Covalent I nteraction
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Abstract Reviewed in historical contect, bond order emerges as aekagefined
concept without a clear theoretical basis. As an alteraative spherical standing-
wave model of the extranuclear electronic distribution oaeom provides a simple
explanation of covalent bond order as arising from the caoste and destructive
interference of wave patterns. A quantitative measureségtfirom a number pat-
tern that relates integer and half-integer bond ordersutjiicseries of Fibonacci
numbers, consistent with golden-spiral optimization.ikehny previous definition
of bond order this approach is shown to predict covalent bength, dissociation
energy and stretching force constants for homonucleawictieons that are quantita-
tively correct. The analysis is supported by elementarylmemtheory and involves
atomic number and the golden ratio as the only parametelidityaf the algorithm
is demonstrated for heteronuclear interactions of anyroAdeexhaustive compari-
son of calculated dissociation energies and interatonstadce in homonuclear di-
atomic interaction, with experimental data from criticatview, is tabulated. A more
limited survey of heteronuclear interactions confirms thatnumerical algorithms
are generally valid. The large group of heteronuclear ltgdris of particular impor-
tance to demonstrate the utility of the method and moledwldrogen is treated as
a special case. A simple formula that describes the mutdatipation of heteronu-
clear pairs of atoms, in terms of valence densities derivech fa spherical-wave
structure of extranuclear electronic charge, is used tutate the dipole moments
of diatomic molecules. Valence density depends on the velofithe valence sphere
as determined by the atomic ionization radius, and theatdemic distance is deter-
mined by the bond order of the diatomic interaction. The lissre in satisfactory
agreement with literature data and should provide a basthéacalculation of more
complex molecular dipole moments. The diatomic CO is tikatea special case,
characteristic of all interactions traditionally idergiias dative bonds.
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1 Introduction

The simplest model of a covalent bond is based on an eleatiogtoint-charge
simulation of overlapping spherical valence-electronrghaclouds that surround
monopositive atomic cores. For a homonuclear pair of atoitis nadiusr and in-
ternuclear distance the dissociation energl is calculated from
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the common volume between the overlapping spheres,
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On equating the atomic radius to a characteristic atomicisad,, a single curve
of d’ vs D describes homonuclear covalent interaction, irrespectfioond order.
Practical use of the formulae requires definition of a complet of characteristic
radii, which could be derived empirically [1] and was usetismequently to calcu-
late molecular shape descriptors [2] and as the basis ofexrgléered Heitler-London
procedure, valid for all pairwise covalent interactions4B In all of these applica-
tions interaction is correctly described by the dimengseslcurves of Fig. 1.

For heteronuclear interaction using dimensionless distsdi = d /R, R= /f112
andry/rz = X, the overlap formulae are:
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Fig. 1 Covalence curves in dimensionless units. Homonuclearactiens are described by the
curve BFC and heteronuclear interactions map into the eneSeFA.
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The general covalence curve, first calculated by the pdiatge electrostatic
model, has a simple geometrical construction [5] within &lgn rectangle of size
2 x 21. The limiting covalence curve AB is a semi-circle centredfumextension of
AD at the point (2,9/4=1.39). Itis intersected at F by the homonuclear sendieir
through point C and centred at coordinates (2,1). Homomnakeractions map to
this curve up to the point where it intersects AB, then folliis curve to B. All
points(d’,D’) that characterize heteronuclear covalent bonds lie withércrescent
between the two curves. The circular segment BE is centrAd at

The relationship between interatomic distance and diatoci energy of atoms
in interaction has an interesting connection with the geldsio, but is of limited
use without an empirical set of characteristic atomic radliefforts to derive such
radii from atomic properties have been unsuccessful fosithele reason that these
radii are not free-atom properties. However, the searchdsadted in the identifica-
tion of an useful set of free-atom radii, characteristichaf &tomic valence state [6].
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Whereas the interaction radii describe the relationship between interatomic dis-
tance and dissociation energy, free-atom valence radiigirthese quantities sepa-
rately, but relatediia bond order, which is defined precisely in terms of interfgrin
spherical electron waves. In this paper we show how theghqtiens agree quan-
titatively with available spectroscopic, crystallographnd thermodynamic data.
All observed bond lengths, dissociation energies andcétirgg force constants are
taken from the tables in HCP [7].

2 The Bond-order Concept

The bond-order concept developed from the notion of matgmnding, which was
formulated empirically towards the end of the 19th centtoyexplain the compo-
sition of organic compounds. The basic rule of thumb, prepdsy August Kekulé
[8], was to assign valences of 1 through 4 to H, O, N and C reiede In order
to rationalize the observed composition of ethylene, dertyand benzene it was
necessary to postulate the formation of double, triple ajxdriéler carbon-carbon
bonds in these compounds.

This scheme could be extended in a natural way to O, N, S, BfcTo bring the
scheme into line with the stereochemical ideas of Le Bel andt\Hoff, valences
came to be associated widlffinity centresarranged tetrahedrally in the surface of
spherical atoms. The formation of single to triple bonds @gdained on this basis
by Victor Meyer [9, 10] as the touching of atomic spheres ifiedént mode, as
shown in Fig. 2.
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Fig. 2 Bond orders distinguished in terms of affinity centres (@mpd electron pairs (bottom)

Whereas the atomic centres remain at the same distance &omather, the
affinity centres move progressively further apart as thedbanaer increases, pre-
dicting weaker interaction.

Based on Sommerfeld’s atomic model [11] of elliptic orbitsected towards the
corners of a cube, a number of chemists, including Kossetjid,d.angmuir and
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Bury, developed an electronic theory to account for atormiecture and valency at
the same time. To account for the periodic table of the eléspn&ydberg’s formula
for the atomic number of an inert gas

N=2(124+22 422432432 44%...)

had to be reconciled with spectroscopic evidence, suppdrite Sommerfeld’s
atomic model, which predicted the number of electrons pefl sfs equal to the
square of the principal quantum numbeg, r?, n=1,2 3.... Instead of assuming
that by increasing the number of electrons, atomic shelldavioecome occupied to
saturation in the order of increasingit was postulated that the completion of the
next octet (at the corners of a cube) takes priority overratitn of the shell.

In the case of covalent interaction the octet is of primargdnance, next to the
role of electron pairs, implied by the factor 2 in Rydberggtiula, from which two-
fold symmetry in the electronic configuration of an atom wadsiired. It is important
to note that the classification of electrons istq, d, f subsets, characterized by
four quantum numbers in terms of Pauli’s exclusion prirgipthich states that no
two electrons in one atom can have all four quantum numbergtichl, antedates
the development of wave mechanics.

In line with van't Hoff's stereochemistry and the orientatiof elliptic orbits,
covalent bonds could be represented by tetrahedra thalh fouapical, edgewise
and facial mode, involving one, two or three electron pairsu interaction, also
shown in Fig. 2. This theory predicts increased bond sttenih increasing bond
order, but fails to account quantitatively for observecinticlear distances. For
example, this model predicts the interatomic distancesdthame and acetylene in
the ratio of 3:1.

Occurrence of the stereo isomers, known as maleic and foraeids, has been
interpreted for a long time as evidence of a barrier to roteéiround a double bond.
It is of interest to note that this steric rigidity is consist with the orientation of
Victor Meyer’s affinity centres and with the Lewis model oéelron pairs.

The definition of bond order as the number of electron paiesesh between
two atoms is still widely accepted today, but the geometrintdraction has been
adapted to the theory of orbital hybridization, to be coesédl next.

2.1 Orbital Hybridization

Schradinger’s rationalization of atomic spectra andgrak quantum numbers, in
terms of a wave model, introduced an improved mathematiestription of the
electronic configuration of atoms, derived empiricallydref Unfortunately the the-
ory was not developed to its full potential because of relnce to abandon the
classical concept of sub-atomic particles.

The coming of wave mechanics, which should have been hadldohal vindi-
cation of the proposed wave nature of electrons, alreadyisad and soon to be
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demonstrated experimentally at the time, was successtsigted as inadequate to
account for cloud-chamber trajectories and the ComptacefAlthough both ob-
jections are spurious they had such authority in suppottahallogical watered-
down re-interpretation of Schrodinger’s model gainedvarsal acceptance. The
consequences for theoretical chemistry have been disastro

In summary, Schrodinger managed to solve a differentiah@qgn that describes
the motion of an electron in the central field of a proton, aghanhydrogen atom,
in wave formalism. By separating the radial and angular comepts of the wave
function three quantum numbers, essentially equivalerthdse of Sommerfeld,
were obtained without further assumption. The three quamumbers, which obey
the exclusion principle, are conveniently summarized as:

n=123,...
=0,1,...,(n—1)
m=—l,...,+l

in conjunction with the empirically added spin quantum nemins = +1. In phys-
ical interpretation the principal quantum numberspecifies the eigenvalues of the
electronic energy, wheredsndm, specify the eigenvalues of orbital angular mo-
mentum and its value in a magnetic field, respectively.

Although the Schrddinger solution is demonstrably supen the Sommerfeld
model it lacks the pictorial appeal of the Lewis tetrahednatel. Still, there was
the general belief, articulated by Linus Pauling [12] that,

... if guantum theory had been developed by the chemistréthe the spectroscopist it is
probable that the tetrahedral orbitals described belowldvplay the fundamental role in
the theory, in place of theandp orbitals.

The chemist has not succeeded in doing this. Pauling himpsatfosed the scheme
of orbital hybridization as a quantum theory of covalengiattion. Despite its un-
critical acceptance for many years this approach is showgldipentary reasoning
to be in direct conflict with the fundamentals of quantum tiyeo

It starts with a degenerate set of orbital angular momentetovs with quantum

numberd =1, m = —1,0,1, which in cartesian coordinates may be formulated as
G X—ly oz g Xty
p = ; o p= P p-= P

The use of complex quantities is avoided by making the licearbinations:
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The overall result is clearly equivalent to the new set:
1 zoly po:)_( .o 2ty
r ' ro’ r’

which represents a simple rotation of the coordinate axes.
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Pauling however, preferred a different interpretation bfirdng
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directed along the cartesian axes. This procedure destneysomplex entangle-
ment of the non-classical variables, demanded by quanteorghto produce three
orthogonal functions witlhm = 0, in violation of the exclusion principle, which is
not required in classical systems. Efforts to associaterele spin with real obitals
are therefore meaningless.

No amount of handwaving can circumvent this conclusion. &ladorate pro-
cedure whereby these orbitals are incorporated in fufthgbridizatiorf to define
the combinationsp’, sp” andspto simulate tetrahedral, trigonal and linear sets of
orbitals, is likewise without quantum-mechanical mearjit]. At best, it amounts
to a classical reconstruction of these geometries. In stiartvell-known procedure
to define bond order and steric rigidity in terms of overlaygpy and 7t orbitals is
meaningless, representing no more than the Lewis modelpie alignified jargon.
The fanciful notion ofrr-overlap cannot explain why a triple bond should have no
barrier to rotation, rather than twice the rigidity of a dteibond.

2.2 Bond Order in Molecular Mechanics

The only successful simulation of molecular conformatlmased on classical con-
cepts, has become known as molecular mechanics. It reliteadeas of chemical
bonds free of strain and computerized minimization of thaistenergy generated
by distortion of the strain-free interactions in a molecutethis application it is
necessary to stipulate strain-free bond lengths for bohdigferent order. Although
such parameters can in many cases be derived empiricalys@fomdamental theo-
retical prediction would, for obvious reasons, be prefiérEdforts to derive suitable
parameters by the methods of quantum chemistry have bakn fut

Important progress became possible on noting a simpleéaetdtip between in-
teratomic distances in bonds of different order. The raieiehind the observation
comes from the simple model of a covalent bond, seen as tnatisit of equilib-
rium between the electrostatic attraction of a pair of vedeelectrons to the nuclei
and the internuclear repulsion. In the formation of higbater bonds the role of
those valence electrons in excess of bonding pairs may leasescreening the
internuclear repulsion [15]. The logic behind this intexation is supported by the
observation that, given the details of any bond, additicmwfiversal screening con-
stant to the interaction, transforms the single bond interdbof specified higher
order, irrespective of the atoms involved.
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In practice calculations have been performed in two difiergays. Given the
bond length, dissociation energy and stretching forceteomgharacteristic of the
single bond, the interaction is described by a Morse functidghis function is mod-
ified by addition of a term that represents screening of ttezmuclear repulsion, the
relevant Morse curve of the higher-order bond is obtaindéd. [Alternatively, the
potential-energy curve, calculated by the Heitler-Londwethod [3], is modified in
the same way, using the same screening factors, to simudgtertbond orders.

Heitler-London simulation of general covalence depends set of character-
istic atomic radii, assumed to describe a single electrahénvalence state. Such
radii were obtained empirically, in the first instance, bynpa@harge simulation of
covalentinteraction [17]. A more satisfactory derivatafratomic radii was discov-
ered in the simulated compression of atoms in Hartree-Falduations, resulting
in ionization at a characteristic compression, closelgtesl to the empirical radii
[18].

These ionization radii, which have been shown [19] to unitkeh®e electronega-
tivity concept, have recently been derived by an extremeatpke and more reliable
simulation of atomic structure as a standing electronicengacket [6]. This simu-
lation, which is free of the errors of approximation thaeaffthe HF simulation of
small atoms, has produced a more reliable set of ioniza#idi, Isuitable for direct
prediction of interatomic distance in general pairwiseiiattion within bonds of
any order. The procedure is outlined in the next section.

2.3 Bond Order from lonization Radii

Comparison of the interatomic distandel reported for homonuclear covalent in-
teractions, commonly considered to be first order, revemftedharkable relationship
with the corresponding ionization radip. Using data from HCP [7], the large ma-
jority of bond lengths, defined in dimensionless unitslas- d/ro hadd’ = 0.868,
with little variation. A few notable exceptions occurred fo-F, O—O and I-I, with
d’ = 0.932. Supporting evidence for typical interactions is shawfable 1.

On repeating the exercise for traditional second-ordedbansimilar result of
d’ = 0.764 is obtained. For third-order bonds, with an admittedhaker sample
one calculates’ = 0.680. Using the observed bond length of benzene one finds
d’ ~ 0.786 for the bond of assumed brder. Extending the search to homonuclear
transition-metal diatomic molecules where high-orderdmare common, and to
diatomic alkali metals with assumed bond orders of zero,maptete set of dimen-
sionless bond lengths, in good agreement with experimestesgtablished for all
orders.

If we define zero bond order to occurdst=rg, i.e. d = 1, an interesting variation
with bond order, from unity to the golden ratio,= 0.61803.. is inferred. This
variation is reminiscent of the convergence of the r&jgA — Z), of protons to
neutrons in stable nuclides, that leads to the generalieggddic function of atomic
matter [20]. Using this as a cue the variation of bond lengith Wwond order can
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Table 1 Calculated interatomic distance for low-order homonucieteractions

C N ¢} F
ro/A 1.78 1.69 1.60 1.52
d(X —X) 1.545 1.467 1.491 1.417
Expt. 1.54 1.47 1.48 1.41
Si P S Cl
ro/A 2.62 2.51 2.47 2.30
d(X —X) 2274 | 2179 | 2.144 | 1.996
Expt. 2.32 2.21 2.05 1.99
Ge As Se Br
ro/A 2.89 2.80 2.71 2.61
d(X —X) 2.51 2.43 2.35 2.27
Expt. 2.41 2.44 2.32 2.28
Sn Sb Te |
ro/A 3.19 3.09 2.98 2.88
d(X —X) 2.77 2.68 2.59 2.68
Expt. 2.59 2.67

be specified as a power seriestinin fact, any powen > 6, with integersj, as
coefficients defines bond orderby d’ = j,1", as shown in Table 2.

Table 2 Any power of the golden ratior" with covariant j,, tabulated in bold script, as coef-
ficients, predicts the ratid/ro = d’ = j,7", which determines the dimensionless bond length of
orderb. The different coefficients for consecutive bond ordergelaed by the Fibonacci numbers
Aj

Orderp . ° 78 T/ 78 ° 710 s I I
4 4 7 11 18 29 47 76 123 | 199 322
Aj 1 1 2 3 5 | 8 | 13| 21
33 12 19 31 50 81 131 | 212 343
A 1 1 2 3 | 5| 8| 13
3 20 32 52 84 136 | 220 356
Aj 1 1 2 3 5 | 8 | 13| 21
23 5 8 13 21 34 55 89 144 | 233 377
A 1 1 2 3 5 | 8 | 13| 21
2 14 22 36 58 e 152 | 246 398
Aj 1 1 2 3 5 | 8 | 13| 21
11 15 23 38 61 99 160 | 259 419
Aj 1 1 2 3 5 8 13 21 34
1 9 16 25 41 66 107 173 | 280 453
Aj 1 1 2 3 5 8 13 21 34
2 10 17 27 44 71 115 186 | 301 487
Aj 1 1 2 3 5 8 13 21 34
0 7 11 18 29 47 76 123 199 | 322 521
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The coefficients for given bond order increase like a Fibonaeries with in-
creasingn. This is immediately obvious for the coefficients of bondensd4 and
0, which correspond, in both cases, to the familiar Lucaslemn This correspon-
dence is interpreted to define a closed, and hence perigaiters, consistent with
the assumed spherical wave structure of a valence ele&yomoting howA j, for
any pair of consecutive bond orders also defines a Fibonadeisswith increas-
ing n, the appropriate coefficients for any power can be specifiesttty without
calculation. The empirically derived bond-order scale¢desd’ are then seen to be
integral multiples oft". It could be of special significance in the analysis of araenat
interactions to note that (0) = 1°, d’(11)= 1/(21) andd’(4) = 1. The sufficiently
converged values gf, 73 are shown in Table 3.

Table 3 Definition ofd’, derived fromrg for different bond orders. The relative overlap volume
appears quantized in units 0f40. The columns on the right are discussed in the next section

Order d € n/40 | n(2) | n(3) n(4) n(5) n(6)
0 1.000 0.3 12 7 10 10 11 11
i 0.935 0.35 14 6 8 9 10 10.5
1 0.869 0.4 16 5 7 8 9.5 10
11 0.804 0.425 17 4.5 6.5 7.5 9 9.5
2 0.764 0.45 18 4 6 7 8.5 9
23 0.724 0.475 19 8.5
3 0.683 0.50 20 3 8 8
33 0.658 0.525 21 7.5 7.5
4 0.618 0.55 22 7 7

With reference to the point-charge simulation of covalatgtiaction we note that
the common volume between two overlapping spheres of radiugh centres at a
distanced apart, is calculated as

4 dd
Vo — -3 2d hll
o 7T|:3I' r +12:|,

or, in dimensionless units af = d/r, the relative overlap volume,

M 3d’ (d/)3
e R T @

This quantity, also listed in Table 3, is seen to assume exhtalues oh/40 for
the common bond orders.
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2.4 Dissociation Energy and Bond Order

Itis generally accepted that there is some inverse relstiiprbetween covalent bond
length(d) and dissociation energyp). The point-charge model of covalent inter-
action defines this relationship in terms of a smooth curig: (B which represents
all homonuclear diatomic interactions on expressing ditaand energy in special
dimensionless units, defined b= d/ro, D’ = Drg/K, whereK is a dimensional
constant. Fob in kJmol ! or eV respectivelyk = 1389 or 14.35. Having shown
that the bond order-related linearity= j,rot" is generally obeyed, we infer fixed
values ofd’ for all bonds of ordeb.

The observed relationship between the common volume, dlfipeverlapping
charge spheres, and bond order, shown in Table 3, suggestsca rélationship
between bond order and dissociation energy. Noting theexdion with spherical
volume we look for a dependence of the type

DXrO / 3
——=D"0Or
K 0

and find that first-order homonuclear interactionsgdalock elements obey the rule
D'=r3t" , ie Dy=Kr3r" (4)

The values of, which produce dissociation energi&, to match experimental
dataDy, correlate positively with bond orders derived from interaic distances.
Some results are shown in Table 4. Results for some higher drahds, in the
format A(n) : D¢(Dy) include:
C(4):642(600); C(3.16):964(966); N(3):937(945); O(4P%498)
S(6):472(425); As(7):374(382); Se(7):351(331); C(4B%(479 in biphenyl)
Within a periodic family, interactions with commanhave equal bond orders.
Calculatedh, for first-order interaction, increases stepwise fiom 5,6 for second
period elements, to = 10 for period 6. We finch =5 for C andn=6 for N, O, F,
previously identified to fornj order bonds. For second and third-order interactions,
within a given period, the appropriate exponentsrgre- n; — 1 andng = n; — 2.
This rule would restrict golden exponents to integers anfliht@gers. All interac-
tions withd > rq are traditionally described as non-bonded.
Bond-by-bond data to compare calculated parameters wibkrarent are pre-
sented in sections 3 and 4.

2.5 Stretching Force Constants

The relationship between bond order and dimensionlessiotmic distance is rep-
resented by three linear functions over the interais(0,11), (14,3) and (3,4) as
shown in Fig. 2.
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Table4 Dissociation energies (kJmdi) and exponenta for lowest-order homonuclear observed
interactions in the s and p blocks.

Li Be B C N (0] F
ro/A | 2.36 2.20 1.88 1.78 1.69 1.60 1.52
n 9 10 6 5 6 6 6
D¢ 102 54 273 397 221 198 179
Dy 110 59 290 377 252 214 159
Na Mg Al Si P S Cl
ro 3.09 2.87 2.74 2.62 251 2.47 2.30
n 11 12 9 7 6 7 7
D¢ 66 35 138 328 487 292 253
Dy 75 11 133 310 485 286 243
K Ca Cu Zn Ga Ge As Se Br
ro | 3.50 3.08 2.88 311 3.00 2.89 2.80 271 261
n 12 13 8.5 13 10 8 8 8 8
D¢ 53 25 192 22(6) 100 247 232 217 202
Dy 57 ~ 17 201 22 < 106 264 181 223 194
Rb Sr Ag Cd In Sn Sb Te |
ro 3.81 3.54 3.11 3.00 3.31 3.19 3.09 2.98 2.88
n 13 14 9 15 11 9 8 8 9
D¢ 38 21 163 7 76 186 282 263 152
Dy 49 16 159 7 82 187 302 258 153
Cs Ba Au Hg Tl Pb Bi
ro 4.03 3.75 3.38 3.24 3.43 3.32 3.22
n 13 9 15 12 11 9
D¢ 43 209 10 51 77 190
Dy 44 226 8 63 87 197

The different slopes correspond to the differential chaofggwith respect td
and hence describe the response of bond order to incredsaogmmonly defined
as a stretching force constant:

AD’
= aay

In molecular mechanics the usual practice is to specifygegin units of kJmol?,
interatomic distance iA andk; in Nem—1 (Emdynel&). In these units

K — 2AD' xK x 1072  KAD'
~ B.2ro(rod’)2 30LAd))%rg
/
_ 4.61MD3 Nem-1 )
(Ad')?rg

For interactions of known bond order the quantitfied for a stretch to lower or-
der follow directly from Table 1, provided it occurs in a regiof uniform slope.
Energy differences are in general proportionad® = 1" — ™1 = t"2 =1 As

bond order is not an absolute measure, only relative slopede stipulated. Also,
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Fig. 3 Variation of interatomic distanc@l’) with bond order

whereasd’ may change continuously, bond order changes in discrets,steter-
mined by the interference of standing waves. We therefosaras that equation
(5) correctly describes a hypothetical linear responsa fetretch from bond order
four (d’ = 0.6) to zero, with a slope of 0.1 measured in Fig.3. For any inésliate
stretch of different slope, a multiplicative scale factor, that represents an effecti
slope ofs= ¢/0.1 is added to eqaution (5).

The procedure is illustrated by calculating the stretcHige constant of di-
atomic G, considered of bond ordet 2such that:

( _ A615% (155 =0.0709
~ 7 (0.080x 1.78)2

x0.8=1259 Ncm!

The scale factor of 0.8 represents the slope. Note that thtelstis considered to
operate between bond ordersé@nd L, i.e. n= 3.5 «— 4.5, AD [ 15, This result
is in good agreement with the experimental 12.16 Ném

As a further test the force constant of third order(N* = t3+2) follows as

_ 4.615x 0.0902

_ 1
= 0.081x 1692 222 Nem™

K

in exact agreement with experiment.

Calculation ok, for C-2-C is complicated by the change of slope between orders
2 and 1. This is readily compensated for by graphical rec¢aticun of Ad’ = 0.093
and mean slope of 0.93:

~ 4.615x0.0554

- m X 093: 868 NCm71

K
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in good agreement with the value of 8.43 Nchmeasured for CGlI=CH,.
For C-L-C the energy difference is obtained frath— 78° = 0.0464 and

4.615x 0.0464 9

The force constant calculated from the vibrational freqyem. of ethane ik, =
4.50 Nenm .

For i, the energy difference® — 1® = 17 occurs against a calculated force con-
stantk, = 5.2, compared to the experimental 4.7 Nchn

The calculated force constant for @ obtained fromAd’ = 0.093,n™ =6 as
k- = 10.79, compared to the observed 11.77 Ném

Extension of the calculation to higher periods relies onthee model of atomic
electron density. Changes in bond order are interpreteteps/ise changes in the
pattern of overlap between the electronic wave structur@geracting atoms. The
effect on interatomic distance depends on the wavelengtheoihterfering waves,
which in turn depends on atomic volume as elaborated in@e&i6. In the sec-
ond shell of 8 electrondd’ = 0.1306 corresponds to unit change in bond order. At
the next level with an additional 8 electrons a stretci\df = 0.0653 suffices for
relaxation to lower ordér With some empirical guidance we arrive at the unimod-
ular sequence of factors 1, 2 , 1, 1 to effect a change of bond order at successive
electronic levels. The scheme is demonstrated by the eadzliforce constants for
diatomic halogens:

Clp : Ad'=0.0653n" =9,k =2.7x1.3=351 (3.23Ncm?)
Bry : Ad’ = 0.0522 n* =10,k = 2.62 (2.46 Ncm'?)
I,: Ad' =0.0435n" =11k, =1.91 (1.72Ncm' 1)

Also on the second period:
Sip : Ad'=0.0653n" =9,k =271 (2.15Ncm})
and the second-order molecules

P, : Ad' =0.093/2=0.0465n" =8, k =578 (5.56 Ncm %)
S, 1 Ad' =0.0465n" =8,k =596 (HCP :4.96 Ncm?)

The reported value [7] forSs obviously in error.
Quadruple dimetal interactions provide an interesting tes

1 Abond is stretched by external forces, such as steric ictierss, only until it flips spontaneously
into the wave pattern that stabilizes lower bond order
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Crp : Ad' =0.0522n" = 9, k = 2.45
Mo, : Ad’ =0.0375n" =9, k = 4.08
Re : Ad' =0.0375n" =9,k = 3.75
W, : Ad’ =0.0375n" =9,k = 3.66

The effective slope in the high order region is close to uritlyese results, in
Ncm™1, are in exact agreement with empirical molecular-mechsasimulations
of these force constants [21, 22, 23].

2.6 Wave Model of Bond Order

The idea of covalent bond order is of special importanceamtiesent instance, but
notin its traditional form as the number of electron pairarsld between two atoms.

The familiar electron-pair exposition of bond order is t8atn the valence state,
has 4 unpaired electrons after promotion ofsaglectron. In the case of N there
is no room in thep-subshell to allow such promotion. However, the positive io
N*, like C has four unpaired electrons and may form four singleds as in NH.
Oxygen has two unpaired electrons and is restricted to fahmeretwo single bonds
or one double bond. The scheme works, but fails to accourthéoparamagnetism
of dioxygen with known second-order bond strength. The erpmtal facts are
consistent with neither of the following:

© © © O
0=0 - 0-0O-
© © ©©

It is generally believed that the bonding i, @ correctly described in terms of
molecular orbitals. However, this method, as tradition&irmulated, argues the
involvement ofpy, py andp; orbitals, which have no physical meaning, and the bond
order of dioxygen remains a mystery. This is the most glating by no means the
only, failure of the electron-pair definition of bond order.

The very idea of electron pairs, that presupposes poinicfestof charge, does
not feature in the model of covalence proposed here. A ptyraf electrons at
the same energy level is considered instead as a singlepigtdtiarged standing
wave with quantized orbital angular momentum and spin. Wp@se that bond
order of diatomic domains within molecules is quantized sirailar way and we
look for a numerical sequence to account for the empiricgilagity of Table 3.
Prominence of the golden ratio in this formulation suggessequence based on
Fibonacci fractions and/or the golden logarithmic spifddis would render it self-
similar to structures in the solar system, the periodicgatflthe elements and the
electronic configuration of atoms.
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As a first trial we consider a series of Fibonacci fractionthmrange 1/1 to 3/5,
to simulate bond orders between 0 andi4= 1, 7). The unimodular sequence that
convergesto li,e.

107 6 5 4 3 2 3
1 8 7 6 5 4 3 5
1 0875 0857 0833 08 075 0667 Q6
0o 1 1 2 3 4

is immediately seen to reflect many features of the bondrduthetion.

An even better simulation, based on this sequence, is @atdin selecting suit-
able terms from a single Farey sequence, which means thatmal have the same
denominator. This way we derive fromis the sequence:

1 13 4 1 2 3 L n=9-15)
I 15 15 5 15 3 5 15
1 0933 087 08 0733 067 060
0 : 1 1 2 3 4
Starting from the next Fibonacci fraction, 5(8%#16):
1 15 7 13 3 11 5
I T 8 16 2 16 8 15, N=10-16)
1 0938 0875 081 075 0688 0625
0 : 1 1 2 3 4
The next Fibonacci fraction prediots#3):
1 12 11 10 9 8
I 13 13 13 13 3 (fn=8-13
1 0923 0846 0769 069 0615
0 : 1 2 3 4

2

Starting from still higher Fibonacci fractions the sametgrat persists, but gaps
appear in the sequence of quantum numbers. The infinite seguetween 1 and
7 is inferred to have the exact bond-order sequence, witle lgegantum numbers,
embedded within it.

The most convincing simulation of bond order is from a golidgarithmic spiral
with convergence angle af/8, for integer orders, or/16 to include half-integer
orders, shown in Fig. 4. Bond orders 0 and 4 are separatedigitangle.

This simulation confirms the results of Table 3 in detail. Amatter of interest
all of these bond orders are approximatedia,, which relates to the Fibonacci
fraction 21/34, with a few gaps:

1 15 29 27 13 25 23 1 21
1 17 34 34 17 34 34 17 34
1 0941 0853 Q794 Q764 Q735 Q676 0647 0618
0 1 1 13 2 21 3 3 4

The apparent quantization of bond order corresponds to thgerators in Farey
sequences that converge to the golden ratio. As the limigibgnacci fraction
n/(n+1) — 1, approaches the golden ratio, the values of quantized boohet,0
predicted by the Farey sequen&g, 1 approach the simulation of Fig. 4.

The simulation described here gives new meaning to the looder concept. It
now emerges as the quantization of interatomic distandamnwiholecular diatomic
domains.
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0

Fig. 4 Simulation of integer bond orders on a golden logarithmicasp
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Fig. 5 Wave structure that defines second-order homonucleagaatien.

The quantization results from constructive interfereneéMeen the valence-
electron waves of interacting atoms of opposite spin. Therf@rence pattern for
second-order homonuclear interactiah,— 26/34 = 13/17, is shown in Fig. 5.
Only even numbered wave crests are shown. Bond order chamgegular steps
as the dimensionless interatomic distadechanges in steps of 1/34, which de-
fine the wavelength of the spherical waves. For C and H witpbeetive values
of ro = 1.78 and 0.97A, wavelengths ofA (C) = 1.78/34= 5.24x 10 2 m and
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A(H) = 2.86x 10~ m are predicted. This result is in winsome agreement with the
Compton wavelength of an electron a#2x 102 m.

Gaps in the 21/34 sequence of bond orders suggest the pibgsitintermediate
bond orders at 31/34, 28/34 and 24/34. This conclusion ipatied by the compar-
ison (Table 5) with the bond orders predicted by Table 2. Qmdsfi

Table5 Comparison of different estimates of bond order.

n 33 32 31|30 29| 28 27| 26|25 24| 23 22|21
100(n/34|971 941 912882 853823 794 764|735 706676 647 1

Mean 941 868 809 721 662

Table2| 935 869 804  |764] 724|683 658 |1
1 1 1 1

B.O : 1 1} 2 23 3 3} 4

The two calculations converge and confirm earlier empidoalclusions:

e Between bond orders 0 and 1 there is a broad, poorly resati@tiow minimum
of weak interactions, collectively assigned to bond or%ier

Bond orders 2 and 4 are well resolved,;

Bond orders 1, % 2% are less sharply defined, but within clear limits;

Bond orders 3 and%%are poorly resolved;

The %34 sequence specifies an absolute measure of bond order, blahitee2
values are more convenientin practice.

The idea of bond lengths that may vary around special integied orders was first
proposed on empirical grounds [24].

The findings reported here provide new evidence for the ufitgnicro- and
macro-physics, and refute the perception of separate goneantd classical domains.
The known universe exists as a four-dimensional spacetiaeifold, but is ob-
served in local projection as three-dimensional Euclidaagent space that evolves
in universal time. The observable world, at either micro @cno scale, can be de-
scribed in either four-dimensional (non-classical) or lmssical three-dimensional
detail. The descriptive model may change, but the realdyssthe same. This re-
alization is at the root of self-similarity between largedaamall. The symmetry
operator, which reflects the topology of space-time, is tlden logarithmic spiral.

Cosmic self-similarity has been documented and discussaty rtimes with
reference to atomic nuclei, atomic structure, the perigdimf matter, covalence,
molecular conformation [25], biological structures, mtary and solar systems
[26], spiral galaxies and galactic clusters [27]. The prmoanit role of the golden
ratio in all cases can only mean that it must be a topologe&atiire of space-time
structure.
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The simplest and most beautiful illustration of golderieraelf-similarity must
surely be the quantization of bond order, shown in Figs 3 aritlig so intimately
entangled with golden symmetry and gives such a preciseitigfirof the oth-
erwise elusive bond-order concept that the possibilityhig being mere coinci-
dence is zero. Small wonder that the great Johannes Kefiégraé to the’divine
proportiorf which”served as idea to the Creator when He introduced the creation
of likeness out of likeness, which also continues indefiyiite

In the same spirit the construction of Fig.5, which has magtio do with chem-
istry, may well be used as a starting point from which to deavheory of covalent
interaction, atomic structure, elemental periodicity amolecular shape. Working
backwards through the concepts developed before [6, 5, 26irglete framework
of chemistry may be developed as a theme in pure number theory

The natural limit to bond order , which occrsdit= 1, D’ = 21, as a result of the
wave nature of electrons, is inferred to reflect the topaalgproperty that limits
electron density in space-time to a natural maximum. ltéstiolecular counterpart
of the property that limits the total charge density at trez&bnic energy levels on
an atom. The empirical rule, known as Pauli’s exclusion@pite, is formulated in
terms of either spin pairing or the antisymmetry of four-dimsional wave functions,
which amount to the same thing. As currently understooghpears as an emergent
property of matter waves, with its origin in space-time toggy.

3 Homonuclear Interaction

For ease of reference we tabulate atomic ionization radig)sbond order(b) and
exponentgn) of lowest-order observed homonuclear interactions ing &bl

Based on the parameters in Table 6 calculated parametdrsritonuclear low-
order interactions and diatomic molecules are comparedd e¥iperimental data in
Table 7. Calculation involves the characteristic atoméiirag, and the scale factors
based on the golden ratio :

dc - dé)ro
Dc = Krgt".

Having tested these formulae exhaustively against alltepgzopic and crystallo-
graphic data in HCP [7] it is found that they work without s&1$ exception. The
bond-order relationship betweenandD holds generally, but a few cases deserve
special mention.

The relationship is most sensitive for the small atoms oigqoe2. Based on dis-
sociation energies the atoms B to F have the exponen®, except for C with

n = 5. Judging by interatomic distance however, B and C appehbe tof first or-
der whereas O, N and F habe= 1. We interpret this trend in terms of increasing
spectator electron density in the relatively small valestoells of these atoms. The
dissociation energies seem to indicate a gradual descdreased order from C to
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F, of the form: 1 < 1, > 1, 1. Higher-order bonds of these atoms will be shown to
have golden exponents= 6 — b.

The exponenh = 8.5 indicatesh = 1 for Cu, but the observed interatomic dis-
tance of 2.2 in diatomic Cw is typically first order, in line with the variability
exposed in Table 5.

Metals of the second and third transition series are welidnto be character-
ized by multiple dimetal interactions of orders 3, &nd 4 [28]. The large reported

Table 6 Parametersy/A, b andn

Li Be B C N (@) F Ne
ro|236(220|188| 178|169 | 160|152 | 1.44
b| <0 1 1 1 3 1
n 9 10 6 5 6 6 6 14
Na | Mg Al Si P S Cl Ar K Ca
ro| 3.09(287| 274| 2.62| 251|247 2.30| 221 | 3.50 | 3.09
b 0 1 1 2 1 1 <0
n 11 12 9 7 6 7 7 15 12 13
Sc Ti V Cr Mn Fe Co Ni
ro | 3.02(299| 296| 3.02| 290 | 2.87| 2.85| 2.81
b 1 1 2 1 1 1 1 2

n 9 9 8 9

S
©
©
[ee]

Cu Zn Ga | Ge | As Se Br Kr Rb Sr
ro| 2.88(276| 3.00| 2.89| 2.80| 271 | 2.61| 252 | 3.81| 3.54
b 1 0 1 1 1 1
n| 85 13 10 8 8 8 8 15 13 14
Y Zr Nb | Mo Tc Ru Rh Pd
ro | 3.27( 3.24| 3.30| 3.26| 3.14 | 3.20| 3.16 |~ 25

b| 1 | 3| 4 [3u4|33|33] 2 | 2
n|os5| 8 | 7 |757|8/75|875| 85| 85

Ag Cd In Sn Sh | Te | Xe
ro| 3.11| 3.00| 3.31| 3.19| 3.09 | 2.98| 2.88 | 2.75
b 1 0 1 2 2 1

n 9 15 11 9 8 8 9 15
Cs Ba La Ce Pr Nd Pm | Sm
ro | 403| 3.75| 4.62| 4.49| 4.68| 4.66 | 4.64 | 4.63

n 13 10 10 11 12
Eu [ Gd | Tb Dy Ho Er | Tm | Yb
ro | 4.61| 451 | 458 | 457 | 4.55| 454 | 452 | 4.50

n| 14 11 |125] 12 | 125]| 13 | 15
lu| Af | Ta| W | Re | Os | Ir | Pt
fo | 3.54 | 3.50| 3.47 | 3.44| 3.40 | 3.37| 3.34 | 3.41
b| 1 | 2 |33 | <4|33L| 3 | 3 |23
n| 10| 9 |875| 7.3 |875 75| 8 |85/8

Au | Hg | T | Pb | B | Po| At | Rn
ro | 3.38| 3.24| 3.43| 3.32| 3.22| 3.12| 3.03 | 2.93
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Table 7 Homonuclear bond length/pm and matchbkJmol*

21

Li Be B C N 0] F Ne
de * * 163 155 147 149 142
dy 267 159 | 154 147 148 141
D¢ 102 54 273 | 397 221 198 179 3
Dy 110 59 290 | 377 252 214 159 4
Na Mg Al Si P S Cl Ar K Ca
de 309 * 256 | 227 218 214 | 200 * *
dy 308 389 247 | 232 221 205 199 392
D¢ 66 35 138 | 328 487 292 253 5 53 25
Dy 75 11 133 310 485 286 243 5 57 17
Sc Ti \ Cr Mn Fe Co Ni
de 262 260 226 | 262 271 249 247 215
dy 279 252 228 | 243 300 216 218 217
D¢ 167 163 259 | 167 95 151 148 233
Dy 163 118 269 | 152 81 118 127 204
Cu Zn Ga Ge As Se Br Kr Rb Sr
de 250 * 300 | 251 243 235 227 * *
dy 222 241 244 232 228 432
D¢ 192 22 100 | 247 232 217 202 6 38 21
Dy 201 22 106 | 264 181 223 194 5 49 16
Y Zr Nb Mo Tc Ru Rh Pd
de 284 221 203 | 208 211 215 241 191
dy 309 250 210 | 221 235 231 245 239
D¢ 152 311 520 | 454 332 344 | 232 145
Dy 159 298 513 | 436 330 331 236 136
Ag Cd In Sn Sb Te | Xe
de 270 * * 277 268 259 288
dy 251 259 268
D¢ 163 7 76 186 282 263 152 7
Dy 159 7 82 187 302 258 153 7
Cs Ba La Ce Pr Nd Pm Sm
de * 401 | 408 438 466
dy 470
D¢ 43 240 247 152 94
Dy 44 247 | 242 130 84
Eu Gd Tb Dy Ho Er ™ Yb
de * 428 * 455 * *
D¢ 35 145 70 89 69 54 20
Dy 33 132 71 86 75 54 21
+ 17 25 29 30 29 17 17
Lu Hf Ta w Re Os Ir Pt
de 307 267 233 | 225 228 220 227 240
dy 299 246 223 | 214 238 233 236 248
D¢ 141 224 405 | 490 387 427 330 307
Dy 142 390 | 486 386 415 361 307
+ 33 96 96 96 77 68 2
Au Hg Tl Pb Bi Po At Rn *
de 258 * 320 | 288 246 >
dy 247 266
D¢ 209 10 51 77 190
Dy 226 8 63 87 197 187
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errors in the measured diatomic dissociation energiesdimesof these metals are
interpreted as due to spectroscopic activation, produemglibrium mixtures of
compounds of poorly resolved bond order. It is noted thatlisueh cases an aver-
age over two bond orders reproduces the experimental datex raell.

Diatomic W, provides an interesting demonstration of an interactiofckvis
prevented from reaching bond ordemd 7) by the exclusion principle that restricts
maximumbD’ to 2t = 1.236. SinceD, = 1.4 > 27 nis restricted to the minimum of
7.3.

Observed interatomic distances for diatomic transititament interactions are
estimates of the fractiom, = 0.785 of nearest-neighbour approaches in the metals
[5] and may be considerably in error in the present contaspieeially for the second
transition series. Apart from first-order £ and Ce, with Dy = 245+ 30 kJmol 2,
homonuclear diatomics have weak interactions with an aeeby = 70+ 40
kdmol 1, in agreement with our estimates. Multiple bond orders, énegal, are
characterized by stepwise reduction of the first-order goldxponent, such that
ny.j = Ny —i. Some observed second-order homonuclear interactiohs miblock
are collated in Table 8.

Table 8 Comparison of interatomic distanc&)(and dissociation energy/kJmdl for second-
order interaction

C @) P S As Se Sh Te
de 1.36 1.22 1.92 1.89 2.14 2.07 2.36 2.28
dy 1.34 1.21 1.89 1.89 2.10 2.15 2.56

D¢ 642 519 484 472 374 351 282 263
Dy 600 498 485 425 382 331 302 258

Improved estimates af = 2.18 and 258 for Se and Te respectively, indicate
bond orders of 1 and 1, rather than 2. The only authentic homonuclear thidéo
interaction in thep-block occurs for diatomic N It hasd; = 1.15A, dy = 1.10;

D¢ = 937kJmot?, Dy = 945. What is commonly considered to be a triple dicarbon
interaction is approximated by = 3.16, as restricted by ther2imit. This way

de = 1.22A, dy = 1.21; D = 964kJmot?, D, = 966. The non-existence of a third
order diphosphorous interaction is explained directly bging that it would imply

D’ >> 21.

The dicarbon interaction of ordet 1predicted to have the graphitic= 1.40A
andD = 505kJmot ! has been measured in biphenyl with = 479kJmot 2.

4 Heteronuclear Interaction

Bond-order analysis of heteronuclear covalent interastiis considerably more

complicated, but feasible in principle. An obvious assuomRy = /ro(1) - ro(2),
predicts correct values fat = djRy and suggest® = pKI%T”. The parameter
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p= x(1)/x(2) is taken as the ratio of electronegativitje§) 0 r3(i) [19] to com-
pensate for polarization effects. Hence

De = Kr3(1)t"/ro(2),

with ro(1) > ro(2).

The formulae work surprisingly well when tested against aiatyof examples.
A self-consistent set of effective exponentand bond orders for thp-block is
shown in Table 9. Readers are urged to verify the numberssighie large volume
of data on heteronuclear diatomic molecules [7], some ofware collated in Table
10. The reporte®, = 96 kJmol ! for AsSe appears suspect and has been ignored.

The most interesting molecule in the group is CO, reportdthie the strongest
covalent bond at 1076 kJmd!. Classically it is formulated as £0: , with a so-
called dative triple bond. Our formulation is in agreemeithwguch a special struc-
ture as a regular third-order interaction would exceedithié bf D’ = 21 imposed
by the exclusion principle. To put the situation into pertpe it is noted that on
ionization into CO" the interatomic distance decreases from 1428 1.115,
which seems to imply an increase in bond strength. Howelrerpbserved disso-
ciation energy also decreases in the process from 1076 t&B06 . Referred
to Fig. 1 this CO interaction lies outside the covalent ceascCBA, which also
indicates an additional factor, such as an ionic contribbuto the total interaction,
at work.

What seems to be happening is that, when prevented fromliskialg third-
order interaction, a rearrangement of the combined valdeasity occurs in such
a way that a more efficient lower-order interference patterpromoted. Such a
rearrangement exists in a modification of the atomic valespteeres. An outward
flow of electron density causes a decrease in characterggtios, andvice versa
A decrease ofo(0)— 1.36A, balanced by an increase gf{(C)— 1.7844, is found
to promote the formation of 2order interaction aRy = v/1.36x 1.784= 1.56A,
to match the observed = 1.56 x 0.724= 1.128A and dissociation energpy =
1389r3° x 1.784°/1.36= 1076 kmot?, as observed.

lonization, CG-CQO" + e, implies decrease of both characteristic radii. At
ro(0)=1.44 andy(C)=1.65A the 2i-order interaction occurs By = v/1.44 x 1.65=
1.54A to match the observed = 1.54 x 0.724= 1.115A and dissociation energy
Dc = K135 x 1.65°/1.44 = 804kJmot, as observed. This polarization also ex-
plains the observed dipole moment of CO.

The same bonding pattern repeats for all group1l4—groutérdic molecules,
that map outside the covalent region of Fig. 1.

4.1 Hydrides

The hydrides constitute the largest group of heteronuclealent interactions. Cal-
culated results are in Tables 11 and 12.
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Table9 Bond orders and exponents for diatomic interactions betwegresentative elements

F[CI|Br]| I O | S |Se|Te N | P |As| Sh| Bi
Gl 1121 B | 21

65| 6 | 7 |75|75]| 7 55|75
Nal 1 | 1 | & i i c| 3] 2

85| 8 | 8 | 8 |95 4 |65
Klz |2 ]2z N 2; | 2

9 [85|85|85]| 10 65(75|75
Rb| 1 3 i i i ol 3] 2]2

95| 9 | 9 | 9 |105 4 165 85|95
SENEAEREAE FID [T I

10 | 95(95(95| 11 55|75|75 9.5
Be| 1 22| 2 Al

55| 6 |75 5 7 8 9 | 85
Mg 1 | 1 14 Si| 2

8 [ 7575 8 8 | 85 75| 7
Ca| 1 | 1 I [ 13 [ 12 P

85| 8 |85(85| 9 |85 71819
Sr| 1| 113 |12 S

9 [85|85]| 9 |95| 9 7 | 65 8 | 85
Bal 1 [ } i i1 13|13 Cl| 1} |13

951 9 |1 9 | 9| 9] 9 77 |7 8.5
Bl 2|1 1] 3 3] 2 Ga

5|6 |75 8| 4|6 | 7|85 85|85 9 |95
Al [T 1121 As

7 (65| 7|7 |75|75| 7| 8 8
Ga| 11| 1 [ 1 [ 113 Se

8 [ 75|75|75]|85 8 7 8.5
mj1]1[|1]1 Br| 1

9 8585|8595 9| 9| 9 85| 7 9
T 1]1[|1f1 In

95| 9 | 9 | 9 |105 95]|95]| 95|95
Cl 2|1 1128 ] 2 Sn

5|65 8| 9 |35|6 |7 9
Si| 1|1 22| 2 ] 2 Sb

7 7 |75 8 | 55| 6 6 7 8.5
Ge| 1 1 1 2 | 2 2 |13 || Te

8 |75|75| 8 | 7 |65]|65]| 7 8 8 | 85
Sn| 1 |1 L[ [ [

85|85 8 | 9 |85|75| 8 | 8 9.5 10 |10.5
Pb| 1 L1 |13 | 15 [ Pb

95| 9 | 9 |[95] 9 | 8 | 85|85 10

4.2 Stretching Force Constants

The calculation of harmonic force constants of covalentdsamas been shown to
derive from ionization radii by an equally simple procedurellowing the rule
defined as

D' =r3t" i.e. Dy=Krgt"

3
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Table 10 Calculated and experimental dissociation energies (kJhoff heteronulear first-order
interactions. Golden exponenisare marked by asterisks

C N F Si P Cl | Ge | As | Br |

C * * 248
5.5 5 248
N | 329 *
329 5.5
O | 347 208 225 318
351 220 206 302
F | 465 | 313 * * *
514 |< 34 6 6 | 65
Si| 298 565
302 567
S| 318 293 247
294 286 256
Cl| 326 | 167 | 270 | 374 | 329 310 | 282 * *
336 | 155 | 261 | 349 | 328 340|294 75| 8
As| 226 427
231 466
Se| 259 304
244 286

Br| 296 118 | 305 | 329 | 267 | 226 | 274 | 249
277 118 | 280 | 315| 265 | 219 | 277 | 244

Sn| 205 327
227 319
Sh| 186
197
I | 246 266 | 270 | 174 196 | 194 | 198 | *
214 <2720 235|185 211 | 181 | 181 | 8.5
Xe 153
130

it follows directly that for homonuclear interactions

4.615r"s
kl’ = TAAl r N2
(Ad"-1o)

in which 1+ = " — "1 = ™2 nis the bond-order exponent asdhe slope of
the bond orderdd’ function.

In the calculation of heteronuclear interactions it is reseey to substitute
Ro = +/ro(1)-ro(2). A serious complication exists therein that, as for homdgarc
interactions, the critical stretch to effect a change ofdborder depends on atomic
volume and, in addition, also on relative atomic size. Thatsgy to address this
problem was to use known parameters, together with expatahforce constants,
to calculate effective values dfd’ from the expression
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4.6151"s
ro(1)-ro(2) -k’

The calculated values dfd’ for heteronuclear diatomics from period 2:

(ad'? =

N o) F
C[0.72(3) 0.78(3) 0.86(2)
N 0.77(3)
Be 0.70(2)

with bond order in parentheses, appear to be well orderethdrsame way the
results for group 2—group 3 diatomics are considered seffiyi alike to assume
Ad’ = 0.047 as a predictor in calculating unknown for this family, including
compounds of N:

Table 11 Bond order and interatomic distance in H—X interactions
Li Be B C N (@) F
Ro/A| 159 147|135 131|128 1.25| 1.21
b 0 0 : 1 13 11 2
d/A 1.47| 1.26( 1.14 | 1.01 | 0.98 | 0.92
Obs| 160 1.34| 1.23| 1.12| 1.04| 0.97 | 0.92
Na | Mg Al Si P S Cl
Ry | 1.73| 1.68| 1.63] 1.59| 1.56 | 1.55| 1.49
n <0 0 0 2 : 1 1
d 1.68| 1.63| 1.48| 1.45( 1.34| 1.30
Obs| 189|173 | 165|152 | 142 | 1.34| 1.27
K Ca Ga Ge As Se Br
Ry | 1.84]1.74| 1.71| 1.67| 1.65] 1.62 | 1.59
n | <0|<0| O 3 3 3 1
d 1.71] 156 | 1.49( 1.51| 1.38
Obs| 244|200 1.67| 159|151 | 1.47| 1.41
Rb Sr In Sn Sh Te |
Ry | 1.92]186| 1.79| 1.76 | 1.73| 1.70 | 1.67
n | <0|<0| O 0 0 0 1
d 1.79| 1.76 | 1.73| 1.70 | 1.56
Obs | 237|215 1.84| 1.78 | 1.70 1.61
Cs Ba Tl Pb Bi Au Hg
Ry | 1.98(192|1.82)1.79| 1.77 | 1.81| 1.77
n <0 | <O 0 0 0 1 0
d 182 1.79| 1.77| 1.57 | 1.77
Obs| 249 223|186 180 1.75| 1.52| 1.74
Cr [ Mn Ni Cu | Zn Ag Cd
Ry | 1.71| 168 | 1.65] 1.67 | 1.64 | 1.74| 1.71
n 0 0 1 1 0 2 0
d 1.71( 168| 1.43]| 145|164 1.62| 1.71
Obs| 1.67| 1.73| 147 1.46| 1.59| 1.62| 1.76
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Table 12 Calculated and experimental dissociation energies (kJhof H—X interactions

Li Be B C N 6] F
n 9 8 7 65| 65| 55| 45
Dc | 248 | 201 | 327 | 353 | 303 | 416 | 577
Dy | 238 | 200 | 340 | 338 |< 339 430 | 570
Na | Mg | Al Si P S Cl | Cu
n | 115|115 95| 95 9 85| 75| 10
Dc | 167 | 136 | 303 | 265 | 298 | 360 | 472 | 277
Dy | 186 | 126 | 288 | 293 | 297 | 354 | 431 | 255
K Ca| Ga| Ge | As | Se | Br | Ag
n | 12 | 11.5|105| 10 | 10 [ 95| 9 |10.5
Dc | 190 | 167 | 247 | 280 | 255 | 294 | 336 | 276
Dy | 181 | 223 | 276 | 263 | 274 | 313 | 366 | 244
Rb | Sr In Sn | Sb | Te | Au
n | 13 |125| 11 | 11 | 10.5(10.5| 10 | 10.5
D¢ | 150 | 152 | 260 | 232 | 270 | 243 | 277 | 353
Dy | 167 | 165 | 243 | 264 | 240 | 260 | 298 | 311
+ | 21 8 17 7
Cs| Ba| Tl Pb | Bi Zn | Cd | Hg
n| 13 |125| 12 | 12 | (11)| 13 | 13 | 15

D. | 178 | 182 | 179 | 162 82 | 73| 34
Dy | 175 | 192 | 195 |<1571<283 86 | 69 | 40
+ 4

Sc | Ti \ Cr | Mn | Fe | Co | Ni
n 11 | 11 | 11 11 |10.5| 11 | 10 | 10
Dc | 197 | 191 | 186 | 197 | 224 | 169 | 268 | 257
Dy | 205 | 205 | 209 | 190 | 251 | 148 | 245 | 240

+ 17 9 7 8
Pt Yb Nb | Mo Ru | Rh Pd
n 95| 14 11 [ 115 11 11 | 95
D¢ | 363 | 157 | 257 | 206 235| 226 | 230
Dy | 327 | 159 >222l 211 223 241 | 234
+ 38 15 6 25
C N O
Mg 0.047(2)
Si 0.051(2)

P |0.045(2)  0.044(2
S [0.046(2) 0.047(2)

A similar regularity which emerges for heteronuclear hedid

Cl Br |
F[0.09 0.08

Cl 0.07
C|0.08 0.06 0.0

confirms that the algorithm yields reasonable results.
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4.2.1 Hydrides

The hydrides of-block elements represent the best documented set of exgatal
stretching force constants. The previous strategy yidldstrprising result that, as
for homonuclear interactions, the effective critical &theAd’ is a function of only
bond order. In the first linear regios,= 1.3, the valueAd’ = 0.115, with bond
orders as identified in Table 11, predicts the following éconstants:

BH : k- = 3.28 (kx = 3.05 Ncn t

CH: 4.39 4.48
NH: 4.62 5.97
OH: 7.92 7.80
FH: 9.64 9.66

With the exception of NH this is considered excellent agrem

In the second periodhd’ = 0.062 predictsk; in exact agreement with experi-
ment: SH= 4.22, PH= 3.21 Ncnt L. Calculating back from the observigdfor the
hydrogen halides, F to I, the sequentd’ = 0.115, 0.073, 0.054, 0.046 appears
reasonable.

These results are in line with the small ionization radiuswdrogen, which
shows that its entire charge sphere becomes embeddedangeasphere on molec-
ular formation. The effective point position of the prot@hative to the wave struc-
ture of the larger atom decides the bond order.

4.3 Molecular Hydrogen

For H alone the ionization radius is known as an analyticaliltero = 1.835x
0.53=0.97A. Experimental parameters fontire:

Dy = 436kJmol?!
d = 0.74A
k =5.75Ncm ™t

The interatomic distance definds= 0.74/0.97 = 0.763, which corresponds pre-
cisely to bond order 2, with the interesting corollaty= 212. Sadly, as inferred

from simple number theory, tHe; = 1389312 = 499 kJmol ! does not match the
observed.

The factorr??8 ~1 produces the observe). It is noted that another molecular
form, the familiar I-y hasDy = 269~ 13893/5 = 261 kJ, and withd’ = 1.09,
bond orderb < 0. The intermediate first-order excited state wdth= 0.84A and
D = 1389%/4 = 327 kJmot! has not been observed.

The observed deviation of the golden exponential from theeeted integral
value of 2 suggests some exclusion principle that prevegstesecond-order in-
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teraction. It is shown in Fig. 6 how the superposition of tvpherical waves of
Wavelength)\ ap/2 predicts constructive interference at 3- 0.795 rather than
0.74A, required forb = 2. The mismatch is responsible for the shift®?® ~1,

Fig. 6 Graphical simulation
of theH—H interaction

which in real terms is an almost imperceptable deviatiomfsecond-order interac-
tion.

An obvious simulation of the stretching force constant fentbuld be in terms
of the stretcAd’ = 1.09— 0.763= 0.327, 1428 ~ 12/3 = 0.1275 and unit initial
slope:

4.615%x 0.1275
=———— =585
ke (0.97 x 0.327)2 ’
compared tdy, = 5.75 Ncni L.

In order to understand the results reported here it is intiperto abandon the
idea of bond order as a function of electron pairs. The adti@re definition in terms
of wave structures clarifies many a puzzling feature of catigaal theory, such
as the relative strengths of electron-pair bonds of the samer. By inspection,
the variation of experimental covalence paramelerd andk;, shown in Table 13,
are qualitatively at variance with a constant bond orderrifyuas required by the
electron-pair model.

Table 13 Variation of parameters with bond order

H]B]CJ]N]JO]JTF
436 | 340 | 338 |<339| 430 | 570
074| 1.23| 1.12 | 1.04 | 0.97 | 0.92
575|305 | 44 8 597 | 7.80 | 9.66
2 | 3|1 1| 1| 2
228| 7 | 65| 65| 55| 45
570 | 732 | 514 |<349| 220 | 159
092|1.26| 1.40 | 1.41| 1.42 | 1.41
9.66 7.42 4.70
2 | 2|1 ] 1
45| 45| 5 | 55

socXaUsoc?ao

oI
ok
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However, in terms of the alternative bond order paramétarsd the golden ex-
ponents these quantities are correctly simulated at the quantitéivel. The mys-
tery that surrounds many other observations such as thenpgreetism of molecular
oxygen or the non-existence of a ®iple bond also disappears.

5 Diatomic Dipole Moments

It has been shown that the electronic charge distributi@mniatom is readily calcu-
lated by the same optimization procedure, based on a gofidenh [§], that correctly
predicts all satellite orbits in the solar system [26]. Tirawdation is sufficiently
reliable to enable an improved derivation of the ionizatiadii of compressed
atoms [18], known to generate a self-consistent electratingty scale [19]. Hav-
ing demonstrated that the same elements of number theardiatate the details of
atomic periodicity and the nature of covalent interactioithout the use of higher
mathematics, it is of interest to also explore the feasjbdi calculating molecu-
lar dipole moments by the same approach. The results foordiatmolecules are
compared to the data tabulated in HCP [7].

5.1 The Algorithm

The formation of a diatomic molecule involves the interacthbetween two activated
valence electrons. In the case of heteropolar interackierdifference in quantum
potential energy (electronegativity) of these two ele$results in a skewed charge
distribution, which may be expressed as a differed@dn charge, measured at the
nuclear sites.

The dipole moment of a diatomic molecule is defined as theywioaf equal, but
electrically opposite, fractional charges at the interatodistanced apart,i.e.

u=:0Q-d.

The magnitude 0®Q depends on the differences in atomic electronegativipies,
larizabilities and valence densities. The effect of déferelectronegativities has
been considered in the calculation of dissociation enenglisiintroduced here for
a single electron as

pt=1/r3(1)/ro(2)  togetherwith  p~ = /r3(2)/ro(1),

the reverse polarization. This defines the polarizatiotofag = p* /vy — p~/vz,
wherey; is the number of valence electrons on atom

In order to estimate atomic polarizabilities it is notedtttiee inverse of charge
density at the crests of the spherical-wave representafiatoms, in units oiag’/e,
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should be such a measure. This quantity has been calculsfi@e j6] from a spher-
ical standing-wave model of the atom, shown schematically i@adial projection in
Fig. 7.

.0063 =3
.068 .034 .0126 .0084 .0043 p/e%

Fig. 7 Electron charge densities in spherical-wave model of thmat

The reciprocals come out as

1 147 29427937 11904, 15873, 23255

Pn
These numbers are converted into a series of integers

1.02

Pn

~ 15,30, 80,120, 160,240 =m

which will be used as coefficients to calculate polarizéb#i directly from ioniza-
tion radii; noting that the quantitik = m/nry oscillates abouk ~ 10 for period
numbem, as shown in Table 14,

In this table units o&3/e andA~! are mixed. To ensure consistency we convert
1A% = (0.52)%a3 = 7.11a3. Also, calculated charge densities refer to fully occu-
pied energy levels, whereas th&d simulation specifies one-electron densities. The
ratio f (1 : 8) — 1.38, compensates for this effect, to give the complete caimer
factork = 7.11x 1.38 = 9.81, that generates the numbers= m/10 from 1/py,.
From these numbers polarizabilities are calculateshasa,/ro(n) = f/10 of Ta-
ble 14. This result provides a simple conversion of caledatipole moments into
Debye units. Noting that

1D = 3.336x 10 3%Cm
1eA = 4.8D,

the dimensional constant for conversion of dipole momenritsDebye units follows
directly asK = 10/3.336= 3.
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Table 14 Numerical relationship between ionization radii and ampolarizabilities. lonization
radii have been calculated by the spherical-wave model [6].

H Ratio
%, f(1:9)
15.5

Li[Be[B[C|NJO]|F]Ne

23% 6.4|7.0[8.0/84(89(9.4]99(10.4
1.63

Na|Mg[Al [ Si| P | S |CI|Ar

g_rg 8.6|9.6(9.7/10.2/10.6{10.8/11.6| 12.1
1.40

K | Cal|Ga| Ge| As| Se| Br | Kr

}TZ(? 8.6[9.1 1o.q 10.4/10.7/11.1{11.5/11.9
1.38

Rb|Sr{In|Sn|Sbh|Te| I [ Xe

g%) 8.4|9.0(9.7/10.0{10.4{10.7/11.1| 11.6
1.38

Cs|Ba| Tl | Pb| Bi | Po| At | Rn

& 9.9]10.511.712.0/12.4/12.8/13.2 13.7
1.38

5.2 Results

5.2.1 Interactionsof s— ptype

Valence density depends on the periodic position of an astvonn for represen-
tative elements in Table 14. The simplest situation to madtte polarization that
occurs in an alkali halide molecule, also responsible feri#éingest dipole moments
of diatomic molecules. In effect, a singly-charged valesteell interacts with a sin-
gle vacancy in the valence shell of the halogen atom. Theigatéon of the alkali
shell should decrease with atomic size, which is measureithdyperiod number
of the valence shell. The implied decrease in valence defrsin Li to Na, of
8.6/6.4~ 3/2, suggesty = 1/n as approximate scale factor, which could be com-
plicated by the appearance @fand f sub-levels. It is a complementary vacancy
density that should be taken into account.

The feasibility of these assumptions are validated by ¢atfitig a dipole moment
for LiF with n=2,s=3/(2ro(F)) ~ 1,K = 3,a = 2.77,d = 1L.56A:

He=3x1x2.77x1.56=6.48,

compared to the experimentally measupgd- 6.33D. The assumptions also predict
the dipole moments of other alkali fluorides with remarkadseuracy. Usin@q =
3/nfor Nato Cs calculates:
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u(NaF)=(v=1)(n=3) x (a =4.26) x (d=1.93) =82 (ux=8.2D)
U(KF) =0.75x 5.17x 2.17=8.4 (uy = 8.6D)
U(RbF)= 0.6 x 5.89x 2.27=8.0 (y=8.5D)
U(CsF)=0.5x6.43x2.35=7.6 (ux=7.9D)

For the higher halides of Li and Na it is adequate to assdigqre 3.5/n, in line with
Table 14.

A better simulation for the higher fluoridés > 3) is obtained by the physically
more sensible assumption & 0 V(M) /Vo(F), e.g. $KF)O [ro(K) /ro(F)]° = 12.2.
Noting the facton? that defines wave nodes, we calculdte=s/n?, i.e..

5q(KF) = 0.76, pc = 8.53D

0q(RbF)=0.63, p.=8.42D
0q(CsF)=0.52, u;=7.86D

Deviations from the ideal rule

3 8 12 16

2r0(F) ~ 3ro(Cl)  4ro(Br)  bro(l) !

3ro(Cl) 16 4ro(Br) 24 Sro(l) _ 32

roF) 3 7 roF) 3 7 roF) 3
define the factors that convert volume ratios to the scalegdfbefore by

3 nro(X) 3ro(CI)
20(F)  ° To(F) S TP

with factors for Br=6.87 and 1=9.47. This way we find:

=454, etc,

Oq(LIiCl) = 1.08x 4.54/4=1.23, =51 (ux=7.1D)
5q(NaCl)=1.22, =95 (ux=9.0D)

Oq(KCl) =1.00, =108 (ux=10.3D)
Oq(RbCl)=0.83 =107 (ux=10.5D)
3q(CsCl)=0.68, pc=101 (ux=10.4D)

As before simple scaling works better for Li and Na. Finalulesfor all alkali
halides are collated in Table 15.

The next group of diatomic molecules with non-trivial dipghoments are the
alkaline-earth chalconides where polarization involvestide the number of va-
lence electrons and vacancies. Taking this into accountalilate dipole mo-
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Table 15 Calculated and observed dipole moments (Debye) of theidlahdles.

FlCl[Br] 1
Li(u)| 65| 72| 70| 7.6
U | 63]71]73] 7.4
Na |82]91]88]| 89
82|90]91| 92
K |[85](10.8[10.9] 11.2
8.6 |10.3| 106 |~ 108
Rb | 84 [10.7|10.8] 11.2
8.5 |10.5 ~115
Cs | 79(10.1]10.2] 10.6
7.9 |10.4

ments in reasonable agreement with the experimentally kneaiues for MgO
= 6.1, SrO = 8.9, BaO = 8.0 and BaS = 10.9D. Definimg= p* /2 — p~ /6,

59 = (1/n?)[V(M)/V(O)] x 4 we find:

MgO: p=2.32x (a=162) x(d=175 =6.2D
SIO: p=176x247x1.92=29.0D
BaO: i =148x276x 1.94=8.0D

For BaS with 3¢(S)/ro(O) =4.63,s=(1/36)[V(Ba)/V(S)] x 4:

BaS: p=187x202x251=95D

The main objective is not to produce exact dipoles momemiaguine-tuned pa-
rameters, but rather to demonstrate that a convincing nvatblexperimental mea-
surement can be achieved by the multiplication of threeofacthat derive from
ionization radii and valence densities alone.

5.2.2 The p-block diatomics

In the case of group 3 halides ontyelectrons are involved in the interaction. The
halogen vacancy is 1/5 of thedensity. Hence we calculate the polarizability fac-
tor asa = p* — p~ /5. Whereas the-density of groups 1 and 2 interacts directly
with vacancies in the valence shell, thedensity of groups 3 and 7 atoms are not
separated by a closed-shell arrangement, but by intergehiavels. The number
of charges that separate B from-AB, Al-Ga= 18, Ga-In= 18 and In-Tl= 32.

Between groups 3 and 7 there are alwayscharges. Instead of scaling the volume
ratios by 1/n?, the effective scale factors ane= 8, 18+4, 32- 4, as in Table 16. In
the same calculation for some chlorides with known dipolemants a better fit is

obtained withm~ 31, i.e.
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Table 16 Calculation of dipole mements of group 3 fluorides

s=IVMMVEF)| =6q| a | dA | e |p(D)

- m

BF 1.89/8 024]172|126| 05| 0.5
AlF 5.89/22 0.27 | 345 | 1.65| 1.54 | 1.53
GaF 7.69/22 0.35| 3.99 | 1.77 | 2.47 | 2.45
InF 10.33/28 0.37| 4.67 | 1.99 | 3.44 | 3.40
TIF 11.49/28 0.41) 495 2.08| 4.22 | 4.23

p(InCl) = 2.98 x 4.54/31x (a = 3.59) x (d=2.4) = 3.76, (jx = 3.79D)
U(TICI) = 0.49x 3.81x 2.48=4.59 (4.54)
U(TIl) = 1.69x 9.47/31x 3.21x 2.81=4.66 (4.61)

However, the sample is too small to reveal a logical pattern.

Simulation of the dipole moment of CO needs special care.riferoto sim-
ulate the 2-order interaction it is necessary to modify the charasteriradii to
ro(C):1.784&, ro(O):1.36&, with the number of valence electrows ~ vp ~ 3, to
give a polarization factor off < 0.86,5q = (1.784/1.36)3/16= 0.14,d = 1.13A,
Ue < 0.14D. (ux = —0.11D). The charge flow from ©-.C, implied by the modified
radii, inverts the sign of the dipole moment, as observed.

In comparisonab initio SCF calculation ofu(CO) with the correct sign, at
—0.077D, requires a double-zeta-plus-polarization basiwiktl 38 doubly excited
configurations plus 62 single excitations [29]. The chehpdaciples involved here
are hard to visualize.

Several chalconide diatomics of the carbon group are algestto similar mod-
ification of their atomic valence spheres. Since these &ffieave not been calcu-
lated, an approximation, which assumes a polarizatiormfadta = 2(p™ — p~),
calculated with unmodified atomic radii, with the speciadlecfactors shown in
Table 17, was found to give results in good agreement witlegsgnt.

Table 17 Dipole moments of group 4 oxides.

s oq a d/A | pe | u/D
CO | 1.38/9 | 0.153| 0.72| 1.13| 0.12| 0.11
SiO | 4.39/9 | 0.488| 4.20| 1.51| 3.09 | 3.10
GeO | 5.89/16( 0.368 | 5.38 | 1.62 | 3.21 | 3.28
SnO | 7.93/23| 0.345( 6.74 | 1.83| 4.25| 4.32
PbO [ 8.93/28| 0.319| 7.34| 1.92| 450 | 4.64

In modelling the higher chalconides a factop(X) /ro(O) scales the fractional
chargesdq = s- f(X), where f(S)= 4.63, f(Se)678 andf(Te)= 9.32, as in Table
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18. For selenides and tellurides the empirical fit to knowoti moments are:

Table 18 Dipole moments of group 4 sulphides

s oq a d/A | e | u/D
CS | 0.37/4] 0.43| 280 1.54| 1.85| 1.96
SiS | 1.19/4| 1.38| 0.60 | 1.93 | 1.60| 1.73
GeS|1.60/13| 0.57 | .70 | 2.01 | 1.95 | 2.00
SnS| 2.15/20| 0.50 | 2.92| 2.21 | 3.23| 3.18
PbS | 2.43/25| 0.45 | 3.44 | 2.29 | 3.55| 3.59

CSe: pe=(0.28x6.78/6) x (a = 3.80) x (d =1.68) = 2.02 (L = 1.99D
GeSe: pe=(1.6x6.78/10) x 0.72x 2.13=1.66 (L = 1.65)
GeTe: o= (0.97x9.31/12) x 0.36x 2.34=1.06 (L = 1.06)

Them index that correlates separated fractional charges witlhnwve ratios is an
integer that changes in a regular, but still unspecified wayn

1

59= IV (M)/V(X)],

with the relative periodic positions of M and X. The pattesrsummarized in the
following array:

F F O|CICI S[BrBr Se
Li B C|4 4 9|4 414 6
Na Al Si|9 22 9|9 919

K GaGg162216/16 1316 10(12Te
Rb In Sn25 28 23 25 31 20|25
Cs Tl P36 28 2836 31 2536

For alkali halides and alkaline-earth chalconides- n?, wheren is the period
number of M. Where both atoms are in thélock m also depends on the periodic
position of X.

The dipole moments of the six interhalogen diatomics areatied well by cal-
culatinge = a-98q-d, a = p —p~, 69 = (3m/20)(V1/V2) = 0.15x Vq /Vo x m.
Hence
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H(FCl) = 1.59 x (0.15x 0.289x 8) x 1.63=0.90 (1 = 0.89D)
U(FBr)=2.26x (0.15x 0.198x 12) x 1.76=1.42 (1.42)
p(F1) = 2.86x (0.15x 0.147x 16) x 1.91=1.93 (1.95)
1(CIBr) = 0.62x (0.15x 0.684x 4) x 2.14=0.54 (0.52)
p(Clly = 1.16 x (0.15x 0.509x 6) x 2.32=1.23 (1.24)

p(Brl) = 0.55x (0.15x 0.744x 5) x 2.47=0.76 (0.73)

Diatomic oxygen halides are correctly modelled by assuraiagp™ — p—, dq=
(V1/V2) x 0.18m, m(Cl) = 10,m(Br) = 12, m(l) = 16,i.e.

{(CIO) = 1.43x 0.607x 1.57=1.36 (i = 1.30D)
{(BrO)=2.08x 0.497x 1.72=1.78 (1.76)
10 = 2.67 x 0.492x 1.87=2.46 (2.45)

The scale factors that convert halogen interactions to theafe suggest an index
m < 2 for OF. A measured value very close to zero is reported. Rhisnwe infer
m~ 0.1. The samen should model the dipole moment of SF. We find

L(SF)=1.73x (12x 0.23x 0.1) x 1.60=0.76 (ji = 0.79D)

Other interactions in the-block are empirically modelled by a closely related
scheme. We find:

u=axogxd

H(NO) = 0.18x (4 x 0.849x 0.18) x 1.15=0.13 (ux = 0.16D)
U(NS) = 1.59x (12x 0.320x% 0.20) x 1.49=1.82 (1.81)

H(0S)= 1.78x (12x 0.272x 0.18) x 1.48=1.55 (1.55)

H(OP)= 1.86x (12x 0.259x 0.22) x 1.48=1.88 (1.88)
( (

H(NP) = 1.67x (19%x 0.305%x 0.19) x 1.49=2.74 (2.75)

5.2.3 Diatomic Hydrides

To find a formula for the dipole moments of diatomic hydrides laok at the hy-
drides of the first short period and calculate

_r5X) _rs(H)

- ro(H)  ro(X)

as shown in Table 19. The valuesrofare clearly derived froma x 3, which is exact

and s=V(H)/V(X)
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Table 19 Calculation of hydride dipole moments

C N ¢} F
Vv 2 3 4 5
a 2.41-0.72| 2.23—0.73] 2.05—-0.76| 1.90—0.77
1.69 1.50 1.29 1.12
u= (Vg /) 0.16 0.19 0.22 0.26
S=u/ vV 0.11 0.11 0.11 0.116
dq=ms 0.77 0.88 1.32 1.74
m 7 8 12 15
d/A 1.12 1.04 0.97 0.92
u=a-5q-d 1.46 1.37 1.65 1.78
/D 1.46 1.39 1.66 1.83

for HF [3/2ro(F)~ 1] and decreases slightly to the left, noting thtC)/ro(F)~
7/3v.

By the same method, scaling by the factors 4.54 and 4.6}less$tad before, and
noting the difference of 2 in the number of vacancies, weldate:

U(HCl) = (a =2.91) x <% x 0.341x 2> x (d=127)=111 (ux=1.11D)

U(HS) = 3.33 x (% x 0.278x 4) x0.97=1.80 (uy = 1.83D)

In the same way:

U(HBr) = 3.69x (1/v5x 0.51x 6.87) x 1.41=0.82 (uyx=0.83D)
p(HI) = 4.40% (1/v/5x 0.038x 9.47x 2/5) x 1.61=0.46 (px = 0.45D)

The effective scale factors for hydrogen halides are:

HF HCl HBr HI
15 908 687 3.80
3x 5 3.03 229 1.27

On comparison with similar factors for period 2 hydridestip@ic scaling with
respect to F is seen to be such that the cross products bethesnfactors as they
appear, moving towards C and | respectively, are simpleiphedt of 3, as in the
following array:

C(2.33) 0(2.67) N(4.0)
~ 3 6 12 15F
I(1.27) Br(2.29) CI(3.03)

This regularity is the result of a periodic relationshipvieén atomic ionization
spheres, also manifested in atomic electronegativities.
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5.3 Discussion

The calculation of dipole moments described here diffemsfall other methods in
ignoring nuclear charge. The rationale behind this is tigtatom is electrically
neutral. During covalent interaction only the extranucltd@arge clouds are subject
to polarization, which renders heteronuclear diatomigoldir. As the character-
istics of atomic charge clouds are fully characterized hyization radii and the
number of valence electrons, these are the only paramededed for the calcula-
tion of dipole moments of atomic pairs of known periodic piosis. Some of the
empirical factors introduced here, although poorly untberd, are consistent with a
regular periodic pattern.

Itis only in the case of the alkali halides that a regulargratin the variation of
dipole moment can be identified and interpreted, with sonagination, in terms of
the periodic variatian of ionization radii. The paucity @td for other heteropolar
combinations prevents generalization of the observedtrEmere are some tantaliz-
ing indications that implicate the role of intervening tsdion and inner-transition
levels, but to a large extent, each dipole calculationrgiitesents a special case. Re-
alizing that for only about 5% of the possible heteronuctaanbinations between
representative elements have dipole moments been meatheeathta to substan-
tiate any general simulation are clearly insufficient. Hegre the limited success
demonstrated here confirms that the appropriate paranfeteifse calculation of
dipole moments have been identified, although not necéssaantified.

6 Conclusion

It would be wrong to interpret this work as an effort to gaingiae importance of
quantum theory for chemistry. It does the opposite, but tipres the methodology
that developed from a naive interpretation of three-disimmal wave mechanics
to confirm the electron-pair model of Lewis and the molecstaucture theory of
van't Hoff. Even in terms of the probabilistic interpretati of wave mechanics a
rigid three-dimensionally structured molecule, with iesak molecular orbitals, is
undefined. A strategy, based on these concepts and whicibdggwn afQuan-
tum Chemistryamounts to a disastrous misreading of quantum theory andda
predictive power beyond its classical basis.

To avoid further confusion it is recommended to use the teom-classical the-
oryinstead of the unfortunatpiantum mechanicslon-classical theory became im-
portant after the discovery of the electromagnetic fielcte shmmary of Maxwell’s
field equations in the form

2 92 2 92
(ax2 oy Tz foko at2>
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resembles a three-dimensional wave equation and was lietedpas such, despite
Minkowski’s demonstration that it defines a four-dimensibfield. Noting that
t//€Mp corresponds to a complex space coordinate; it / /€ Lo, the field equa-
tion becomes s
0°P 5
—— =09=0 (6)
2
JZO 0x]

Classical Newtonian mechanics is a subset of this four-dgiomal non-classical
field. Solutions of (6) represent what is colloquially knoaseither special relativ-
ity or quantum theory.

As a quantum theory (6) introduces the angular-momentumfigpction; funda-
mental to the periodic table of the elements, which has nog®izable basis in three
dimensions. Spin is a purely four-dimensional conceptaeitrany meaning in the
three-dimensional mechanical world of particles. By débniit defines a math-
ematically allowed local configuration of four-dimensibspace-time. Projected
into three-dimensional space it appears as a wave packetallivave phenomena
it is characterized by discrete variables, observed astgmanumbers. What the
philosopher Popper refers to [30] as tlygantum muddlearises from assigning
quantum numbers to classical three-dimensional mechgractcles.

The way in which number theory is used here to simulate charh@haviour is
done in the spirit of four-dimensional non-classical thedihis way an interatomic
distance does not represeriband lengthin a rigid classical molecule, but an equi-
librium situation resulting from the constructive inteace between non-classical
valence electron waves. The present results do not inategairgew chemistry. It is
no more than the tip of an iceberg, destined to blossom imeetioing meaningful.
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