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Abstract Reviewed in historical contect, bond order emerges as a vaguely defined
concept without a clear theoretical basis. As an alternative, the spherical standing-
wave model of the extranuclear electronic distribution on an atom provides a simple
explanation of covalent bond order as arising from the constructive and destructive
interference of wave patterns. A quantitative measure derives from a number pat-
tern that relates integer and half-integer bond orders through series of Fibonacci
numbers, consistent with golden-spiral optimization. Unlike any previous definition
of bond order this approach is shown to predict covalent bondlength, dissociation
energy and stretching force constants for homonuclear interactions that are quantita-
tively correct. The analysis is supported by elementary number theory and involves
atomic number and the golden ratio as the only parameters. Validity of the algorithm
is demonstrated for heteronuclear interactions of any order. An exhaustive compari-
son of calculated dissociation energies and interatomic distance in homonuclear di-
atomic interaction, with experimental data from critical review, is tabulated. A more
limited survey of heteronuclear interactions confirms thatthe numerical algorithms
are generally valid. The large group of heteronuclear hydrides is of particular impor-
tance to demonstrate the utility of the method and molecularhydrogen is treated as
a special case. A simple formula that describes the mutual polarization of heteronu-
clear pairs of atoms, in terms of valence densities derived from a spherical-wave
structure of extranuclear electronic charge, is used to calculate the dipole moments
of diatomic molecules. Valence density depends on the volume of the valence sphere
as determined by the atomic ionization radius, and the interatomic distance is deter-
mined by the bond order of the diatomic interaction. The results are in satisfactory
agreement with literature data and should provide a basis for the calculation of more
complex molecular dipole moments. The diatomic CO is treated as a special case,
characteristic of all interactions traditionally identified as dative bonds.
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1 Introduction

The simplest model of a covalent bond is based on an electrostatic point-charge
simulation of overlapping spherical valence-electron charge clouds that surround
monopositive atomic cores. For a homonuclear pair of atoms with radiusr and in-
ternuclear distanced the dissociation energy,D is calculated from

D′ = ε2
(
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2−d′

)
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the common volume between the overlapping spheres,
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]

andD = KD′/r.
On equating the atomic radius to a characteristic atomic radius,ra, a single curve

of d′ vs D′ describes homonuclear covalent interaction, irrespective of bond order.
Practical use of the formulae requires definition of a complex set of characteristic
radii, which could be derived empirically [1] and was used subsequently to calcu-
late molecular shape descriptors [2] and as the basis of a generalized Heitler-London
procedure, valid for all pairwise covalent interactions [3, 4]. In all of these applica-
tions interaction is correctly described by the dimensionless curves of Fig. 1.

For heteronuclear interaction using dimensionless distancesd′= d/R, R=
√

r1r2

andr1/r2 = x, the overlap formulae are:
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Fig. 1 Covalence curves in dimensionless units. Homonuclear interactions are described by the
curve BFC and heteronuclear interactions map into the crescent CFA.
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The general covalence curve, first calculated by the point-charge electrostatic
model, has a simple geometrical construction [5] within a golden rectangle of size
2×2τ. The limiting covalence curve AB is a semi-circle centred onthe extension of
AD at the point (2,9τ/4=1.39). It is intersected at F by the homonuclear semi-circle
through point C and centred at coordinates (2,1). Homonuclear interactions map to
this curve up to the point where it intersects AB, then followthis curve to B. All
points(d′,D′) that characterize heteronuclear covalent bonds lie withinthe crescent
between the two curves. The circular segment BE is centred atA.

The relationship between interatomic distance and dissociation energy of atoms
in interaction has an interesting connection with the golden ratio, but is of limited
use without an empirical set of characteristic atomic radii. All efforts to derive such
radii from atomic properties have been unsuccessful for thesimple reason that these
radii are not free-atom properties. However, the search hasresulted in the identifica-
tion of an useful set of free-atom radii, characteristic of the atomic valence state [6].
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Whereas the interaction radii,ra describe the relationship between interatomic dis-
tance and dissociation energy, free-atom valence radii predict these quantities sepa-
rately, but relatedvia bond order, which is defined precisely in terms of interfering
spherical electron waves. In this paper we show how these predictions agree quan-
titatively with available spectroscopic, crystallographic and thermodynamic data.
All observed bond lengths, dissociation energies and stretching force constants are
taken from the tables in HCP [7].

2 The Bond-order Concept

The bond-order concept developed from the notion of multiple bonding, which was
formulated empirically towards the end of the 19th century,to explain the compo-
sition of organic compounds. The basic rule of thumb, proposed by August Kekulé
[8], was to assign valences of 1 through 4 to H, O, N and C respectively. In order
to rationalize the observed composition of ethylene, acetylene and benzene it was
necessary to postulate the formation of double, triple and 11

2-order carbon-carbon
bonds in these compounds.

This scheme could be extended in a natural way to O, N, S, P, Cl,etc. To bring the
scheme into line with the stereochemical ideas of Le Bel and van’t Hoff, valences
came to be associated withaffinity centres, arranged tetrahedrally in the surface of
spherical atoms. The formation of single to triple bonds wasexplained on this basis
by Victor Meyer [9, 10] as the touching of atomic spheres in different mode, as
shown in Fig. 2.

21 3

Meyer

Lewis

Fig. 2 Bond orders distinguished in terms of affinity centres (top)and electron pairs (bottom)

Whereas the atomic centres remain at the same distance from each other, the
affinity centres move progressively further apart as the bond order increases, pre-
dicting weaker interaction.

Based on Sommerfeld’s atomic model [11] of elliptic orbits,directed towards the
corners of a cube, a number of chemists, including Kossel, Lewis, Langmuir and
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Bury, developed an electronic theory to account for atomic structure and valency at
the same time. To account for the periodic table of the elements, Rydberg’s formula
for the atomic number of an inert gas

N = 2(12+22+22+32+32+42 . . . )

had to be reconciled with spectroscopic evidence, supported by Sommerfeld’s
atomic model, which predicted the number of electrons per shell as equal to the
square of the principal quantum number,i.e. n2, n = 1,2,3. . . . Instead of assuming
that by increasing the number of electrons, atomic shells would become occupied to
saturation in the order of increasingn, it was postulated that the completion of the
next octet (at the corners of a cube) takes priority over saturation of the shell.

In the case of covalent interaction the octet is of primary importance, next to the
role of electron pairs, implied by the factor 2 in Rydberg’s formula, from which two-
fold symmetry in the electronic configuration of an atom was inferred. It is important
to note that the classification of electrons intos, p, d, f subsets, characterized by
four quantum numbers in terms of Pauli’s exclusion principle, which states that no
two electrons in one atom can have all four quantum numbers identical, antedates
the development of wave mechanics.

In line with van’t Hoff’s stereochemistry and the orientation of elliptic orbits,
covalent bonds could be represented by tetrahedra that touch in apical, edgewise
and facial mode, involving one, two or three electron pairs in an interaction, also
shown in Fig. 2. This theory predicts increased bond strength with increasing bond
order, but fails to account quantitatively for observed internuclear distances. For
example, this model predicts the interatomic distances in methane and acetylene in
the ratio of 3:1.

Occurrence of the stereo isomers, known as maleic and fumaric acids, has been
interpreted for a long time as evidence of a barrier to rotation around a double bond.
It is of interest to note that this steric rigidity is consistent with the orientation of
Victor Meyer’s affinity centres and with the Lewis model of electron pairs.

The definition of bond order as the number of electron pairs shared between
two atoms is still widely accepted today, but the geometry ofinteraction has been
adapted to the theory of orbital hybridization, to be considered next.

2.1 Orbital Hybridization

Schrödinger’s rationalization of atomic spectra and integral quantum numbers, in
terms of a wave model, introduced an improved mathematical description of the
electronic configuration of atoms, derived empirically before. Unfortunately the the-
ory was not developed to its full potential because of reluctance to abandon the
classical concept of sub-atomic particles.

The coming of wave mechanics, which should have been hailed as final vindi-
cation of the proposed wave nature of electrons, already surmised and soon to be
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demonstrated experimentally at the time, was successfullyresisted as inadequate to
account for cloud-chamber trajectories and the Compton effect. Although both ob-
jections are spurious they had such authority in support that an illogical watered-
down re-interpretation of Schrödinger’s model gained universal acceptance. The
consequences for theoretical chemistry have been disastrous.

In summary, Schrödinger managed to solve a differential equation that describes
the motion of an electron in the central field of a proton, as inthe hydrogen atom,
in wave formalism. By separating the radial and angular components of the wave
function three quantum numbers, essentially equivalent tothose of Sommerfeld,
were obtained without further assumption. The three quantum numbers, which obey
the exclusion principle, are conveniently summarized as:

n = 1,2,3, . . .

l = 0,1, . . . ,(n−1)

ml =−l , . . . ,+l

in conjunction with the empirically added spin quantum number,ms =± 1
2 . In phys-

ical interpretation the principal quantum number,n, specifies the eigenvalues of the
electronic energy, whereasl andml specify the eigenvalues of orbital angular mo-
mentum and its value in a magnetic field, respectively.

Although the Schrödinger solution is demonstrably superior to the Sommerfeld
model it lacks the pictorial appeal of the Lewis tetrahedralmodel. Still, there was
the general belief, articulated by Linus Pauling [12] that,

... if quantum theory had been developed by the chemist rather than the spectroscopist it is
probable that the tetrahedral orbitals described below would play the fundamental role in
the theory, in place of thesandp orbitals.

The chemist has not succeeded in doing this. Pauling himselfproposed the scheme
of orbital hybridization as a quantum theory of covalent interaction. Despite its un-
critical acceptance for many years this approach is shown byelementary reasoning
to be in direct conflict with the fundamentals of quantum theory.

It starts with a degenerate set of orbital angular momentum vectors with quantum
numbersl = 1, ml =−1,0,1, which in cartesian coordinates may be formulated as

p−1 =
x− iy

r
; p0 =

z
r

; p1 =
x+ iy

r
.

The use of complex quantities is avoided by making the linearcombinations:

1
2(p−1 + p1) =

x
r

; 1
2(p1− p−1) =

iy
r

.

The overall result is clearly equivalent to the new set:

p−1 =
z− iy

r
; p0 =

x
r

; p1 =
z+ iy

r
,

which represents a simple rotation of the coordinate axes.
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Pauling however, preferred a different interpretation by defining

py =
1
2i

(

p1− p−1) =
y
r
,

in order to generate a degenerate set of realp−′′orbitals′′,

px =
x
r

; py =
y
r

; pz =
z
r
,

directed along the cartesian axes. This procedure destroysthe complex entangle-
ment of the non-classical variables, demanded by quantum theory, to produce three
orthogonal functions withml = 0, in violation of the exclusion principle, which is
not required in classical systems. Efforts to associate electron spin with real obitals
are therefore meaningless.

No amount of handwaving can circumvent this conclusion. Theelaborate pro-
cedure whereby these orbitals are incorporated in further′′hybridization′′ to define
the combinationssp3, sp2 andsp to simulate tetrahedral, trigonal and linear sets of
orbitals, is likewise without quantum-mechanical meaning[13]. At best, it amounts
to a classical reconstruction of these geometries. In short, the well-known procedure
to define bond order and steric rigidity in terms of overlapping σ andπ orbitals is
meaningless, representing no more than the Lewis model, in more dignified jargon.
The fanciful notion ofπ-overlap cannot explain why a triple bond should have no
barrier to rotation, rather than twice the rigidity of a double bond.

2.2 Bond Order in Molecular Mechanics

The only successful simulation of molecular conformation,based on classical con-
cepts, has become known as molecular mechanics. It relies onthe ideas of chemical
bonds free of strain and computerized minimization of the strain energy generated
by distortion of the strain-free interactions in a molecule. In this application it is
necessary to stipulate strain-free bond lengths for bonds of different order. Although
such parameters can in many cases be derived empirically, a more fundamental theo-
retical prediction would, for obvious reasons, be preferred. Efforts to derive suitable
parameters by the methods of quantum chemistry have been futile.

Important progress became possible on noting a simple relationship between in-
teratomic distances in bonds of different order. The rationale behind the observation
comes from the simple model of a covalent bond, seen as the situation of equilib-
rium between the electrostatic attraction of a pair of valence electrons to the nuclei
and the internuclear repulsion. In the formation of higher-order bonds the role of
those valence electrons in excess of bonding pairs may be seen as screening the
internuclear repulsion [15]. The logic behind this interpretation is supported by the
observation that, given the details of any bond, addition ofa universal screening con-
stant to the interaction, transforms the single bond into a bond of specified higher
order, irrespective of the atoms involved.
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In practice calculations have been performed in two different ways. Given the
bond length, dissociation energy and stretching force constant characteristic of the
single bond, the interaction is described by a Morse function. If this function is mod-
ified by addition of a term that represents screening of the internuclear repulsion, the
relevant Morse curve of the higher-order bond is obtained [16]. Alternatively, the
potential-energy curve, calculated by the Heitler-Londonmethod [3], is modified in
the same way, using the same screening factors, to simulate higher bond orders.

Heitler-London simulation of general covalence depends ona set of character-
istic atomic radii, assumed to describe a single electron inthe valence state. Such
radii were obtained empirically, in the first instance, by point-charge simulation of
covalent interaction [17]. A more satisfactory derivationof atomic radii was discov-
ered in the simulated compression of atoms in Hartree-Fock calculations, resulting
in ionization at a characteristic compression, closely related to the empirical radii
[18].

These ionization radii, which have been shown [19] to underpin the electronega-
tivity concept, have recently been derived by an extremely simple and more reliable
simulation of atomic structure as a standing electronic wave packet [6]. This simu-
lation, which is free of the errors of approximation that affect the HF simulation of
small atoms, has produced a more reliable set of ionization radii, suitable for direct
prediction of interatomic distance in general pairwise interaction within bonds of
any order. The procedure is outlined in the next section.

2.3 Bond Order from Ionization Radii

Comparison of the interatomic distances(d) reported for homonuclear covalent in-
teractions, commonly considered to be first order, revealeda remarkable relationship
with the corresponding ionization radii,r0. Using data from HCP [7], the large ma-
jority of bond lengths, defined in dimensionless units asd′ = d/r0 hadd′ = 0.868,
with little variation. A few notable exceptions occurred for F–F, O–O and I–I, with
d′ = 0.932. Supporting evidence for typical interactions is shownin Table 1.

On repeating the exercise for traditional second-order bonds a similar result of
d′ = 0.764 is obtained. For third-order bonds, with an admittedly smaller sample
one calculatesd′ = 0.680. Using the observed bond length of benzene one finds
d′ ≃ 0.786 for the bond of assumed 11

2 order. Extending the search to homonuclear
transition-metal diatomic molecules where high-order bonds are common, and to
diatomic alkali metals with assumed bond orders of zero, a complete set of dimen-
sionless bond lengths, in good agreement with experiment was established for all
orders.

If we define zero bond order to occur atd = r0, i.e. d′= 1, an interesting variation
with bond order, from unity to the golden ratio,τ = 0.61803... is inferred. This
variation is reminiscent of the convergence of the ratioZ/(A−Z), of protons to
neutrons in stable nuclides, that leads to the generalized periodic function of atomic
matter [20]. Using this as a cue the variation of bond length with bond order can
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Table 1 Calculated interatomic distance for low-order homonuclear interactions
C N O F

r0/Å 1.78 1.69 1.60 1.52
d(X−X) 1.545 1.467 1.491 1.417

Expt. 1.54 1.47 1.48 1.41
Si P S Cl

r0/Å 2.62 2.51 2.47 2.30
d(X−X) 2.274 2.179 2.144 1.996

Expt. 2.32 2.21 2.05 1.99
Ge As Se Br

r0/Å 2.89 2.80 2.71 2.61
d(X−X) 2.51 2.43 2.35 2.27

Expt. 2.41 2.44 2.32 2.28
Sn Sb Te I

r0/Å 3.19 3.09 2.98 2.88
d(X−X) 2.77 2.68 2.59 2.68

Expt. 2.59 2.67

be specified as a power series inτ. In fact, any powern > 6, with integersjb as
coefficients defines bond orderb, by d′ = jbτn, as shown in Table 2.

Table 2 Any power of the golden ratio,τn with covariant jb, tabulated in bold script, as coef-
ficients, predicts the ratiod/r0 = d′ = jbτn, which determines the dimensionless bond length of
orderb. The different coefficients for consecutive bond orders arerelated by the Fibonacci numbers
∆ j

Order,b τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13

4 4 7 11 18 29 47 76 123 199 322
∆ j 1 1 2 3 5 8 13 21
31

2 12 19 31 50 81 131 212 343
∆ j 1 1 2 3 5 8 13
3 20 32 52 84 136 220 356

∆ j 1 1 2 3 5 8 13 21
21

2 5 8 13 21 34 55 89 144 233 377
∆ j 1 1 2 3 5 8 13 21
2 14 22 36 58 94 152 246 398

∆ j 1 1 2 3 5 8 13 21
11

2 15 23 38 61 99 160 259 419
∆ j 1 1 2 3 5 8 13 21 34
1 9 16 25 41 66 107 173 280 453

∆ j 1 1 2 3 5 8 13 21 34
1
2 10 17 27 44 71 115 186 301 487

∆ j 1 1 2 3 5 8 13 21 34
0 7 11 18 29 47 76 123 199 322 521
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The coefficients for given bond order increase like a Fibonacci series with in-
creasingn. This is immediately obvious for the coefficients of bond orders 4 and
0, which correspond, in both cases, to the familiar Lucas numbers. This correspon-
dence is interpreted to define a closed, and hence periodic, system, consistent with
the assumed spherical wave structure of a valence electron.By noting how∆ jb for
any pair of consecutive bond orders also defines a Fibonacci series with increas-
ing n, the appropriate coefficients for any power can be specified directly without
calculation. The empirically derived bond-order scale factorsd′ are then seen to be
integral multiples ofτn. It could be of special significance in the analysis of aromatic
interactions to note thatd′(0) = τ0, d′(11

2)= 1/(2τ) andd′(4) = τ. The sufficiently
converged values ofjbτ13 are shown in Table 3.

Table 3 Definition of d′, derived fromr0 for different bond orders. The relative overlap volumeε
appears quantized in units ofn/40. The columns on the right are discussed in the next section

Order d′ ε n/40 n(2) n(3) n(4) n(5) n(6)

0 1.000 0.3 12 7 10 10 11 11
1
2 0.935 0.35 14 6 8 9 10 10.5
1 0.869 0.4 16 5 7 8 9.5 10

11
2 0.804 0.425 17 4.5 6.5 7.5 9 9.5

2 0.764 0.45 18 4 6 7 8.5 9
21

2 0.724 0.475 19 8.5
3 0.683 0.50 20 3 8 8

31
2 0.658 0.525 21 7.5 7.5

4 0.618 0.55 22 7 7

With reference to the point-charge simulation of covalent interaction we note that
the common volume between two overlapping spheres of radiusr, with centres at a
distanced apart, is calculated as

V0 = π
[

4
3

r3− r2d+
d3

12

]

,

or, in dimensionless units ofd′ = d/r, the relative overlap volume,

ε =
3V0

4πr3 = 1−
3d′

4
+

(d′)3

16
. (2)

This quantity, also listed in Table 3, is seen to assume quantized values ofn/40 for
the common bond orders.
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2.4 Dissociation Energy and Bond Order

It is generally accepted that there is some inverse relationship between covalent bond
length(d) and dissociation energy(D). The point-charge model of covalent inter-
action defines this relationship in terms of a smooth curve (Fig. 1) which represents
all homonuclear diatomic interactions on expressing distance and energy in special
dimensionless units, defined byd′ = d/r0, D′ = Dr0/K, whereK is a dimensional
constant. ForD in kJmol−1 or eV respectivelyK = 1389 or 14.35. Having shown
that the bond order-related linearityd = jbr0τn is generally obeyed, we infer fixed
values ofd′ for all bonds of orderb.

The observed relationship between the common volume, defined by overlapping
charge spheres, and bond order, shown in Table 3, suggests a direct relationship
between bond order and dissociation energy. Noting the connection with spherical
volume we look for a dependence of the type

Dxr0

K
= D′ ∝ r3

0

and find that first-order homonuclear interactions forp-block elements obey the rule

D′ = r3
0τn , i.e. Dx = Kr2

0τn. (4)

The values ofn, which produce dissociation energies,Dc, to match experimental
dataDx, correlate positively with bond orders derived from interatomic distances.
Some results are shown in Table 4. Results for some higher order bonds, in the
format A(n) : Dc(Dx) include:
C(4):642(600); C(3.16):964(966); N(3):937(945); O(4):519(498)
S(6):472(425); As(7):374(382); Se(7):351(331); C(4.5):505(479 in biphenyl)

Within a periodic family, interactions with commonn have equal bond orders.
Calculatedn, for first-order interaction, increases stepwise fromn = 5,6 for second
period elements, ton = 10 for period 6. We findn = 5 for C andn = 6 for N, O, F,
previously identified to form1

2 order bonds. For second and third-order interactions,
within a given period, the appropriate exponents aren2 = n1−1 andn3 = n1−2.
This rule would restrict golden exponents to integers and half integers. All interac-
tions withd > r0 are traditionally described as non-bonded.

Bond-by-bond data to compare calculated parameters with experiment are pre-
sented in sections 3 and 4.

2.5 Stretching Force Constants

The relationship between bond order and dimensionless interatomic distance is rep-
resented by three linear functions over the intervalsb = (0,11

2), (11
2 ,3) and (3,4) as

shown in Fig. 2.



12 Jan C. A. Boeyens

Table 4 Dissociation energies (kJmol−1) and exponentsn for lowest-order homonuclear observed
interactions in the s and p blocks.

Li Be B C N O F
r0/Å 2.36 2.20 1.88 1.78 1.69 1.60 1.52

n 9 10 6 5 6 6 6
Dc 102 54 273 397 221 198 179
Dx 110 59 290 377 252 214 159

Na Mg Al Si P S Cl
r0 3.09 2.87 2.74 2.62 2.51 2.47 2.30
n 11 12 9 7 6 7 7

Dc 66 35 138 328 487 292 253
Dx 75 11 133 310 485 286 243

K Ca Cu Zn Ga Ge As Se Br
r0 3.50 3.08 2.88 3.11 3.00 2.89 2.80 2.71 2.61
n 12 13 8.5 13 10 8 8 8 8

Dc 53 25 192 22(6) 100 247 232 217 202
Dx 57 ∼ 17 201 22 < 106 264 181 223 194

Rb Sr Ag Cd In Sn Sb Te I
r0 3.81 3.54 3.11 3.00 3.31 3.19 3.09 2.98 2.88
n 13 14 9 15 11 9 8 8 9

Dc 38 21 163 7 76 186 282 263 152
Dx 49 16 159 7 82 187 302 258 153

Cs Ba Au Hg Tl Pb Bi
r0 4.03 3.75 3.38 3.24 3.43 3.32 3.22
n 13 9 15 12 11 9

Dc 43 209 10 51 77 190
Dx 44 226 8 63 87 197

The different slopes correspond to the differential changeof d with respect tob
and hence describe the response of bond order to increasingd, commonly defined
as a stretching force constant:

1
2kr =

∆D′

(∆d′)2 ,

In molecular mechanics the usual practice is to specify energies in units of kJmol−1,
interatomic distance in̊A andkr in Ncm−1 (≡mdyne/̊A). In these units

kr =
2∆D′×K×10−2

6.2r0(r0d′)2 =
K∆D′

301(∆d′)2r3
0

=
4.615∆D′

(∆d′)2r3
0

Ncm−1 (5)

For interactions of known bond order the quantities∆d′ for a stretch to lower or-
der follow directly from Table 1, provided it occurs in a region of uniform slope.
Energy differences are in general proportional to∆D = τn− τn+1 = τn+2 = τ+. As
bond order is not an absolute measure, only relative slopes can be stipulated. Also,
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0 4
Bond order

Fig. 3 Variation of interatomic distance(d′) with bond order

whereasd′ may change continuously, bond order changes in discrete steps, deter-
mined by the interference of standing waves. We therefore assume that equation
(5) correctly describes a hypothetical linear response fora stretch from bond order
four (d′ = 0.6) to zero, with a slope of 0.1 measured in Fig.3. For any intermediate
stretch of different slopeσ , a multiplicative scale factor, that represents an effective
slope ofs= σ/0.1 is added to eqaution (5).

The procedure is illustrated by calculating the stretchingforce constant of di-
atomic C2, considered of bond order 21

2 , such that:

kr =
4.615× (τ5.5 = 0.0709)

(0.080×1.78)2 ×0.8 = 12.59 Ncm−1

The scale factor of 0.8 represents the slope. Note that the stretch is considered to
operate between bond orders 21

2 and 11
2 , i.e. n= 3.5← 4.5, ∆D ∝ τ5.5. This result

is in good agreement with the experimental 12.16 Ncm−1.
As a further test the force constant of third order N2 (τ+ = τ3+2) follows as

kr =
4.615×0.0902
(0.081×1.69)2 = 22.2 Ncm−1,

in exact agreement with experiment.
Calculation ofkr for C 2 C is complicated by the change of slope between orders

2 and 1. This is readily compensated for by graphical recalculation of ∆d′ = 0.093
and mean slope of 0.93:

kr =
4.615×0.0554
(0.093×1.78)2×0.93= 8.68 Ncm−1
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in good agreement with the value of 8.43 Ncm−1 measured for CCl2 =CH2.
For C 1 C the energy difference is obtained fromτ5− τ6.5 = 0.0464 and

kr =
4.615×0.0464
(0.131×1.78)2×1.3= 5.12 Ncm−1.

The force constant calculated from the vibrational frequency ωe of ethane iskr =
4.50 Ncm−1.

For F2 the energy differenceτ5− τ6 = τ7 occurs against a calculated force con-
stantkr = 5.2, compared to the experimental 4.7 Ncm−1.

The calculated force constant for O2 is obtained from∆d′ = 0.093,n+ = 6 as
kr = 10.79, compared to the observed 11.77 Ncm−1.

Extension of the calculation to higher periods relies on thewave model of atomic
electron density. Changes in bond order are interpreted as stepwise changes in the
pattern of overlap between the electronic wave structures of interacting atoms. The
effect on interatomic distance depends on the wavelength ofthe interfering waves,
which in turn depends on atomic volume as elaborated in section 2.6. In the sec-
ond shell of 8 electrons∆d′ = 0.1306 corresponds to unit change in bond order. At
the next level with an additional 8 electrons a stretch of∆d′ = 0.0653 suffices for
relaxation to lower order1. With some empirical guidance we arrive at the unimod-
ular sequence of factors 1,1

2 , 2
5 , 1

3 , 1
4 to effect a change of bond order at successive

electronic levels. The scheme is demonstrated by the calculated force constants for
diatomic halogens:

Cl2 : ∆d′ = 0.0653, n+ = 9, kr = 2.7×1.3= 3.51 (3.23 Ncm−1)

Br2 : ∆d′ = 0.0522, n+ = 10, kr = 2.62 (2.46 Ncm−1)

I2 : ∆d′ = 0.0435, n+ = 11, kr = 1.91 (1.72 Ncm−1)

Also on the second period:

Si2 : ∆d′ = 0.0653, n+ = 9, kr = 2.71 (2.15 Ncm−1)

and the second-order molecules

P2 : ∆d′ = 0.093/2= 0.0465, n+ = 8, kr = 5.78 (5.56 Ncm−1)

S2 : ∆d′ = 0.0465, n+ = 8, kr = 5.96 (HCP : 4.96 Ncm−1)

The reported value [7] for S2 is obviously in error.
Quadruple dimetal interactions provide an interesting test:

1 A bond is stretched by external forces, such as steric interactions, only until it flips spontaneously
into the wave pattern that stabilizes lower bond order
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Cr2 : ∆d′ = 0.0522, n+ = 9, kr = 2.45

Mo2 : ∆d′ = 0.0375, n+ = 9, kr = 4.08

Re2 : ∆d′ = 0.0375, n+ = 9, kr = 3.75

W2 : ∆d′ = 0.0375, n+ = 9, kr = 3.66

The effective slope in the high order region is close to unity. These results, in
Ncm−1, are in exact agreement with empirical molecular-mechanics simulations
of these force constants [21, 22, 23].

2.6 Wave Model of Bond Order

The idea of covalent bond order is of special importance in the present instance, but
not in its traditional form as the number of electron pairs shared between two atoms.

The familiar electron-pair exposition of bond order is thatC, in the valence state,
has 4 unpaired electrons after promotion of ans electron. In the case of N there
is no room in thep-subshell to allow such promotion. However, the positive ion
N+, like C has four unpaired electrons and may form four single bonds as in NH+4 .
Oxygen has two unpaired electrons and is restricted to form either two single bonds
or one double bond. The scheme works, but fails to account forthe paramagnetism
of dioxygen with known second-order bond strength. The experimental facts are
consistent with neither of the following:

.. ..

.. ..
O=O

.. ..

....
O−O..

It is generally believed that the bonding in O2 is correctly described in terms of
molecular orbitals. However, this method, as traditionally formulated, argues the
involvement ofpx, py andpz orbitals, which have no physical meaning, and the bond
order of dioxygen remains a mystery. This is the most glaring, but by no means the
only, failure of the electron-pair definition of bond order.

The very idea of electron pairs, that presupposes point particles of charge, does
not feature in the model of covalence proposed here. A plurality of electrons at
the same energy level is considered instead as a single multiply-charged standing
wave with quantized orbital angular momentum and spin. We propose that bond
order of diatomic domains within molecules is quantized in asimilar way and we
look for a numerical sequence to account for the empirical regularity of Table 3.
Prominence of the golden ratio in this formulation suggestsa sequence based on
Fibonacci fractions and/or the golden logarithmic spiral.This would render it self-
similar to structures in the solar system, the periodic table of the elements and the
electronic configuration of atoms.
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As a first trial we consider a series of Fibonacci fractions inthe range 1/1 to 3/5,
to simulate bond orders between 0 and 4 (d′ = 1,τ). The unimodular sequence that
converges to 1,i.e.:

1
1

7
8

6
7

5
6

4
5

3
4

2
3

3
5

1 0.875 0.857 0.833 0.8 0.75 0.667 0.6
0 1 11

2 2 3 4

is immediately seen to reflect many features of the bond-order function.
An even better simulation, based on this sequence, is obtained by selecting suit-

able terms from a single Farey sequence, which means that allterms have the same
denominator. This way we derive fromF15 the sequence:

1
1

14
15

13
15

4
5

11
15

2
3

3
5

(

n
15 , n = 9−15

)

1 0.933 0.867 0.8 0.733 0.67 0.60
0 1

2 1 11
2 2 3 4

Starting from the next Fibonacci fraction, 5/8,(F16):
1
1

15
16

7
8

13
16

3
4

11
16

5
8

(

n
16 , n = 10−16

)

1 0.938 0.875 0.81 0.75 0.688 0.625
0 1

2 1 11
2 2 3 4

The next Fibonacci fraction predicts(F13):
1
1

12
13

11
13

10
13

9
13

8
13

(

n
13 , n = 8−13

)

1 0.923 0.846 0.769 0.69 0.615
0 1

2 1 2 3 4

Starting from still higher Fibonacci fractions the same pattern persists, but gaps
appear in the sequence of quantum numbers. The infinite sequence between 1 and
τ is inferred to have the exact bond-order sequence, with large quantum numbers,
embedded within it.

The most convincing simulation of bond order is from a goldenlogarithmic spiral
with convergence angle ofπ/8, for integer orders, orπ/16 to include half-integer
orders, shown in Fig. 4. Bond orders 0 and 4 are separated by a right angle.

This simulation confirms the results of Table 3 in detail. As amatter of interest
all of these bond orders are approximated inF34, which relates to the Fibonacci
fraction 21/34, with a few gaps:

1
1

15
17

29
34

27
34

13
17

25
34

23
34

11
17

21
34

1 0.941 0.853 0.794 0.764 0.735 0.676 0.647 0.618
0 1

2 1 11
2 2 21

2 3 31
2 4

The apparent quantization of bond order corresponds to the numerators in Farey
sequences that converge to the golden ratio. As the limitingFibonacci fraction
n/(n+ 1)→ τ, approaches the golden ratio, the values of quantized bond order,
predicted by the Farey sequenceFn+1 approach the simulation of Fig. 4.

The simulation described here gives new meaning to the bond-order concept. It
now emerges as the quantization of interatomic distance within molecular diatomic
domains.
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1

0

2
3

4

Fig. 4 Simulation of integer bond orders on a golden logarithmic spiral

Fig. 5 Wave structure that defines second-order homonuclear interaction.

The quantization results from constructive interference between the valence-
electron waves of interacting atoms of opposite spin. The interference pattern for
second-order homonuclear interaction,d′ = 26/34≡ 13/17, is shown in Fig. 5.
Only even numbered wave crests are shown. Bond order changesin regular steps
as the dimensionless interatomic distace,d′ changes in steps of 1/34, which de-
fine the wavelength of the spherical waves. For C and H with respective values
of r0 = 1.78 and 0.97Å, wavelengths ofλ (C) = 1.78/34= 5.24× 10−12 m and
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λ (H) = 2.86×10−12 m are predicted. This result is in winsome agreement with the
Compton wavelength of an electron at 2.43×10−12 m.

Gaps in the 21/34 sequence of bond orders suggest the possibility of intermediate
bond orders at 31/34, 28/34 and 24/34. This conclusion is supported by the compar-
ison (Table 5) with the bond orders predicted by Table 2. One finds:

Table 5 Comparison of different estimates of bond order.

n 33 32 31 30 29 28 27 26 25 24 23 22 21
1000n/34 971 941 912882 853 823 794 764 735 706 676 647 τ

Mean 941 868 809 721 662
Table 2 935 869 804 764 724 683 658 τ

B.O 1
2 1 11

2 2 21
2 3 31

2 4

The two calculations converge and confirm earlier empiricalconclusions:

• Between bond orders 0 and 1 there is a broad, poorly resolved,shallow minimum
of weak interactions, collectively assigned to bond order1

2;
• Bond orders 2 and 4 are well resolved;
• Bond orders 1, 112, 21

2 are less sharply defined, but within clear limits;
• Bond orders 3 and 312 are poorly resolved;
• TheF34 sequence specifies an absolute measure of bond order, but theTable 2

values are more convenient in practice.

The idea of bond lengths that may vary around special integerbond orders was first
proposed on empirical grounds [24].

The findings reported here provide new evidence for the unityof micro- and
macro-physics, and refute the perception of separate quantum and classical domains.
The known universe exists as a four-dimensional space-timemanifold, but is ob-
served in local projection as three-dimensional Euclideantangent space that evolves
in universal time. The observable world, at either micro or macro scale, can be de-
scribed in either four-dimensional (non-classical) or in classical three-dimensional
detail. The descriptive model may change, but the reality stays the same. This re-
alization is at the root of self-similarity between large and small. The symmetry
operator, which reflects the topology of space-time, is the golden logarithmic spiral.

Cosmic self-similarity has been documented and discussed many times with
reference to atomic nuclei, atomic structure, the periodicity of matter, covalence,
molecular conformation [25], biological structures, planetary and solar systems
[26], spiral galaxies and galactic clusters [27]. The prominent role of the golden
ratio in all cases can only mean that it must be a topological feature of space-time
structure.
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The simplest and most beautiful illustration of golden-ratio self-similarity must
surely be the quantization of bond order, shown in Figs 3 and 4. It is so intimately
entangled with golden symmetry and gives such a precise definition of the oth-
erwise elusive bond-order concept that the possibility of this being mere coinci-
dence is zero. Small wonder that the great Johannes Kepler referred to the′′divine
proportion′′ which ′′served as idea to the Creator when He introduced the creation
of likeness out of likeness, which also continues indefinitely ′′.

In the same spirit the construction of Fig.5, which has nothing to do with chem-
istry, may well be used as a starting point from which to derive a theory of covalent
interaction, atomic structure, elemental periodicity andmolecular shape. Working
backwards through the concepts developed before [6, 5, 25] acomplete framework
of chemistry may be developed as a theme in pure number theory.

The natural limit to bond order , which occrs atd′ = τ, D′ = 2τ, as a result of the
wave nature of electrons, is inferred to reflect the topological property that limits
electron density in space-time to a natural maximum. It is the molecular counterpart
of the property that limits the total charge density at the electronic energy levels on
an atom. The empirical rule, known as Pauli’s exclusion principle, is formulated in
terms of either spin pairing or the antisymmetry of four-dimensional wave functions,
which amount to the same thing. As currently understood, it appears as an emergent
property of matter waves, with its origin in space-time topology.

3 Homonuclear Interaction

For ease of reference we tabulate atomic ionization radius(r0), bond order(b) and
exponents(n) of lowest-order observed homonuclear interactions in Table 6.

Based on the parameters in Table 6 calculated parameters forhomonuclear low-
order interactions and diatomic molecules are compared with experimental data in
Table 7. Calculation involves the characteristic atomic radii, r0, and the scale factors
based on the golden ratio :

dc = d′br0

Dc = Kr2
0τn .

Having tested these formulae exhaustively against all spectroscopic and crystallo-
graphic data in HCP [7] it is found that they work without serious exception. The
bond-order relationship betweend andD holds generally, but a few cases deserve
special mention.

The relationship is most sensitive for the small atoms of period 2. Based on dis-
sociation energies the atoms B to F have the exponentn = 6, except for C with
n = 5. Judging by interatomic distance however, B and C appear tobe of first or-
der whereas O, N and F haveb = 1

2 . We interpret this trend in terms of increasing
spectator electron density in the relatively small valenceshells of these atoms. The
dissociation energies seem to indicate a gradual descreasein bond order from C to
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F, of the form: 1, < 1, > 1
2,

1
2 . Higher-order bonds of these atoms will be shown to

have golden exponentsn = 6−b.
The exponentn = 8.5 indicatesb = 1

2 for Cu, but the observed interatomic dis-
tance of 2.22̊A in diatomic Cu2 is typically first order, in line with the variability
exposed in Table 5.

Metals of the second and third transition series are well known to be character-
ized by multiple dimetal interactions of orders 3, 31

2, and 4 [28]. The large reported

Table 6 Parametersr0/Å , b andn

Li Be B C N O F Ne
r0 2.36 2.20 1.88 1.78 1.69 1.60 1.52 1.44
b < 0 1 1 1

2
1
2

1
2

n 9 10 6 5 6 6 6 14
Na Mg Al Si P S Cl Ar K Ca

r0 3.09 2.87 2.74 2.62 2.51 2.47 2.30 2.21 3.50 3.09
b 0 1

2 1 2 1 1 < 0
n 11 12 9 7 6 7 7 15 12 13

Sc Ti V Cr Mn Fe Co Ni
r0 3.02 2.99 2.96 3.02 2.90 2.87 2.85 2.81
b 1 1 2 1 1

2 1 1 2
n 9 9 8 9 10 9 9 8

Cu Zn Ga Ge As Se Br Kr Rb Sr
r0 2.88 2.76 3.00 2.89 2.80 2.71 2.61 2.52 3.81 3.54
b 1 0 1 1 1 1
n 8.5 13 10 8 8 8 8 15 13 14

Y Zr Nb Mo Tc Ru Rh Pd
r0 3.27 3.24 3.30 3.26 3.14 3.20 3.16 ∼ 2.5
b 1 3 4 31

2 /4 3/31
2 3/31

2 2 2
n 9.5 8 7 7.5/7 8/7.5 8/7.5 8.5 8.5

Ag Cd In Sn Sb Te I Xe
r0 3.11 3.00 3.31 3.19 3.09 2.98 2.88 2.75
b 1 0 1 2 2 1
n 9 15 11 9 8 8 9 15

Cs Ba La Ce Pr Nd Pm Sm
r0 4.03 3.75 4.62 4.49 4.68 4.66 4.64 4.63
b 1 1 1

2 0 0 0
n 13 10 10 11 12

Eu Gd Tb Dy Ho Er Tm Yb
r0 4.61 4.51 4.58 4.57 4.55 4.54 4.52 4.50
b 1

2 0
n 14 11 12.5 12 12.5 13 15

Lu Hf Ta W Re Os Ir Pt
r0 3.54 3.50 3.47 3.44 3.40 3.37 3.34 3.41
b 1 2 3/31

2 < 4 3/31
2 31

2 3 21
2 /3

n 10 9 8/7.5 7.3 8/7.5 7.5 8 8.5/8
Au Hg Tl Pb Bi Po At Rn

r0 3.38 3.24 3.43 3.32 3.22 3.12 3.03 2.93
b 2 < 0 1

2
1
2 2

n 9 15 12 11 9 7
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Table 7 Homonuclear bond length/pm and matchingD/kJmol−1

Li Be B C N O F Ne
dc * * 163 155 147 149 142
dx 267 159 154 147 148 141
Dc 102 54 273 397 221 198 179 3
Dx 110 59 290 377 252 214 159 4

Na Mg Al Si P S Cl Ar K Ca
dc 309 * 256 227 218 214 200 * *
dx 308 389 247 232 221 205 199 392
Dc 66 35 138 328 487 292 253 5 53 25
Dx 75 11 133 310 485 286 243 5 57 17

Sc Ti V Cr Mn Fe Co Ni
dc 262 260 226 262 271 249 247 215
dx 279 252 228 243 300 216 218 217
Dc 167 163 259 167 95 151 148 233
Dx 163 118 269 152 81 118 127 204

Cu Zn Ga Ge As Se Br Kr Rb Sr
dc 250 * 300 251 243 235 227 * *
dx 222 241 244 232 228 432
Dc 192 22 100 247 232 217 202 6 38 21
Dx 201 22 106 264 181 223 194 5 49 16

Y Zr Nb Mo Tc Ru Rh Pd
dc 284 221 203 208 211 215 241 191
dx 309 250 210 221 235 231 245 239
Dc 152 311 520 454 332 344 232 145
Dx 159 298 513 436 330 331 236 136

Ag Cd In Sn Sb Te I Xe
dc 270 * * 277 268 259 288
dx 251 259 268
Dc 163 7 76 186 282 263 152 7
Dx 159 7 82 187 302 258 153 7

Cs Ba La Ce Pr Nd Pm Sm
dc * 401 408 438 466
dx 470
Dc 43 240 247 152 94
Dx 44 247 242 130 84

Eu Gd Tb Dy Ho Er Tm Yb
dc * 428 * 455 * *
Dc 35 145 70 89 69 54 20
Dx 33 132 71 86 75 54 21
± 17 25 29 30 29 17 17

Lu Hf Ta W Re Os Ir Pt
dc 307 267 233 225 228 220 227 240
dx 299 246 223 214 238 233 236 248
Dc 141 224 405 490 387 427 330 307
Dx 142 390 486 386 415 361 307
± 33 96 96 96 77 68 2

Au Hg Tl Pb Bi Po At Rn *
dc 258 * 320 288 246 > r0
dx 247 266
Dc 209 10 51 77 190
Dx 226 8 63 87 197 187
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errors in the measured diatomic dissociation energies for some of these metals are
interpreted as due to spectroscopic activation, producingequilibrium mixtures of
compounds of poorly resolved bond order. It is noted that in all such cases an aver-
age over two bond orders reproduces the experimental data rather well.

Diatomic W2 provides an interesting demonstration of an interaction which is
prevented from reaching bond order 4 (n= 7) by the exclusion principle that restricts
maximumD′ to 2τ = 1.236. SinceD′4 = 1.4 > 2τ n is restricted to the minimum of
7.3.

Observed interatomic distances for diatomic transition-element interactions are
estimates of the fraction,d = 0.78δ of nearest-neighbour approaches in the metals
[5] and may be considerably in error in the present context, especially for the second
transition series. Apart from first-order La2 and Ce2, with Dx = 245±30 kJmol−1,
homonuclear diatomics have weak interactions with an average Dx = 70± 40
kJmol−1, in agreement with our estimates. Multiple bond orders, in general, are
characterized by stepwise reduction of the first-order golden exponent, such that
n1+i = n1− i. Some observed second-order homonuclear interactions in thep-block
are collated in Table 8.

Table 8 Comparison of interatomic distance (Å) and dissociation energy/kJmol−1 for second-
order interaction

C O P S As Se Sb Te
dc 1.36 1.22 1.92 1.89 2.14 2.07 2.36 2.28
dx 1.34 1.21 1.89 1.89 2.10 2.15 2.56
Dc 642 519 484 472 374 351 282 263
Dx 600 498 485 425 382 331 302 258

Improved estimates ofd = 2.18 and 2.58 for Se2 and Te2 respectively, indicate
bond orders of 112 and 1, rather than 2. The only authentic homonuclear third-order
interaction in thep-block occurs for diatomic N2. It hasdc = 1.15Å, dx = 1.10;
Dc = 937kJmol−1, Dx = 945. What is commonly considered to be a triple dicarbon
interaction is approximated byn = 3.16, as restricted by the 2τ limit. This way
dc = 1.22Å, dx = 1.21; Dc = 964kJmol−1, Dx = 966. The non-existence of a third
order diphosphorous interaction is explained directly by noting that it would imply
D′ >> 2τ.

The dicarbon interaction of order 11
2, predicted to have the graphiticd = 1.40Å

andD = 505kJmol−1 has been measured in biphenyl withDx = 479kJmol−1.

4 Heteronuclear Interaction

Bond-order analysis of heteronuclear covalent interactions is considerably more
complicated, but feasible in principle. An obvious assumption,R0 =

√

r0(1) · r0(2),
predicts correct values ford = d′bR0 and suggestsD = pKR2

0τn. The parameter
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p = χ(1)/χ(2) is taken as the ratio of electronegativitiesχ(i) ∝ r2
0(i) [19] to com-

pensate for polarization effects. Hence

Dc = Kr3
0(1)τn/r0(2) ,

with r0(1) > r0(2).
The formulae work surprisingly well when tested against a myriad of examples.

A self-consistent set of effective exponentsn and bond orders for thep-block is
shown in Table 9. Readers are urged to verify the numbers against the large volume
of data on heteronuclear diatomic molecules [7], some of which are collated in Table
10. The reportedDx = 96 kJmol−1 for AsSe appears suspect and has been ignored.

The most interesting molecule in the group is CO, reported tohave the strongest
covalent bond at 1076 kJmol−1. Classically it is formulated as :C←−=O: , with a so-
called dative triple bond. Our formulation is in agreement with such a special struc-
ture as a regular third-order interaction would exceed the limit of D′ = 2τ imposed
by the exclusion principle. To put the situation into perspective it is noted that on
ionization into CO+ the interatomic distance decreases from 1.128Å to 1.115Å,
which seems to imply an increase in bond strength. However, the observed disso-
ciation energy also decreases in the process from 1076 to 806kJmol−1. Referred
to Fig. 1 this CO interaction lies outside the covalent crescent, CBA, which also
indicates an additional factor, such as an ionic contribution to the total interaction,
at work.

What seems to be happening is that, when prevented from establishing third-
order interaction, a rearrangement of the combined valencedensity occurs in such
a way that a more efficient lower-order interference patternis promoted. Such a
rearrangement exists in a modification of the atomic valencespheres. An outward
flow of electron density causes a decrease in characteristicradius, andvice versa.
A decrease ofr0(O)→ 1.36Å, balanced by an increase ofr0(C)→ 1.784Å, is found
to promote the formation of 212-order interaction atR0 =

√
1.36×1.784= 1.56Å,

to match the observedd = 1.56×0.724= 1.128Å and dissociation energyDx =
1389τ3.5×1.7843/1.36= 1076 kJmol−1, as observed.

Ionization, CO→CO+ + e, implies decrease of both characteristic radii. At
r0(O)=1.44 andr0(C)=1.65̊A the 21

2-order interaction occurs atR0 =
√

1.44×1.65=
1.54Å to match the observedd = 1.54×0.724= 1.115Å and dissociation energy
Dc = Kτ3.5× 1.653/1.44 = 804kJmol−1, as observed. This polarization also ex-
plains the observed dipole moment of CO.

The same bonding pattern repeats for all group14–group16 diatomic molecules,
that map outside the covalent region of Fig. 1.

4.1 Hydrides

The hydrides constitute the largest group of heteronuclearcovalent interactions. Cal-
culated results are in Tables 11 and 12.
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Table 9 Bond orders and exponents for diatomic interactions between representative elements

F Cl Br I O S Se Te N P As Sb Bi
Li 11

2 1 1 1
2 1 B 21

2

6.5 6 7 7.5 7.5 7 5.5 7.5
Na 1 1 1

2
1
2

1
2 C 3 2

8.5 8 8 8 9.5 4 6.5
K 1

2
1
2

1
2

1
2 N 21

2 2
9 8.5 8.5 8.5 10 6.5 7.5 7.5

Rb 1
2

1
2

1
2

1
2

1
2 O 3 2 2

9.5 9 9 9 10.5 4 6.5 8.5 9.5
Cs 1

2
1
2

1
2

1
2

1
2 F 11

2 11
2 1

10 9.5 9.5 9.5 11 5.5 7.5 7.5 9.5
Be 1 21

2 2 Al
5.5 6 7.5 5 7 8 9 8.5

Mg 1 1 11
2 Si 2

8 7.5 7.5 8 8 8.5 7.5 7
Ca 1 1 1

2 11
2 11

2 P
8.5 8 8.5 8.5 9 8.5 7 8 9

Sr 1 1 1 1
2 11

2 S
9 8.5 8.5 9 9.5 9 7 6.5 8 8.5

Ba 1 1
2

1
2

1
2 11

2 11
2 Cl 11

2 11
2

9.5 9 9 9 9 9 7 7 7 8.5
B 2 1 1 1

2 3 2 Ga
5 6 7.5 8 4 6 7 8.5 8.5 8.5 9 9.5

Al 11
2 1 1 1 2 11

2 As
7 6.5 7 7 7.5 7.5 7 8 8

Ga 11
2 1 1 1 11

2 Se
8 7.5 7.5 7.5 8.5 8 7 8.5

In 1 1 1 1 Br 1
9 8.5 8.5 8.5 9.5 9 9 9 8.5 7 9

Tl 1 1 1 1 In
9.5 9 9 9 10.5 9.5 9.5 9.5 9.5

C 2 11
2 21

2 21
2 2 Sn

5 6.5 8 9 3.5 6 7 9
Si 1 1 21

2 2 2 Sb
7 7 7.5 8 5.5 6 6 7 8.5

Ge 1 1 1 2 2 2 11
2 Te

8 7.5 7.5 8 7 6.5 6.5 7 8 8 8.5
Sn 1 1 11

2 11
2 11

2 11
2 Tl

8.5 8.5 8 9 8.5 7.5 8 8 9.5 10 10.5
Pb 1

2 11
2 11

2 11
2 11

2 Pb
9.5 9 9 9.5 9 8 8.5 8.5 10

4.2 Stretching Force Constants

The calculation of harmonic force constants of covalent bonds has been shown to
derive from ionization radii by an equally simple procedure. Following the rule
defined as

D′ = r3
0τn , i.e. Dx = Kr2

0τn
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Table 10 Calculated and experimental dissociation energies (kJmol−1) of heteronulear first-order
interactions. Golden exponentsn are marked by asterisks

C N F Si P Cl Ge As Br I

C * * 248
5.5 5 248

N 329 *
329 5.5

O 347 208 225 318
351 220 206 302

F 465 313 * * *
514 < 349 6 6 6.5

Si 298 565
302 567

S 318 293 247
294 286 256

Cl 326 167 270 374 329 310 282 * *
336 155 261 349 328 340 294 7.5 8

As 226 427
231 466

Se 259 304
244 286

Br 296 118 305 329 267 226 274 249
277 118 280 315 265 219 277 244

Sn 205 327
227 319

Sb 186
197

I 246 266 270 174 196 194 198 *
214 < 272 235 185 211 181 181 8.5

Xe 153
130

it follows directly that for homonuclear interactions

kr =
4.615τ+s
(∆d′ · r0)2 ,

in which τ+ = τn− τn+1 = τn+2, n is the bond-order exponent ands the slope of
the bond order–∆d′ function.

In the calculation of heteronuclear interactions it is necessary to substitute
R0 =

√

r0(1) · r0(2). A serious complication exists therein that, as for homonuclear
interactions, the critical stretch to effect a change of bond order depends on atomic
volume and, in addition, also on relative atomic size. The strategy to address this
problem was to use known parameters, together with experimental force constants,
to calculate effective values of∆d′ from the expression
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(∆d′)2 =
4.615τ+s

r0(1) · r0(2) ·kr
.

The calculated values of∆d′ for heteronuclear diatomics from period 2:

N O F
C 0.72(3) 0.78(3) 0.86(2)
N 0.77(3)
Be 0.70(21

2)

with bond order in parentheses, appear to be well ordered. Inthe same way the
results for group 2–group 3 diatomics are considered sufficiently alike to assume
∆d′ = 0.047 as a predictor in calculating unknownkr for this family, including
compounds of N:

Table 11 Bond order and interatomic distance in H–X interactions
Li Be B C N O F

R0/Å 1.59 1.47 1.35 1.31 1.28 1.25 1.21
b 0 0 1

2 1 11
2 11

2 2
d/Å 1.47 1.26 1.14 1.01 0.98 0.92
Obs 1.60 1.34 1.23 1.12 1.04 0.97 0.92

Na Mg Al Si P S Cl
R0 1.73 1.68 1.63 1.59 1.56 1.55 1.49
n < 0 0 0 1

2
1
2 1 1

d 1.68 1.63 1.48 1.45 1.34 1.30
Obs 1.89 1.73 1.65 1.52 1.42 1.34 1.27

K Ca Ga Ge As Se Br
R0 1.84 1.74 1.71 1.67 1.65 1.62 1.59
n < 0 < 0 0 1

2
1
2

1
2 1

d 1.71 1.56 1.49 1.51 1.38
Obs 2.44 2.00 1.67 1.59 1.51 1.47 1.41

Rb Sr In Sn Sb Te I
R0 1.92 1.86 1.79 1.76 1.73 1.70 1.67
n < 0 < 0 0 0 0 0 1

2

d 1.79 1.76 1.73 1.70 1.56
Obs 2.37 2.15 1.84 1.78 1.70 1.61

Cs Ba Tl Pb Bi Au Hg
R0 1.98 1.92 1.82 1.79 1.77 1.81 1.77
n < 0 < 0 0 0 0 1 0
d 1.82 1.79 1.77 1.57 1.77

Obs 2.49 2.23 1.86 1.80 1.75 1.52 1.74
Cr Mn Ni Cu Zn Ag Cd

R0 1.71 1.68 1.65 1.67 1.64 1.74 1.71
n 0 0 1 1 0 1

2 0
d 1.71 1.68 1.43 1.45 1.64 1.62 1.71

Obs 1.67 1.73 1.47 1.46 1.59 1.62 1.76
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Table 12 Calculated and experimental dissociation energies (kJmol−1) of H–X interactions

Li Be B C N O F
n 9 8 7 6.5 6.5 5.5 4.5

Dc 248 201 327 353 303 416 577
Dx 238 200 340 338 < 339 430 570

Na Mg Al Si P S Cl Cu
n 11.5 11.5 9.5 9.5 9 8.5 7.5 10

Dc 167 136 303 265 298 360 472 277
Dx 186 126 288 293 297 354 431 255

K Ca Ga Ge As Se Br Ag
n 12 11.5 10.5 10 10 9.5 9 10.5

Dc 190 167 247 280 255 294 336 276
Dx 181 223 276 263 274 313 366 244

Rb Sr In Sn Sb Te I Au
n 13 12.5 11 11 10.5 10.5 10 10.5

Dc 150 152 260 232 270 243 277 353
Dx 167 165 243 264 240 260 298 311
± 21 8 17 7

Cs Ba Tl Pb Bi Zn Cd Hg
n 13 12.5 12 12 (11) 13 13 15

Dc 178 182 179 162 82 73 34
Dx 175 192 195 ≤ 157 < 283 86 69 40
± 4

Sc Ti V Cr Mn Fe Co Ni
n 11 11 11 11 10.5 11 10 10

Dc 197 191 186 197 224 169 268 257
Dx 205 205 209 190 251 148 245 240
± 17 9 7 8

Pt Yb Nb Mo Ru Rh Pd
n 9.5 14 11 11.5 11 11 9.5

Dc 363 157 257 206 235 226 230
Dx 327 159 > 222 211 223 241 234
± 38 15 6 25

C N O
Mg 0.047(21

2)
Si 0.051(21

2)
P 0.045(2) 0.044(2)
S 0.046(21

2) 0.047(2)

A similar regularity which emerges for heteronuclear halides:

Cl Br I
F 0.09 0.08
Cl 0.07
C 0.08 0.06 0.05

confirms that the algorithm yields reasonable results.
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4.2.1 Hydrides

The hydrides ofp-block elements represent the best documented set of experimental
stretching force constants. The previous strategy yields the surprising result that, as
for homonuclear interactions, the effective critical stretch ∆d′ is a function of only
bond order. In the first linear region,s = 1.3, the value∆d′ = 0.115, with bond
orders as identified in Table 11, predicts the following force constants:

BH : kr = 3.28 (kx = 3.05 Ncm−1

CH : 4.39 4.48
NH : 4.62 5.97
OH : 7.92 7.80
FH : 9.64 9.66

With the exception of NH this is considered excellent agreement.
In the second period∆d′ = 0.062 predictskr in exact agreement with experi-

ment: SH= 4.22, PH= 3.21 Ncm−1. Calculating back from the observedkr for the
hydrogen halides, F to I, the sequence∆d′ = 0.115, 0.073, 0.054, 0.046 appears
reasonable.

These results are in line with the small ionization radius ofhydrogen, which
shows that its entire charge sphere becomes embedded into a larger sphere on molec-
ular formation. The effective point position of the proton relative to the wave struc-
ture of the larger atom decides the bond order.

4.3 Molecular Hydrogen

For H alone the ionization radius is known as an analytical result, r0 = 1.835×
0.53= 0.97Å. Experimental parameters for H2 are:

Dx = 436kJmol−1

d = 0.74Å

kr = 5.75Ncm−1

The interatomic distance definesd′ = 0.74/0.97= 0.763, which corresponds pre-
cisely to bond order 2, with the interesting corollaryd′ = 2τ2. Sadly, as inferred
from simple number theory, theDc = 1389r2

0τ2 = 499 kJmol−1 does not match the
observed.

The factorτ2.28≃ 1
3 produces the observedDx. It is noted that another molecular

form, the familiar H+
2 , hasDx = 269≃ 1389r2

0/5 = 261 kJ, and withd′ = 1.09,
bond orderb < 0. The intermediate first-order excited state withd = 0.84Å and
D = 1389r2

0/4 = 327 kJmol−1 has not been observed.
The observed deviation of the golden exponential from the expected integral

value of 2 suggests some exclusion principle that prevents exact second-order in-
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teraction. It is shown in Fig. 6 how the superposition of two spherical waves of
wavelengthλ = a0/2 predicts constructive interference at 3λ = 0.795 rather than
0.74Å, required forb = 2. The mismatch is responsible for the shift toτ2.28 ≃ 1

3 ,

Fig. 6 Graphical simulation
of theH–H interaction

a0

r0

d(H  )2
+

d(H  )2

which in real terms is an almost imperceptable deviation from second-order interac-
tion.

An obvious simulation of the stretching force constant for H2 would be in terms
of the stretch∆d′ = 1.09− 0.763= 0.327,τ4.28≃ τ2/3 = 0.1275 and unit initial
slope:

kr =
4.615×0.1275
(0.97×0.327)2 = 5.85,

compared tokx = 5.75 Ncm−1.
In order to understand the results reported here it is imperative to abandon the

idea of bond order as a function of electron pairs. The alternative definition in terms
of wave structures clarifies many a puzzling feature of conventional theory, such
as the relative strengths of electron-pair bonds of the sameorder. By inspection,
the variation of experimental covalence parametersD, d andkr , shown in Table 13,
are qualitatively at variance with a constant bond order of unity as required by the
electron-pair model.

Table 13 Variation of parameters with bond order

H B C N O F
D 436 340 338 < 339 430 570
d 0.74 1.23 1.12 1.04 0.97 0.92

H kr 5.75 3.05 4.4 8 5.97 7.80 9.66
b 2 1

2 1 11
2 11

2 2
n 2.28 7 6.5 6.5 5.5 4.5
D 570 732 514 < 349 220 159
d 0.92 1.26 1.40 1.41 1.42 1.41

F kr 9.66 7.42 4.70
b 2 2 1 1 1

2
1
2

n 4.5 4.5 5 5.5 6 6



30 Jan C. A. Boeyens

However, in terms of the alternative bond order parametersb and the golden ex-
ponentsn these quantities are correctly simulated at the quantitative level. The mys-
tery that surrounds many other observations such as the paramagnetism of molecular
oxygen or the non-existence of a P2 triple bond also disappears.

5 Diatomic Dipole Moments

It has been shown that the electronic charge distribution inan atom is readily calcu-
lated by the same optimization procedure, based on a golden spiral [6], that correctly
predicts all satellite orbits in the solar system [26]. The simulation is sufficiently
reliable to enable an improved derivation of the ionizationradii of compressed
atoms [18], known to generate a self-consistent electronegativity scale [19]. Hav-
ing demonstrated that the same elements of number theory also dictate the details of
atomic periodicity and the nature of covalent interaction,without the use of higher
mathematics, it is of interest to also explore the feasibility of calculating molecu-
lar dipole moments by the same approach. The results for diatomic molecules are
compared to the data tabulated in HCP [7].

5.1 The Algorithm

The formation of a diatomic molecule involves the interaction between two activated
valence electrons. In the case of heteropolar interaction the difference in quantum
potential energy (electronegativity) of these two electrons results in a skewed charge
distribution, which may be expressed as a differenceδQ in charge, measured at the
nuclear sites.

The dipole moment of a diatomic molecule is defined as the product of equal, but
electrically opposite, fractional charges at the interatomic distanced apart,i.e.

µ = δQ ·d .

The magnitude ofδQ depends on the differences in atomic electronegativities,po-
larizabilities and valence densities. The effect of different electronegativities has
been considered in the calculation of dissociation energy and is introduced here for
a single electron as

p+ =
√

r3
0(1)/r0(2) together with p− =

√

r3
0(2)/r0(1) ,

the reverse polarization. This defines the polarization factor α = p+/v1− p−/v2,
wherevi is the number of valence electrons on atomi.

In order to estimate atomic polarizabilities it is noted that the inverse of charge
density at the crests of the spherical-wave representationof atoms, in units ofa3

0/e,
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should be such a measure. This quantity has been calculated before [6] from a spher-
ical standing-wave model of the atom, shown schematically as a radial projection in
Fig. 7.

+

.0084.0126.034.068 .0043
.0063

8 8 18 182
.

.

ρ /eao
−3

Fig. 7 Electron charge densities in spherical-wave model of the atom

The reciprocals come out as

1
ρn

= 14.7, 29.42, 79.37, 119.04, 158.73, 232.55

These numbers are converted into a series of integers

1.02
ρn
≃ 15, 30, 80, 120, 160, 240 = m

which will be used as coefficients to calculate polarizabilities directly from ioniza-
tion radii; noting that the quantityk = m/nr0 oscillates aboutk ≃ 10 for period
numbern, as shown in Table 14.

In this table units ofa3
0/e andÅ−1 are mixed. To ensure consistency we convert

1Å3 = (0.52)−3a3
0 = 7.11a3

0. Also, calculated charge densities refer to fully occu-
pied energy levels, whereas the 1/r0 simulation specifies one-electron densities. The
ratio f (1 : 8)→ 1.38, compensates for this effect, to give the complete conversion
factor k = 7.11×1.38= 9.81, that generates the numbersan = m/10 from 1/ρn.
From these numbers polarizabilities are calculated assn = an/r0(n) = f/10 of Ta-
ble 14. This result provides a simple conversion of calculated dipole moments into
Debye units. Noting that

1D≡ 3.336×10−30Cm

1eÅ = 4.8D,

the dimensional constant for conversion of dipole moments into Debye units follows
directly asK = 10/3.336= 3.
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Table 14 Numerical relationship between ionization radii and atomic polarizabilities. Ionization
radii have been calculated by the spherical-wave model [6].

H Ratio
15
r0

f (1 : 8)
15.5

Li Be B C N O F Ne
30
2r0

6.4 7.0 8.0 8.4 8.9 9.4 9.9 10.4
1.63

Na Mg Al Si P S Cl Ar
80
3r0

8.6 9.6 9.7 10.2 10.6 10.8 11.6 12.1
1.40

K Ca Ga Ge As Se Br Kr
120
4r0

8.6 9.1 10.0 10.4 10.7 11.1 11.5 11.9
1.38

Rb Sr In Sn Sb Te I Xe
160
5r0

8.4 9.0 9.7 10.0 10.4 10.7 11.1 11.6
1.38

Cs Ba Tl Pb Bi Po At Rn
240
6r0

9.9 10.5 11.7 12.0 12.4 12.8 13.2 13.7
1.38

5.2 Results

5.2.1 Interactions of s− p type

Valence density depends on the periodic position of an atom,shown for represen-
tative elements in Table 14. The simplest situation to modelis the polarization that
occurs in an alkali halide molecule, also responsible for the largest dipole moments
of diatomic molecules. In effect, a singly-charged valenceshell interacts with a sin-
gle vacancy in the valence shell of the halogen atom. The polarization of the alkali
shell should decrease with atomic size, which is measured bythe period number
of the valence shell. The implied decrease in valence density from Li to Na, of
8.6/6.4∼ 3/2, suggestsν = 1/n as approximate scale factor, which could be com-
plicated by the appearance ofd and f sub-levels. It is a complementary vacancy
density that should be taken into account.

The feasibility of these assumptions are validated by calculating a dipole moment
for LiF with n = 2, s= 3/

(

2r0(F)
)

≃ 1, K = 3, α = 2.77,d = 1.56Å:

µc = 3× 1
2×2.77×1.56= 6.48,

compared to the experimentally measuredµx = 6.33D. The assumptions also predict
the dipole moments of other alkali fluorides with remarkableaccuracy. Usingδq =
3/n for Na to Cs calculates:
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µ(NaF)= (ν = 1)(n = 3)× (α = 4.26)× (d = 1.93) = 8.2 (µx = 8.2D)

µ(KF) = 0.75×5.17×2.17= 8.4 (µx = 8.6D)

µ(RbF)= 0.6×5.89×2.27= 8.0 (µx = 8.5D)

µ(CsF)= 0.5×6.43×2.35= 7.6 (µx = 7.9D)

For the higher halides of Li and Na it is adequate to assumeδq= 3.5/n, in line with
Table 14.

A better simulation for the higher fluorides(n > 3) is obtained by the physically
more sensible assumption ofδq ∝ V0(M)/V0(F), e.g. s(KF)∝ [r0(K)/r0(F)]3 = 12.2.
Noting the factorn2 that defines wave nodes, we calculateδq = s/n2, i.e.:

δq(KF) = 0.76, µc = 8.53D

δq(RbF)= 0.63, µc = 8.42D

δq(CsF)= 0.52, µc = 7.86D

Deviations from the ideal rule

3
2r0(F)

=
8

3r0(Cl)
=

12
4r0(Br)

=
16

5r0(I)
= 1

i.e.:
3r0(Cl)
r0(F)

=
16
3

,
4r0(Br)
r0(F)

=
24
3

,
5r0(I)
r0(F)

=
32
3

define the factors that convert volume ratios to the scale, fixed before by

3
2r0(F)

as
nr0(X)

r0(F)
, e.g.

3r0(Cl)
r0(F)

= 4.54, etc. ,

with factors for Br=6.87 and I=9.47. This way we find:

δq(LiCl) = 1.08×4.54/4= 1.23, µc = 5.1 (µx = 7.1D)

δq(NaCl)= 1.22, µc = 9.5 (µx = 9.0D)

δq(KCl) = 1.00, µc = 10.8 (µx = 10.3D)

δq(RbCl)= 0.83, µc = 10.7 (µx = 10.5D)

δq(CsCl)= 0.68, µc = 10.1 (µx = 10.4D)

As before simple scaling works better for Li and Na. Final results for all alkali
halides are collated in Table 15.

The next group of diatomic molecules with non-trivial dipole moments are the
alkaline-earth chalconides where polarization involves double the number of va-
lence electrons and vacancies. Taking this into account we calculate dipole mo-
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Table 15 Calculated and observed dipole moments (Debye) of the alkali halides.

F Cl Br I
Li (µc) 6.5 7.2 7.0 7.6

µx 6.3 7.1 7.3 7.4
Na 8.2 9.1 8.8 8.9

8.2 9.0 9.1 9.2
K 8.5 10.8 10.9 11.2

8.6 10.3 10.6 ∼ 10.8
Rb 8.4 10.7 10.8 11.2

8.5 10.5 ∼ 11.5
Cs 7.9 10.1 10.2 10.6

7.9 10.4

ments in reasonable agreement with the experimentally known values for MgO
= 6.1, SrO = 8.9, BaO = 8.0 and BaS = 10.9D. Definingα = p+/2− p−/6,
δq = (1/n2)[V(M)/V(O)]×4 we find:

MgO : µ = 2.32× (α = 1.62)× (d = 1.75) = 6.2D

SrO : µ = 1.76×2.47×1.92= 9.0D

BaO : µ = 1.48×2.76×1.94= 8.0D

For BaS with 3r0(S)/r0(O) = 4.63,s= (1/36)[V(Ba)/V(S)]×4:

BaS : µ = 1.87×2.02×2.51= 9.5D

The main objective is not to produce exact dipoles moments, using fine-tuned pa-
rameters, but rather to demonstrate that a convincing matchwith experimental mea-
surement can be achieved by the multiplication of three factors that derive from
ionization radii and valence densities alone.

5.2.2 The p-block diatomics

In the case of group 3 halides onlyp electrons are involved in the interaction. The
halogen vacancy is 1/5 of thep-density. Hence we calculate the polarizability fac-
tor asα = p+− p−/5. Whereas thes-density of groups 1 and 2 interacts directly
with vacancies in the valence shell, thep-density of groups 3 and 7 atoms are not
separated by a closed-shell arrangement, but by intervening d-levels. The number
of charges that separate B from Al= 8, Al−Ga= 18, Ga−In= 18 and In−Tl= 32.
Between groups 3 and 7 there are always±4 charges. Instead of scaling the volume
ratios by 1/n2, the effective scale factors arem= 8, 18+4, 32−4, as in Table 16. In
the same calculation for some chlorides with known dipole moments a better fit is
obtained withm≃ 31, i.e.
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Table 16 Calculation of dipole mements of group 3 fluorides

s= 1
mV(M)/V(F) = δq α d/Å µc µx(D)

BF 1.89/8 0.24 1.72 1.26 0.5 0.5
AlF 5.89/22 0.27 3.45 1.65 1.54 1.53
GaF 7.69/22 0.35 3.99 1.77 2.47 2.45
InF 10.33/28 0.37 4.67 1.99 3.44 3.40
TlF 11.49/28 0.41 4.95 2.08 4.22 4.23

µ(InCl) = 2.98×4.54/31× (α = 3.59)× (d = 2.4) = 3.76, (µx = 3.79D)

µ(TlCl) = 0.49×3.81×2.48= 4.59 (4.54)

µ(TlI) = 1.69×9.47/31×3.21×2.81= 4.66 (4.61)

However, the sample is too small to reveal a logical pattern.
Simulation of the dipole moment of CO needs special care. In order to sim-

ulate the 212-order interaction it is necessary to modify the characteristic radii to
r0(C)=1.784̊A, r0(O)=1.36̊A, with the number of valence electronsvC ≃ vO ≃ 3, to
give a polarization factor ofα ≤ 0.86,δq = (1.784/1.36)3/16= 0.14,d = 1.13Å,
µc≤ 0.14D. (µx =−0.11D). The charge flow from O→C, implied by the modified
radii, inverts the sign of the dipole moment, as observed.

In comparison,ab initio SCF calculation ofµ(CO) with the correct sign, at
−0.077D, requires a double-zeta-plus-polarizationbasis setwith 138 doubly excited
configurations plus 62 single excitations [29]. The chemical principles involved here
are hard to visualize.

Several chalconide diatomics of the carbon group are also subject to similar mod-
ification of their atomic valence spheres. Since these effects have not been calcu-
lated, an approximation, which assumes a polarization factor of α = 2(p+− p−),
calculated with unmodified atomic radii, with the special scale factors shown in
Table 17, was found to give results in good agreement with experiment.

Table 17 Dipole moments of group 4 oxides.

s δq α d/Å µc µx/D
CO 1.38/9 0.153 0.72 1.13 0.12 0.11
SiO 4.39/9 0.488 4.20 1.51 3.09 3.10
GeO 5.89/16 0.368 5.38 1.62 3.21 3.28
SnO 7.93/23 0.345 6.74 1.83 4.25 4.32
PbO 8.93/28 0.319 7.34 1.92 4.50 4.64

In modelling the higher chalconides a factornr0(X)/r0(O) scales the fractional
chargesδq = s· f (X), where f (S)= 4.63, f (Se)6.78 and f (Te)= 9.32, as in Table
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18. For selenides and tellurides the empirical fit to known dipole moments are:

Table 18 Dipole moments of group 4 sulphides

s δq α d/Å µc µx/D
CS 0.37/4 0.43 2.80 1.54 1.85 1.96
SiS 1.19/4 1.38 0.60 1.93 1.60 1.73
GeS 1.60/13 0.57 1.70 2.01 1.95 2.00
SnS 2.15/20 0.50 2.92 2.21 3.23 3.18
PbS 2.43/25 0.45 3.44 2.29 3.55 3.59

CSe : µc = (0.28×6.78/6)× (α = 3.80)× (d = 1.68) = 2.02 (µx = 1.99D

GeSe : µc = (1.6×6.78/10)×0.72×2.13= 1.66 (µx = 1.65)

GeTe : µc = (0.97×9.31/12)×0.36×2.34= 1.06 (µx = 1.06)

Them index that correlates separated fractional charges with volume ratios is an
integer that changes in a regular, but still unspecified way,as in

δq =
1
m

[V(M)/V(X)] ,

with the relative periodic positions of M and X. The pattern is summarized in the
following array:

F F O Cl Cl S Br Br Se
Li B C 4 4 9 4 4 4 6
Na Al Si 9 22 9 9 9 9
K Ga Ge 16 22 16 16 13 16 10(12Te)
Rb In Sn 25 28 23 25 31 20 25
Cs Tl Pb 36 28 28 36 31 25 36

For alkali halides and alkaline-earth chalconidesm= n2, wheren is the period
number of M. Where both atoms are in thep-blockm also depends on the periodic
position of X.

The dipole moments of the six interhalogen diatomics are modelled well by cal-
culatingµc = α ·δq ·d, α = p+− p−, δq = (3m/20)(V1/V2) ≡ 0.15×V1/V2×m.
Hence
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µ(FCl) = 1.59× (0.15×0.289×8)×1.63= 0.90 (µx = 0.89D)

µ(FBr) = 2.26× (0.15×0.198×12)×1.76= 1.42 (1.42)

µ(FI) = 2.86× (0.15×0.147×16)×1.91= 1.93 (1.95)

µ(ClBr) = 0.62× (0.15×0.684×4)×2.14= 0.54 (0.52)

µ(ClI) = 1.16× (0.15×0.509×6)×2.32= 1.23 (1.24)

µ(BrI) = 0.55× (0.15×0.744×5)×2.47= 0.76 (0.73)

Diatomic oxygen halides are correctly modelled by assumingα = p+− p−, δq=
(V1/V2)×0.18m, m(Cl) = 10,m(Br) = 12,m(I) = 16, i.e.

µ(ClO) = 1.43×0.607×1.57= 1.36 (µx = 1.30D)

µ(BrO) = 2.08×0.497×1.72= 1.78 (1.76)

µ IO = 2.67×0.492×1.87= 2.46 (2.45)

The scale factors that convert halogen interactions to the F-scale suggest an index
m< 2 for OF. A measured value very close to zero is reported. Fromthis we infer
m≃ 0.1. The samem should model the dipole moment of SF. We find

µ(SF)= 1.73× (12×0.23×0.1)×1.60= 0.76 (µx = 0.79D)

Other interactions in thep-block are empirically modelled by a closely related
scheme. We find:

µ = α× δq×d

µ(NO) = 0.18× (4×0.849×0.18)×1.15= 0.13 (µx = 0.16D)

µ(NS) = 1.59× (12×0.320×0.20)×1.49= 1.82 (1.81)

µ(OS)= 1.78× (12×0.272×0.18)×1.48= 1.55 (1.55)

µ(OP)= 1.86× (12×0.259×0.22)×1.48= 1.88 (1.88)

µ(NP) = 1.67× (19×0.305×0.19)×1.49= 2.74 (2.75)

5.2.3 Diatomic Hydrides

To find a formula for the dipole moments of diatomic hydrides we look at the hy-
drides of the first short period and calculate

α =
r3
0(X)

r0(H)
−

r3
0(H)

r0(X)
and s= V(H)/V(X)

as shown in Table 19. The values ofmare clearly derived fromv×3, which is exact
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Table 19 Calculation of hydride dipole moments

C N O F
v 2 3 4 5
α 2.41−0.72 2.23−0.73 2.05−0.76 1.90−0.77

1.69 1.50 1.29 1.12
u = (VH/VX ) 0.16 0.19 0.22 0.26

s= u/
√

v 0.11 0.11 0.11 0.116
δq = ms 0.77 0.88 1.32 1.74

m 7 8 12 15
d/Å 1.12 1.04 0.97 0.92

µ = α ·δq·d 1.46 1.37 1.65 1.78
µx/D 1.46 1.39 1.66 1.83

for HF [3/2r0(F)≃ 1] and decreases slightly to the left, noting thatr0(C)/r0(F)≃
7/3v.

By the same method, scaling by the factors 4.54 and 4.63, established before, and
noting the difference of 2 in the number of vacancies, we calculate:

µ(HCl) = (α = 2.91)×
(

1√
5
×0.341×2

)

× (d = 1.27) = 1.11 (µx = 1.11D)

µ(HS)= 3.33×
(

1
2
×0.278×4

)

×0.97= 1.80 (µx = 1.83D)

In the same way:

µ(HBr) = 3.69× (1/
√

5×0.51×6.87)×1.41= 0.82 (µx = 0.83 D)

µ(HI) = 4.40× (1/
√

5×0.038×9.47×2/5)×1.61= 0.46 (µx = 0.45 D)

The effective scale factors for hydrogen halides are:

HF HCl HBr HI
15 9.08 6.87 3.80

3× 5 3.03 2.29 1.27

On comparison with similar factors for period 2 hydrides, periodic scaling with
respect to F is seen to be such that the cross products betweenthese factors as they
appear, moving towards C and I respectively, are simple multiples of 3, as in the
following array:

C(2.33) O(2.67) N(4.0)
∼ 3 6 12 15 F

I(1.27) Br(2.29) Cl(3.03)

This regularity is the result of a periodic relationship between atomic ionization
spheres, also manifested in atomic electronegativities.
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5.3 Discussion

The calculation of dipole moments described here differs from all other methods in
ignoring nuclear charge. The rationale behind this is that any atom is electrically
neutral. During covalent interaction only the extranuclear charge clouds are subject
to polarization, which renders heteronuclear diatomics dipolar. As the character-
istics of atomic charge clouds are fully characterized by ionization radii and the
number of valence electrons, these are the only parameters needed for the calcula-
tion of dipole moments of atomic pairs of known periodic positions. Some of the
empirical factors introduced here, although poorly understood, are consistent with a
regular periodic pattern.

It is only in the case of the alkali halides that a regular pattern in the variation of
dipole moment can be identified and interpreted, with some imagination, in terms of
the periodic variatian of ionization radii. The paucity of data for other heteropolar
combinations prevents generalization of the observed trend. There are some tantaliz-
ing indications that implicate the role of intervening transition and inner-transition
levels, but to a large extent, each dipole calculation stillrepresents a special case. Re-
alizing that for only about 5% of the possible heteronuclearcombinations between
representative elements have dipole moments been measured, the data to substan-
tiate any general simulation are clearly insufficient. However, the limited success
demonstrated here confirms that the appropriate parametersfor the calculation of
dipole moments have been identified, although not necessarily quantified.

6 Conclusion

It would be wrong to interpret this work as an effort to gainsay the importance of
quantum theory for chemistry. It does the opposite, but questions the methodology
that developed from a naı̈ve interpretation of three-dimensional wave mechanics
to confirm the electron-pair model of Lewis and the molecular-structure theory of
van’t Hoff. Even in terms of the probabilistic interpretation of wave mechanics a
rigid three-dimensionally structured molecule, with its real molecular orbitals, is
undefined. A strategy, based on these concepts and which became known asQuan-
tum Chemistry, amounts to a disastrous misreading of quantum theory and has no
predictive power beyond its classical basis.

To avoid further confusion it is recommended to use the termnon-classical the-
ory instead of the unfortunatequantum mechanics. Non-classical theory became im-
portant after the discovery of the electromagnetic field. The summary of Maxwell’s
field equations in the form

(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂z2 − ε0µ0
∂ 2

∂ t2

)

Φ = 0
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resembles a three-dimensional wave equation and was interpreted as such, despite
Minkowski’s demonstration that it defines a four-dimensional field. Noting that
t/
√ε0µ0 corresponds to a complex space coordinate,x0 = it/

√ε0µ0, the field equa-
tion becomes

3

∑
j=0

∂ 2Φ
∂x2

j

= 2
2Φ = 0 (6)

Classical Newtonian mechanics is a subset of this four-dimensional non-classical
field. Solutions of (6) represent what is colloquially knownas either special relativ-
ity or quantum theory.

As a quantum theory (6) introduces the angular-momentum-spin function; funda-
mental to the periodic table of the elements, which has no recognizable basis in three
dimensions. Spin is a purely four-dimensional concept without any meaning in the
three-dimensional mechanical world of particles. By definition it defines a math-
ematically allowed local configuration of four-dimensional space-time. Projected
into three-dimensional space it appears as a wave packet. Like all wave phenomena
it is characterized by discrete variables, observed as quantum numbers. What the
philosopher Popper refers to [30] as the′quantum muddle′ arises from assigning
quantum numbers to classical three-dimensional mechanical particles.

The way in which number theory is used here to simulate chemical behaviour is
done in the spirit of four-dimensional non-classical theory. This way an interatomic
distance does not represent a′bond length′ in a rigid classical molecule, but an equi-
librium situation resulting from the constructive interference between non-classical
valence electron waves. The present results do not inaugurate a new chemistry. It is
no more than the tip of an iceberg, destined to blossom into something meaningful.
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