space models, 

such as the Kalman filter, but through some sensible empirical approximations, they achieve vast 
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gains in computational efficiency so as to allow one to apply DMA and DMS despite the 

computational difficulties. In an emerging market economy like China, which has undergone and 

still is going through structural changes, it is important to not only allow for parameter 

uncertainty, but also for model uncertainty when forecasting key macroeconomic variables such 

the international exchange reserves. The advantages of using the DMA approach over standard 

predictive regression methods are three folds. (1) The coefficients on the predictors can change 

over time, while the use of dummy variables to capture possible structural breaks or recursive 

methods to take care of time variations is not suited to solve this issue.  Hence ideally, one needs 

to build models designed to capture the changing of slope parameters of the models. (2) Given 

that we use a wide variety of predictors, the number of potential predictors is in general quite 

large, thereby in the process making the number of models quite large as well. For instance, if 

the set of models is defined by whether each of the m potential predictors are included or 

excluded, then we have m2  possible models to work with. This would raise substantial statistical 

problems involved in model selection, which in turn, has resulted in researchers resorting to the 

Bayesian model averaging (BMA) as in Wright (2008) and Tortora (2009). (3) Finally, the model 

that is relevant for forecasting can itself potentially change over time due to a change in the set of 

predictors or with some variables better capable of forecasting during, for example, recessions 

than expansions. This makes the situation even more complicated, since with m2  models the 

number of combinations of models required to be estimated in order to forecast at time τ is 2mτ to 

allow for the possibility of a different model being applicable at each point in time. Even in 

relatively simple forecasting exercises, it can be computationally impossible to forecast by 

simply going through all of these 2mτ combinations.  
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The results show that DMA and DMS models forecast generally well, with DMS being the 

best overall, underlying the importance of catering for model uncertainty. The sum of the log 

predictive likelihoods clearly shows that DMS performs better across all forecast horizons. This 

result also carries over to the mean squared forecast error (MSFE). Both the sum of the log 

predictive likelihoods and the MSFE indicate that using a TVP model for forecasting produces 

weak results relative to the forecasting performance of the DMA and DMS models on average. 

Interestingly, based on the results provided by the predictive likelihoods, we see that most of the 

improvements in forecast performance found by DMA or DMS are due to model evolution rather 

than parameter evolution, since the DMA and DMS models perform better than the DMA model 

with λ set equal to 1 (implying the model is not allowed to change here). It can therefore be 

concluded that allowing for model uncertainty and not only for parameter uncertainty improves 

the forecasting performance of these models. Our study also shows the China’s international 

reserves in recent years (i.e., 2009-2012) are greatly affected by different factors in the short run 

(based on one-month ahead forecasting) than in the longer horizon (based on one-year ahead 

forecasting). Among the 13 predictors, the US-China interest rate differential stands out for 

having superior predictive power that endures over time. On the other hand, the predictive 

powers of and copper prices alternate over the business and crisis cycles 

The rest of the paper is structured as follows: Section 2 presents the literature review; Section 

3 outlines the methodology used; Section 4 presents the data description and Section 5 discusses 

the empirical results and offers alternative model comparisons in terms of forecasts. Finally, 

section 6 concludes. 

 

2. Literature Review 
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The literature has been active in investigating the determinants of demand for international 

reserves. This literature relies on the buffer stock model which was developed in the 1960s and 

1970s (e.g., Heller, 1966; Kenen and Yudin, 1965; Kelly, 1970; Frenkel and Jovanovic, 1981). 

According to this model, central banks choose the optimal level of reserves to balance the costs 

of macroeconomic adjustment for having inadequate levels of reserves with the opportunity cost 

of holding reserves. 

A group of studies also addresses the adequacy of constant coefficients of the demand for 

foreign reserves in the cross section data. To deal with this problem, Frenkel (1974) examines 

the difference between coefficients of the demand for foreign reserves of 55 developed and less-

developed countries and shows that the demand parameters of the two groups are significantly 

different. He attributes the differences to factors such as the degree of sophistication of financial 

structures, the ability of the monetary authorities to satisfy the increased demand for money as an 

asset in the process of economic growth, among others. Sula (2011) estimates the determinants 

of the demand for international reserves, using quantile regressions. Employing data for 108 

developing nations, this author finds considerable differences at different points of the 

conditional distribution of reserves and that the level of reserves is as important as the other 

determinants of the demand for reserves. Ford and Huang (1993) investigate the demand for 

international reserves in China, using the error-correction model with account of monetary 

disequilibrium. The authors show that China has maintained a stable long-run relationship with 

the determinants of the demand for reserves, and that the monetary disequilibrium has short-run 

effect on reverses, implying a general balancing policy, 

Another strand of the literature offers the precautionary demand explanation of holding 

reserves as a protection against sudden stops of capital flows (e.g., Ben-Bassat and Gottlieb, 
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1992; Lee, 2004; Aizenman and Lee, 2007). Aizenman (1998) also shows that precautionary 

demand will be strong if governments have high aversion to loss. In addition to analyzing the 

demand for foreign reserves, there are studies that focus on the optimal amount of foreign 

reserves (see Jean and Rancière, 2006; Calvo et al., 2012) based on the sudden stops in the 

capital inflows.  Calvo et al. (2012), for example, derived the optimal foreign reserves model by 

balancing the expected cost of a sudden stop against the opportunity cost of holding reserves. 

They found that Eastern Europe held the reserve below the equilibrium level while Asian 

countries hold more reserves that the optimal level. 

Accumulating international reserves can also be an outcome of industrial policies, where 

governments deliberately prevent the exchange rate from appreciating to promote trade 

competitiveness. This explanation is motivated by China’s demand for reserves in the 1990’s 

(Dooley et al., 2003). Aizenman and Lee (2007), however, argue that the precautionary demand 

for international reserves explains the behavior of emerging markets better than the mercantilist 

view in the period after the Asian financial crisis. 

A survey of the literature shows that the research on international reserves in China is very 

limited. Obstfeld et al. (2008) propose a model based on financial stability and financial 

openness to explain reserve holdings. The size of domestic financial liabilities that could 

potentially be converted into foreign currency, financial openness, the ability to access foreign 

currency through debt markets, and exchange rate policy are all significant predictors of reserve 

stocks. The authors claim that this financial-stability model outperforms both traditional models 

and recent explanations based on external short-term debt. Remoro (2005) used an intervention 

model to examine predictors of the demand for reserves for China and India. The author finds 

that the current account has a greater impact on China’s reserves holdings than the other 
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predictors included in the model, since its current account balance is the principal mechanism 

through which countries get official reserves. 

To our knowledge, there is no study that deals with predictors of those reserves for China 

(or other countries), despite the importance of this topic to China and major other countries such 

as Russia, Korea, Singapore etc., as explained earlier. Our paper will set the pace for this strand 

of the literature. 

 

3. Methodology 

The time-varying parameter (TVP) models employ state space methods such as the 

Kalman filter, which is commonly used in empirical macroeconomic research on structural 

analysis and forecasting. These types of models, however, do not allow predictors to vary over 

time (Koop and Korobilis, 2012).5 If large sets of predictors are used, then the TVP models tend 

to over-fit in-sample, and therefore have a poor out-of-sample forecasting performance. Even 

extensions of these models such as the TVP-VAR models suffer from this same limitation (Koop 

and Korobilis, 2012). To address these shortcomings in the TVP models, the DMA models 

present a possible and better alternative. 

Dynamic model averaging (DMA), as the name implies, averages across various models. 

BMA, which is a specific form of the DMA model, is only used for static linear models with 

parameter uncertainty. The uncertainty is accounted for by averaging over all the sets of possible 

explanatory variables that may be included in the models (Raftery et al., 2010). A short fall with 

the BMA approach is that it is limited to static models only. It was observed that the dynamics of 

                                            
5
 This section relies heavily on the discussion available in Koop and Korobilis (2012), to the extent that we have 

also retained the mathematical symbols they used in their equations. 
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the various models tend to follow a hidden Markov chain which can be incorporated using a 

recursive updating method such as the Kalman filter (Raftery et al., 2010). Using the DMA 

framework, the BMA can be easily derived by simply excluding any dynamics from the DMA 

estimates. 

To understand the econometric methodology, suppose that we have a set of K models 

which are characterized by having different subsets of zt  as predictors. Denoting these by 
(k)

z  

for k = 1,..,K, our set of models can be written as: 

                                                   

(k) (k) (k)
y = z θ + εt t t t

(k) (k) (k)
θ = θ +ηt tt+1

,            (1) 

where 
(k)
εt  is 

(k)
N(0,H )t  and 

(k)
ηt  is 

(k)
N(0,Q ).t  Let { }L 1,2,..,Kt ∈ denote which model applies at 

each time period, 
(1) (K)

Θ = (θ ,..,θ )t t t
′ ′

′and t
y = (y ,.., y )'t1

. The fact that we are allowing different 

models to hold at each point in time and performing model averaging, gives rise to the 

terminology “dynamic model averaging”. To be precise, when forecasting time t variables using 

information through time t-1, DMA involves calculating t-1
Pr(L = k | y )t for k = 1,..,K,  and 

averaging forecasts across the K models, using these probabilities. DMS involves selecting the 

single model with the highest value for t-1
Pr(L = k | y )t and using this to forecast. However, there 

are problems with such a framework, since many of the models can have a large number of 

parameters, and the computational burden which arises when K is large implies that estimation 

can take a long time. Thus, a full Bayesian approach to DMA can be quite difficult. Following 

Koop and Korobilis (2012), we in this paper use approximations as suggested by Raftery et al., 

(2010). The approximations used by Raftery et al. (2010) involve two parameters for the 

coefficients and the models, λ and α, which these authors refer to as the forgetting factors and fix 
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them to numbers slightly below one. To explain the role of these forgetting factors, first consider 

the standard state space model below for t = 1….T: 

                                                      y = z θ + εt t t t                                                                             (2) 

                                                       θ = θ +ηt tt-1
                                                                            (3) 

In our case, the output vector yt  is the foreign exchange reserves, 

z = [1,x , y ,...., y ]t t- pt-1 t-1
is an 1 × m vector of predictors for the (growth rate of the) foreign 

exchange reserves which also includes an intercept and lags of the dependent variable, 

θ = [f ,β ,γ ,....,γ ]t t- pt-1 t-1 t-1
 is an 1 × m vector of states, ε ~ N(0,H )t t and η ~ N(0,Q )t t , with the 

errors assumed to be mutually independent at all leads and lags. For given values of the variance-

covariance matrices Ht and Q ,t  the standard filtering and smoothing results can be used to carry 

out recursive estimation or forecasting. Kalman filtering begins with the result that 

    ( )ˆt-1
θ | y : N θ , t-1|t-1t-1 t-1 ∑                   (4) 

where formulae for θ̂
t-1

and t-1|t-1∑ are standard. Note here only that these formulae depend on 

Ht and Q .t Then Kalman filtering proceeds, using: 

 

    ( )t|t 1
ˆ ,

t-1
θ | y N θ ,t t-1 −∑∼                (5) 

where 

    = +Q .t|t-1 t-1|t-1 t∑ ∑  

Raftery et al. (2010) note that things simplify substantially when one involves a 

forgetting factor ( λ ) in the state equation for the parameters.  This is done by replacing this latter 

equation by: 
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1

=t|t-1 t-1|t-1
λ

∑ ∑                         (6) 

or, equivalently, -1
Q = (1- λ ) t-1|t-1t ∑ where 0 < λ 1.≤ The term “forgetting factor” is suggested 

by the fact that this specification implies that observations j periods in the past have weight jλ . It 

can also be noted that it implies an effective window of ( )1/ 1 λ− . In the literature, it is common 

to choose a value of λ near one, which suggests a gradual evolution of coefficients. Raftery et al. 

(2010) set λ = 0.99. For monthly macroeconomic data, this suggests observations five (one) 

years ago receive approximately 50% (90%) as much weight as last period’s observation. This 

would be consistent with fairly stable models where coefficient change is gradual. This would 

suggest substantial parameter instability with rapid change in coefficients.  Forecasting in the one 

model case is then completed by the updating equation: 

     t ˆθ | yt N(θ , ),t|tt ∑∼                        (7) 

where 

   ( ) ( )ˆ ˆ ˆ-1
= + z H + z z y - zt|t-1 t|t-1t t t t t t tt-1 t-1

′θ θ θ∑ ∑            (8) 

and 

   ( )
-1

= - z H + z z z .t|t t|t-1 t|t-1 t|t-1 t|t-1t t t t t′∑ ∑ ∑ ∑ ∑           (9) 

Recursive forecasting is done using the predictive distribution 

   ( )ˆy | y N z θ ,H + z z .t|t-1t t t t tt-1 t-1
′∑∼                    (10) 

The case with many models, (1) uses the previous approximation and an additional one. 

To understand this, we now switch to the notation for the multiple model case in (1) and let 
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Θt denote the vector of all the coefficients. In the standard single model case, Kalman filtering is 

based on (4), (5) and (7). In the multi-model case, for model k, these three equations become: 

   ( )(k)

t 1|t 1
ˆ(k)t-1

Θ = k, y N θ ,
t-1t-1|L

t-1
− −∑∼                                 (11) 

   ( )ˆ(k) (k)t-1
Θ = k, y N θ ,

t-1 t|t-1t|Lt
∑∼                      (12) 

   ( )(k)

t|t
ˆ(k)t

Θ = k, y N θ , ,tt|Lt
∑∼                                 (13) 

where ˆ(k)
θ ,t

(k)
t|t∑  and 

(k)
t|t-1∑ are obtained via Kalman filtering in the usual way using (6), (8), 

and (9), except with (k) superscripts added to denote model k.  

The previous results are all conditional on L = k,t and we need a method for unconditional 

prediction. In this paper, we follow the suggestion of Raftery et al. (2010) and as used in Koop 

and Korobilis (2012), based on a forgetting factor for the state equation for the models, α, which 

in turn, is, comparable to the forgetting factor λ used with the state equation for the parameters. 

The derivation of Kalman filtering ideas begins with (4). The analogous result, when doing 

DMA, is 

 ( ) ( ) ( )
K (k)t-1 t-1 t-1

P Θ ,L | y = P θ | L = k, y Pr L = k | y ,
t-1 t-1 t-1 t-1 t-1k=1

∑                              (14) 

where 
(k) t-1

P(θ | L = k, y )
t-1 t-1

 is given by (11). To simplify notation, let s
π = Pr(L = l | y )tt|s,l

and 

thus, the final term on the right hand side of (14) is π
t-1|t-1,k

. 

With, 

    

α
π

t-1|t-1,k
π = ,
t|t-1,k αK π

t-1|t-1,ll=1∑
                           (15) 
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where 0 1< α ≤  is set to a fixed value slightly less than one and is interpreted in a similar manner 

to λ, i.e., if α = 0.99 (our benchmark value and also the value used by Raftery et al., 2010) the 

forecast performance five years ago receives 50% as much weight as the forecast performance of 

last period (when using monthly data), while the forecast performance one year ago receives 

about 90% as much weight as last month’s performance.  Comparable to those of the updating 

equation in the Kalman filter, we have a model updating equation of: 

   

t-1
π (y | y )tt|t-1,kPk

π = ,
t|t,k t-1K π (y | y )tl=1 t|t-1,lPl

∑
                                (16) 

where t -1
p (y | y )tl

 is the predictive density for model l , which is the Normal density in (10) 

with ( l ) superscripts added and evaluated at y .t  Recursive forecasting can be done by averaging 

over predictive results for every model using π .
t|t-1,k

 So, for instance, DMA point predictions 

are given by: 

   ˆ
K (k) (k)t-1

E(y | y ) = π z θ .t t t-1t|t-1,kk=1
∑  

DMS proceeds by selecting the single model with the highest value for π
t|t-1,k

at each 

point in time and simply using it for forecasting. Note also that, if α = 1, then π
t|t-1,k

is simply 

proportional to the marginal likelihood using data through time t-1, and yields the standard 

approaches to BMA. If we also set λ = 1, then we obtain BMA using conventional linear 

forecasting models with no time variations in coefficients. In our forecast comparison exercise, 

we include BMA in our set of alternative forecasting procedures and implement this by setting α 

= λ = 1. 
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The preceding discussion is all conditional on Ht . Raftery et al. (2010) recommend a 

simple plug in method where 
(k)

Ht = 
(k)

H and is replaced with a consistent estimate. When 

forecasting the foreign exchange reserves, however, it is likely that the error variance is changing 

over time. Theoretically, we could use a stochastic volatility or an ARCH specification for 
(k)

H .t  

However, this is computationally burdensome, so instead, we follow a simple plug-in approach 

as in Koop and Korobilis (2011), which in turn, is a rolling version of the recursive method of 

Raftery et al. (2010). Specifically, let 

 ( )ˆ
2t1(k) (k) (k) (k) (k)(k)

H = y - z θ - z zt t t t tt|t -1t -1* *t j= t -t +1

′∑ ∑
 
 
 

ɶ                         (17) 

To allow for more substantial change in the error variances, we set *
t = 2 0 and, thus, 

use a rolling estimator based on five years data. Following Raftery et al. (2010), we can avoid 

the rare possibility that 
( k )

H < 0 ,t
ɶ by replacing 

(k)
Ht  by ˆ (k)

Ht  where 

    
if

ˆ

ˆ otherwise

(k) (k)
H H > 0t t(k)

Ht (k)
H

t-1

=






ɶ ɶ

. 

 

4. Data 

This analysis in this paper is based on monthly data, mostly sourced from the People’s 

Bank of China and the International Financial Statistics of the International Monetary Fund. 

More specifically, other sources include the Bank of International Settlements, China’s National 

Bureau of Statistics, Federal Reserve Bank of Kansas City, and 

http://www.policyuncertainty.com/index.html. Besides, China’s foreign exchange reserves 

(which is obtained from the Chinese State Administration of Foreign Exchange), the growth rate 
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of which is what we forecast, the predictors include: the nominal effective exchange rate, 

Chinese short-term interest rate, the Chinese term-structure, the interest rate differential with the 

US, the oil price, the copper price, the Chinese M1, the Chinese industrial production, the 

Chinese exports, the Chinese trade balance (exports less imports), the Chinese and US economic 

policy uncertainty measures,6 and the US financial stress index maintained by the Kansas City 

Federal Reserve.7 The monthly sample period under consideration is from January 1997 up to 

March 2013, with the start and end points being defined by availability of data on all the 

variables (the foreign exchange reserves and the thirteen predictors). The out-of-sample period 

ranges from January 2003 to March 2013, a normal choice given the increased volatility of the 

growth rate of the foreign exchange reserves since the beginning of 2003, as depicted in Figure 1. 

Our selection of explanatory variables is based on previous research. For example, Ford 

and Huang (1994) show that the demand for international reserves in China depends on the 

transactions-related demand (that is, industrial and agricultural output), the balance of payments, 

imports, and China’s degree of exposure to the international economy. Sula (2011) uses the 

interest rate differential, volatility of export receipts, exchange rate regime, trade openness, the 

1997 Asian crisis dummy, population and real GDP per capita to explain the demand for 

international reserve. Aizenman and Marion (2003) use variables such as population, real GDP 

per capita, real export receipts, shares of imports of goods and services in GDP, and the nominal 

effective exchange rate. Obstfeld et al. (2010) use population, import to GDP ratio, exchange rate 

volatility, real GDP per capita as explanatory variables in a traditional international reserve 

model while include M2 to GDP ratio, a measure of financial openness, exchange rate regime 

dummy, advanced country dummy and foreign trade variable in a financial stability model. They 

                                            
6 The reader is referred to Baker et al., (2013) for further details regarding the construction of the economic policy 
uncertainty indexes for China and the United States. 
7 For more detailed information on the data and the sources, see Table 1A  in Appendix. 
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find that the financial-stability model outperforms both traditional models and explanations 

based on the external short-term debt. In sum, all the previous research mentioned above seems 

to agree that the international reserves are affected by: (i) domestic real sectors, (ii) trade factors; 

(iii) financial factors; and (iv) risk.  

       Therefore, in forecasting China’s foreign exchange reserves, we include the following 

variables to account for both demand and supply sides of foreign exchange reserves: China’s 

nominal effective exchange rate8, China’s interest rate, within-China interest rate spread (long-

term minus short-term interest rates), short-term interest rate differential with the United States, 

money supply of China (M1), Chinese industrial production, Chinese export and Chinese net 

exports. We also include two important commodity price indices: oil and copper. Finally, to 

account for economic and financial risks, we include the China Economic Policy Uncertainty 

Index, the US Economic Policy Uncertainty Index and Kansas City Fed’s Financial Stress Index. 

The interest rates represent the opportunity costs of holding the international reserves instead of 

investing them in more return-yielding assets. Copper is known as Dr. Copper because it predicts 

changes in economic activity and business cycles and it is also part of China’s transactions-

related demand. Moreover, China is the largest consumer of this metal, and thus imports of this 

commodity affect its total imports and foreign reserves. The exports and imports represent 

changes in the current account which is related to changes in foreign exchange rate reserves. 

       All the variables are obtained in seasonally adjusted form, and if not available in this form, 

seasonal adjustment is carried out using the X-12 approach proposed by the Department of 

                                            
8 Since the middle of 2008 and due to economic crisis, China has initiated a soft peg exchange rate regime, pegging 
its currency to US dollar at a rate of about 6.83 RMB per US dollar. This change in policy terminated Chinese 

managed float exchange regime that existed between 2005 and 2008. Article Source: 
http://EzineArticles.com/4653885 
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Commerce of the US Census Bureau. Variables that are available at higher frequencies than a 

month are averaged out over the respective days or weeks to reach monthly figures.  

       The Augmented Dickey-Fuller (ADF) (1979), Dickey-Fuller Generalized Least Squares 

(ADF-GLS), Ng-Perron (2001) and Elliot, Rothenberg and Stock (ERS) (1996) tests are 

performed on all the variables to test for stationarity. In the cases where the results are 

ambiguous, the results from the Ng-Perron (2001) unit root test take preference due to the 

improved finite-sample performance of the test. Transformations similar to those used by Koop 

and Korobilis (2012) are applied to the data series, in order to transform all of the variables to be 

stationary. The different transformation codes and detailed descriptions of the data, including 

their sources, are listed and defined in the Data Appendix. The summary statistics of the 

variables are presented in Table 1. The highest historical volatility as defined by standard 

deviation is bestowed on (X-M) followed by China’s economic policy uncertainty index. 

Interestingly, the US financial stress index has the lowest volatility. China’s foreign exchange 

reserves have generally low contemporaneous correlations with all 13 variables; having the 

highest correlation with the nominal exchange rate (0.335) and the lowest with exports minus 

imports (0.009). It is also interesting to note that the correlation with the copper price is 0.226, 

while it is 0.146 with the oil price. As expected, the correlation is negative with the U. S. 

financial stress index (-0.20) and the U.S. policy uncertainty index (-0.206). Most of the 

variables have excess kurtosis, with the exceptions being the US economic uncertainty index and 

the interest rate differential with the United Sates which have lower kurtosis than the normal 

distribution. About half of the variables are positively skewed, while the second half is 

negatively skewed. Interestingly, all the variables do not have normal distribution as evidenced 

by Jarque-Bera statistics, with the exception of the copper price which has a normal distribution. 
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5. Empirical Results 

        The empirical results are divided into two sub-sections. These subsections present results 

using DMA and DMS in our preferred way, i.e., by setting 99.0=α  and 99.0=λ ,9 a non-

informative prior over the models (π0|0,k=1/K for k = 1, ..., K) and a relatively diffuse prior for the 

initial state conditions: )100,0(~)(

0 N
kθ  for k = 1, ..., K. The first sub-section provides evidence of 

which variables are good predictors of the growth China’s foreign exchange reserves from the 

list of the 13 potential variables listed in the Data Appendix. In the second sub-section, we 

compare the forecast performance of the DMA to a number of alternative forecasting models 

nested in the DMA, including the BMA, the autoregressive and the random walk models. The 

considered forecasting horizons are: one (d=1), three (d=3), six (d=6), nine (d=9) and 12 (d=12) 

months. All of the models include an intercept and one lag of the dependent variable, chosen by 

the Schwarz information criterion.10
 

 

5.1. Good predictors for foreign exchange reserves 

      One of the largest potential benefits using the DMA framework is that it allows the 

forecasting model to change over time, i.e. the model parameters may change, as well as the set 

of predictors. Given the difficulty in explaining foreign exchange reserve movements, we include 

                                            
9
 Note that, one could choose values for λ and α based on the forecast performance as in Grassi and de Magistris 

(2013), but this would bias our results in favour of DMA and is not a valid procedure for out-of-sample forecasting 

(Koop and Korobilis, 2011). Alternatively when forecasting at time τ , we could consider a grid of values for λ and 

α and select the value which yielded the highest value for the marginal likelihood or an information criterion, which 

essentially amounts to treating λ and α as unknown parameters. However, this would greatly add to the 
computational burden; so much so that it might be impossible to do forecasting in real time (Koop and Korobilis, 
2011). Hence, we follow Koop and Korobilis (2011, 2012) and simply select values for the forgetting factors, but, 
we do carry out a sensitivity analysis in Section 4. 
10 Also, experimentation with three lags (as chosen by the Akaike information criterion) of the dependent variable 
showed that one lag length leads to the best forecast performance.  
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a set of 13 possible predictors (excluding the lag dependent variable), hence we have 8,192 

possible models to choose from. 

     We now turn to provide the results on the main predictors as selected by the DMA analysis 

for the foreign exchange reserves for every forecast horizons, d=1, d=3, d=6, d=9 and d=12, over 

the out-of-sample period 2003:1 to 2013:3.  Through Figures 2 to 6, it appears that the good 

predictors of the China’s foreign exchange reserves vary over time and over the forecast 

horizons. Particularly, three periods are striking. Before 2005, the interest rate differential with 

the United States (INTDIFF) comes through strongly for horizons d =1, 3, 9, 12, while the 

nominal effective exchange rate (NEER) prevails for d = 6, 9 and the interest rate spread 

(ISPREAD) for d= 3, 9, 12. The Kansas City Financial Stress Index (KCFSI) shows strong 

predictive power throughout the forecast horizons. Similar strong patterns are observed with the 

copper price (CP) and oil price (OP) except for d = 1. Furthermore, industrial production (IP) 

shows some predictive power for d = 1, 3, 6, 12 forecast horizons. Money supply (M1) has some 

predictive power for d = 3, 6, 9, 12. Exports (X) come through strongly for d = 3, 6, 12 but with a 

relatively less predictive power than INTDIFF and NEER. Particularly, the inclusion probability 

of X peaks around 0.8 over the selected forecast horizons, compared to 0.9 for NEER (d= 6) or 1 

for INTDIFF (d= 3, 12). 

       Between 2005 and 2009 which was dominated by a commodity boom, the same pattern 

holds for d = 3, d = 6 and d = 12, with the interest rate (INT), exports minus imports (X-M), 

China and US economic policy uncertainty indexes (CPUI and UPUI), ISPREAD, CP and M1 

being the most important predictors. At a shorter horizon (d = 1), INDIFF, CP and KCFSI show 

strong predictive power whereas INT, OP and UPUI are the prevailed predictors for d = 9. 
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       Towards the end of the forecasting period, namely after 2009, INT, INDIFF, OP, M1 and 

UPUI appear to be of considerable importance in predicting the foreign exchange reserves for 

almost all horizons. This is not the case with NEER (important for d = 3 and d = 12), CP, IP, X, 

KCFSI (important for d = 1) and finally X-M (important for d = 9). Therefore, each of these 

variables emerges as being an important predictor for the foreign exchange reserves at some time 

for some forecast horizons.  

 

5. 2.  Model forecasting comparison 

     To analyze the forecast performance of each model, we use the mean squared forecast error 

(MSFE) in percentages, which is available for all the models. Note that, the preferred method for 

Bayesian forecast comparisons is the sum of the log predictive likelihoods, involving the entire 

predictive distribution. For a discussion on predictive likelihoods, refer to Gweke and Amisano 

(2007) as a representative source. The predictive likelihood is the predictive density for ty , given 

data through time t-1, evaluated at the actual outcome. Since we use the direct method of 

forecasting, the log predictive density for the h-step ahead forecast is an obvious extension of the 

formula for the one-step ahead predictive density in model l as denoted by 1( | )t

l tp y y − and 

described in Section 2. We use the sum of log predictive likelihoods for forecast evaluation of 

the Bayesian models, with the sum beginning in the first month of 2003 up to the third month of 

2013 of the out-of-sample period. MSFEs are reported over the same period. 

       In terms of alternative forecasting models, the results for the models below are reported: 

(1)  Forecasts using Dynamic Model Averaging (DMA) with 99.0== λα . 

(2) Forecasts using Dynamic Model Selection (DMS) with 99.0== λα . 
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(3) Forecasts using all the variables in a single model with time varying parameters (TVP) 

(100% of the prior weight is attached to the model with all the variables in this special 

case of DMA, with all other modeling choices being identical including λ=0.99).  

(4) Forecasts using DMA, but the coefficients do not vary over time (a special case of DMA 

where 1=λ  and 99.0=α ). 

(5) Forecasts using Bayesian Model Averaging (BMA: a special case of DMA 

where 1== λα ). 

(6) Recursive ordinary least squares (OLS) forecasts using an autoregressive model of order 

one, i.e., AR(1). 

(7) Recursive OLS forecasts using all predictors. 

(8) Forecasts using the random walk (RW). 

      Model (1) applies the dynamic model averaging (DMA), using the benchmark 

values 99.0== λα . This allows not only for the parameters to change over time, but also for the 

set of predictors. As stated earlier, values of 0.99 are consistent with fairly stable models with 

gradual coefficient change over time, where forecasts are averages across models using 

associated probabilities, calculated as Pr(Lt = k|y
t-1). Model (2), where dynamic model selection 

(DMS) is used, involves selecting the single model with the highest probability and using this to 

forecast. Model (3) is a special case of model (1) where all predictors are included for all time 

periods, but parameter values are allowed to change. Model (4) is a constant parameter model, 

but model evolution is allowed, while in model (5), through setting both forgetting factors to one, 

we obtain the Bayesian model averaging (BMA) which uses conventional linear forecasting 

models with no time variations in the coefficients. Understandably, the last three models are non-

Bayesian, which means that there is no predictive likelihood for the random walk (RW) model.  
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Table 2 presents the results from our forecasting exercise for China’s foreign exchange 

reserves for five forecasting horizons, namely 1-month-ahead (horizon 1) , 3-months-ahead 

(horizon 3), 6-months-ahead (horizon 6), 9-months-ahead (horizon 9), and 12-months-ahead 

(horizon 12). From the results in Table 2, it is clear that DMA and DMS forecast generally well, 

with DMS being the best overall. The sum of the log predictive likelihoods clearly shows that 

DMS performs better across all forecast horizons. This result also carries over to MSFE. Both 

the sum of the log predictive likelihoods as well as the MSFE indicates that using a TVP model 

for forecasting results in poorer forecasting performance, relative to the DMA and DMS on 

average. The poor forecast performance of the TVP model as well as the recursive OLS model 

with all predictors, compared to DMA and DMS is an indication that the shrinkage provided by 

the latter models is of great value in forecasting. Also note that, the predictors matter in 

forecasting, since all the models that include the predictors outperforms the AR(1) and the RW 

models. However, to obtain best forecast performances, one not only needs to include 

information from the fundamentals, but also allows for model evolution and parameter evolution 

as carried out by the DMA and DMS. Interestingly though, based on the results provided by the 

predictive likelihoods, we see that most of the improvements in forecast performance found by 

DMA or DMS are due to model evolution rather than parameter evolution, since DMA and DMS 

perform better than the DMA model with λ set equal to 1 (implying the model is not allowed to 

change here).  It can therefore be concluded that allowing for model uncertainty and not only 

parameter uncertainty, improves the forecasting performance of these models. 

 

6. Conclusion 
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In this paper, we use the dynamic model averaging techniques based on 13 predictors for 

predicting China’s foreign exchange reserves that embrace macroeconomic, trade, financial and 

risk (uncertainty) factors and examine possible predictors of this country’s international reserves. 

Specifically, by comparing with other alternative models, we show that dynamic model 

averaging (DMA) and dynamic model selection (DMS) models outperform not only linear 

models (such as random walk, recursive OLS-AR(1) models, recursive OLS with all predictive 

variables models) but also the Bayesian model averaging (BMA) model of China’s foreign 

exchange reserves. Furthermore, sensitivity analysis reveals that in China’s foreign exchange 

reserve modeling, accounting for model uncertainty may even be more important than parameter 

uncertainty. We obtain these results based on the thirteen potential predictors used to forecast 

China’s international reserves. In the process, we also unveil what variables which tend to vary 

over time are good predictors of China’s international reserves at different forecasting horizons. 

This implies that the single static and constant parameters models are not good vehicles for 

predicting China’s foreign reserves. 

Besides the forecasting power of the DMA and DMS models, our study shows that in the 

short run (d=1), the China’s international reserves in recent years (2009-2012)  are  strongly 

affected by the US-China interest rate differential, nominal exchange rate, Chinese industrial 

production, copper price, US policy uncertainty index and Kansas City Financial stress index. 

However, at a longer horizon (one-year forecasting horizon), the reserves in the recent year (i.e., 

2009-2012) are greatly affected by the exchange rate, the US-China interest rate differential, 

Chinese interest rate, money supply, net export, oil price and US economic policy uncertainty 

index. 



25 

 

It seems that the US-China interest rate differential has superior predictive power among the 

other predictors in both the short and long runs. This return differential generally governs the 

growth of China’s reserves, which also directs the movement of financial assets that seek higher 

yields across borders. Given the importance of return differential, the result implies that China’s 

foreign reserves can be classified into different investment categories which can yield higher 

returns, in addition to the category that caters for safety in order to ensure liquidity and meet 

short term obligations. Norway’s sovereign wealth fund which is the world’s largest is now 

considering such investment categories. The prediction importance of the interest rate differential 

with the United States is also high for the U.S. economy and financial markets. A narrowing of 

the interest rate differential may lead to lower growth in the demand for foreign reserves in 

China. This result has strong bearing on the potential safety investment category of the expected 

sovereign wealth fund for China. 

In terms of the relevance of predictors based on commodity prices, it seems that the copper 

price predicts China’s foreign reserves better than the oil price during the commodity boom of 

2005-2008. However, since the global financial crisis many commodity prices have suffered, 

while the oil price dipped for a short period of time at the beginning of the crisis. Therefore, the 

results suggest that the oil price predicts those reserves better than the copper price since 2009. 

We can conclude that policymakers should be cognizant of the fact that there are many 

possible financial and economic predictors that can help to predict the international exchange 

rate reserves for China. These predictors can command different predictive powers during 

different time horizons and periods. 

A forecast of foreign reserves can be compared with the equilibrium reserves derived from an 

equilibrium foreign reserve model, and the resulting excess reserves can be measured. The 
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estimated excess reserves can be assessed in terms of GDP and a sense of adequacy can be 

concluded. Estimating an equilibrium foreign exchange reserve model and comparing it with our 

forecast model are other big tasks and we leave it for a future work. 

 



2
7

 

 T
ab

le
 1

: 
D

es
cr

ip
ti

v
e 

st
at

is
ti

cs
 

 
 

 
 

 
 

 
 

 
 

 
 

 

V
a
ri

a
b

le
s 

M
ea

n
 

M
a
x
 

M
in

 
S

td
. 

S
k

ew
a
 

K
u

rt
o

b
 

J
-B

c  
 

 
 

D
ep

en
d

e
n

t 

V
a

ri
a

b
le

 
F

E
X

 
1

.7
8

1
 

6
.1

1
1
 

-4
.1

5
5
 

1
.5

9
 

-0
.2

0
5
 

3
.8

2
 

1
.5

2
6

*
 

C
o

rr
el

a
ti

o
n

s 
o

f 
F

E
X

 w
it

h
 t

h
e 

P
re

d
ic

to
rs

 
 

 
 

 
 

 
 

 
 

P
re

d
ic

to
rs

 

N
E

E
R

 
-0

.1
6

2
 

3
.6

4
5
 

-4
.1

7
5
 

1
.2

6
7
 

-0
.1

7
 

4
.0

8
7
 

1
.2

2
9

*
*
 

0
.3

5
5

*
*
*

 

IN
T

 
6

.2
0

4
 

1
0

.0
8
 

5
.3

1
 

1
.1

2
2
 

1
.9

7
9
 

6
.8

3
6
 

1
3

0
.3

1
*
*
*

 
-0

.0
7

8
 

IS
P

R
E

A
D

 
0

.6
8

5
 

2
.4

3
 

0
.3

6
 

0
.5

1
5
 

2
.4

7
7
 

8
.0

4
3
 

2
0

4
.7

4
*
*
*

 
-0

.0
8

8
 

IN
T

D
IF

F
 

3
.6

5
 

6
.5

5
 

-0
.3

2
 

1
.9

0
9
 

-0
.3

0
1
 

1
.9

6
6
 

3
.1

9
6

*
*
*

 
-0

.0
1

4
 

O
P

 
0

.7
6

4
 

2
0

.1
4
5
 

-3
1

.1
8

4
 

8
.5

4
6
 

-0
.8

6
2
 

4
.4

0
8
 

2
4

.5
2

*
*
*

 
0

.1
4

6
*
*
 

C
P

 
0

.5
9

1
 

2
2

.9
8
2
 

-3
5

.4
5
 

6
.9

4
6
 

-0
.7

4
2
 

7
.9

3
1
 

2
3

.8
8

*
*
*

 
0

.2
2

6
3

*
*
*

 

M
1

 
1

.1
8

2
 

6
.1

1
1
 

-6
.4

7
2
 

2
.1

7
8
 

-0
.7

7
4
 

4
.5

5
4
 

1
9

.9
7
3

*
*
*

 
0

.0
3
 

IP
 

1
.1

5
5
 

4
9

.8
3
1
 

-4
4

.5
5

4
 

1
9

.6
5
3
 

-0
.1

0
6
 

3
.6

0
9
 

0
.4

5
6
 

-0
.0

7
5
 

X
 

1
.4

1
7
 

4
5

.3
3
4
 

-5
5

.6
1

4
 

1
3

.7
3
6
 

-0
.3

0
4
 

5
.7

6
6
 

4
.9

0
1

*
*
*

 
0

.0
1

5
 

X
-M

 
-1

2
.8

0
9
 

3
7

1
6
8
 

-5
9

0
3

2
 

7
5

8
7

.4
6
 

-2
.3

0
2
 

2
5

.3
4
7
 

2
9

6
.1

8
8

*
*
*

 
0

.0
0

9
 

C
P

U
I 

1
1

0
.2

6
7
 

3
6

3
.5

2
3
 

9
.0

6
7
 

6
7

.5
6
8
 

1
.3

0
5
 

4
.7

6
4
 

5
5

.8
4
2

*
*
*

 
-0

.1
5

1
*
*
*

 

U
P

U
I 

1
1

0
.2

9
9
 

2
4

5
.1

2
6
 

5
7

.2
0
2
 

3
9

.2
6
3
 

0
.8

2
3
 

2
.8

2
5
 

2
1

.9
0
7

*
*
*

 
-0

.2
0

*
*

*
 

K
C

F
S

I 
0

.2
1

6
 

5
.8

4
 

-0
.8

9
 

1
.0

9
5
 

2
.5

7
9
 

1
1

.4
5
7
 

2
3

2
.9

3
7

*
*
*

 
-0

.2
0

6
*
*
*

 

N
o

te
s:

 1
. 

T
h
e 

sa
m

p
le

 p
er

io
d

 i
s 

fr
o

m
 1

9
9

7
:1

 t
o

 2
0

1
3

:3
. 

  
  

  
  

  
 2

. 
a,

 b
, 

c 
re

fe
r 

to
 s

k
ew

n
es

s,
 k

u
rt

o
si

s 
an

d
 J

ar
q

u
e 

B
er

a 
st

at
is

ti
cs

, 
re

sp
ec

ti
v
el

y
. 

  
  

  
  

  
 3

. 
*
, 

*
*
 a

n
d

 *
*
*
 d

en
o

te
 s

ig
n
if

ic
an

ce
 a

t 
th

e 
1

0
%

, 
5

%
 a

n
d

 1
%

 s
ig

n
if

ic
an

ce
 l

ev
el

s,
 r

es
p

ec
ti

v
el

y
 

     



2
8

 

 T
ab

le
 2

: 
C

o
m

p
ar

in
g
 d

if
fe

re
n
t 

fo
re

ca
st

in
g
 m

et
h
o
d
s:

 C
h
in

a’
s 

F
o
re

ig
n
 E

x
ch

an
g
e 

R
es

er
v
es

 
 F

o
re

ca
st

 M
et

h
o

d
 

S
u

m
 o

f 
L

o
g
. 

P
re

d
. 

L
ik

e.
 

M
S

F
E

 
 

F
o

re
ca

st
 M

et
h
o

d
 

S
u

m
 o

f 
lo

g
. 

P
re

d
ic

t.
 L

ik
e.

 
M

S
F

E
 

 
d

=
1

 
 

 
d

=
9

 

D
M

A
 

-2
3

8
.9

8
8
 

1
.9

1
0
 

 
D

M
A

 
-2

1
9

.6
9

9
 

1
.8

1
7
 

D
M

S
 

-2
3

1
.6

8
9
 

1
.9

4
6
 

 
D

M
S

 
-2

0
6

.8
7

1
 

1
.7

6
3
 

T
V

P
 

-2
4

4
.1

7
9
 

1
.9

6
4
 

 
T

V
P

 
-2

2
4

.0
6

9
 

2
.0

8
9
 

D
M

A
 (
λ
=

1
) 

-2
3

6
.7

1
1
 

1
.9

0
9
 

 
D

M
A

 (
λ
=

1
) 

-2
1

7
.8

4
2
 

2
.0

2
4
 

B
M

A
 

-2
4

1
.2

4
4
 

1
.9

4
2
 

 
B

M
A

 
-2

2
2

.4
6

7
 

2
.0

8
2
 

R
ec

u
rs

iv
e 

O
L

S
-A

R
(1

) 
 

2
.9

8
5
 

 
R

ec
u
rs

iv
e 

O
L

S
-A

R
(1

) 
 

3
.0

9
6
 

R
ec

u
rs

iv
e 

O
L

S
-A

ll
 P

re
d

s.
  

 
3

.5
4

5
 

 
R

ec
u
rs

iv
e 

O
L

S
-A

ll
 P

re
d

s.
  

 
4

.8
5

4
 

R
an

d
o

m
 W

al
k

 
 

4
.0

1
0
 

 
R

an
d

o
m

 W
al

k
 

 
5

.1
5

7
 

 
d

=
3

 
 

 
d

=
1

2
 

D
M

A
 

-2
1

6
.4

5
8
 

1
.8

2
6
 

 
D

M
A

 
-2

3
4

.7
3
 

1
.8

1
7
 

D
M

S
 

-2
1

2
.4

5
 

1
.7

7
5
 

 
D

M
S

 
-2

2
7

.9
1

8
 

1
.7

6
2
 

T
V

P
 

-2
2

2
.1

6
6
 

2
.0

6
7
 

 
T

V
P

 
-2

3
8

.8
4

8
 

2
.2

9
7
 

D
M

A
 (
λ
=

1
) 

-2
1

2
.1

9
3
 

1
.9

0
8
 

 
D

M
A

 (
λ
=

1
) 

-2
3

5
.7

7
6
 

2
.3

0
0
 

B
M

A
 

-2
1

3
.9

9
8
 

1
.9

1
5
 

 
B

M
A

 
-2

3
9

.6
6

8
 

2
.3

6
9
 

R
ec

u
rs

iv
e 

O
L

S
-A

R
(1

) 
 

2
.9

6
3
 

 
R

ec
u
rs

iv
e 

O
L

S
-A

R
(1

) 
 

2
.9

9
9
 

R
ec

u
rs

iv
e 

O
L

S
-A

ll
 P

re
d

s.
  

 
3

.4
5

7
 

 
R

ec
u
rs

iv
e 

O
L

S
-A

ll
 P

re
d

s.
  

 
5

.0
9

6
 

R
an

d
o

m
 W

al
k

 
 

4
.0

9
1
 

 
R

an
d

o
m

 W
al

k
 

 
5

.2
8

9
 

 
d

=
6

 
 

 
 

 

D
M

A
 

-2
1

9
.9

5
5
 

1
.8

2
7
 

 
 

 
 

D
M

S
 

-2
0

9
.2

1
6
 

1
.7

8
2
 

 
 

 
 

T
V

P
 

-2
2

2
.6

8
8
 

1
.8

8
3
 

 
 

 
 

D
M

A
 (
λ
=

1
) 

-2
1

7
.5

6
9
 

1
.8

4
2
 

 
 

 
 

B
M

A
 

-2
2

0
.6

5
9
 

1
.8

8
2
 

 
 

 
 

R
ec

u
rs

iv
e 

O
L

S
-A

R
(1

) 
 

3
.0

3
4
 

 
 

 
 

R
ec

u
rs

iv
e 

O
L

S
-A

ll
 P

re
d

s.
  

 
4

.4
9

9
 

 
 

 
 

R
an

d
o

m
 W

al
k

 
 

4
.5

2
4
 

 
 

 
 

 



2
9

 

 F
ig

u
re

1
: 

G
ro

w
th

 r
at

e 
o

f 
C

h
in

a 
F

o
re

ig
n
 E

x
ch

an
g
e 

R
es

er
v
es

 (
in

 p
er

ce
n
ta

g
e)

 

 

S
o

u
rc

es
: 

A
u
th

o
rs

’ 
ca

lc
u
la

ti
o

n
 f

ro
m

 t
h
e 

IM
F

 D
at

a.
 



3
0

 

 F
ig

u
re

 2
: 

P
o
st

er
io

r 
in

cl
u
si

o
n
 p

ro
b
ab

il
it

ie
s 

o
f 

p
re

d
ic

to
rs

 (
d
=

1
) 

 

 

  
 

 

 

  
 

 

 



3
1

 

 F
ig

u
re

 3
: 

P
o
st

er
io

r 
in

cl
u
si

o
n
 p

ro
b
ab

il
it

ie
s 

o
f 

p
re

d
ic

to
rs

 (
d
=

3
) 

 

  
 

 

 

  
 

 



3
2

 

 F
ig

u
re

 4
: 

P
o
st

er
io

r 
in

cl
u
si

o
n
 p

ro
b
ab

il
it

ie
s 

o
f 

p
re

d
ic

to
rs

 (
d
=

6
) 

 

  
 

 

 

  
 

 

 



3
3

 

 F
ig

u
re

 5
: 

P
o
st

er
io

r 
in

cl
u
si

o
n
 p

ro
b
ab

il
it

ie
s 

o
f 

p
re

d
ic

to
rs

 (
d
=

9
) 

 

  
 

  

 

  
 

  



3
4

 

 F
ig

u
re

 6
: 

P
o
st

er
io

r 
in

cl
u
si

o
n
 p

ro
b
ab

il
it

ie
s 

o
f 

p
re

d
ic

to
rs

 (
d
=

1
2
) 

 

  
 

 

 

  
 

 



35 

 

REFERENCES 

 

Aizenman, J. (1998). “Buffer stocks and precautionary savings with loss aversion.” Journal of 

International Money and Finance 17, 931–947. 

 

Aizenman, J. and J. Lee (2007). “International reserves: precautionary vs. mercantilist views, 

theory and evidence.” Open Economic Review 18, 191–214. 

 

Aizenman, J. and N. Marion (2004). “International reserve holdings with sovereign risk and 

costly tax collection.” Economic Journal 114, 569–591. 

 

Baker, S.R., Bloom, N. and S. J. Davis (2013). “Measuring Economic Policy Uncertainty.” 

Available for download from: www.PolicyUncertainty.com. 

 

Ben-Bassat, A. and D. Gottlieb (1992). “Optimal international reserves and sovereign risk.” 

Journal of International Economics 33, 345–362. 

 

Calvo, G.A., Izquierdo, A. and R. Loo-Kung (2012), “Optimal Holding of International 

Reserves: Self-Insurance against Sudden Stop.” NBER Working Paper 18219. 

 

Dickey, D.A. and W.A. Fuller (1979). “Distribution of the estimators for autoregressive time 

series with a unit root.” Journal of the American Statistical Association 74, 427-31. 

 

Dooley, M., Folkerts-Landau, D. and P. Garber (2003). “An essay on the revived Bretton Woods 

system.” NBER Working Paper No. 9971. 

 

Edison, H. (2003). “Are foreign exchange reserves in Asia too high?” in World Economic 

Outlook, International Monetary Fund, Washington, D.C. 

 

Elliot, G., Rothenberg, T.J. and J.H. Stock (1996). “Efficient tests for an Autoregressive Unit 

Root.” Econometrica 64, 813-836. 



36 

 

 

Ford, J. L. and G. Huang (1993). “The demand for international reserves in China: An MCD 

model with monetary disequilibrium.” Economica 67, 379-397. 

 

Frenkel, J. and B. Jovanovic (1981). “Optimal international reserves: a stochastic framework.” 

Economic Journal 91, 507–514. 

 

Geweke, J. and G. Amisano (2011). “Hierarchical Markov Normal Mixture Models with 

Applications to Financial Asset Returns.” Journal of Applied Econometrics 26, 1-29. 

 

Grassi, S. and P. Santucci De Magistris (2013). “It’s all about volatility (of volatility): evidence 

from a two-factor stochastic volatility model.” CREATES Research Paper 2013-03. 

 

Heller, R. (1966). “Optimal International Reserves.” Economic Journal 76, 296–311. 

 

Jeanne, O. and R. Rancière (2006). “The Optimal Level of International Reserves for Emerging 

Market Countries: Formulas and Applications.” IMF Working Paper 06/229. 

 

Kelly, M. (1970). “Demand for international reserves.” American Economic Review 59, 655-667. 

 

Kenen, P. and E. Yudin (1965). “The demand for international reserves.” Review of Economic 

Statistics 47, 242-250. 

 

Koop, G. and D. Korobilis (2011). “UK macroeconomic forecasting with many predictors: 

Which models forecast best and when do they do so?” International Economic Modelling 28, 

2307-2318. 

 

Koop, G. and D. Korobilis (2012). “Forecasting inflation using dynamic model averaging.” 

International Economic Review 53, 867-886. 

 



37 

 

Lane, P. R. and D. Burke (2001). “The empirics of foreign reserves.” Open Economies Review 

12, 435-434. 

 

Lee, J. (2004). “Insurance value of international reserves.” IMF Working Paper WP/04/175, 

Washington D.C. 

 

Mahanty, M. S. and P. Turner (2006). “Foreign exchange reserves accumulation in emerging 

markets: What are the domestic implications?” BIS Quarterly Review, September. 

 

Ng, S. and P. Perron (2001). “Lag length selection and the construction of unit root tests with 

good size and power.” Econometrica 69(6), 1519-1154. 

 

Obstfeld, M.,  Shambaugh, J. C. and A. M. Taylor (2010). “Financial stability, the trilemma, and 

international reserves.” American Economic Journal: Macroeconomics 2(2), 57-94. 

 

Raftery, A.E., Kárný, M. and P. Ettler (2010). “Online prediction under model uncertainty via 

dynamic model averaging: application to a cold rolling mill.” Technometrics 52(1), 52-66. 

 

Rodrik, D. (2006). “The social cost of foreign exchange reserves.” International Economic 

Journal 20, 253-266. 

 

Romero, A. M. (2005). “Comparative Study: Factors that Affect Foreign Currency Reserves in 

China and India.” The Park Place Economist XIII, 78-89.  

(http://www.iwu.edu/economics/PPE13/romero.pdf) 

 

Sula, O. (2011). “Demand for international reserves in developing nations: A quantile regression 

approach.” Journal of International Money and Finance 30, 764-777. 

 

Tortora, A.D. (2009). “Exchange rate forecasting: Bayesian model averaging and structural 

instability.” Available from: http://www.ucl.eu/cps/ucl/doc/core/ documents/tortora.pdf. 

 



38 

 

Wright, J.H. (2008). “Bayesian model averaging and exchange rate forecasts.” Journal of 

Econometrics 146, 329-341. 



39 

 

DATA APPENDIX 
 

The zi,t variables are all transformed to be approximately stationary according to the following 

codes: 1 – No transformation (levels), titi zx ,, = ; 2 – First difference; 1,,, −−= tititi zzx ; 3 – 

Logarithm, titi zx ,, log= ; 4 – First difference of the logarithm; 1,,, loglog −−= tititi zzx  (Koop 

& Korobilis, 2012). 
 

Table A1: Variables Used in Predicting Chinese Foreign Exchange Reserves 

VARIABLE TCODE DESCRIPTION (zi,t) SOURCE 

NEER 4 
Nominal effective exchange 

rate 
Bank for International Settlements (BIS) 

INT 1 
Short-term interest rate 

(One-year lending rate) 
People’s Bank of China 

ISPREAD 1 

Long-term (five-year plus 

lending rate) minus short-

term interest rates 

People’s Bank of China 

INTDIFF 1 
Short term interest rate 

differential with the USA 
People’s Bank of China 

OP 4 Oil price International Financial Statistics (IFS) of 
the International Monetary Fund (IMF) 

CP 4 Copper price IFS of the IMF 

M1 4 Money supply (M1) People’s Bank of China 

IP 4 Industrial Production China National Bureau of Statistics 

X 4 Exports Global Insight calculation, IMF 

X-M 2 Exports minus Imports Authors’ own computation from Global 
Insight, IFS Data 

CPUI 1 
China Economic policy 

uncertainty index 
http://www.policyuncertainty.com/index.html 

UPUI 1 
US Economic policy 

uncertainty index 
http://www.policyuncertainty.com/index.html 

KCFSI 1 Kansas City Fed Financial 
Stress Index 

Federal Reserve Bank, Kansas City 

 


